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Abstract

Recent work has formulated offline reinforcement learning (RL) as a sequence
modeling problem, benefiting from the simplicity and scalability of the Transformer
architecture. However, sequence models struggle to model trajectories that are
long-horizon or involve complicated environment dynamics. We propose CLaP
(Conditional Latent Planners) to learn a simple goal-conditioned latent space
from offline agent behavior, and incrementally decode good actions from a latent
plan. We evaluate our method on continuous control domains from the D4RL
benchmark. Compared to non-sequential models and return-conditioned sequential
models, CLaP shows competitive if not better performance across continuous
control tasks. It particularly does better in environments with complex transition
dynamics with up to +149.8% performance increase. Our results suggest that
decision-making is easier with simplified latent dynamics that models behavior as
being goal-conditioned.1

1 Introduction

Reinforcement learning (RL) has seen significant advances with the introduction of deep neural
networks, achieving excellent results across a wide range of domains (Tesauro, 1994; Hafner and
Riedmiller, 2011; Levine and Koltun, 2013; Mnih et al., 2013; Levine et al., 2016; Silver et al.,
2017; Kalashnikov et al., 2018). These RL methods generally involve continued interactions with
the environment, using experience to improve the learned policy. However, online interaction is
expensive and potentially dangerous. This prompts the need for offline RL methods that allow for
data to be collected in a safe way, and then have agents learn from this offline dataset (Haarnoja et al.,
2018; Fujimoto et al., 2019; Wu et al., 2019; Kumar et al., 2020).

Learning from offline data is challenging because the pre-collected dataset of agent behavior may be
limited in quantity and quality (Levine et al., 2020). Low data quantity leads to generalization issues,
where a majority of states are out-of-distribution from the agent’s training distribution. Low data
quality leads to learning sub-optimal behavior, where the provided demonstrations are not generated
by experts.

Recent works apply sequence models for decision making to overcome these issues (Janner et al.,
2021; Chen et al., 2021). Sequence models streamline learning by not requiring additional algorithm
constraints such as policy regularization (Fujimoto et al., 2019; Kumar et al., 2019) and conservatism
(Yu et al., 2020; Kidambi et al., 2020). However, there are two limitations in prior sequence modeling
approaches for RL. Chen et al. (2021) models trajectories as return-conditioned, which can cause
issues when the optimal return is not known (Brandfonbrener et al., 2022). Janner et al. (2021)’s
approach models trajectories as goal-conditioned by prepending the goal at the start of the sequence.
However, sequence models struggle to attend to goals when the sequences are long or the environment

1Videos and code are available here:https://github.com/dh2shin/conditional_latent_planners
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dynamics is complicated (Kiddon et al., 2016; Fan et al., 2019; Hua and Wang, 2020). Recent work
in natural language processing (NLP) overcome these issues by modeling text as generated from a
goal-conditioned latent process (Wang et al., 2021). The work assumes the latent dynamics is simple
and known, which makes generating long coherent sequences easier.

Our work proposes Conditional Latent Planners (CLaP), a sequence-based model that decodes actions
from a learned goal-conditioned latent space. We incorporate the ideas from Wang et al. (2021),
which generates language from a goal-conditioned latent process, and apply them to the offline
RL setting. In the offline RL setting, CLaP generates actions as sampled from a goal-conditioned
latent process learned from offline data. Note that despite methodological similarities, the offline
RL setting is very different from the NLP setting. For example, they assume the sequence model
has been pretrained and can be further finetuned on large datasets, whereas we assume access to
smaller and potentially low-quality data. We evaluate our method against a prior state-of-the art
non-sequential method Conservative Q-Learning and the original Decision Transformer model on
the D4RL benchmark (Fu et al., 2020; Kumar et al., 2020; Chen et al., 2021). We show that CLaP
outperforms Conservative Q-Learning and Decision Transformer on tasks with particularly complex
transition dynamics and matches their performance on other tasks.

2 Related Work

Latent planning methods Planning in unknown environments is difficult because it requires a
faithful model of the world. Obtaining this model is often challenging and even impossible, especially
in high-dimensional or image-based domains (Hafner et al., 2019; Moerland et al., 2020; Schrittwieser
et al., 2021). Prior work circumvent the need to specify a world model for the raw state space with
latent-based methods (Ha and Schmidhuber, 2018; Oord et al., 2018). They learn the latent space
with a simple Variational Autoencoder or noise-based contrastive learning (Gutmann and Hyvärinen,
2010; Kingma and Welling, 2013; Rezende et al., 2014). However, without assuming temporal
structure in the latent space, these methods often fail to predict future latents accurately. Accumulated
prediction errors can result in decoding bad actions, leading to low returns. Our method overcomes
these challenges by assuming a goal-conditioned structure for planning in latent space.

Wang et al. (2021) is a recent work in NLP which models language with goal-conditioned stochastic
processes, namely the Brownian bridge process (Revuz and Yor, 2013). Their work assumes that each
document is generated from a process that is pinned to the same latent start and goal. Intermediate
latents are Gaussian distributions centered at interpolated points between the two, and with variances
that are a function of time. Despite methodological similarities, we note key differences in the
setting. For example, their work assumes that the sequence model has been pretrained on a large
dataset (Radford et al., 2019) whereas ours is pretrained on an offline dataset that is much smaller in
comparison. Their work assumes that the model has been pretrained and can be further finetuned
on high-quality text, whereas we assume a varying quality of data. Finally, they assume that the
documents are generated from a process pinned at the same start and goal, whereas we assume that
the trajectories are generated from processes with different start and goal states. Our work focuses on
addressing the challenges that arise from these differences.

Goal-conditioned RL A number of prior works have trained goal-conditioned RL policies using
supervised learning and model-free RL (Kaelbling, 1993; Nair et al., 2018; Ghosh et al., 2019;
Eysenbach et al., 2019). In the offline setting, many methods employ goal-conditioned Q-learning
with hindsight relabeling techniques to incorporate goal information and to be sample efficient
(Andrychowicz et al., 2017; Chebotar et al., 2021; Tian et al., 2021). These relabeling methods are
related to how CLaP learns a goal-conditioned latent structure over agent trajectories. However,
unlike relabeling methods, CLaP uses this latent structure to simplify dynamics and actively decode
intermediate latents and actions needed to reach a desired goal state.

Sequence models for RL Our work builds off of recent sequence-modeling approaches for RL,
such as Decision Transformer (Chen et al., 2021) and Trajectory Transformer (Janner et al., 2021).
Decision Transformer is a causally masked Transformer that generates actions conditioned on past
states, actions, and desired returns. Trajectory Transformer is a predictive dynamics model trained
on discretized states, actions, and rewards, which behaves like a model-based RL method when
paired with planning algorithms. Trajectory Transformer’s goal-reaching RL scheme prepends goal

2



aihm
Zo

t

Figure 1: A Brownian bridge process pinned between start latent z0 and goal latent zT . The green
oval indicates how uncertainty is greatest in the middle, and the three plots are possible latent paths
that belong to the given process.

states to agent states in a raw, discretized format. However, such a basic form of goal-conditioning
does not yield useful information on what goal-conditioning behavior actually looks like, especially
for long-horizon tasks in complex environments. CLaP instead explicitly learns a latent space with
goal-conditioned behavior and then uses it to decode good actions in a step-by-step, more granular
fashion.

3 Offline RL Formalism

We formalize the offline RL setting described by the tuple (S,A, P,R), consisting of states
s ∈ S, actions a ∈ A, transition dynamics P (s′ | s, a), and a reward function r = R (s, a).
Similar to Chen et al. (2021), we use st, at, and rt = R (st, at) to denote the state, ac-
tion, and reward at timestep t. A trajectory can then be described by a sequence of states, ac-
tions, and rewards: τ = (s0, a0, r0, s1, s2, s3, . . . , sT , aT , rT ). For the purposes of pretraining
a Decision Transformer model, we represent trajectories using returns-to-go R̂t =

∑T
t′=t r

′
t in-

stead of rewards directly, resulting in the following representation for training and generation:
τ =

(
R̂1, s1, a1, R̂2, s2, a2, . . . , R̂T , sT , aT

)
.

4 Conditional Latent Planners (CLaP)

In this section, we describe the training and inference procedures for CLaP. First, we discuss how
CLaP is pretrained; this builds off of the Decision Transformer’s training phase (Chen et al., 2021).
We then discuss how CLaP’s encoder and decoder are trained. The encoder maps states into latents,
from which the decoder infers what actions to take. Finally, we explain how CLaP is used at inference
time.

4.1 Pretraining

CLaP builds on the Decision Transformer architecture. We denote the policy as πbase
θ . We pretrain

using the same objective as the Decision Transformer, namely to minimize error between the ground-
truth action from the dataset at and the predicted action from the sequence-based policy ât over a
context length of C.

J (θ) =
1

C

(
C∑
t=1

J (t) (θ)

)
=

1

C

C∑
t=1

(at − ât)
2 (1)
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Figure 2: CLaP makes decisions conditioned on a latent plan. The learned encoder first maps the
initial state s0 and the goal state sT to their latent representation z0 and zt. (top) The latent plan is
sampled from a Brownian bridge process, which is a stochastic process pinned at the start latent z0
and end latent zT . CLaP samples from the process to produce a trajectory show in blue. (bottom)
CLaP decodes actions at conditioned on the next latent zt+1 and the current state st.

The above mean-squared error is used for environments with continuous action spaces. In the discrete
setting, the loss can be swapped with cross-entropy loss (Chen et al., 2021).

4.2 Encoder Training

The encoder maps states to low-dimensional latents, fθ : S → Z . We model latent structure as in
Wang et al. (2021), where the latents follow a Brownian bridge process. The Brownian bridge process
has the following density pinned at a start point z0 at t = 0 and end point zT at t = T :

p(zt|z0, zT ) = N
(
(1− t

T
)z0 +

t

T
zT ,

t(T − t)

T

)
(2)

This density function denotes how zt should be more like z0 at the start, zT at the end, and linearly
interpolated in between but with greater uncertainty. Figure 1 illustrates this uncertainty in the
Brownian bridge process. We use the same contrastive objective as in Wang et al. (2021). The
objective maps a triplet of states s1, s2, s3 to fθ (s1), fθ (s2), fθ (s3) and fits a Brownian bridge
density in Equation 2.

Formally, given multiple sequences of agent states in trajectories, S = {s1, . . . , sN}, we draw batch
B : {(s0, st, sT )} of randomly sampled positive triplets s0, st, sT where 0 < t < T . Then, our
encoder is optimized by

LN = EX

[
− log

exp (d (s0, st, sT ; fθ))∑
t′∈B exp (d (s0, st′ , sT ; fθ))

]
where (3)

d (s0, st, sT ; fθ) = − 1

2σ2
∥fθ (st)−

(
1− t

T

)
fθ (s0)−

t

T
fθ (sT )∥22 (4)

This objective can be viewed as maximizing the extent to which true triplets from agent trajectories
follow the Brownian bridge process while minimizing the extent to which alternate midpoints sampled
from other trajectories do so.

One crucial difference between Wang et al. (2021) and CLaP is that Wang et al. (2021) maps all start
points to a single latent, and all end points to another latent; their start points are centered at 0 and
end points at 1. Our work does not pin start and end latents because we want to learn a policy that
can generalize to any start and goal state.

4.3 Decoder Training with Latent Paths

After training the encoder, we train the decoder to produce actions using information from latent
space. Let

(
R̂1, s1, a1, R̂2, s2, a2, . . . , R̂C , sC

)
denote the original input sequence, where C is the
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Figure 3: D4RL Maze2D & Adroit Environments

context length. We finetune the policy to produce an action similar to ground-truth action aC . The
finetuning process is as follows. We first edit the trajectory to incorporate future information for
t ∈ [1, C]. We fetch the next state st+1 ∈ Rd and encode the state with the trained encoder fθ.
We now have the latent embedding zt+1 ∈ Rd′

. To provide the policy with information about the
immediate future latent, we add st and zt+1 together. If the two do not share dimension size, we
learn a matrix M ∈ Rd×d′

which maps the latent to the state space dimensions. The new state is then
ŝt = st +Mzt+1. We finetune our pretrained model from Section 4.1 with the new input sequence
(R̂1, ŝ1, a1, . . . , R̂C , ŝC).

4.4 CLaP at inference time

Figure 2 illustrates the inference setup. Given the initial state s0 and goal state sT , we encode them
to produce the latent codes z0 and zT . We sample a latent path with Brownian bridge dynamics in
Equation 2. This produces a sequence (z0, z1, . . . , zT ). We then decode actions conditioned on the
past input sequence of context-length C and the future latent target: at step t, CLaP takes in the
sequence (Rt−C , ŝt−C , at−C , . . . , Rt, ŝt) which already incorporates zt+1 in ŝt, and generates at.

When the goal state is not known, we take it to be the average of the terminal states. Similarly, when
T is unknown, we take it to be the average sequence length from our training data. This is a limitation
of our method, particularly when dealing with completely new distributions at test time. In realistic
scenarios, we can expect the goal to be known ahead of time. Despite these limitations, we find that
CLaP still performs well in D4RL simulated environments, suggesting the learned latent dynamics is
simple enough to generalize to unseen states.

5 Experiments

In this section, we investigate the performance of CLaP compared to two state-of-the-art methods.
One is a non-sequential method, Conservative Q-Learning (CQL) (Kumar et al., 2020), and the other
is a sequence-based method, Decision Transformer (DT) (Chen et al., 2021). We focus on how CLaP
compares to DT, analyzing how much sequence models can benefit from latent goal-conditioning and
incremental decoding from a latent path. We evaluate on two continuous control tasks from the D4RL
benchmark, which require fine-grained continuous control (Fu et al., 2020). Maze2D is a navigation
task where a 2D agent tries to reach a fixed goal location. The Adroit domain requires control of a 24
degree-of-freedom simulated robotic hand to hammer a nail, open a door, twirl a pen, or pick up and
move a ball. For the four adroit domain tasks, we consider the human and expert data settings. Figure
3 illustrates all the environments used in our work. We use the default hyperparameters detailed in
Chen et al. (2021) for training, which is done on a single Nvidia Titan Xp GPU.
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Task Name Base DT CLaP CQL
Umaze 65.7 ± 1.4 60.2 ± 1.7 5.7

Medium 77.5 ± 5.1 69.8 ± 2.5 5.0
Large 156.6 ± 1.9 180.8 ± 1.7 12.5

Pen-Expert 114.1 ± 6.2 119.0 ± 5.8 107.0
Hammer-Expert 127.0 ± 0.2 123.7 ± 1.3 86.7

Door-Expert 103.4 ± 0.8 101.4 ± 2.5 101.5
Relocate-Expert 104.9 ± 1.0 92.2 ± 1.2 95.0

Pen-Human 25.2/69.4 ± 8.4/21.9 43.5/103.7 ± 3.8/8.3 37.5/-
Hammer-Human 1.6/24.1 ± 0.0/2.7 0.7/60.2 ± 0.0/7.7 4.4/-

Door-Human 1.5/19.2 ± 0.2/3.6 0.1/-0.8 ± 0.0/0.0 9.9/-
Relocate-Human 0.0/0.0 ± 0.0/0.0 0.1/0.0 ± 0.0/0.1 0.2/-

Table 1: Normalized results comparing base DT, CQL, & CLaP. Average results are reported over
4 seeds, and normalized to a score between 0 (random) and 100 (expert). The highest scores are
marked in gray cells.

We first compare sequential models DT and CLaP with the non-sequential model CQL. CQL rep-
resents the state-of-the-art non-sequential model-free offline RL method. CQL results are reported
by the original paper (Kumar et al., 2020). Scores are normalized between 0 and 100, representing
random and expert performance, respectively.2. Our results are shown in Table 1. We find that DT and
CLaP almost always outperform CQL, demonstrating that we generally benefit using high-capacity
sequential models for decision making.

We now analyze how goal-conditioning helps sequence models by comparing the two sequence
models. CLaP achieves competitive performance in a majority of tasks and shows pronounced
improvement over base DT in domains with complex transition dynamics: 15.5%, 49.4%, and
149.8% boosts in Large Maze, Pen, and Hammer Human.3 This finding suggests that CLaP and its
goal-conditioned latent paths effectively reduce the burden on the model from learning the complex
transition dynamics of these environments. This enables the policy to more easily decode good
actions, leading to better performance.

6 Conclusion

We proposed Conditional Latent Planners, seeking to incorporate goal-conditioned information into
sequence models for decision making. On the D4RL benchmark, we showed CLaP matches the
performance of DT, while outperforming on tasks that have particularly complex transition dynamics.
This finding suggests that CLaP and its directed diffusion effectively reduce the burden on the model
from learning the complex transition dynamics of these environments.

While our work empirically showed promising preliminary results with applying goal-conditioning
even in domains with limited data, it is nevertheless challenging to learn good latent structures in
high-variance, low-data scenarios. Future work can research how to learn better latent representations
even in settings with limited data so that sequence models for decision making can benefit maximally
from goal-conditioning.
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