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ABSTRACT

We leverage a large stereoelectroencephalography (SEEG) dataset consisting of
neural recordings during movie viewing and a battery of unimodal and multimodal
deep neural network models (SBERT, BEIT, SIMCLR, CLIP, SLIP) to identify
candidate sites of multimodal integration in the human brain. Our data-driven
method involves three steps: first, we parse the neural data into discrete, distinct
event-structures, i.e., image-text pairs defined either by word onset times or visual
scene cuts. We then use the activity generated by these event-structures in our
candidate models to predict the activity generated in the brain. Finally, using
contrasts between models with or without multimodal learning signals, we isolate
those neural arrays driven more by multimodal representations than by unimodal
representations. Using this method, we identify a sizable set of candidate neu-
ral sites that our model predictions suggest are shaped by multimodality (from
3%-29%, depending on increasingly conservative statistical inclusion criteria).
We note a meaningful cluster of these multimodal electrodes in and around the
temporoparietal junction, long theorized to be a hub of multimodal integration.

1 INTRODUCTION

The use of deep neural network models to predict and characterize representations in biological
cortex is now standard practice in the field of computational cognitive neuroscience. Beginning with
seminal work in the primate ventral visual stream (39; 35), this practice has now expanded to include
the study of human vision and language cortex alike (36; 18; 19; 27; 8; 12). These studies, however,
tend almost uniformly to focus on a single modality of input – vision alone or language alone – in
large part because unimodal datasets (9; 2; 4; 30) and unimodal models (e.g. PyTorch-Image-Models;
Huggingface) are the most commonly available.

As a product of this unimodal focus, we have learned far less about the correspondence between bio-
logical and artificial neural systems tasked with processing visual and linguistic input simultaneously.
Here, we seek to address this gap by using performant, multimodal deep neural network (DNN)
models (VisualBERT, SBERT, BEIT, SimCSE, SIMCLR, CLIP, SLIP) (25; 33; 3; 17; 10; 32; 29)
to predict neural activity in a large-scale stereoelectroencephalography (SEEG) dataset consisting
of neural responses to the images and scripts of popular movies (38). Our analytic goal is to use
systematic comparisons between the neural predictivity of unimodal and multimodal DNNs to identify
candidate sites of vision-language integration in the brain. An overview is given in Figure 1(a).

2 METHODS

Neural Data: Invasive intracranial field potential recordings were collected during 21 sessions from
7 subjects (4 male, 3 female; aged 4− 19, µ = 11.6, σ = 4.6) with pharmacologically intractable
epilepsy. During each session, subjects watched a feature length movie from the Aligned Multimodal
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Figure 1: Methods: (a) An overview of our experiment. We use vision, language, and multimodal
encoders to predict SEEG activity using a regression. (b) An overview of our analysis to determine
the multimodality of a candidate neural site: first, a permutation test to check whether the SEEG
signal is meaningfully driven by the vision and language features extracted from the stimulus set; then,
a bootstrapping test to compare the performance of two competing models. (Multimodal candidate
sites are those sites in which multimodal models are more predictive than unimodal counterparts). (c)
Max raw Pearson correlation across our models on all electrodes. Correlation peaks at 0.5 in areas
associated with linguistic and visual processing.

Movie Treebank (AMMT) (38) in a quiet room while neural activity was recorded on SEEG probes
(28) at a rate of 2kHz. We parse the neural activity into two distinct event-structures where an event
structure consists of an image-text pair and create two stimulus alignments where we have aligned
visual and language inputs. The first event structure consists of word-onset times, a language-aligned
event, and the second consists of visual scene cuts, a vision-aligned event. Word-onset times are
collected as part of the AMMT metadata and visual scene cuts are extracted from each movie using
PySceneDetect (7). Following (18), we extract a 4000ms window of activity (about 8000 samples),
2000ms prior to the event occurrence and 2000ms after the event occurrence, per electrode. We split
the 4000ms window into sub-windows of 200ms with a sliding window of 25ms and the activity is
averaged per sub-window to get a series of averaged activity values over time per electrode. A more
thorough explanation of our neural data processing can be found in Section B.

Models: We use 9 pretrained deep neural network models, 5 multimodal and 4 unimodal, to explore
the effect of multimodality on predictions of neural activity. The models that serve as our main
experimental contrast are the SLIP models (29). The SLIP models are a series of 3 models that
use the same architecture (ViT-[S,B,L]) and the same training dataset (YFCC15M), but are trained
with one of three objective functions: pure unimodal SimCLR-style (10) visual contrastive learning
(henceforth SLIP-SimCLR); pure multimodal CLIP-style (32) vision-language alignment (henceforth
SLIP-CLIP); and combined visual contrastive learning with multimodal CLIP-style vision-language
alignment (henceforth SLIP-Combo). The full set constitutes a set of 5 models (SLIP-SimCLR; the
SLIP-CLIP visual encoder; the SLIP-CLIP language encoder; the SLIP-Combo visual encoder; the
SLIP-combo language encoder). For more general (uncontrolled) multimodal-unimodal contrasts, we
include the mulitmodal model VisualBERT (25) and the unimodal models SBERT (34), BEIT (3),
and SimCSE (17). For each of the 9 networks, we assess both a pretrained and randomly-initialized
version to assess whether the multimodality we assume in the brain coincides with some form of
multimodal learning pressure. (More details on the logic of these choices are given in Appendix A.)

Neural Regression: To identify candidate multimodal areas, we first extract feature vectors from
every layer of our candidate networks. We then use these features as predictors in a 5-fold ridge
regression predicting the averaged neural activity of a target neural site in response to each event
structure. We measure the strength of our regression using the Pearson correlation coefficient between
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predicted average activity and actual average activity for a specific time window in each neural site
for a held-out test set of event structures. Two aspects of this process are worth emphasizing: First,
our final performance metric (the Pearson correlation between actual and predicted neural activity for
a held-out test set of event-structures) is not a correlation over time-series (for which the Pearson
correlation is inappropriate), but a correlation over a set of (nominally IID) event-structures that we
have extracted by design to minimize the autoregressive confounds of time-series data. Second, our
cross-validation procedure and train-test splitting is specifically designed to assess the generalization
of our neural regression fits, and as such contains no cross-contamination of selection procedures (e.g.
the maximally predictive layer from a candidate DNN, feature normalization, or the ridge regression
lambda parameter) and final model scoring. (More details on our regression can be seen in Appendix
C.)

Signal versus Noise: Typical neural recording datasets leverage multiple repetitions of the same
stimulus to establish various forms of signal-to-noise ratio that indicate whether activity is mean-
ingfully driven by extrinsic differences in stimulus presentation. Given the lack of repetition in our
SEEG dataset, we determine whether neural activity is meaningfully driven by our parsed event
structures using a permutation test (scrambling the event-structures in each permutation). If across
1000 permutations we find the difference between the permuted and unpermuted score to be greater
than 0 in at least 950 cases, we consider the neural activity to be driven by the difference in our event
structures. To correct for multiple comparisons, we adjust the resultant p-value for each test in each
electrode using standard FDR (Benjamini-Hochberg) corrections (37).

Multimodality Tests: Taking inspiration from fMRI searchlight analyses (23; 14), we perform an
additional series of statistical tests on each electrode to determine whether or not they are better
predicted by multimodal or unimodal representations. Each test at its core consists of comparing two
models with a bootstrapping analysis of their max decoding accuracy across the sliding time windows,
with the criteria for being labeled as a ‘multimodal’ electrode increasingly stringent across tests. The
bootstrapping analysis allows us to determine whether the difference in scores between the models is
statistically significant with resampling across the sliding time windows as shown in Figure 1(b). We
repeat the bootstrapping procedure for all electrodes and use FDR (Benjamni-Hochberg) multiple
comparisons corrections to adjust the p-value associated with each electrode on each test. The
multimodality logic we apply (in order of stringency) is as follows: (1) Is any multimodal model
significantly more predictive than all other unimodal models in either of our dataset alignments (word
onset, scene cuts)? (2) Is the SLIP-Combo vision transformer significantly more predictive than the
SLIP-SimCLR vision transformer in either of our dataset alignments? (3) Is any multimodal model
significantly more predictive than all other unimodal models in BOTH of our dataset alignments?
(4) Is the SLIP-Combo vision transformer more predictive than SLIP-SimCLR vision transformer in
BOTH of our alignments? (A more detailed description is given in Appendix D).

3 RESULTS

While there is no single meaningful measure of overall modeling performance, since we expect
significant variance in performance as a function of multiple controlled and uncontrolled sources,
there are a few key metrics we can consider to provide an overall gestalt of our model-to-brain
encoding pipeline and the specific measured effects. Unless otherwise noted, we use the following
convention in the reporting of these metrics: arithmetic mean [lower 95% confidence interval; upper
95% confidence interval].

As an initial heuristic, we consider the bootstrapped average, as well as the bootstrapped upper
and lower bounds on performance across all N = 18 models (9 architectures, with both trained and
randomly-initialized weights), N = 2 dataset alignments (word onsets, scene cuts) and all N = 1090
electrodes, after we’ve selected the max accuracy across time. This constitutes a total of 18 * 2 *
1090 = 39,420 data points. The bootstrapped global average (i.e. the bootstrapped mean) across these
data points is rPearson = 0.0776 [0.0770, 0.0781]. The bootstrapped upper bound (i.e. the bootstrapped
max) across these data points is rPearson = 0.502 [0.515, 0.517]. And the bootstrapped lower bound
(i.e. the bootstrapped minimum) is rPearson = -0.102 [-0.093, -0.0638]. (Negatives here mean model
predictions were anticorrelated with ground truth.) This is of course a coarse metric, meant only to
give some sense of the encoding performance overall, and to demonstrate its notable range across
electrodes. (An illustration of this range is available in Figure 1(c)).
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Figure 2: Overview of identified multimodal candidate sites in the brain. The top row compares any
multimodal model with any unimodal model and the bottom row compares SLIP Vision encoder
with SimCLR. The columns show activity alignment. We highlight all electrodes that are considered
multimodal (passing test 1 and 2) in purple. We highlight all electrodes that are considered multimodal
in both alignments (passing test 3 and 4) in yellow.

3.1 MULTIMODALITY TESTS

This brings us to the first of our statistical tests: the permutation test that serves as an indicator of
whether our models predict meaningful signal. We find that the vast majority of electrodes in this
dataset seem to yield meaningful variance across extracted model features: on average (across the
N = 18 models), 989 [967, 1008] / 1090 electrodes pass the permutation test for language-aligned
structures (with an average difference of rPearson = 0.091 [0.086, 0.095] over permuted structures); 894
[872, 913] pass in vision-aligned structures (with a mean gain = 0.119 [0.116, 0.121]). We exclude
any model-electrode combination that fails its permutation test from subsequent multimodality tests.

Our first test of multimodality (a filter that selects only those electrodes with a multimodal model
significantly more predictive than any unimodal model) yields 323/1090 electrodes (29.6%) using
language-aligned event-structures, and 221/1090 (20.3%) using vision-aligned event-structures. The
average difference in performance between the multimodal model and the next best unimodal model
across the 297 language-aligned electrodes was rPearson = 0.019 [0.018, 0.022]; the average difference
in vision-aligned electrodes was 0.016 [0.014, 0.018].

Our second test of multimodality (a filter that selects electrodes in which the multimodal SLIP-
combo vision transformer significantly outperforms the unimodal SLIP-SimCLR transformer) yields
195/1090 electrodes (17.9%) using language-aligned event structure, and 181/1090 (20.2%) using
vision-aligned structures. The average performance difference between the SLIP-SimCLR and SLIP-
combo vision transformers in language-aligned electrodes was 0.210 [0.0186, 0.0233]; the average
difference in vision-aligned electrodes was 0.0180 [0.0153, 0.0208].

Our third test of multimodality (a filter that selects only those electrodes with a multimodal model
significantly more predictive than a unimodal model in BOTH dataset alignments) yields 73/1090
electrodes (6.70%). The average difference in performance between the multimodal model and the
next best unimodal model across the 73 electrodes was 0.0177 [0.0153, 0.0203].

Our final test of multimodality (a filter that selects only those electrodes in which the multimodal SLIP-
combo vision transformer significantly outperforms the unimodal SLIP-SimCLR vision transformer in
BOTH dataset alignments) yields 32/1090 electrodes (2.94%). The average difference in performance
between the SLIP-combo vision transformer and unimodal SLIP-SimCLR vision transformer was
0.0215 [0.0171, 0.0263].

Visually inspecting the location of the candidate multimodal sites in Figure 2, we find that the
largest contiguous cluster of these electrodes is found in and around the temporoparietal junction.
12/32 electrodes that pass our most stringent multimodality test (the superiority of the multimodal
SLIP-combo vision encoder over its unimodal SLIP-SimCLR counterpart) fall in this junction. In
this junction, the superior temporal cortex and middle temporal cortex are commonly associated with
language and auditory processing (16; 15) and the inferior parietal lobe is commonly associated with
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social cognition and human interaction (5). The inherently multimodal abstractions at this junction
may be a core reason we find them to be better predicted by multimodal representations.

4 CONCLUSION

Human intelligence is predicated in large part on the ability to transform sense-perceptual repre-
sentations into meaningful linguistic tokens, and vice versa. Despite progress, the precise neural
correlates of this multimodal, vision-language transformation remain relatively uncharted. The recent
ascendance of multimodal deep neural network models could afford us a more direct means of
mapping where and when this transformation is likely to occur in the brain. Furthermore, these same
models might also allow us to more directly investigate how this integration occurs. Having access to
the learned internal representations of multimodal models means we should be able to perturb these
representations in systematic ways and assess the impact of those perturbations on brain predictivity.
The candidate sites we’ve identified in this analysis are still just candidates, but they are precisely the
kind of sites we intend to more actively probe in future analyses, addressing the various shortcomings
of the current data-driven, correlational approach with more theory-driven, pseudo-causal approaches.
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A CANDIDATE DNN MODELS

Because they control for dataset and architecture (varying only the learning objective), comparisons
amongst the variants of the SLIP models are our most empirically rigorous test of multimodality.

However, given that the SLIP models contain only one kind of multimodal - unimodal contrast
(SLIP-SimCLR versus SLIP-combo’s visual encoder), we added a number of uncontrolled model
contrasts to assess the predictive power of unimodal and multimodal representations more generally.
These models include VisualBERT (25) (a single-channel multimodal transformer that leverages
cross-attention to integrate vision and language across all levels of representational hierarchy);
SBERT (a unimodal masked language transformer for sentence embeddings); BEIT (a unimodal
vision transformer trained via masked image reconstruction) (3); SimCSE (a unimodal language
transformer trained via contrastive learning). These models provide a broader sample of multimodal
and unimodal DNNs, while still maintaining some core similarities with the SLIP models (transformer
backbones or contrastive learning.)

We assess both trained and randomly-initialized versions of these models first and foremost because,
in most cases, the multimodality of these models is a function ONLY of their learning objective: This
means, for example, that models like the SLIP models – which consist of architecturally encapsulated
vision and language encoders – cannot, in the absence of training, be considered multimodal. Models
like VisualBERT, on the other hand, may be considered multimodal even in the absence of training
due to architectural inductive biases such as cross-modal attention-heads that integrate linguistic
and visual inputs from the outset of processing. It’s also worth noting that (especially in the case of
language) randomly initialized networks are sometimes strong predictors of neural activity purely, it
seems, as a function of architectural inductive biases (6; 36). This is a phenomenon that future work
should investigate more thoroughly, but one we note preliminarily here.

B NEURAL DATA DETAILS

B.1 EVENT STRUCTURES

We parse our neural activity into individual event structures (language + single movie-frame combina-
tions, which we call a text-image pair) by discretizing the movie stimulus, allowing us to feed inputs
to our deep neural network models (which are not trained on movie data). We define event structures
by the guiding feature used to select a particular text-image pair in the movie for analysis. So as not
to unfairly prioritize one modality over the other, we design two different kinds of event structures:
The first kind of event structure consists of word onset times, a language-aligned event. Word onsets
have been used in prior work (18) and are commonly associated with language processing. For each
word onset, we take the prior sentence context of the given word to add contextual information for the
language models. We also take the closest frame after the word onset as the associated image input.
The second kind of event structure consists of visual scene cuts (i.e. camera cuts). We extract the
frames associated with a scene cut as proxy for visual processing given a shift in the pixel distribution
between frames. We then take the closest sentence that occurred after the scene cut. (Note that by
language-alignment or vision-alignment, here, we mean the anchoring of points in neural time-series
to points in the movie).

We use these two kinds of event structures to create two datasets. Our language-aligned dataset
consists of [context of a given word, closest frame pairs] with the associated neural activity as
processed in Section 2. Our vision-aligned dataset consists of [scene cut frames, closest sentence
to a scene cut frame] with similar processing on the neural activity. We analyze all results over the
datasets individually and then compare results across the datasets to identify candidate electrodes for
multimodal integration.

B.2 NOTES ON STIMULUS INDEPENDENCE (AUTOREGRESSION)

Converting neural activity measured in response to naturalistic movie-viewing to a dataset of nomi-
mally IID event-structures presents a particular challenge often explicitly avoided in experimental
designs that leverage otherwise unrelated natural images or language prompts: that is, nonindepen-
dence in the form of autoregression. Movies (driven as they are by common visuolinguistic themes)
contain inherently autoregressive structure that can lead to overfitting in parametrized predictive
models designed to predict neural response patterns evoked by that structure. The parsing of our
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final event-structures into training, testing and validation splits was designed explicitly to assess for
such overfitting. When creating the train-validation-test splits, we assign contiguous chunks of the
movie to each split. In practice, and especially for movies with more linear narrative structure, we
assumed this continguous splitting could provide at least a weak form of independence between
sampled event-structures. While this by no means fully accounts for the non-independence of the
stimulus set writ large, our results across the training, validation, and test splits suggests it does help
to minimize potential overfitting. In future work, we hope to revisit our event-structure delineation
and sampling, potentially leveraging movie-trained models like Salesforce’s ALPRO (24) to select
stimuli that are more distinct not just at the level of pixels or words, but in latent feature space.

C NEURAL REGRESSIONS

In this section, we detail our neural regression pipeline, which proceeds in 4 phases: feature extraction,
dimensionality reduction (via sparse random projection), cross-validated ridge regression, and scoring.

C.1 FEATURE EXTRACTION

This follows from approaches taken in Conwell et al. (11). We consider feature extraction to mean the
extraction of a separate feature vector at every layer in a network – in other words, each distinct tensor
operation module that progressively transforms model inputs into outputs. This means, for example,
that we consider not only the outputs of each transformer attention head, but also of the individual
key, query, value computations that produce them. If the layer is associated with a computation
over visual features (e.g. BEIT, SimCLR) or multimodal features (e.g. VisualBERT), we flatten
the tensor such that each layer represents any given input as a 1-dimensional feature vector. (Note:
This flattening makes no assumptions about the separation of a given feature space into spatial and
semantic components, and allows the subsequent regression to reweight all contributing components
as relevant). If the layer is associated with a computation over language features (SBERT layer, CLIP
language encoder layer), the output tensor will be consists of features over subwords. We average
each representation associated with a subword to form word representations P . The output tensor
thus constitutes a dataset of n inputs (either images, sentences, or image-sentence pairs) as an array
F ∈ Rn×D where D is the dimensions of the feature vector.

C.2 SPARSE RANDOM PROJECTION

For certain flattened feature vectors from a particular, the dimensionality D is very large, and as such
performing ridge regression on F is prohibitively expensive, with at best linear complexity with D,
specifically O(n2D) (20). We use the Johnson-Lindenstrauss lemma (21; 13) to project F to a low
dimensional representation P ∈ Rn×p that preserves pairwise distances in F with errors bounded
by a factor ϵ. If u and v are any two feature vectors from F , and up and vp are the low-dimensional
projected vectors, then

(1− ϵ)||u− v||2 < ||up − vp||2 < (1 + ϵ)||u− v||2 (1)

Equation 1 holds provided that p ≥ 4 ln(n)
ϵ2/2−ϵ3/3 (1). To find the mapping from F to P , we used sparse

random projections (SRPs) following Li et al. (26). The authors show a P satisfying Equation 1 can
be found by P = FR where R is a sparse n× P matrix with i.i.d. elements shown below:

rij =


√√

D
p with prob. 1

2
√
D

0 with prob. 1− 1√
D

−
√√

D
p with prob. 1

2
√
D

(2)

C.3 k-FOLD RIDGE REGRESSION

To determine how well vision and language networks predict activity in the brain, we ran regressions
from representations extracted from a specific layer of either a multimodal or unimodal network to
predict the average activity of the SEEG signals over a window of time for all electrodes of our 7
subjects. We detail the steps we took to run regressions per subject below.

We use ridge regression to predict the average activity, y, at a given electrode and time point as
constructed in Section 2, from their associated DNN features P . Given the sequential nature of our
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data, we used a 5-fold cross-validation procedure. For each fold, we split our dataset of representations
into a contiguous training set(80%), Ptrain and ytrain, a contiguous validation set (10%), Pvalid and
yvalid, and contiguous testing set (10%), Ptest and ytest. Each split takes a contiguous chunk of event
structures in order of their occurrence in the movie, and each fold changes the starting point of the
training, validation, and testing set such that different contiguous chunks are assigned to a different
set. We standardize the columns of Ptrain and Pvalid to have mean 0 and a standard deviation of 1
and fit this standardization on Ptest. We fit the coefficients β̂i of a regression model on the train
dataset such that ytrain = Ptrainβ̂i + ϵ with minimal error ||ϵ||. Ridge regression penalizes large ||β̂||
proportional to a hyperparameter λ, which is useful in preventing overfitting when regressors are
high-dimensional and highly correlated. Each β̂ is calculated by the fixed ridge regression solution:

β̂ = ((Ptrain)
TPtrain + λId)

−1(Ptrain)
Tytrain (3)

The coefficients β̂ are then used to predict the held out data where:

ˆyvalid = Pvalidβ

ˆytest = Ptestβ
(4)

We use the KFold and Ridge functions from Pedregosa et al. (31). In this analysis we run the 5-fold
regression per λ value, where λ was varied using a logarithmic grid search over 10−1 to 106. On each
fold, we calculated a score for the prediction ˆyvalid and ˆytest by computing the Pearson correlation
coefficient. This score is averaged over the 5 folds to get final validation and test set scores. We
choose the best λ value using the cross-validated scores and take the associated test scores with the λ
value. We run this regression for all electrodes and time points simultaneously.

To analyze network performance over all layers, we select the best performing layer using the
validation set. Specifically, per electrode, we average the validation correlation scores over time and
take the layer with the max average score. We then take the associated test set correlation score as the
overall score per model.

D MULTIMODALITY TEST DETAILS

Each of our multimodality tests in the main analysis is predicated on a bootstrapping procedure that
probes the difference between two models in terms of their max decoding accuracy across the sliding
time windows. We describe our bootstrapping analysis here and show a visualization in Figure 1(b).
Consider the case for a single electrode and two models (model A and model B). An initial max
over the test scores for all time windows will show one model to have a higher decoding accuracy
than the other. To establish whether this difference is statistically significant (or just a product of
noise across the sliding time windows), we perform 1000 bootstraps of the decoding scores across
time windows, taking the difference between the higher and lower-ranking model each time. If the
difference between the higher-ranking and lower-ranking model is greater than 0 in at least 950 /
1000 bootstraps (again equivalent to an alpha of 0.05), we register this difference as preliminarily
significant (pending multiple comparison corrections).

We repeat this procedure for all electrodes for each of the model comparison tests we describe below.
We then use FDR (Benjamini-Hochberg) (37) multiple comparisons corrections to adjust the p-value
associated with each test on each electrode.

Each of the 4 tests we conduct are suggestive of multimodality, but each successive test provides
additional evidence. After multiple comparison corrections, we tabulate the total number of electrodes
that significantly pass each test as a proportion of the total number of assayed electrodes (N=1090).
After aligning the location of the various electrodes to the regions provided by the Desikan-Killiany-
Tourville atlas (22), we can further subdivide this proportion by the number of electrodes located in
each region.
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