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ABSTRACT

We study the problem of assigning operations in a dataflow graph to devices to
minimize execution time in a work-conserving system, with emphasis on complex
machine learning workloads. Prior learning-based approaches face three limita-
tions: (1) reliance on bulk-synchronous frameworks that under-utilize devices,
(2) learning a single placement policy without modeling the system dynamics,
and (3) depending solely on reinforcement learning in pre-training while ignoring
optimization during deployment. We propose DOPPLER, a three-stage framework
with two policies—SEL for selecting operations and PLC for placing them on
devices. DOPPLER consistently outperforms baselines by reducing execution time
and improving sampling efficiency through faster per-episode training.

1 INTRODUCTION

Existing systems for multi-GPU computing such as PyTorch (Paszke et al., 2019), TensorFlow
(Abadi et al., 2016), and the JAX-based Google stack (Frostig et al., 2018) proceed through a
computation in a lock-step, level-wise fashion. Consider the three-matrix multiplication chain X
× Y × Z in Fig. 1a, each matrix is partitioned into four submatrices to be distributed to eight
GPUs. The resulting additions, multiplications, and data transfers form the dataflow graph in Fig. 1b.

(a)

(b)

Figure 1: A dataflow graph (b) corresponding to the
decomposed chain from (a). Vertices correspond to
computation kernel calls, edges data dependencies, and
colors the mapping of computations to GPUs.

When implemented with JAX (Frostig
et al., 2018) on a multi-GPU server, X×Y
is first computed through pairwise ma-
trix multiplications (e.g.,X11, Y11, . . .) dis-
tributed across the server’s GPUs. Once
these partial results are produced, an all-
reduce operation is performed to aggregate
them to perform additions. This collective
synchronization step forces all GPUs to
pause computation and wait until every de-
vice has communicated its share of results
simultaneously (Li et al., 2020b). Then,
Z is computed with the results of X × Y
followed by another collective communi-
cation step to synchronize results with all
other GPUs with an all-reduce to compute
the final round of matrix additions.

In deep learning, many operations—as the
matrix multiplication example—are exe-
cuted bulk-synchronously (Valiant, 1990),
which enforces barrier-style global syn-
chronization across GPUs. This synchro-
nization leads to idle resources and lost opportunities for speedup: for instance, an all-reduce operation
cannot begin until every pairwise multiplication has completed, so one slow multiplication delays the
entire step (Li et al., 2020c). Moreover, the all-reduce itself is communication-dominated, during
which GPUs are severely underutilized.
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A more efficient approach would overlap “reduce” with computation by scheduling operations
(transfers and kernel calls) asynchronously, as soon as they can be run. A dynamic scheduler that
never willingly allows resources to sit idle and schedules them dynamically is called work-conserving
(Kleinrock, 1965). Table 1 shows the potential speedup of a work-conserving (WC) system on two
workloads: a chain of matrix multiplications and additions, CHAINMM, and a feedforward neural
network, FFNN (Configuration details are provided in Appendix F). On a GPU server, the WC system
achieves a reduction of 46.3 ms (33%) for CHAINMM and 26.7 ms (53%) for FFNN, compared to
PyTorch. These savings should be assessed in the context of long-term deployment, where even small
per-query reductions (on the order of a few milliseconds) accumulate into substantial GPU-hour
savings. For instance, a 24.2 ms reduction per query for running a Llama model (Yaadav, 2024)
amounts to more than 2.4 million GPU hours saved annually at ChatGPT-scale workloads (assuming
one million queries per day). Further experimental details are provided in Section 6.

MODEL WC SYSTEM SYNCHRONOUS

CHAINMM 139 185.3
FFNN 50.2 76.9

Table 1: Execution time (in milliseconds) for
execution in a work-conserving system (WC)
system and a synchronous system.

While work-conserving (WC) systems can improve
efficiency, they introduce significant challenges,
particularly for GPU assignment. In contrast to
bulk-synchronous settings that fix execution order
via all-reduce, WC systems rely on asynchronous
point-to-point communication, where the lack of
global synchronization makes ordering uncontrol-
lable and performance highly sensitive to hardware
heterogeneity and resource contention. An effective device assignment must capture this information
and balance two competing goals: (1) maintaining GPU load balance and (2) minimizing inter-GPU
communication (Harlap et al., 2018; Lu et al., 2017). Traditional placement methods emphasize
communication minimization, but under a WC scheduler, the stochastic execution order makes load
balancing especially challenging, as load balancing is inherently temporal (Saha et al., 2019).

In this paper, we tackle the device assignment problem in an asynchronous WC system by introducing
DOPPLER, a reinforcement learning–based framework that adopts a learning-by-doing paradigm to
optimize device placement. Prior work Addanki et al. (2019); Zhou et al. (2019); Mirhoseini et al.
(2017) learns a single placement policy, DOPPLER learns efficient kernel assignments through a
dual-policy sequential decision scheme. The first policy selects the next kernel (vertex in the dataflow
graph) to assign by traversing the partially assigned dataflow graph in a manner that approximates the
non-deterministic flow of “time,” while the second policy determines the GPU placement of that kernel
to balance load and minimize communication. This separation captures both execution dynamics
and hardware constraints, producing assignments tailored to stochastic WC execution. Moreover,
DOPPLER employs a three-stage framework for training its dual policies. Stage I (offline) uses
supervised learning to train the policies to follow simple heuristics, such as co-locating neighboring
vertices on the same device. Stage II (offline) transitions to reinforcement learning: the policies
generate assignments that are “executed” in a simulated WC system, with rewards computed from the
simulated runtime. Stage III (online) deploys the trained policies in a real WC system, where they are
continuously refined through reinforcement learning using rewards derived from observing runtimes
of dual-policy assignments in the system, recursively updating the policies as the system executes.

Our contributions are the following: (1) We investigate the device assignment problem in a multi-GPU
system under a work-conserving scheduler; (2) We introduce a dual-policy learning approach to
first learn the approximated traversing order of nodes before assigning them to devices; (3) We
propose DOPPLER, a three-stage training framework to improve scheduling efficiency on the fly
by continuously training it during deployment, along with two pretraining stages to accelerate
convergence in deployment; and (4) Our experiments show that DOPPLER achieves up to 52.7%
lower execution times than the best baseline. DOPPLER also achieves a significant runtime reduction
compared to a stronger baseline that we designed (ENUMERATIVEOPTIMIZER) by up to 13.8%.

2 DEVICE ASSIGNMENT IN A WORK CONSERVING SYSTEM

Formally, given a dataflow graph G = ⟨V, E⟩ with nodes V={v1, v2,..., vn} representing computa-
tions, and edges E = {e1, e2,..., em} representing data flows, as well as a set of devices D, we aim to
generate a device assignment A which is a mapping from V to D. Av denotes the device associated
with vertex v in A. A is chosen to minimize the execution time ExecTime(A).
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Algorithm 1 ExecTime(A)

% rdy[v, d] is T iff the result of vertex
% v is on device d; initially, nothing is ready
rdy[v, d]← F ∀(v ∈ V, d ∈ D)
% except inputs: available everywhere
rdy[v, d]← T ∀(v ∈ V, d ∈ D) s.t. (v′, v) ̸∈ E
t← 0 % exec begins at time 0
S ← ⟨⟩ % schedule is empty
while ∃(v ∈ V) s.t. rdy[v,Av] = F do
tasks← EnumTasks(rdy,A, S)
task ← ChooseTask(rdy,A, S, tasks)
if task = null then

% if no task is chosen, just wait
⟨t, task⟩ ∼ P (.|S, t) % which task done?
S ← S + ⟨task, t,end⟩ % save completion
rdy[vertex(task),device(task)]← T

else
S ← S + ⟨task, t,beg⟩ % record initiation

end if
end while
return t

For an example dataflow graph, consider
the matrix multiplication chainX×Y ×Z,
which can be decomposed to run on a
server with eight GPUs by sharding each
matrix four ways in Fig. 1a. The resulting
fine-grained dataflow graph contains eight
submatrix multiplies associated with both
of the two original multiplies, and four ma-
trix additions to aggregate the results. A
candidate assignment of the graph to eight
GPUs is shown in Fig. 1b. This assign-
ment achieves low execution time as (a) the
expensive matrix multiplications that will
tend to run in parallel are load-balanced,
and (b) communication is minimized by
co-locating neighboring nodes.

A key question is: how to define
the execution time of an assignment
ExecTime(A)? It is difficult to give a
closed formula for ExecTime(A), given
the stochasticity of WC systems. As oper-
ations are issued dynamically, based on the
state of the system, different runs of the same assignment can have very different execution times.

Algorithm 2 EnumTasks(rdy,A, S)

output← {}
% get all potential transfers
for (v1, v2) ∈ E do

if rdy[v1, Av2 ] = false and rdy[v1, Av1 ] =
true and transfer(v1, Av1 , Av2) ̸∈ S then

Add transfer(v1, Av1 , Av2) to output
end if

end for
% get all potential ops to exec
for v2 ∈ V do

if rdy[v1, Av2
] = true ∀v1 s.t. (v1, v2) ∈ E

and exec(v2, Av2) ̸∈ S then
Add exec(v2, Av2) to output

end if
end for
return output

Algorithm 1 describes how an assignment
A is executed in a WC system (the sub-
routine EnumTasks(rdy,A, S) in Algo-
rithm 2 enumerates the tasks that can be
taken in each step by the scheduler). The
algorithm stochastically simulates the ex-
ecution of the assignment A via a WC dy-
namic scheduler and returns the total ex-
ecution time. It works by repeatedly ask-
ing the scheduler to choose the next task
to schedule; when there is not a task that
can be scheduled, the algorithm waits un-
til an event is stochastically generated. In
the algorithm, a schedule S is the complete
list of events that have occurred up to tin.
An event is a (task, time, eventtype) triple,
where task is either an execution result
transfer between devices or an execute
(exec) of a node on a device, time records
when the transfer or exec event hap-
pens, and eventtype specifies the recorded time as either beg or end of an event. EnumTasks
enumerates all transfer and exec tasks that are ready when EnumTasks is called.

Algorithm 1 has two key generic components that allow it to serve as a reasonable proxy or digital
twin for a real-life scheduler, executed on real-life hardware. First, the distribution P (⟨tout, a⟩|S, tin)
governs the “next completed task.” Given a schedule S and a current time tin, P is a joint distribution
over the next task to complete and the time tout at which this task completes. Second, the function
ChooseTask encapsulates the underlying scheduling algorithm that is implemented by the WC
system. It may choose any task from tasks. As described, it may operate depth-first (seeking to probe
deeply into G), breadth-first, or may employ any other applicable strategy.

In practice, Algorithm 1 is implemented by either (a) a simulator where the distribution
P (⟨tout, a⟩|S, tin) is realized by a model that takes into account factors such as the number of
floating operations in the underlying operation (in the case of an operation such as a tensor con-
traction) or the number of bytes to be transferred (in the case of a GPU-to-GPU transfer), or (b) by
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Algorithm 3 ASSIGN(SELθ,PLCθ)

A← {}
for t′ ∈ {1, ...,m} do

Choose v ← SELθ(A,G)
Choose d← PLCθ(A,G, v,D)
Add (v → d) to A

end for
return A

Figure 2: (Left) The ASSIGN algorithm, which sequentially produces an assignment A using SELθ
policy and placed using PLCθ policy. (Right) A graphical depiction of the algorithm’s implementation.

actually deploying the assignment A in a real-life work-conserving system, and observing the running
time. We use option (a) in Stage II of DOPPLER, and (b) in Stage III of DOPPLER (see Section 5).

3 PROBLEM DEFINITION AND A SOLUTION VIA REINFORCEMENT LEARNING

As there is no closed-form objective function, learning-by-doing is a promising approach for deter-
mining the optimal assignmentA∗. Stages II and III of DOPPLER formulate choosing the assignment
as a bandit problem. For an assignment A at time tick t, we obtain a reward rt ∼ RA where RA is
the reward distribution for A (in practice, rt is sampled by invoking ExecTime(A) and observing
the runtime). Let R∗ = RA∗ where A∗ = argmaxA E[RA]. Our goal is to minimize the regret:

ρ =

T∑
t=1

(E[R∗]− rt) (1)

This is a bandit problem with D|V| arms. Our problem is not amenable to classic solutions because
the number of arms is so large. For example, if we are producing an assignment for an 8-GPU server
that is to execute a dataflow graph with 100 vertices, there are ≈ 2300 possible assignments.

Fortunately, there is a combinatorial structure to the assignment problem that can allow us to deal
with the very large set of possible assignments (Cesa-Bianchi & Lugosi, 2012; Chen et al., 2013).
Note that if two assignments A1 and A2 differ only in how a few vertices have been assigned to
devices, it is likely that the two reward distributions RA1

and RA2
will be similar. Thus, it may be

possible to systematically search the possible assignments.

Our approach builds the assignment at each time tick using a sequential process controlled by two
policies SELθ and PLCθ. If we use ASSIGN(SELθ,PLCθ) (Algorithm 3) as the mechanism for
choosing the assignment A at each time tick t of the bandit problem of Equation 1, this process can
be reformulated as an episodic Markov decision process (MDP) as shown in Liu et al. (2024), where
each episode executes ASSIGN(SELθ,PLCθ) (shown in Figure 2) and a reward is obtained once the
assignment is completed at the end of each episode. Therefore, any suitable reinforcement learning
algorithm can be used to learn the policies SELθ and PLCθ. In our implementation, we apply a graph
neural network (GNN) along with message passing to encode graph G and use a feedforward neural
network for decoding actions for SELθ and PLCθ. Details on GNN architectures are in Section 4.2.

4 DOPPLER DUAL POLICY IMPLEMENTATIONS

We describe our episodic Markov Decision Process formulation (Section 4.1), along with the graph
neural network architectures that we used to implement the dual policy learned during DOPPLER
training (Section 4.2) and an efficiency analysis of the GNN message-passing (Section 4.3).
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4.1 EPISODIC MDP FORMULATION

We formulate device assignment as an episodic Markov Decision Process (MDP) (S,A,H,P,R)
where P is the transition function, and H is the horizon that equals the number of nodes in the graph.

States Each state sh ∈ S is a tuple (XG , Ch, XD,h), where XG = (XV , XE) represents the static
graph features including node and edge features such as bottom-level paths (i.e., to entry nodes),
top-level (i.e., to exit nodes) paths, and communication costs. Ch is the dynamic set of candidate
nodes and C0 is defined as the entry nodes in the graph. Finally, XD,h represents the dynamic device
features (e.g., total computing time and the end time for computations in each device). Details about
the sets of features can be found in the Appendix D.

Actions At each time-step h, the agent takes an action ah ∈ A where ah = (vh, dh). Each action
selects a node vh and places it into device dh using policies SELθ and PLCθ as shown in Figure 2.
Each episode is composed of |V| iterations—i.e., one iteration per node in V .

Reward We calculate rewards using the execution timeRsH = (−1)∗ ExecTime(sH) derived from
either the real system or a simulator. The reward is computed at the end of each episode (h = H),
with intermediate rewards set to zero for efficiency. To enhance stability, we subtract a baseline
reward equal to the average execution time observed across all previous episodes (RsH ). The final
reward is computed as rH = RsH −RsH .

4.2 DUAL POLICY GRAPH NEURAL NETWORK ARCHITECTURES

We will describe the policy networks for computing SELθ and PLCθ in Algorithm 3. The symbol θ
is used here to emphasize that these functions have parameters that will be optimized as part of the
training process. DOPPLER applies a Graph Neural Network (GNN) to encode node information in
the dataflow graph. Our GNN is a message-passing neural network (Gilmer et al., 2017) that learns
node representations for each node v via K successive iterations:

h[k]
v = ϕ(h[k−1]

v ,
⊕

u∈N(v)

ψ(h[k−1]
u ,h[k−1]

v , euv))

where h
[k]
v are representations learned at the k-th layer, h[0]

v = XV [v], ψ and ϕ are functions, N(v)
are the neighbors of v, and

⊕
is a permutation-invariant operator. We will use GNN(G, XG) =

[h
[K]
1 ;h

[K]
2 ; . . .h

[K]
n ] to refer to the representations of all nodes in G.

We also apply an L-layer feedforward neural network (FFNN) to encode node information:

x[l]
v =W [l]x[l−1]

v + b[l]

where x
[l]
v are representations at the l-th layer, and W [l] and b[l] are weights and biases, respectively.

Let FFNN(X) = [x
[L]
1 ;x

[L]
2 ; . . .x

[L]
n ] be the representations of all nodes in G with x

[0]
v = X[v].

Node policy network (SELθ): Selects a node from the candidate set C based on observed graph state
XG using the ϵ-greedy approach. Let b(v) and t(v) be the b-path and t-path for v, where a b-level
(t-level) path for v is the longest path from v to an entry (exit) node in G. We aggregate information
from these critical paths via GNN embeddings H[u] for each node u along them. Nodes are selected
according to probabilities estimated from a graph embedding matrix HG , which is a result of the
concatenation of critical path (hv,b and hv,t), GNN (H[v]), and feature (Z[v]) representations.

H = GNN(G, XG) hv,b =
∑

u∈b(v)H[u] hv,t =
∑

u∈t(v)H[u]

Z = FFNN(XV) hv = [H[v] ∥ hv,b ∥ hv,t ∥ Z[v]] HG = [h1;h2; . . .hC ]

H ′
G = LeakyReLU(FFNN(HG)) QG(v) = softmax(FFNN(H ′

G))

SELθ(G, XG)=

{
argmaxv QG(v) p = 1− ϵ
random v ∈ C p = ϵ

where p is the probability of the event and ϵ is a parameter.
Device policy network (PLCθ): Places a node v into one of the devices in D based on the composed
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state observation (v,XD, XG). Devices are selected based on an embedding matrix HD for the set of
devices generated by concatenating representations for the node (H[v]), node features (Z[v]), device
features (Y [d],) and for nodes already placed into the device (hd).

H = GNN(G, XG) hd =
∑

u:du=dH[u] Y = FFNN(XD)

Z = FFNN(XG) hv,d = [H[v] ∥ hd ∥ Y [d] ∥ Z[v]] HD = [h1;h2; . . .hm]

H ′
D = LeakyReLU(FFNN(HD)) QD(d) = softmax(FFNN(H ′

D))

PLCθ(v,D,G, XD, XG)=

{
argmaxdQD(d) p=1−ϵ
random d ∈ D p=ϵ

4.3 EFFICIENT MESSAGE PASSING APPROXIMATION

Implementing the MDP described in Section 4.1 requires performing message-passing on the dataflow
graph G when calling SELθ and PLCθ policies at each MDP step h. We found this to be prohibitive
for large graphs since we may apply up to 8k episodes × 261 steps = 2m steps in our experiments.
PLACETO (one of our baselines) suffers from this issue, being very inefficient during training as
it performs one message-passing round per MDP step. Instead, we propose performing message
passing on the graph only once per MDP episode and encoding updated assignment information at
each step h in device XD,h without message passing. We found empirically that this modification
has a negligible impact over DOPPLER’s convergence but leads to a significant reduction in training
time, especially for large neural networks (we show an ablation study in Appendix G.3).

5 DOPPLER: COST-EFFECTIVE TRAINING

DOPPLER adopts an efficient three-stage framework (A detailed illustration in Appendix I):

Imitation Learning stage (Stage I). We propose using imitation learning for teaching the dual
policy to replicate the decisions of an existing heuristic (teacher) before deploying it to the real
system. We apply the decisions of CRITICAL PATH (Kwok & Ahmad, 1999) (acp):

J(θ) = Eacp∼Πcp(s),s∼T (s′,a),a∼Πθ(s′)[∇θ log Πθ(acp|s)] (2)

Simulation-based reinforcement learning stage (Stage II). Even after pre-training with a teacher,
we may have a policy that is too low-quality for deployment in the real system, where longer running
times or slow convergence due to exploration may be unacceptable. Thus, we also train DOPPLER
using a software-based simulator that implements Algorithm 1. The dual-policy networks are updated
using the policy gradient method (Sutton et al., 1999). We maximize the following objective function:

J(θ) = Ea∼Πθ(s) [∇θ(logΠθ(a|s))R(s, a)] (3)

Real-system reinforcement learning stage (Stage III). Because the dual policy is of reasonably
high quality before it is deployed in a user-facing environment, actual users need not suffer through
long wait times due to low-quality assignments. Moreover, the dual policy can be continuously
improved after its deployment in a real WC system. Further, the reward signal for optimizing Equation
3 in this stage is obtained “for free” by observing real-life runtimes (ExecTime), so this continuous
improvement of the assignments produced is possible with no additional cost.

6 EXPERIMENTS

We focus on the following questions: Q1: How does DOPPLER compare against alternative approaches
in terms of execution time? Q2: What are the individual contributions of the SELθ and PLCθ policies
on DOPPLER’s performance? Q3: How can imitation learning (Stage I), simulation-based RL (Stage
II), and real system RL (Stage III) be combined to improve DOPPLER’s training? Q4: How does
DOPPLER’s training and inference cost scale with the size of graphs? Q5: How can DOPPLER’s
execution time be interpreted based on the assignments it produces? Q6: Can DOPPLER be trained
on one dataflow graph and be generalized to new graphs and to new hardware architectures?

6
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4 GPUS RUNTIME REDUCTION

MODEL CRIT. PATH PLACETO GDP ENUMOPT. DOPPLER-SIM DOPPLER-SYS BASELINE ENUMOPT.
CHAINMM 230.4± 4.3 137.1± 2.2 198± 3.3 139± 10.0 122.5 ± 4.0 123.4± 2.5 10.7% 11.9%

FFNN 217.8± 11.3 126.3± 5.8 100.3± 3.2 50.2± 2.5 49.9± 1.1 47.4 ± 0.7 52.7% 5.6%
LLAMA-BLOCK 230.9± 8.7 411.5± 19.7 336.5± 8.4 172.7± 5.0 191.5± 5.97 160.3 ± 4.30 30.6% 7.2%
LLAMA-LAYER 292.6± 5.8 295.1± 7.0 231.5± 5.1 174.8± 4.7 167± 3.4 150.6 ± 4.2 48.5% 13.8%

Table 2: Real engine execution times (in milliseconds) for assignments identified by our approaches
(ENUMOPT. and DOPPLER) compared against existing baselines. During training, both PLACETO
and DOPPLER-SIM rely on a simulator to find good solutions, while others use a real system.

6.1 EXPERIMENTAL SETUP

Neural network architectures. We test dataflow graphs from four types of neural network archi-
tectures in our experiments: a feed-forward neural network (FFNN), chain matrix multiplications
(CHAINMM), a Llama transformer block (LLAMA-BLOCK), and a complete Llama transformer layer
(LLAMA-LAYER). Further details can be found in Appendix C.

GPU systems. We compare the assignment approaches using 4 NVIDIA Tesla P100 GPUs and 16GB
of memory each. Moreover, we did ablation studies on 1) 8GB out of 16GB restricted GPU memory,
2) 8 NVIDIA V100 GPUs with 32GB memory, and show results in Appendix H.

4 GPUs
Model DOPPLER-SYS DOPPLER-SEL DOPPLER-PLC

CHAINMM 123.4± 2.5 127.0± 0.8 121.6± 0.7

FFNN 47.4± 0.7 59.1± 7.6 63.2± 1.6

LLAMA-BLOCK 160.3± 4.3 175.6± 4.1 172.9± 4.3

LLAMA-LAYER 150.6± 4.2 161.7± 4.1 159.5± 4.9

Table 3: Real engine execution time (in milliseconds) of
our approach (DOPPLER-SYS) against only applying SELθ
(DOPPLER-SEL) or only PLCθ (DOPPLER-PLC). The results
show that both contribute to the performance improvements.

Baselines. We compare our approach
against four baselines. CRITICAL
PATH Kwok & Ahmad (1999) is a
popular (non-learning) heuristic for
DAG device assignment. PLACETO
Addanki et al. (2019) is a recent RL-
based alternative that applies a sin-
gle (device) policy and is trained us-
ing simulations (see ablation study
on the simulator in Appendix G.1).
GDP Zhou et al. (2019) is another
recent RL-based method that consists
of graph embedding and sequential at-
tention. ENUMERATIVEOPTIMIZER
is a baseline we developed—it is our best effort at exploiting the structure of a sharded tensor
computation to produce a high-quality assignment (described in detail in the Appendix A).

Hyperparameters. For RL-based methods, we run 4k episodes for CHAINMM and FFNN and
8k episodes for LLAMA-BLOCK and LLAMA-LAYER. We tried different learning rate schedules
for each method (initial values {1e−3, 1e−4, 1e−5}) and found that 1e−3 decreasing linearly to
1e−6 works best for PLACETO and 1e−4 linearly decreasing to 1e−7 works best for all versions of
DOPPLER and GDP. We apply a 0.5 exploration rate linearly decreasing to 0.0 for PLACETO and
0.2 linearly decreasing to 0.0 for DOPPLER and GDP. An entropy weight of 1e−2 is applied for all
RL methods. For CRITICAL PATH, we run 50 assignments and report the best execution time. The
reported execution time (and standard deviation) using the real system is the average of 10 executions.

6.2 RESULTS AND DISCUSSION

Comparison between our solutions and existing alternatives (Q1). Table 2 reports execution
times across neural network architectures on 4 GPUs. DOPPLER-SYS outperforms all baselines in
most settings, with DOPPLER-SIM often second best. For example, DOPPLER-SYS reduces runtime
by up to 78.2% over CRITICAL PATH, 62.5% over PLACETO, and 52.7% over GDP, while both
DOPPLER-SYS and DOPPLER-SIM surpass ENUMERATIVEOPTIMIZER by up to 13.8%. Additional
ablations with different seeds are in Appendix G.2.

Ablation study for select and place policies (Q2). Table 3 presents an ablation study isolating
the effects of the node and device policies. In the ablated variants, we replace our policies with
CRITICAL PATH strategies: DOPPLER-SEL assigns selected nodes to the earliest-available device,
while DOPPLER-PLC selects nodes with the longest path to an exit. Overall, combining both policies
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yields the best performance. For ChainMM, DOPPLER-PLC slightly outperforms DOPPLER-SYS
by a few milliseconds, but for more complex models the combined policies provide clear gains.

Figure 3: Real engine execution times (in milliseconds) for
DOPPLER-SYS using different combinations of three training
stages for the LLAMMA-LAYER dataflow graph.

Improving training using Stage
I, Stage II, and Stage III (Q3).
Fig. 3 shows execution times for
DOPPLER-SYS when trained using
different combinations of imitation
learning (I), simulations (II), and
real system executions (III) for the
LLAMA-LAYER dataflow graph. As
we hypothesized, training using the
real system only leads to slower con-
vergence due to the need for explo-
ration starting from a poor initial
model, and leads to unstable perfor-
mance. Imitation learning and sim-
ulations enable faster convergence
and lower execution times. Abla-
tion studies are conducted on pre-
training PLACETO in Appendix G.4.

Figure 4: Inference time and RL policy update time as the
number of nodes in the dataflow graph increases.

DOPPLER training and inference scal-
ability (Q4). We analyze DOPPLER’s
scalability in both training and inference
time for dataflow graphs with increas-
ing size in Fig. 4. The figure shows that
DOPPLER scales linearly with the size
of graphs and, compared to RL-based
baselines such as GDP, achieves the low-
est training and inference times. Detailed
discussion is provided in Appendix J

Visualizing DOPPLER-SYS’s assign-
ments (Q5). Fig. 5 shows the assign-
ments produced by DOPPLER-SYS for
the FFFN dataflow graph, which achieves
both GPU load balancing and commu-
nication minimization along the critical
path. By further profiling how the assign-
ments are scheduled in the system (see Appendix B), we find that DOPPLER schedules often enable
overlapping communication and computation across GPUs, minimizing stalling and maximizing
GPU utilization. Additional analyses are provided in Appendix E.

Figure 5: Assignments for FFNN found by DOPPLER. Colors show the
mapping of computations to GPUs. DOPPLER is effective at both load
balancing and communication minimization across GPUs.

DOPPLER’s transfer abil-
ity across graphs and ar-
chitectures (Q6). We
evaluate transfer learning
(1) from simple architec-
tures (FFNN, CHAINMM)
to Llama-structured graphs
on the same hardware and
(2) across hardware ar-
chitectures for the same
graph. With 2K fine-tuning
episodes, DOPPLER adapts
to new architectures and outperforms baselines. With 4K episodes (less than half of the original
training), it achieves assignments comparable to full target training. In our hardware adaptability
experiments, we train a policy for the FFNN graph with four P100 GPUs and transfer it to eight
V100 GPUs. The zero-shot setting yields 82.7% of communication intra-GPU, 6.7% within the same
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4 GPUS

TRAIN MODEL TARGET MODEL ZERO-SHOT 2K-SHOT 4K-SHOT DOPPLER-SYS CRIT. PATH PLACETO ENUMOPT.
FFNN LLAMA-BLOCK 251.0± 2.9 165.3± 4.1 159.4 ± 4.8 160.3 ± 4.3 230.9± 8.7 411.5± 19.7 172.7± 5.0

CHAINMM LLAMA-BLOCK 242.3± 6.7 184.9± 4.3 174.0 ± 4.4 160.3 ± 4.3 230.9± 8.7 411.5± 19.7 172.7± 5.0

FFNN LLAMA-LAYER 206.1± 4.5 158.2± 4.1 155.8 ± 5.0 150.6 ± 4.2 292.6± 5.8 295.1± 7.0 174.8± 4.7

CHAINMM LLAMA-LAYER 338.2± 5.0 164.4± 3.3 156.4 ± 4.4 150.6 ± 4.2 292.6± 5.8 295.1± 7.0 174.8± 4.7

Table 4: Real engine execution times (in milliseconds) for assignments identified by DOPPLER under
different few-shot settings (Zero-shot, 3k-shot, 4k-shot) compared against baselines. The results
show that DOPPLER finds comparable results to full training (DOPPLER-SYS) in 4k-shot.

GPU group (with all-to-all NVLink), and 10.6% across GPUs without direct NVLink. After 2K
episodes, the policy improves assignments to 94.7% intra-GPU, 1.9% within NVLink groups, and
only 3.4% across GPUs without NVLink (see detailed results in Appendix K).

7 RELATED WORKS

Classical Approaches for Device Placement and Scheduling. List scheduling (LS) heuristics, such
as CRITICAL PATH, decompose the problem of computing a schedule into a sequence of select and
place steps (Kwok & Ahmad, 1999). DOPPLER can be seen as a neural LS heuristic that learns to
select and place directly from observations using an MDP. Our experiments show that DOPPLER
outperforms CRITICAL PATH. Graph partitioning (Kernighan & Lin, 1970; Kirkpatrick et al., 1983;
Fiduccia & Mattheyses, 1988; Johnson et al., 1989; Hagen & Kahng, 1992; Karypis, 1997) can also
be applied for device placement but previous work has shown that RL is a better alternative for the
problem (Mirhoseini et al., 2017).

Reinforcement Learning for Combinatorial Optimization. Traditional algorithms for combinato-
rial optimization problems often rely on hand-crafted heuristics that involve sequentially constructing
a solution. Recently, there has been a growing interest in applying RL (and deep learning more
broadly) to learn heuristics for these problems (Mazyavkina et al., 2021). For instance, (Bello et al.,
2016) introduced a policy gradient method for the Traveling Salesman Problem (TSP). Subsequent
studies extended RL to problems beyond TSP (Khalil et al., 2017; Cappart et al., 2019; Drori et al.,
2020; Emami & Ranka, 2018; Lu et al., 2019; Mazyavkina et al., 2021; Nazari et al., 2018; Kool
et al., 2018; Drori et al., 2020; Abe et al., 2019; Manchanda et al., 2019; Chen & Tian, 2019; Li
et al., 2020a; Laterre et al., 2018; Gu & Yang, 2020; Cai et al., 2019). Our work is unique in how it
leverages the combinatorial structure with list scheduling heuristics and direct access to the target
system during training to address the device assignment problem using RL.

RL for Device Placement and Scheduling. Early work introduced a sequence-to-sequence RNN
trained with policy gradients for device placement, showing RL can outperform heuristics (Mirhoseini
et al., 2017; Pellegrini, 2007). PLACETO (Addanki et al., 2019) replaced the RNN with a GNN,
while Paliwal et al. (2019) combined RL with a Genetic Algorithm, though at high evaluation cost.
Zhou et al. (2019) proposed a graph-embedding approach with sequential attention and a single
placement policy. DOPPLER introduces dual-policy learning with three-stage training for faster
convergence and continuous optimization. More recent work includes end-to-end optimization from
graph construction to placement (Duan et al., 2024) and improved node representations using cosine
phase position embeddings (Han et al., 2024), which are complementary to our approach.

8 CONCLUSION

In this paper, we have considered the problem of assigning computations in a dataflow graph to
devices to minimize execution time in a work-conserving system. We have proposed DOPPLER, a
dual-policy learning framework for learning device assignment in three stages. Some of the key
innovations are (1) DOPPLER explicitly tries to learn an approximate node traversing order, to
make the assignment problem easier, (2) DOPPLER adopts two pre-training stages using imitation
learning and simulation-based learning to speed up policy convergence, and (3) DOPPLER continues
dual-policy training during deployment, achieving a gradual reduction in execution time over time.
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REPRODUCIBILITY STATEMENT

We provide details of experimental settings and hyperparameters used for training in Section 6.1 to
reproduce our results and experiments. We have included an anonymous link in Appendix L with our
code and data used for running all experiments.
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A ENUMERATIVE ASSIGNMENT ALGORITHM (ALGORITHM 4)

In this section, we describe our enumerative assignment algorithm, which uses a level-by-level,
exhaustive enumeration in an attempt to find an assignment A for the vertices in a graph G to
minimize ExecTime(A). This algorithm uses a greedy approach that first groups vertices based on
the graph structure and then attempts a subset of possible assignments for the operations within each
group and selects the assignment with the minimum estimated cost.

This algorithm requires that the vertices in the graph G have been organized into a list of “meta-
ops” called M . As our input dataflow graph has been created by sharding a compute graph using
a framework such as Alpa Zheng et al. (2022), each operation in the input dataflow graph G is
descended from some operation that has been sharded. For example, consider Figure 1. All of the
eight MMul ops at the lowest level of the graph, as well as the four MAdd ops at the next level were
created by sharding X × Y . We group all of these twelve operations and term them a “meta-op”.
Further, we can topologically order these meta-ops so that if m1 comes before m2 in M , it means
that none of the vertices in m2 can be reached from some vertex in m1 by traversing E .

Note that each meta-op has two subsets—one of which may be empty: a set of computationally
expensive operations (such as the MMul ops) that result directly from sharding the original operation,
and a set of less expensive operations needed to aggregate and/or recompose the results of the
first set of operations. For a meta-op m, we call these m.shardOps and m.reduceOps. Note
that the original operation is always sharded so that if there are n devices, there are n items in
m.shardOps, and load-balancing of these shards is crucial. Thus, our tactic will be to always
partition m.shardOps across the n devices, and never assign two operations in m.shardOps to
the same device. Likewise, if the meta-op is sharded into n there will always be at most n items in
m.reduceOps. Therefore, we always partition them across (possibly a subset of) the devices.

Given this, our algorithm “EnumerativeOptimizer” proceeds through the list M of meta-ops in
order. For each m, it exhaustively tries all assignments of m.shardOps. Each assignment is
costed by computing the time required to transfer all of the items in m.shardOps to where they
will be consumed. These times are estimated using statistics gathered by testing transfers on the
actual hardware. Once m.shardOps is placed, then m.reduceOps is placed, using the same cost
model. Because of the ordering of the meta-ops in M , and because we process m.shardOps before
m.reduceOps, we always know the assignment of the input to m.shardOps or m.reduceOps
before we place it, and so it is easy to compute the cost.

This algorithm is greedy in the sense that it processes meta-ops one at a time, from start to finish,
using the topological ordering. Thus, if the cost model is correct, it will be optimal only as long
as each m.shardOps and m.reduceOps is run in lock-step, with a barrier before each set is
executed. Obviously, this is not the case in reality with a dynamic scheduler, but one might expect
the algorithm to produce a good assignment in practice.

B SYSTEM IMPLEMENTATION

The underlying system runtime Bourgeois et al. (2025); Ding et al. (2024) that executes our graphs is
written in C++. The dataflow graph G is executed asynchronously by a single-threaded event loop
whose job is to monitor when the dependencies implicit in the graph are satisfied. When the inputs to
a vertex are found to be available, the event loop checks whether the resources necessary to execute
the vertex are also available (a “resource” may be an open GPU stream or an open communication
channel). If resources are available, the event loop may choose to execute the vertex. We use the term
“event loop” because the loop asks the necessary resources to execute the vertices in G in response
to “events.” An event occurs whenever a graph dependency is satisfied, or when a previously used
resource becomes available. The main event loop is notified of this via an asynchronous callback. In
our implementation, we use CUDA version 11.8.0 and cuTensor version 2.0.1.
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Algorithm 4 EnumerativeOptimizer

Input: Sorted list of meta-ops M containing all vertices in G
Output: Assignment A
A← ⟨⟩ % assignment is empty
% loop thru meta-ops
for m ∈M do

% First deal with the shared op
A← getBestAssign(m.shardOps, A)
% now place the reductions
A← getBestAssign(m.reduceOps, A)

end for
return A

% computes the best assignment for a set of vertices that are expected to run in parallel on all
devices
subroutine getBestAssign(vertices,A)
bestCost←∞; bestAssign← null
% loop through all possible device assignments
for D ∈ allPerms(D) do
whichDev ← 0; cost← 0
% loop through the ops created by sharding this meta-op
for v ∈ vertices do

% loop through inputs to this op and add network cost
for v1 ∈ V s.t. (v1, v) ∈ E do
cost← cost+ getNetworkTime(v1, av1 , DwhichDev)

end for
whichDev ← whichDev + 1

end for
if cost < bestCost then
bestCost← cost
bestAssign← D

end if
end for
% we have the best assignment for this meta op, so record it
whichDev ← 0
for v ∈ vertices do
av ← DwhichDev

append av to A
whichDev ← whichDev + 1

end for
return A

C COMPUTATION GRAPHS USED IN THE EXPERIMENTS

C.1 CHAINMM

• Input matrices: A,B,C,D,E ∈ R10000×10000

• Neural Network Function: (A×B) + (C × (D × E))

• Number of nodes in the graph: 112

C.2 FFNN

• Input batch matrix: X ∈ R215×25

• First layer weight matrix: W (1) ∈ R25×216

• First hidden layer bias vector: b(1) ∈ R216

• Output layer weight matrix: W (2) ∈ R216×25
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• Output layer bias vector: b(2) ∈ R25

• Number of nodes in the graph: 192
• ReLU(·) denotes the element-wise rectified linear activation function.
• Softmax (·) denotes the softmax activation function applied over the output dimensions to

obtain class probabilities.
• Neural Network Function:

– Hidden layer computation: H = ReLU
(
X ·W (1) + b(1)

)
Here, H ∈ R215×216 .

– Output layer computation: Y = Softmax
(
H ·W (2) + b(2)

)
Here, Y ∈ R215×25

represents the output probabilities after applying softmax.

C.3 LLAMA-BLOCK AND LLAMA-LAYER

Hyperparameters for llama structure include:

• Number of parameters: 7B
• Max sequence length: 4096
• Embedding dimension: 4096
• Number of tokens: 32000
• Batch size: 1
• Number of layers: 1
• Number of nodes in the graph: 215
• Neural Network Function: Figure 6 shows the structure of Llama represented in the

computation graphs Llama-block and Llama-layer.

Figure 6: Llama-block and Llama-layer architecture. Figure from Yaadav (2024)
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D GRAPH FEATURES XG AND DEVICE FEATURES XD .

Given a computation graph G = (V, E) with V = {v1, v2, ..., vn} and E = {e1, e2, ..., em}, we
define the following:

• Computation cost for v. We use floating point operations per second of v as the computation
cost.

• Communication cost for ei,j = (vi, vj). The number of bytes for the output tensor of vi
times a communication factor. In our case, we set the communication factor equal to 4. We
benchmark the execution time of a simulator versus the real execution engine. We tried the
values communication factor from 1 to 10 and found 4 to be the closest for the simulator
with respect to the real execution engine.

D.1 STATIC GRAPH FEATURES XG

The graph features matrix XG is a n× 5 matrix where each row contains the following five features:

• Computation cost for vj .
• Sum of communication cost from predecessor nodes to vj . The sum of communication

cost for all ei,j such that (vi, vj) ∈ E .
• Sum of communication cost from vj to descendant nodes. The sum of communication

cost for all ej,k such that (vj , vk) ∈ E .
• t-level cost of vj . The sum of all computation costs and communication costs on a t-level

path for vj . A t-level path is defined in Section 4.2.
• b-level cost of vj . The sum of all computation costs and communication costs on a b-level

path for vj . A b-level path is defined in Section 4.2.

D.2 DYNAMIC DEVICE FEATURES XD FOR DEVICE d AT TIMESTEP t GIVEN NODE v

The device features matrix XD is a |D| × 5 matrix where each row contains the following five
features:

• Total node computation cost. Sum of the computation costs for all the nodes that have
been assigned to device d at timestep t.

• Total predecessor nodes computation cost. Sum of computation costs for all predecessor
nodes of target node v at timestep t that are currently being assigned on device d.

• Min start time of all input. Earliest time to start execute a predecessor node of v on each
device d at timestep t.

• Max end time of all input. Latest time for all predecessor nodes of v to finish on each
device d at timestep t.

• Earliest start time to compute v. Earliest time for a device d to finish receiving inputs on
d and start execute v.
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E MORE DEVICE ASSIGNMENT ANALYSIS AND VISUALIZATIONS

E.1 COMPUTATION NODE DETAILS

• input: input tensors
• matmul: matrix multiplications on two matrices
• input elemwise. elementwise operations(eg. ReLU) on an input tensor.
• straight elemwise: elementwise operations(eg. ReLU) with two inputs having the same

dimensions.
• bcast elemwise: takes two inputs of different shapes (eg. a matrix and a vector) performing

an elementwise operation(eg. ReLU) with one element of the vector on an entire row of the
matrix.

• max reduction: reduce one dimension by finding max.
• min reduction: reduce one dimension by finding min.
• sum reduction: reduce one dimension by finding the sum along that dimension.
• product reduction: reduce one dimension by finding the product along that dimension.
• formation: a placeholder operation that forces aggregations in joinAgg groups to form a

single tensor.
• complexer: a conversion between floats and complex tensors.
• fill: an operation to create tensors with all the same scalar, or to assign all lower or upper

diagonal elements with provided scalar values.
• squeezer: adding or removing singleton dimensions of a tensor.
• selec:. an operation to copy a subset of several input tensors into an output tensor–a

generalization of tensor subset and tensor concatenation.
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E.2 ASSIGNMENT PROFILING

This section examines the performance results from Table 2, where the DOPPLER algorithm
achieved a lower runtime compared to CRITICAL PATH, PLACETO and the expert-designed
ENUMERATIVEOPTIMIZER.

During the development of the ENUMERATIVEOPTIMIZER algorithm, it became clear
that for meta-ops (described in Appendix A) containing many computations, the devices
should be fully utilized and load-balanced. Put more succinctly, it is expected that good
assignments should minimize data transfers while maximizing computational resource
utilization.

CHAINMM: The assignments in Figure 7 for DOPPLER show all four devices used whereas
for ENUMERATIVEOPTIMIZER, Figure 8, only two of the devices are used for the latter
computations. The corresponding device utilization plots are shown in Figure 9 and Figure
10, respectively. It appears that, indeed, ENUMERATIVEOPTIMIZER does not fully utilize
available compute resources towards the end of the computation. On the contrary, DOPPLER
does well from the beginning to the end as shown in Figure 7.

FFNN: The assignments for FFNN with DOPPLER and PLACETO are shown in Figure ??;
the corresponding device utilization are shown in Figure 11 and Figure 12. In the DOPPLER
assignments, subsequent vertices typically share the same device assignment. In turn, this
should lead to a lower amount of data transfer. For the PLACETO assignments, however,
subsequent vertices do not tend to have the same device assignment, possibly leading to
a large amount of data transfer. In the device utilization figures, this is indeed borne out,
where the PLACETO execution is three times slower, with most time spent on data transfers
across GPUs.

Figure 7: Assignment found by Doppler for ChainMM

Figure 8: Assignment found by EnumerativeOptimizer for ChainMM
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Figure 9: Device and transfer utilization for DOPPLER, CHAINMM.
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Figure 10: Device and transfer utilization for ENUMERATIVEOPTIMIZER, CHAINMM.
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Figure 11: Device and transfer utilization for DOPPLER, FFNN.
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Figure 12: Device and transfer utilization for PLACETO, FFNN.
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E.3 LLAMA-BLOCK ASSIGNMENT ANALYSIS

Figure 13: Assignment found by DOPPLER for LLAMA-BLOCK

The experiments demonstrate DOPPLER’s capability to efficiently achieve load balancing in a dis-
tributed computing environment, particularly when multiple GPUs are utilized for computation.
Across varied workloads, we observed that DOPPLER distributes workloads more evenly across
available GPUs, ensuring that no single device is over-utilized while others remain under-utilized.
Additionally, further analysis has provided deeper insights into DOPPLER’s ability to make better as-
signment decisions, ensuring that computational tasks are assigned in a way that maximizes efficiency
and minimizes stalling. This improves system performance and enables more effective resource
utilization in distributed GPU computing environments as shown in Figure 13.

For instance, when executing a single LLAMA-BLOCK, PLACETO demonstrates minimal load bal-
ancing by assigning the majority of the computation to a single GPU while distributing only a small
fraction of the workload to the remaining GPUs. As a result, one GPU becomes heavily burdened
with the computation, while the other three GPUs remain largely idle for most of the execution
process. This imbalance leads to inefficient resource utilization, causing the distribution computation
to become nearly sequential. Consequently, PLACETO exhibits the slowest execution time among the
tested approaches.

CRITICAL PATH makes a better attempt at load balancing by distributing the computational workload
more evenly across multiple GPUs. However, its performance is negatively impacted by inefficient
assignment decisions. Specifically, CRITICAL PATH does not take into account the previous data
locations when determining where to assign computations. As a result, it frequently places a node’s
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computation on a GPU different from the one holding its input data. This misalignment introduces
unnecessary data transfers between GPUs, as all input data must first be moved to the newly assigned
GPU before computation can begin. The added communication overhead and the delays caused by
data transfers contribute to a slowdown in execution time, ultimately reducing the overall efficiency
of the system.

Both ENUMERATIVEOPTIMIZER and DOPPLER effectively mitigate the inefficiencies observed in
CRITICAL PATH by ensuring that the consumer of an operation is assigned to one of the GPUs where
the corresponding input data is already located. This strategy reduces unnecessary data transfers,
leading to improved execution performance. However, ENUMERATIVEOPTIMIZER adopts a more
conservative strategy by prioritizing data locality over load balancing. Its cost model assigns a
high penalty to communication overhead, often favoring keeping computations and their subsequent
consumers on the same GPU. While this minimizes data transfer costs, it sometimes results in an
uneven workload distribution, with certain GPUs handling more tasks than others.

In contrast, DOPPLER demonstrates the most effective load-balancing strategy among all four
approaches. As evidenced in the performance profile, after an initial stage of communication,
DOPPLER achieves consistently higher GPU utilization throughout the majority of the execution
process. By intelligently distributing workloads while considering both communication cost and
GPU availability, DOPPLER maximizes efficiency, ensuring that all GPUs contribute effectively to
the computation. This balanced approach allows DOPPLER to outperform other methods in terms of
overall execution speed and resource utilization.
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E.4 LLAMA-LAYER ASSIGNMENT VISUALIZATIONS

We show the best assignment we found for four methods on the LLAMA-LAYER computation
graph: CRITICAL PATH (Figure 17), PLACETO (Figure 16), ENUMERATIVEOPTIMIZER (Figure 14),
DOPPLER (Figure 15), and GDP (Figure 18).

Figure 14: Assignment found by EnumerativeOptimizer for LLAMA-LAYER
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Figure 15: Assignment found by DOPPLER for LLAMA-LAYER
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Figure 16: Assignment found by PLACETO for LLAMA-LAYER
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Figure 17: Assignment found by CRITICAL PATH for LLAMA-LAYER
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Figure 18: Assignment found by GDP for LLAMA-LAYER

F SYNCHRONOUS SYSTEM CONFIGURATION

In Table 1, we run CHAINMM using ScalaPack and FFNN using Pytorch Lightning with tensor parallel
on 4 NVIDIA Tesla P100 GPUs with 16GB memory each.
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G MORE ABLATION STUDIES

We conduct additional ablation studies on (1) the simulator implementation, (2) random seeds used in
training dual policy, (3) the number of message-passing rounds per episode, and (4) the inclusion of
pre-training stages on PLACETO. We aim to evaluate the performance and training efficiency of our
three-stage training approach with dual policy design compared with alternatives.

G.1 SIMULATOR ABLATION STUDIES

We compared the simulated and real system execution times for the same device assignments in the
following plots. We hypothesize that the simulator serves as a cost-effective way to approximate
system execution times without sacrificing significant precision. On the top in Figure 19, we show
the running times for both the simulator and the real system for training the dual policy on ChainMM
computation graph via imitation learning. We observe that the simulator tends to overestimate the
running time compared to the real system running time and has some trouble differentiating between
assignments with similar running times. However, the simulator provides approximate running times
that follow the same trend as the real system (eg, high-quality assignments tend to have shorter
running times, and low-quality ones exhibit longer running times). On the bottom in Figure 19, we
show a statistical analysis comparing the performance of the simulator with the real system under the
same setup. We find a Pearson coefficient of 0.79 and a Spearman coefficient of 0.69. This ablation
study demonstrates that the simulator offers a cost-effective way to approximate system execution
times.
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Figure 19: (left) A line chart showing a comparison between the simulator running time and the real
system running time throughout training. (right) A scatter plot showing the simulator running time
versus the real system running time with Pearson and Spearman fitting lines.

G.2 EXPERIMENT WITH RANDOM SEEDS

In this study, we aim to test the hypothesis that the best assignment found by our approach
DOPPLER remains consistent across different random seeds during training. Due to the cost of
training, we are unable to run experiments multiple times with random seeds for all computational
graphs and methods. Therefore, we conduct five training runs of DOPPLER-SYS with different
seeds on ChainMM computation graph to test this hypothesis. This experimental setup–including
computation graph, dual policy architectures, and training hyperparameters–is identical across runs,
differing only in the random seeds. For each training run, we evaluate the best-found assignment over
10 system executions and report the mean and standard deviation in Table 5. The results show that
DOPPLER achieves consistent performance across different random seeds.
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Model Run1 Run2 Run3 Run4 Run5
ChainMM 123.2± 3.7 119.6± 2.2 122.7± 2.1 123.9± 2.5 121.7± 0.9

Table 5: Experiment running DOPPLER using different random seeds on CHAINMM computation
graph. We test the best assignment found at the end of the training across different seeds with 10
system runs and report the mean and standard deviation of the system running time (in milliseconds)
for each assignment.

G.3 MESSAGE-PASSING ABLATION STUDIES

To enhance training efficiency for large computation graphs, we apply a message-passing round
on the graph once per MDP episode instead of once per MDP step. For applying message-passing
once per MDP step, this means that the number of message-passing rounds per episode equals the
number of nodes in the graph. We hypothesize that this modification has a negligible impact on
DOPPLER’s convergence but significantly reduces training time–proportional to the number of
nodes in the computation graph. We conduct this ablation study on the ChainMM computation
graph using the simulator to save time, since per-step message-passing incurs prohibitively high
training costs.

DOPPLER-SIM DOPPLER-SIM-mpnn-per-step
Best assignment 122.5± 4.0 121.7± 3.2

Number of episodes 3425 963
Number of message passing 3425 107,856

Run time reduction 0.7%
Extra message-passing 3049.1%

Table 6: Running time (in milliseconds) for the best device assignment found at the end, along with
the number of message-passing steps conducted until finding the best assignment. The reported time
for the best assignment includes both the average and standard deviation of the system running time
over 10 system rounds. DOPPLER-SIM refers to performing message passing on the computation
graph per MDP episode, while DOPPLER-SIM-mpnn-per-step denotes conducting message-passing
per MDP step within each episode.

In each MDP step within an episode, we assign a device to the currently selected node. Therefore,
for the DOPPLER-SIM-mpnn-per-step approach, the number of message-passing rounds per episode
equals the number of nodes in the computation graph. The ChainMM computation graph consists of
112 nodes. Table 6 shows that the best assignments–reported in the first row by their running times–
were found at episode 3425 for DOPPLER-SIM and at episode 963 for DOPPLER-SIM-mpnn-per-step.
Although the best assignment was found in fewer episodes with DOPPLER-SIM-mpnn-per-step,
completing 963 episodes took significantly more wall-clock time than 3425 episodes for DOPPLER-
SIM, because message-passing took the majority of time during training.

We evaluate the efficiency of the two approaches based on the number of message-passing rounds
required to find the best assignment. DOPPLER-SIM performs 3425 message-passing operations (one
per episode), while DOPPLER-SIM-mpnn-per-step conducts 963 episodes × 112 nodes = 107,856
message-passing operations (one per MDP step, or equivalently, per node in the computation graph).
DOPPLER-SIM-mpnn-per-step achieves a 0.7% reduction in runtime for the best assignment compared
to DOPPLER-SIM, but at the cost of 3049.1% more message-passing. Therefore, these results support
our hypothesis that the modified approach has greatly reduced the training time with negligible impact
on the performance.
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G.4 PLACETO ABLATION STUDIES

We conduct an ablation study on policy design for learning device assignments in both DOPPLER
and PLACETO, explicitly including pre-training stages for PLACETO to isolate the effect of the
underlying policy design from the benefits of pre-training. We hypothesize that the dual policy
design in DOPPLER outperforms PLACETO regardless of the inclusion of the training stages.
To test our hypothesis, we pre-train PLACETO policy using imitation learning and compare it with
DOPPLER-SIM, which is trained using the imitation learning stage (Stage I) and the simulation-based
RL stage (Stage II).

PLACETO-pretrain PLACETO DOPPLER-SIM DOPPLER-SYS
Best Assignment 99.0± 5.7 126.3± 5.8 49.9± 1.1 47.4± 0.7

Table 7: The mean and standard deviation of the running time (in milliseconds) for the best assignment
found for DOPPLER, compared to PLACETO and its pre-training version, PLACETO-pretrain, over 10
system runs. The results indicate that even with the pre-training stage, PLACETO-pretrain performs
worse than DOPPLER-SIM.

Table 7 shows that DOPPLER discovers more effective device assignments than PLACETO. This result
isolates the impact of the training stages and support the claim that DOPPLER’s dual policy design
outperforms the policy design in PLACETO.

H DOPPLER’S EXPERIMENTS ON DIFFERENT HARDWARE CONFIGURATIONS

The experiments so far demonstrate that DOPPLER outperforms the alternatives on four Tesla
P100 GPUs, each with 16GB of memory. We hypothesize that DOPPLER could find better device
assignments than alternatives across different hardware configurations. In this Section, we conduct
experiments with DOPPLER and other methods under 1) varying GPU memory size on four P100
GPUs, and 2) different numbers and types of GPUs. Each experimental setup is described in the
following two subsections.

H.1 EXPERIMENTS WITH RESTRICTED GPU MEMORY

We aim to test the hypothesis that DOPPLER can adapt to the hardware setups with restricted
GPU memory. Table 8 shows results on four NVIDIA P100 GPUs, each restricted to use 8 GB
out of their 16 GB total memory. DOPPLER learns to adapt to memory constraints, achieving up to
49.6% and 18.6% runtime reductions compared to the best baseline and ENUMERATIVEOPTIMIZER,
respectively, while heuristics fail to adapt due to dynamic memory allocations in WC systems. These
results confirm that DOPPLER can adapt to restricted memory settings.

4 GPUS RUNTIME REDUCTION

MODEL 1 GPU CRITICAL PATH PLACETO ENUMOPT. DOPPLER-SYS BASELINE ENUMOPT.
CHAINMM 439.8± 4.6 310± 4.9 243.5± 5.9 133.5± 10.4 122.6 ± 2.2 49.6% 8.2%

FFNN 148.2± 19.4 225.8± 19.4 126.8± 5.7 49.2± 0.9 46.0 ± 0.8 63.7% 6.5%
LLAMA-BLOCK 465.1± 7.8 216.8± 4.6 433.5± 6.2 233.8± 8.1 190.2 ± 11.2 12.3% 18.6%
LLAMA-LAYER 482.6± 9.4 292.5± 5.1 302.1± 20.2 172.8± 4.3 154.0 ± 3.7 47.4% 10.9%

Table 8: Real engine execution times (in milliseconds) for assignments identified by our approaches
(EnumerativeOptimizer, Doppler-SYS) using 4 GPUs with access to 8G out of 16G GPU memory for
each GPU compared against those produced using 1 GPU and by two baselines (CRITICAL PATH
and PLACETO). The results show that Doppler-SYS outperforms all baselines across all settings.

H.2 EXPERIMENTS ON DIFFERENT NUMBERS AND TYPES OF GPUS

We aim to test the hypothesis that DOPPLER can find better device assignments regardless of
the number and type of GPUs in the server. Table 9 presents results running various computation
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graph architectures on eight NVIDIA V100 GPUs, each with 32 GB of memory. The setup consists of
two device meshes, each fully interconnected via NVLinks, with a total of four additional NVLinks
spanning between the meshes. We observed that DOPPLER effectively leverages NVLink to minimize
inter-mesh data transfer. We show that DOPPLER achieves up to 67.7% runtime reduction compared
to the existing baseline, and up to 19.3% compared to ENUMERATIVEOPTIMIZER.

8 GPUS RUNTIME REDUCTION

MODEL 1 GPU CRITICAL PATH ENUMOPT. DOPPLER-SYS BASELINE ENUMOPT.
CHAINMM 83.5± 4.1 69.6± 2.6 33.5± 2.5 32.1 ± 0.7 53.9% 4.1%

FFNN 51.4± 1.8 50.0± 6.0 20.0± 2.6 16.2 ± 2.3 67.7% 19.3%
LLAMA-BLOCK 154.4± 6.3 117.6± 6.0 109.6 ± 4.2 109.7± 3.0 6.7% -0.1%
LLAMA-LAYER 105.0± 4.8 105.4± 4.2 97.5± 1.1 90.6 ± 4.1 13.7% 7.1%

Table 9: Real engine execution times (in milliseconds) for assignments identified by our approaches
(EnumerativeOptimizer, Doppler-SYS) using 8 V100 GPUs compared against those produced using 1
GPU and by one baseline (CRITICAL PATH). The results show that Doppler-SYS outperforms the
alternatives in 3 out of 4 settings.

I DETAILS ON THE THREE TRAINING STAGES

Figure 20: Three-stage framework for training DOOPLER cost-effectively by combining imitation
learning, simulation-based RL, and real-system RL.

Figure 20 illustrates the workflow of the three training stages: imitation learning stage, simulation-
based RL stage, and real system RL stage. Dual policy is trained sequentially through these three
stages.

During the imitation learning stage, the computation graph produces a new state at each step, which
describes the current assignment in the graph. This state is provided to both the dual policy and the
heuristic method. Dual policy then produces an action consisting of a node and its corresponding
device. The computation graph applies the action from the dual policy and transitions to a new state.
At each MDP step, a loss is computed based on the action taken by the heuristic. The cumulative loss
over the entire episode is then used to update the dual policy at the end of each episode.

During the simulation-based RL stage, the heuristic is replaced by a simulator that provides a reward
based on the computation graph with a complete device assignment. The simulator is invoked only at
the terminal step, once all nodes in the computation graph have been assigned devices. At this point,
the simulator executes the computation graph with the full assignment, following Algorithm 1, and
returns a reward to update the dual policy.

In the real system RL stage, the simulator is replaced by the real hardware which executes the
computation graph directly–without simulated data–following Algorithm 1. In this stage, the real
hardware actively serves real-world user requests. The reward is derived from the observed execution
time of the assignment produced by the dual policy.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

J DISCUSSION ON SCALING TO MUCH LARGER DATAFLOW GRAPHS

With respect to much larger graphs, we expect the linear scale-up to continue, but in practice, massive
graphs are likely not to be an issue. While we cannot know what companies such as OpenAI are
doing, in practice, inference is probably not run on more than a few dozen GPUs (graphs grow linearly
in size with increasing GPU counts). Training, while it requires thousands of GPUs, is made by
relatively independent access machines through data parallelism and pipelining—each machine gets
an identical transformer/MoE layer and a subset of the data—so it is running the same computation
as all of the other machines. In this case, one would likely not train a single massive graph. Rather,
each repeated block or layer would be used to train a separate, dual policy in parallel and given the
same assignment on each machine with repeated structure throughout the cluster (assuming uniform
hardware), with the runtimes collected across the cluster would be used to compute a reward.

K DOPPLER’S TRANSFER ABILITY ACROSS HARDWARE AND DETAILED
ANALYSIS

We conducted a transfer learning study that trains DOPPLER on a computation graph with four P100
GPUs of fully NVLink connectivity and generalizes to eight GPUs with partial NVLink connectivity,
organized into two groups of four GPUs (GPU 0–3 and GPU 4–7). Each group is fully connected
via NVLink, and two GPU groups have in total of four NVLink connections linking to the opposite
group. Due to this hierarchical network topology, the communication cost within a 4-GPU group
differs substantially from the cost within groups and across groups.

In the assignment found by DOPPLER, we measured how the number and ratio in parentheses of
data transfers across two 4-GPU groups, within the same 4-GPU group, and within the same single
GPU changes from Zero-shot to 2K-shot for FFNN on eight GPUs in the following table:

ACROSS GROUPS SAME GROUP SAME GPU
ZERO-SHOT 22 (10.6%) 14 (6.7%) 172 (82.7 %)

2K EPISODES 7 (3.4%) 4 (1.9%) 197 (94.7 %)

The following table shows the real engine execution times (in milliseconds) for the assignment
identified by DOPPLER under different few-shot settings (Zero-shot, 2K-shot) compared against the
baseline for the transfer learning study above:

COMPUTE GRAPH TRAIN HARDWARE TARGET HARDWARE ZERO-SHOT 2K-SHOT DOPPLER-SYS CRIT. PATH ENUM. OPT.
CHAINMM 4 P100 GPUS 8 V100 GPUS 59.2 (1.9) 26.0 (0.5) 32.1 (0.7) 69.6 (2.6) 33.5 (2.5)

FFNN 4 P100 GPUS 8 V100 GPUS 23.1 (2.3) 14.4 (2.5) 16.2 (2.3) 50.0 (6.0) 20.0 (2.6)

After 2K episodes, DOPPLER finds better assignments for both ChainMM and FFNN compared to
training solely on eight GPUs without generalization (8K episodes) for runtime reduction of 19.0%
(ChainMM) and 11.1% (FFNN).

L CODE

Anonymous GitHub Repo Link: https://anonymous.4open.science/r/Doppler-EA7D/

33


	Introduction
	Device Assignment in a Work Conserving System
	Problem Definition and a Solution via Reinforcement Learning
	Doppler Dual Policy Implementations
	Episodic MDP formulation
	Dual Policy Graph Neural Network Architectures
	Efficient Message Passing Approximation

	Doppler: Cost-Effective Training
	Experiments
	Experimental Setup
	Results and Discussion

	Related Works
	Conclusion
	Enumerative Assignment Algorithm (Algorithm 4)
	System Implementation
	Computation Graphs Used in the Experiments
	ChainMM
	FFNN
	Llama-block and Llama-layer

	Graph Features XG and Device Features XD.
	Static Graph Features XG
	Dynamic Device Features XD for device d at timestep t given node v

	More Device Assignment Analysis and Visualizations
	Computation node details
	Assignment profiling
	Llama-block Assignment Analysis
	Llama-Layer Assignment Visualizations

	Synchronous system Configuration
	More Ablation Studies
	Simulator Ablation Studies
	Experiment with Random Seeds
	Message-Passing Ablation Studies
	Placeto Ablation Studies

	Doppler's Experiments on Different Hardware Configurations
	Experiments with restricted GPU memory
	Experiments on different numbers and types of GPUs

	Details on the three training stages
	Discussion on scaling to much larger dataflow graphs
	Doppler's transfer ability across hardware and detailed analysis
	Code

