
A supervised generative optimization approach for tabular data
Fadi Hamad∗

University of Pittsburgh
Pittsburgh, Pennsylvania, USA

fah33@pitt.edu

Shinpei Nakamura-Sakai∗
Yale University

New Haven, Connecticut, USA
s.nakamura.sakai@yale.edu

Saheed Obitayo
J.P. Morgan AI Research

New York, USA
saheed.o.obitayo@jpmorgan.com

Vamsi K. Potluru
J.P. Morgan AI Research

New York, USA
vamsi.k.potluru@jpmchase.com

ABSTRACT
Synthetic data generation has emerged as a crucial topic for fi-
nancial institutions, driven by multiple factors, such as privacy
protection and data augmentation. Many algorithms have been pro-
posed for synthetic data generation but reaching the consensus on
which method we should use for the specific data sets and use cases
remains challenging. Moreover, the majority of existing approaches
are “unsupervised” in the sense that they do not take into account
the downstream task. To address these issues, this work presents a
novel synthetic data generation framework. The framework inte-
grates a supervised component tailored to the specific downstream
task and employs a meta-learning approach to learn the optimal
mixture distribution of existing synthetic distributions.
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1 INTRODUCTION
Synthetic data generation is vital in various industries, like finance,
telecommunication, and healthcare where data-driven decision-
making is crucial [11]. It resolves data scarcity and quality concerns
by providing synthetic data that preserves statistical properties and
relations with the original data. Synthetic data enables testing new
ideas without compromising real data, blending multiple sources,
and protecting individual privacy [25]. However, using synthetic
data may cause performance degradation in modeling [10] where
utility degradation depends on the fidelity of the data generation
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process and the downstream task. To address this issue andmaintain
synthetic data quality, the development of a framework to mitigate
the degradation is indispensable.

The majority of existing approaches are “unsupervised” in the
sense that they do not take into account the downstream task. For
instance, the methods discussed in [19] treat the output variable
used in the downstream task like other covariates. Their primary fo-
cus is creating models that merely “resemble” the original data sets,
with variations in how they quantify this resemblance. However, in
some use cases, the primary objective is not just achieving similar-
ity to the actual data distribution but optimizing for downstream
predictions using the generated data. While research suggests [10]
that a closer match to the original data distribution generally leads
to better downstream performance, there is an alternative approach
worth exploring, incorporating a “supervised” component and op-
timizing directly on the downstream loss function. By doing so,
the generated data can be tailored more effectively to improve the
performance of the specific downstream task.

Recent studies show that there are various approaches to model
tabular data distribution and sample rows from the distribution[5]:
neural network-based[18], machine learning-based[2], and statistical-
based[12] generative models. Each of these synthetic data gener-
ation methods has its distinct capabilities and features. Many al-
gorithms have been proposed for synthetic data generation but
reaching the consensus on which method we should use for the spe-
cific data sets and use cases remains challenging. For instance, [26]
found that, while table variational autoEncoder (TVAE) generally
outperforms Conditional Tabular Generative Adversarial Networks
(CTGAN) in most experiments, CTGANs are preferred when prior-
itizing differential privacy. Furthermore, Gaussian Copula, being a
parametric model, proves advantageous when dealing with known
marginal distributions. More importantly, the appropriate method
depends on many factors such as the distribution of the observed
data or the objective of generating the synthetic data.

This work proposes a novel synthetic data generation framework,
the Supervised and Composed Generative Optimization Approach
for Tabular data (SC-GOAT), to address the aforementioned issues.
The framework comprises two key steps. Firstly, we incorporate
a supervised component customized for the specific downstream
task. To achieve this, we leverage a Bayesian optimization approach
to fine-tune the hyperparameters related to the neural networks.
Additionally, apart from optimizing the traditional loss of GAN or
TVAE through their parameters, we also tune the hyperparameters
based on a loss function specific to the downstream task on the
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validation set. Subsequently, we evaluate the model’s performance
based on the test error to accurately assess its effectiveness.

In the second step, we adopt a meta-learning approach, leverag-
ing Bayesian optimization, to identify the optimal mixture distribu-
tion of existing synthetic data generation methods. To the best of
our knowledge, this approach is the first to generate synthetic data
based on a mixture of multiple synthetic data generation methods.
From each method we learned in the first step, we explore multiple
data generation techniques and tune the proportion of data sets
sampled. This approach is motivated by the quest to discover the
projection of the true underlying data distribution onto the set en-
compassing various synthesizers. Employing supervised Bayesian
optimization, we search for the ideal mixture that optimizes the
downstream performance metric. By dynamically combining the
strengths of different data generation methods, we aim to enhance
the overall synthetic data quality and its suitability for downstream
tasks.

Our contributions

(1) Our approach incorporates supervised components, granting
us the flexibility to customize the metric of interest. Whether
it’s efficacy, fidelity, or privacy, we can tailor the approach
accordingly to boost its performance.

(2) We introduce a meta-learning framework that leverages var-
ious methods to learn the optimal mixture distribution, im-
proving our metric of interest. Additionally, our approach
remains robust, even with inefficient synthetic data from
certain models.

(3) Our proposed methodology consistently outperforms exist-
ing methods, exhibiting a statistically significant improve-
ment with a p-value of less than 1% in the majority of cases.

2 RELATEDWORK
Recent studies have revealed diverse approaches to modeling tabu-
lar data distribution and sampling from it [5]. These approaches in-
clude Neural network-basedmethods [18], Machine Learning-based
techniques [2], and Statistical-based generative models [12]. Each
of these methods for synthetic data generation possesses unique
capabilities and features. For the purpose of this paper, our focus
centers on exploring Neural network-based and Statistical-based
approaches.

The Synthetic Data Vault (SDV) project, utilized for conducting
most of the experiments [19], offers two Generative Adversarial
Networks (GAN)-based models for data generation from single
tables: Conditional Tabular GAN (CTGAN) and CopulaGAN. GANs
represent a powerful generative modeling approach employing
deep learning methods like convolutional neural networks. Since
the original GAN formulation [9], ongoing research has led to
the proposal of new optimization strategies and modifications to
address GAN limitations. One notable model that builds upon prior
successes is CTGAN, which employs mode-specific normalization
to capture non-Gaussian and multimodal distributions [26]. It also
introduces a conditional generator and training by sampling to
tackle challenges posed by highly imbalanced categorical columns
and the sparsity of one-hot-encoded vectors, limitations observed
in previous GAN architectures. Another neural network approach

from SDV is known as TVAE [26], which is the variational encoders
adapted for tabular data.

Beyond neural networks, synthetic data generation can also be
achieved by treating each table column as a random variable, mod-
eling a multivariate probability distribution, and sampling from it.
SDV presents a synthesizer using this approach called Gaussian
Copula [15], which leverages copula functions. These mathemati-
cal functions allow for describing the joint distribution of multiple
random variables by analyzing the dependencies between their mar-
ginal distributions [19]. In the SDV project, univariate marginals
are learned using a Gaussian mixture model, while the multivari-
ate copula is learned as a Gaussian copula. The Gaussian Copula
approach is valuable for modeling both the covariances between
features and their distributions [14].

On the other hand, Bayesian optimization is a powerful and ef-
ficient technique used in various fields to optimize complex and
costly functions [21, 23]. This methodology is particularly valu-
able when exploring black-box functions, where the underlying
mathematical form is unknown or computationally expensive to
evaluate. Additionally, Bayesian optimization is used when the
hyper-parameters space isn’t continuous or the loss function isn’t
differentiable. At its core, Bayesian optimization employs a proba-
bilistic model, typically a Gaussian Process, to capture the surrogate
representation of the objective function. By iteratively selecting the
next sampling point based on a trade-off between exploration and
exploitation, it intelligently navigates the search space, efficiently
narrowing down the region likely to contain the global optimum [8].
This approach has shown remarkable success in tasks like hyperpa-
rameter tuning and parameter optimization in machine learning,
engineering [8, 23], and other domains.

3 SYNTHETIC DATA GENERATION
Let𝑀 = {GC, CTGAN, C-GAN, TVAE} be the set of the synthetic
data generation methods being utilized. For each method 𝑚 ∈
𝑀 , we have a corresponding synthetic data generation function
𝑆𝑚 (𝑁 ;𝜔𝑚 ;𝜃𝑚) where 𝑁 is the number of rows to simulate, 𝜔𝑚 is
the set of parameters, and 𝜃𝑚 is the set of hyper-parameters. Note
that 𝜃𝐺𝐶 = ∅ as Gaussian Copula does not use neural networks.

Let 𝐷𝑟𝑒𝑎𝑙 represent the real data set and 𝐷𝑚 denote the syn-
thetic data generated by model𝑚 ∈ 𝑀 . Additionally, we have three
data sets: 𝐷𝑡𝑟𝑎𝑖𝑛 , 𝐷𝑣𝑎𝑙 , and 𝐷𝑡𝑒𝑠𝑡 , representing the training, vali-
dation, and testing data sets, respectively. All 𝐷∗ has an outcome
vector and covariate matrix which could be represented as duplet
𝐷∗ = (𝑋∗, 𝑌∗). The downstream loss function is defined as L(𝑌,𝑌 )
where 𝑌 is the outcome predicted by the downstream prediction
function 𝜇 = 𝑓 (𝑌 ∼ 𝑋 ). where 𝑓 (𝑌 ∼ 𝑋 ) is the notation for a
regression estimator but 𝑓 can be any machine learning estimator
and 𝜇 denotes the learned function. Additionally, when 𝜇 is learned
from the synthetic data generated by 𝑆𝑚 (𝑁 ;𝜔𝑚 ;𝜃𝑚) we denote it
as 𝜇𝜔 (𝜃𝑚 ) = 𝑓 (𝑌𝑚, 𝑋𝑚) where (𝑋𝑚, 𝑌𝑚) = 𝑆𝑚 (𝑁 ;𝜔𝑚 ;𝜃𝑚).

SC-GOAT consists of two steps, supervising (Algorithm 1) and
composing (Algorithm 2). In both steps of SC-GOAT, our approach
follows standard optimization procedures by optimizing a loss func-
tion. However, unlike traditional methods, we adopt a Bayesian
approach that constructs a probabilistic model around the involved
parameters. Subsequently, we update these parameters based on
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the evaluation performance of the loss function. To establish the
prior/posterior distribution over the objective function, we em-
ploy the Parzen-Tree Estimator. This allows us to effectively locate
the parameter space’s optimal region, maximizing the expected
improvement in the loss function. By employing Bayesian optimiza-
tion in this manner, we can efficiently fine-tune the synthesizer
models and enhance the overall performance in generating data
that closely resembles the real data set boosting the downstream
performance.

3.1 Supervising Synthesizers
The first step of SC-GOAT involves tuning the hyperparameters
using an optimization approach that is supervised by the down-
stream performance metrics. The optimization formulation is given
in (1) and (2) as a bi-level optimization problem. To solve this hyper-
parameter tuning optimization problem, we employ a Bayesian
optimization approach [7]. The flexibility of Bayesian hyperpa-
rameter tuning allows for easy switching of the target function
to optimize. Moreover, we have the option to incorporate privacy
or fidelity regularization in addition to the downstream task. The
pseudo-code for hyper-parameter tuning the given model𝑚 is pre-
sented in Algorithm 1.

The supervising synthesizer optimization problem using bi-level
formulation is given by:

𝜃∗ = argmin
𝜃

L(𝑌𝑣𝑎𝑙 , 𝑌𝑣𝑎𝑙 )

s.t 𝑌𝑣𝑎𝑙 := 𝜇𝜔∗ (𝜃 ) (𝑋𝑣𝑎𝑙 )
(1)

s.t. 𝜔∗ (𝜃 ) = argmin
𝜔

F (𝜔, 𝜃, 𝐷𝑡𝑟𝑎𝑖𝑛) (2)

where the outer optimization problem (1) is minimizing the loss
function on the validation set 𝐷𝑣𝑎𝑙 and the inner optimization prob-
lem (2) is minimizing the loss function denoted by F on the training
set𝐷𝑡𝑟𝑎𝑖𝑛 for synthesizer model 𝑆 . Note that these functions,L and
F , are not necessarily the same and may be measured on different
models. For instance, F always refers to the loss function used
during the training of the synthesizer model 𝑆 , whereas L refers to
the model’s performance on the validation set, possibly employing
a different evaluation metric. Alternatively, L could also refer to
the loss function for the downstream task performed by model 𝑓 ,
as it is the case in our approach.

3.2 Composing Synthesizers
The second step of SC-GOAT is the composing process. Here, our
objective is to utilize a meta-learning approach to determine the
mixture distribution among the synthesizers in𝑀 . We refer to it as
a meta-learning approach because we learn the final model from the
models obtained in the previous step. For each synthesizer𝑚 ∈ 𝑀 ,
we define 𝛼𝑚 ∈ [0, 1] as the proportion of the total observations
sampled from 𝑆𝑚 . The final synthetic data comprises [𝛼𝑚𝑁 ] obser-
vations for each𝑚, where [·] denotes the closest integer function.
The formulation of this meta-learning approach using an optimiza-
tion framework is given in (3) while the pseudo-code for this step
is presented in Algorithm 2. Note that the 𝜃𝑚 we use could be the
default parameters of each𝑚 ∈ 𝑀 or the tuned parameter obtained
in the Supervising step 1.

Algorithm 1: Supervising Step - Generative Optimization
Approach for Tabular data (S-GOAT)
Input: 𝐷𝑟𝑒𝑎𝑙 = (𝑋𝑟𝑒𝑎𝑙 , 𝑌𝑟𝑒𝑎𝑙 ), N
Create partition {𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑣𝑎𝑙 , 𝐷𝑡𝑒𝑠𝑡 } =
{(𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛), (𝑋𝑣𝑎𝑙 , 𝑌𝑣𝑎𝑙 ), (𝑋𝑡𝑒𝑠𝑡 , 𝑌𝑡𝑒𝑠𝑡 )}

Initialize 𝜃0𝑚
for 𝑘 = 1, . . . , 𝐾 do

Fit 𝑆𝑚 using 𝐷𝑡𝑟𝑎𝑖𝑛

Generate 𝐷𝑘
𝑚 = (𝑋𝑘

𝑚, 𝑌
𝑘
𝑚) where

(𝑋𝑘
𝑚, 𝑌

𝑘
𝑚) = 𝑆 (𝑁 ;𝜔𝑚 ;𝜃𝑘𝑚)

Train 𝜇𝑘
𝜃𝑘𝑚

= 𝑓 (𝑌𝑘𝑚 ∼ 𝑋𝑘
𝑚)

Compute 𝑌𝑘
𝑣𝑎𝑙

= 𝜇𝑘 (𝑋𝑣𝑎𝑙 )
Compute 𝑙𝑘 = L(𝑌𝑘

𝑣𝑎𝑙
, 𝑌𝑣𝑎𝑙 )

Suggest 𝜃𝑘+1 using Bayesian Optimization based on
{𝜃0𝑚, ...𝜃𝑘𝑚} and {𝑙0, ..., 𝑙𝑘 }

return 𝜃𝑘
∗

𝑚 where 𝑘∗ = argmin𝑘 𝑙𝑘

The meta-learning optimization formulation is given by:

𝛼∗ = argmin
𝛼∈R |𝑀 |

L(𝑌𝑣𝑎𝑙 , 𝑌𝑣𝑎𝑙 )

s.t (𝑋𝑚
𝑠𝑦𝑛, 𝑌

𝑚
𝑠𝑦𝑛) = 𝑆𝑚 ( [𝛼𝑚𝑁 ], 𝜃𝑚) ∀𝑚 ∈ 𝑀

𝑋𝑠𝑦𝑛 = [(𝑋𝑚
𝑠𝑦𝑛)𝑇 :𝑚 ∈ 𝑀]𝑇

𝑌𝑠𝑦𝑛 = [𝑌𝑚𝑠𝑦𝑛 :𝑚 ∈ 𝑀]
𝜇 = 𝑓 (𝑌𝑠𝑦𝑛, 𝑋𝑠𝑦𝑛)
𝑌𝑣𝑎𝑙 := 𝜇 (𝑋𝑣𝑎𝑙 )

(3)

where L refers to the loss function of the downstream task on
the validation set 𝐷𝑣𝑎𝑙 , which we use to evaluate the quality of
the 𝛼 ′𝑠 generated by the Bayesian optimization at each iteration.
This involves evaluating the downstream task performance on
the combined synthetic data generated using different methods as
highlighted in Algorithm 2.

3.3 Evaluation
When generating synthetic data, one common concern is assessing
the quality of the generated data. To evaluate synthetic generation
models for tabular data, various benchmarking approaches are
available, allowing flexibility in adapting the loss function to suit
the specific objectives of synthetic data generation.

To evaluate the accuracy of preserving individual attributes and
attribute pairs in synthetic data, the KS-Test and CS-Test are valu-
able tools. The KS-Test compares continuous column distributions
using the empirical CDF [6], while the CS-Test compares discrete
column distributions using the Chi-Squared test [19]. Additionally,
fidelity can be assessed by building a machine learning classifier to
differentiate between real and synthetic data [19].

While evaluating the distribution of synthetic and real data is
crucial, we must also address privacy protection at an individual
level. Like many machine learning models, synthetic generative ap-
proaches are susceptible to privacy attacks [24], including Member-
ship Inference Attacks (MIA) [22], Reconstruction attacks [17], and
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Algorithm 2: Composing Step - Generative Optimization
Approach for Tabular data (C-GOAT)
Input: 𝐷𝑟𝑒𝑎𝑙 , 𝜃𝑚 ∀𝑚 ∈ 𝑀 ;
Create partition {𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑣𝑎𝑙 , 𝐷𝑡𝑒𝑠𝑡 } =
{(𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛), (𝑋𝑣𝑎𝑙 , 𝑌𝑣𝑎𝑙 ), (𝑋𝑡𝑒𝑠𝑡 , 𝑌𝑡𝑒𝑠𝑡 )}

Initialize 𝜶 = {𝛼𝑚}𝑚∈𝑀
for 𝑘 = 1, . . . , 𝐾 do

Sample 𝐷𝑘
𝑚 = 𝑆𝑚 ( [𝛼𝑘𝑚𝑁 ];𝜃𝑚) ∀𝑚 ∈ 𝑀

Create 𝐷𝑘
𝑠𝑦𝑛 =

©­­­«
𝐷𝑘
𝐺𝐶
.
.
.

𝐷𝑘
𝑇𝑉𝐴𝐸

ª®®®¬ =
©­­­«
𝑋𝑘
𝐺𝐶

𝑌𝑘
𝐺𝐶

.

.

.
.
.
.

𝑋𝑘
𝑇𝑉𝐴𝐸

𝑌𝑘
𝑇𝑉𝐴𝐸

ª®®®¬
Train 𝜇𝑘 = 𝑓 (𝑌𝑘𝑠𝑦𝑛 ∼ 𝑋𝑘

𝑚)
Compute 𝑌𝑘

𝑣𝑎𝑙
= 𝜇𝑘 (𝑋𝑣𝑎𝑙 )

Compute 𝑙𝑘 = L(𝑌𝑘
𝑣𝑎𝑙
, 𝑌𝑣𝑎𝑙 )

Suggest 𝜶𝑘+1 using Bayesian optimization approach
based on {𝜶 0, ...,𝜶𝑘 } and {𝑙0, ..., 𝑙𝑘 }

return 𝐷𝑘∗
𝑠𝑦𝑛 where 𝑘∗ = argmin𝑘 𝑙𝑘

Property inference attacks [13]. Addressing these privacy vulnera-
bilities is crucial to preserving the utility and integrity of synthetic
data.

In this paper, we aim to evaluate our synthetic generative models
through the lens of the downstream classification model’s accu-
racy, which serves as a robust metric to assess the models’ overall
performance.

4 DATA
Adult. This data set is a sample from the US Census Bureau

Database that contains the census result of the year 19941. This data
set includes 48,842 records and 14 attributes. Each record contains
the following features such as age, gender, education, relationship,
occupation, race, and native country of a representative individual
in the census record. These attributes are a mixture of numerical,
ordinal, and categorical data types. The data set has a binary target
label which indicates whether the income of an individual is less
or greater than fifty thousand dollars. Therefore, the data set has a
classification task which is to predict if a person makes over 50K a
year based on the census attributes

Credit Card Fraud. To showcase the usefulness of synthetic
tabular data, we use the credit card fraud data set2. This data set
contains transactions collected in the span of two days made by
credit cards by European cardholders for the month of September
2013. From an analysis, it can be observed that the data set is highly
imbalanced containing 492 frauds out of 28,4807 total transactions.
The positive class of fraud accounts for 0.172% of all transactions.
The credit card fraud data set contains only numerical input vari-
ables with 31 features. With respect to confidentiality and privacy,
28 of the features - V1 to V28 are principal components obtained
by the means of PCA. ’Time’, ’Amount’, and ’Class’ are the only

1Data available on the UCI platform at https://archive.ics.uci.edu/dataset/2/adult
2Data available on the Kaggle platform at https://www.kaggle.com/datasets/mlg-ulb/
creditcardfraud

features not to be transformed with PCA. The feature ’Time’ con-
tains the seconds elapsed between each transaction and the first
transaction in the data set. The feature ’Class’ is the target variable
which takes the value of 0 for cases of no fraud and 1 for cases of
fraud. The feature ’Amount’ is the transaction amount. Given the
class imbalance ratio of the credit fraud data set, we processed the
data set by oversampling the minority class with random under-
sampling of the majority class, leading to a more balanced data set.
This involved duplicating examples in the minority class in order
to reach an equal balance between the minority and majority class.
This process will reduce the number of data points available. This
technique is called Synthetic Minority Oversampling Technique
(SMOTE)[3]. Applying this technique will lead us to have two sep-
arate data sets, an original imbalanced credit data set and a new
balanced credit data set.

This data set will be helpful in the context of fraud detection
for machine learning utility. We can answer whether synthetic
data generation can help with downstream tasks in the fraud man-
agement process. The utility of models trained on fraud data sets
allows us to measure the effectiveness of detecting and predicting
potential fraudulent operations. This provides guidance to fraud
practitioners interested in utility using synthetic data to train fraud
detection models.

5 EXPERIMENTAL RESULTS
We evaluate our approach on three diverse data sets discussed
in the previous section: the adult data set1, the balanced credit
card data set3, and the imbalanced credit card data set2. We chose
these data sets as they are widely utilized in previous works for
evaluating tabular synthetic data generation methods. The adult
data set contains both numerical and categorical variables allowing
us to showcase the applicability of our approach in generating
different types of data.

Furthermore, by selecting both balanced and imbalanced data
sets, we can demonstrate the robustness of our approach across
various data distributions. The data set’s descriptions are summa-
rized in Table 1. For the adult data set, we utilized all available
records, totaling 48.842K. However, for the credit card data set, we
sampled 50K records from the available 28.407K records similar to
[27]. Through this evaluation, we gain valuable insights into the
generalizability and performance of our approach, enhancing its
credibility as a powerful tool for generating high-quality synthetic
data across a diverse range of scenarios.

Our method is implemented as an open-source Python package
that will be available on GitHub. The implementation utilizes four
generative methods, namely Gaussian Copula, CTGAN, Copula
GAN, and TVAE, available from the SDV [20] python package. For
the downstream task evaluation, we utilize the XGBoost classifier
python package [4], and for the Bayesian optimization, we use the
hyperopt python package [1].

All experiments were conducted using Python 3.10. The code
repository provides comprehensive instructions for replicating the
experiments and includes detailed result tables. For further insights
3The credit card data set with oversampling the minority class as mentioned in Sec-
tion 4.
4This is the original adult data set with target encoder transformation for the categorical
features.
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Table 1: Description of data sets

Data set Label Observation Continuous Binary Multi-class Label = 0 Label = 1

Adult 1 ’income’ 48,842 6 2 7 76.07% 23.93%
Credit Balanced 3 ’Class’ 50,000 30 1 0 66.70%% 33.3%
Credit Imbalanced 2 ’Class’ 50,000 30 1 0 99.82% 0.18%

Table 2: Description of synthetic data sets generated using
each model.

Untuned Tuned
Data set Method Label = 0 Label =1 Label = 0 Label =1

Adult

Gaussian Copula [20] 80.40% 19.60% 82.14% 17.9%
CTGAN [20] 83.66% 16.34% 77.15% 22.9%
CopulaGAN [20] 74.96% 25.04% 74.96% 25.0%
TVAE [20] 76.44% 23.56% 77.63% 22.4%
SC-GOAT 78.47% 21.53% 77.41% 22.59%

Adult Transformed 4
Gaussian Copula 94.29% 5.71% 80.36% 19.6%
CTGAN 68.63% 31.37% 77.45% 22.6%
CopulaGAN 74.85% 25.15% 74.85% 25.2%
TVAE 78.70% 21.30% 76.32% 23.7%
SC-GOAT 70.19% 29.81% 72.93% 27.07%

Credit Balanced

Gaussian Copula 70.07% 29.93% 63.66% 36.3%
CTGAN 68.33% 31.67% 63.73% 36.3%
CopulaGAN 91.97% 8.03% 91.97% 8.0%
TVAE 63.90% 36.10% 63.90% 36.1%
SC-GOAT 63.90% 36.10% 63.90% 36.1%

Credit Imbalanced

Gaussian Copula 0.00% 100.00% 0.00% 100.0%
CTGAN 100.00% 0.00% 100.00% 0.0%
CopulaGAN 99.82% 0.18% 99.82% 0.2%
TVAE 100.00% 0.00% 100.00% 0.0%
SC-GOAT 99.65% 0.35% 99.65% 0.35%

into the generated synthetic data sets, a summary is provided in
Table 2 for one experiment.

Each experiment was repeated 10 times and for these experi-
ments, 70% of the real data was used for training, 20% for validation,
and the remaining 10% for testing. For the untuned setup, we set
𝐾 = 350 in Algorithm 1, while for the tuned setup, we used 𝐾 = 150
in Algorithm 2. For Algorithm 2, we generate the alphas using the
uniform distribution𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(0, 1) and then we scale those alphas
to add up to 1 as follows:

𝛼𝑚 =
𝛼𝑚∑
𝑗∈𝑀 𝛼 𝑗

∀𝑚 ∈ 𝑀

For the first iteration, instead of randomly generating the alphas,
we use a warm start. The warm start also addresses a weakness
in the Bayesian optimization using the Tree-Structured Parzen-
Estimator, as in the majority of cases, it fails to converge to the
optimal solution if it lies on one of the corner points. By "corner
points" here, we mean that the optimal solution only considers the
best method and neglects the others, which can be mathematically
defined as 𝛼 = 1 for the best model and 𝛼 = 0 for the other methods.
This decision is based on the evaluation metric for the validation
data set, which, in our implementation, is the AUC score. Therefore,
our approach considers five initial starting points. Four of them
represent the corner points that correspond to each model𝑚 ∈ 𝑀 .
For example, the initial starting point that only represents the
Gaussian Copula model will be given by [1.0, 0.0, 0.0, 0.0]. The last
initial starting point is initialized based on the AUC validation of
each individual model:

𝛼𝑚 =
𝑎𝑢𝑐𝑚

𝑣𝑎𝑙
− 𝑎𝑢𝑐∗

𝑣𝑎𝑙∑
𝑗∈𝑀 (𝑎𝑢𝑐 𝑗

𝑣𝑎𝑙
− 𝑎𝑢𝑐∗

𝑣𝑎𝑙
)

∀𝑚 ∈ 𝑀

where 𝑎𝑢𝑐∗
𝑣𝑎𝑙

=𝑚𝑖𝑛𝑖∈𝑀𝑎𝑢𝑐𝑖𝑣𝑎𝑙 .
The decision for which initial point to pick depends on the point

that gives the best validation AUC score for the first iteration. This
initialization scheme ensures that in case our optimal solution lies
on one of the corner points, we will converge to it. Additionally, if
the optimal solution represents a mixture of each individual model,
we will also be able to capture it, as the algorithm will generate
alpha vectors that continuously improve the loss function.

However, to prevent the chance of overfitting, we implemented
early stopping by adding a condition to stop the algorithm once
the AUC score on the validation set doesn’t improve for the last 𝑘
iterations. For algorithm 1, we used 𝑘 = 10, and for algorithm 2 we
used 𝑘 = 15.

Our results include fitting all the individual models from the SDV
package [20] without any hyper-parameter tuning as well as tuning
these models as mentioned in Algorithm 1 . For CTAB-GAN+, the
details of the experiment are mentioned in Subsection 5.3. We also
reported the results of our method using both tuned and untuned
setups where for the untuned setup we only use Algorithm 2 with
untuned models from the SDV package [20] while for the tuned
setup we use both Algorithm 1 and Algorithm 2.

Table 3: Average test AUC for the XGBoost baseline model
fitted only on real data for each data set for 10 experiments.

Method Adult Credit Balanced Credit Imbalanced

XGBoost [4] 90.51% 99.99% 96.02%

5.1 Performance Evaluation
To optimize the loss function, we aim to maximize the AUC score
for the downstream classification task. This is achieved by training
an XGBoost classifier [4] on the training data set and subsequently
evaluating its performance on a separate validation data set. To
ensure a fair comparison between the different methods, the XG-
Boost classifier is utilized with its default parameters. By focusing
on the maximization of the AUC score in the downstream task, we
can accurately evaluate the synthetic data’s quality. Our primary
objective is to generate data that closely resembles the real data.
Therefore, by emphasizing the AUC score, we ensure that the syn-
thetic data is as representative as possible, enabling it to capture
essential characteristics and patterns present in the real data set.

5.2 Baseline model
To comprehensively evaluate the effectiveness and improvements of
our method, as well as the quality of the generated data compared to
the original real data set, we fitted XGBoost on the original data and
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assessed the model’s performance in terms of AUC. By comparing
our results against the baseline XGBoost model fitted on real data,
we gain valuable insights into the efficiency of our approach and
the similarity between the generated synthetic data and the real
data.

5.3 CTAB-GAN+
Given that the primary criteria for evaluating our approach rely
on downstream losses, we conduct a thorough comparison against
CTAB-GAN+ [27]. CTAB-GAN+ stands out as a novel conditional
tabular GAN, surpassing existing state-of-the-art approaches by
incorporating downstream losses into conditional GANs. This inno-
vation results in higher utility synthetic data that proves beneficial
in both classification and regression domains. The model introduces
several other major improvements over existing methods [27]. As
we compare our approach to this state-of-the-art alternative, we
aim to showcase the strengths and competitive advantages of our
synthetic data generation technique in practical scenarios.

We focus on the default version of CTAB-GAN+ without any
fine-tuning. The decision is driven by time constraints, as tuning
the model requires a significant amount of time compared to the
models present in SDV. By considering the default CTAB-GAN+, we
can still gain valuable insights and effectively evaluate the relative
strengths of our method without the need for extensive fine-tuning
efforts. Table 5 summarizes the results.

To ensure a fair comparison, we did not incorporate CTAB-GAN+
in the composition process. Our goal was to demonstrate that we
could surpass the current state-of-the-art through meta-learning of
preexisting methods.

5.4 Adult data set
We evaluated the efficiency of our method on the adult data set1,
focusing on its performance with categorical data. For encoding
the categorical features, we employed two distinct approaches. The
first approach relied on the implicit handling by the SDV python
package [20] during the fitting of synthesizers on the real data.
This implicit handling is implemented using a label encoder. The
second approach involved implementing a target encoder, which
outperforms traditional encoding schemes, especially for categori-
cal features with high cardinality in the categorical columns [16].
We referred to the transformed data, utilizing the target encoder,
as the ’Adult Transformed’ data set.

Subsequently, we compared the performance of our approach
against each individual synthesizer model𝑚 ∈ 𝑀 using two setups:
untuned models and tuned models, as described in section 3.1. For
the ’income’ column, we mapped rows with values ’<=50k’ to 0
and rows with values ’>50k’ to 1. The results of the comparison are
summarized in Table 5.

5.5 Balanced credit card data set
We further demonstrate the effectiveness of our approach on the
credit card data set2, which exclusively comprises numerical fea-
tures. Initially, the credit card data set exhibited an imbalanced
distribution, as indicated in Table 1. However, as detailed in Sec-
tion 4, we preprocessed the data set using a random undersampling

of the majority class. This resulted in a more balanced data set,
facilitating a fairer evaluation.

Similarly to our approach for the adult data set, we conduct a
thorough comparison of our method’s performance against that of
each individual synthesizer model𝑚 ∈ 𝑀 , employing two setups:
untuned models and tuned models, as described in Section 3.1. The
results of this comparison are summarized in Table 5.

5.6 Imbalanced credit card data set
Considering real-life scenarios often involve highly imbalanced
data, we evaluated the performance of our approach on an imbal-
anced credit card data set. Initially, we ran our approach using four
synthesizer methods in both ’tuned’ and ’untuned’ setups. However,
we observed weaknesses in handling highly imbalanced data sets,
as these methods struggled to generate data from both classes effec-
tively. For instance, TVAE only generated data from the majority
class, while CopulaGAN unexpectedly generated data solely from
the minority class. To address this issue, we implemented condi-
tional sampling, with only Gaussian Copula successfully generating
data resembling the original data set. The results of this comparison
are summarized in Table 5.

5.7 Results Analysis
To simplify the comparison between our approach and the other dif-
ferent methods, and to demonstrate the applicability of our method
in various scenarios, we present the results averaged across all the
experiments for all the methods on the test data in Figure 1. Here
we only show the plot comparison for the untuned setup since we
didn’t tune the CTAB-GAN+.

It can be observed that our method outperforms all the other
approaches in most cases. Only for the imbalanced credit card
data set, CTAB-GAN+ performs better than our approach. This
is related to the way CTAB-GAN+ handles imbalanced data, as
they implement a training-by-sampling strategy. The idea behind
their approach is to resample classes, giving higher chances to
minority classes to train the model [27]. This approach is somehow
similar to making the data balanced as we did in Subsection 4 to
handle the credit card data, and this similarity can be observed
clearly on the balanced data set, as both approaches perform the
same (refer to Figure 1). This means that comparing our approach
with CTAB-GAN+ on imbalanced data isn’t fair due to the extra
step they implement. Even without implementing any additional
upsampling, our approach performed very close to CTAB-GAN+
on the imbalanced data (refer to Table 5)5.

A major part of our work is providing a metric to understand
the most suitable synthesizer among multiple synthesizers for a
specific objective. To demonstrate that, we present in Table 4 the
values of alphas for each model from one of the experiments. We
can clearly see from this table that the alpha weights are linked
to the performance of each individual model, and as expected, the
model with better performance has a higher 𝛼 weight compared
to the other models. In the balanced credit card data, the corner
solution emerged as the winner, with all weights assigned to TVAE

5In Figure 1, we illustrate CTAB-GAN+ for the imbalanced data set using a partial
filled color to emphasize the distinction between their approach and ours in handling
imbalanced data, as described in Section 5.7.
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Table 4: Contribution of each individual model (𝛼) for the final synthetic data generated.

Data set Method Weights (untuned setup) Weights (tuned setup)

Adult

Gaussian Copula 20.90% 17.79%
CTGAN 29.50% 41.83%
CopulaGAN 19.07% 14.26%
TVAE 30.53% 26.12%

Adult Transformed

Gaussian Copula 26.69% 19.44%
CTGAN 32.98% 42.72%
CopulaGAN 8.22% 11.51%
TVAE 32.11% 26.33%

Credit Balanced

Gaussian Copula 0% 0%
CTGAN 0% 0%
CopulaGAN 0% 0%
TVAE 100% 100%

Credit Imbalanced

Gaussian Copula 99.33% 99.33%
CTGAN 0.22% 0.22%
CopulaGAN 0.22% 0.22%
TVAE 0.22% 0.22%

owing to its superior validation AUC before early stopping. For the
imbalanced credit card data, the warm-started weight achieved the
highest downstream AUC in most cases. Lastly, in the adult dataset,
a mixture of the four methods was used, and Algorithm 2 learned
the optimal weight based on the downstream validation AUC.

Comparing against the baseline model fitted only on real data as
explained in Subsection 5.2, our aim is to show that the generated
synthetic data have a similar downstream performance. Comparing
the values from Tables 3 and 5 shows that the AUC test scores for
the XGBoost fitted only on real data are very close to the AUC test
scores for the XGBoost fitted only on synthetic data. This validates
our point that the distribution of the data generated by our approach
can perform a high-quality downstream task.

We could observe that tuning the neural network-related hy-
perparameters through Algorithm 1 did not lead to a significant
performance boost. This finding raises two possibilities: we may
need to expand the hyperparameter grid and explore the space
more extensively, or the three methods we tuned inherently exhibit
robustness to hyperparameters.We recognize this as an open discus-
sion for further investigation. If the latter holds true, practitioners
could potentially skip the costly hyperparameter tuning step, and
use out untuned set-up leading to a more efficient synthetic data
creation process.

6 CONCLUSION AND FUTUREWORK
Our approach has shown great promise, consistently outperform-
ing the majority of previous methods in terms of the downstream
metric. For future work, one potential direction is to evaluate the
performance of SC-GOAT concerning privacy or fidelity aspects.
Moreover, this approach could be further explored for data augmen-
tation purposes, aiming to surpass the downstream metric achieved
with real data. Such investigations could provide valuable insights
and advancements in the field.

Disclaimer This paper was prepared for informational purposes
by the Artificial Intelligence Research group of JPMorgan Chase
& Co and its affiliates (“J.P. Morgan”), and is not a product of the
Research Department of J.P. Morgan. J.P. Morgan makes no rep-
resentation and warranty whatsoever and disclaims all liability,
for the completeness, accuracy or reliability of the information
contained herein. This document is not intended as investment
research or investment advice, or a recommendation, offer or solici-
tation for the purchase or sale of any security, financial instrument,
financial product or service, or to be used in any way for evalu-
ating the merits of participating in any transaction, and shall not
constitute a solicitation under any jurisdiction or to any person, if
such solicitation under such jurisdiction or to such person would
be unlawful.

Figure 1: Average downstream test AUC score for 10 exper-
iments using XGBoost fitted on the generated data by each
model in the untuned setup5.
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Table 5: Average, standard deviation, and one-sided paired t-test for the downstream test AUC score, using XGBoost fitted on
the generated data by each method, on 10 experiments.

Untuned Tuned
Data set Method average std test statistic p-value average std test statistic p-value

Adult

Gaussian Copula 76.43% 0.04 10.07 0 76.43% 0.04 10.24 0
CTGAN 83.12% 0.02 9.39 0 84.28% 0.01 7.84 0
CopulaGAN 80.18% 0.03 7.59 0 79.58% 0.03 9.12 0
TVAE 82.59% 0.01 14.25 0 82.92% 0.01 10.97 0
CTAB-GAN+ 83.25% 0.03 4.44 0.0002 - - - -
SC-GOAT 87.87% 0.00 - - 88.12% 0.01 - -

Adult Transformed

Gaussian Copula 76.06% 0.03 9.60 0 76.06% 0.03 9.95 0
CTGAN 77.21% 0.04 7.20 0 78.62% 0.05 5.23 0
CopulaGAN 71.24% 0.06 8.37 0 73.02% 0.05 9.56 0
TVAE 81.86% 0.02 6.23 0 81.07% 0.03 5.49 0
CTAB-GAN+ 81.81% 0.03 4.76 0.0001 - - - -
SC-GOAT 86.67% 0.01 - - 86.97% 0.01 - -

Credit Balanced

Gaussian Copula 94.45% 0.01 14.10 0 94.45% 0.01 14.31 0
CTGAN 95.34% 0.01 16.21 0 95.93% 0.01 13.15 0
CopulaGAN 95.50% 0.01 14.18 0 96.41% 0.01 7.80 0
TVAE 98.52% 0.00 0.00 0.5 98.48% 0.00 0.00 0.5
CTAB-GAN+ 98.04% 0.00 2.74 0.0068 - - - -
SC-GOAT 98.52% 0.00 - - 98.48% 0.00 - -

Credit Imbalanced

Gaussian Copula 95.32% 0.07 -0.23 0.5886 95.32% 0.07 0.47 0.3215
CTGAN 50.00% 0.00 19.17 0 50.00% 0.00 28.47 0
CopulaGAN 50.00% 0.00 19.17 0 50.00% 0.00 28.47 0
TVAE 50.00% 0.00 19.17 0 50.00% 0.00 28.47 0
CTAB-GAN+ 96.70% 0.05 -0.74 0.7667 - - - -
SC-GOAT 94.60% 0.07 - - 96.59% 0.05 - -
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