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Abstract

Identifying causal relations from purely observational data typically requires addi-
tional assumptions on relations and/or noise. Most current methods restrict their
analysis to datasets that are assumed to have pure linear or nonlinear relations,
which is often not reflective of real-world datasets that contain a combination of
both. This paper presents CaPS, an ordering-based causal discovery algorithm
that effectively handles linear and nonlinear relations. CaPS introduces a novel
identification criterion for topological ordering and incorporates the concept of
"parent score" during the post-processing optimization stage. These scores quantify
the strength of the average causal effect, helping to accelerate the pruning process
and correct inaccurate predictions in the pruning step. Experimental results demon-
strate that our proposed solutions outperform state-of-the-art baselines on synthetic
data with varying ratios of linear and nonlinear relations. The results obtained from
real-world data also support the competitiveness of CaPS. Code and datasets are
available at https://github.com/E2real/CaPS.

1 Introduction

Causal discovery uncovers latent causal relationships within data by modeling a Directed Acyclic
Graph (DAG) connecting various variables. This field is of significant importance in domains such
as biology [1], epidemiology [2], and finance [3]. Due to the considerable expense associated with
conducting interventional experiments, the recent emphasis on causal discovery has gradually shifted
from discovery with interventional data [4, 5, 6] to discovery solely based on observational data.

In general, the problem of causal discovery from observational data faces the identifiability issue.
Different generative models with different causal relations might produce the same data distribution.
Many recent works try to have uniquely identified DAG by placing different types of assumptions on
the noise and/or relations, e.g., Shimizu et al. [7] prove that linear causal relations with non-Gaussian
additive noise can be identifiable; Peters and Bühlmann [8] prove that Gaussian linear structural
equation models (SEMs) with equal variances are identifiable. For nonlinear causal relations, Peters
et al. [9] relax the assumption of noise and proves the identifiability of DAG. From the discussion
mentioned above, existing approaches normally limit their discussions to distributions with either
pure linear or pure nonlinear relations.

However, real-world data often contain both types of causal relations and run against their basic
assumptions. These approaches work well when the observational data match their prespecified (non-
)linear or nonlinear relations while suffering significant performance loss when their assumptions
mismatch. Fig. 1 illustrates the performance of three solutions: GOLEM [10] for linear relations,
SCORE [11] for nonlinear relations, and our proposed CaPS, on synthetic data with varying propor-
tions of linear relations. The performance of SCORE decreases as the linear ratio increases, while
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Figure 1: Performance of different solutions under datasets with different linear proportions. Since
we don’t know whether the real data is linear or nonlinear, it is difficult to choose an effective model.
Thus, we need a method that works well in both linear and nonlinear and most possibly mixed cases.

GOLEM performs poorly when the linear relation ratio is low. This indicates that approaches with
strong restrictions on the types of relations are not suitable for real-world applications. Consequently,
it is necessary to find a unified causal learning framework to capture both types of relations.

Ordering-based methods [12] divide the casual discovery process into two subtasks: (i) topological
ordering and (ii) post-processing. It has been shown to have the capability to reduce the complexity
of DAG discovery while keeping the acyclicity constraint. In addition, ordering-based methods guide
the direction of causal relations, thus avoiding the fitting of a potential inverse model. However,
existing ordering-based approaches still face the same problem of relying on the assumption of linear,
e.g., LISTEN[13] or nonlinear causal relations, e.g., SCORE.

This paper introduces a unified approach, Causal Discovery with Parent Score (CaPS), that does not
rely on linear or nonlinear assumptions, within the scope of ordering-based casual discovery . To
determine the topological ordering, we propose a novel unified criterion for distinguishing leaf nodes
by utilizing the expectation of the Hessian of the data log-likelihood. Additionally, inspired by the
average treatment effect (ATE) in estimating causal effects [14], the parent score, a new metric, is
proposed to represent the average causal effects of all samples. No matter whether the causal relations
are linear or nonlinear, this metric can be used to effectively guide parent selection in post-processing.

Contributions. 1) A novel ordering criterion is proposed for distinguishing leaf nodes, which enables
learning of topological ordering for data with both types of relations; 2) A new criterion, parent score
is introduced to reflects the strength of the average causal effect of a given parent. Utilizing this
criterion, CaPS designs pre-pruning and edge supplement operations to speed up the pruning process
and rectify inaccurate predictions in the pruning step. 3) Extensive experiments are conducted to
compare eight state-of-the-art baselines on synthetic and real-world data, showing competitive results.
Furthermore, various analysis simulations demonstrate the effectiveness of our proposed designs.

2 Related Work

Causal discovery for SEMs. Gaining knowledge of DAGs from observational data often necessitates
additional suppositions about the distributions and/or relations. This paper discusses SEM-based
studies from either the linear or nonlinear point of view.

To ensure the identifiability of linear causal relations, additional noise constraints must be made,
for example, Gaussian noise with equal variance [8] or conditional variance [13]. Earlier work by
LiNGAM [7] demonstrated the identifiability of linear causal relations with non-Gaussian noise and
proposed an ICA-based method to identify this SEM. NOTEARS [15] proposed a novel continuous
optimization approach based on the trace exponential function, which provides a new idea of
continuous optimization for causal discovery. GOLEM further [10] proposed a continuous likelihood-
based method with soft sparsity and DAG constraints, which improved the performance of linear
causal discovery. The optimization of these works is largely dependent on the linear parameterization
of the weighted adjacency matrix.
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For nonlinear SEMs, e.g., the nonlinear additive noise model (ANM) [9] is known to be identifiable
with arbitrary additive noise, except in some rare cases. To discover causal relations under nonlinear
SEM, many previous works [16, 17, 18, 19, 20] proposed different DAG learning methods with a
continuous acyclicity constraint. These works generally require a training model with an augmented
Lagrangian approach which results in considerable computation cost.

Ordering-based causal discovery can partially avoid the aforementioned problems, as the order
space is much smaller than the DAG space. CAM [21] is an early ordering-based approach that
uses a greedy search to estimate the topological ordering and significance tests to prune the DAG.
LISTEN [13] proposed a new method for distinguishing leaf nodes of linear causal relations, based
on the precision matrix [22]. However, these methods are based on the connection between the
precision matrix and the weight matrix, which is not a unified criterion for linear and nonlinear SEMs.
SCORE [11] estimated the score (the Jacobian of logarithmic probability of data, ∇ log p(x)) using
the second-order Stein gradient estimator, and then determined the leaf nodes based on the score to
find the topological ordering. DiffAN [23] was proposed to estimate the score via a diffusion model.

Several recent works merge the two-stage process into one step by end-to-end differentiable optimiza-
tions to address the issue of error propagation, e.g VI-DP-DAG [24] with variational inference and
DAGuerreotype [25] over the polytope. DAGuerreotype provides two variants specifically designed
for linear/nonlinear relations. However, none of the above works provides a uniform solution that can
identify DAG in datasets with both linear and nonlinear relations.

3 Preliminaries

3.1 Structural Equation Model

The structural equation model for the causal discovery can be represented as : for random variable
x = {x1, x2, ..., xd} ∈ Rd sampling from the real joint probability distribution p(x), we want to
find a faithful causal graph G to represent the causal relationships between variables of different
dimensions. The SEM is defined with equation (1):

xi = fi(pai(x)) + ϵi (1)
where xi ∈ x, i = 1, 2, ..., d. pai(x) denotes the parents of xi, fi denotes the causal function, and
ϵi denotes the additive noise of xi. For each xi, the parents and the noise are independent of each
other, pai(x) ⊥⊥ ϵi, and there is no unobservable confounder. Each causal function fi can be linear
and nonlinear, and the additive noise ϵi ∼ N (0, σ2

i ) is Gaussian. These are the basic assumptions of
ANM [9], and we relax the linear and nonlinear conditions in our SEM.

3.2 Topological Ordering

Finding topological ordering is an important subtask for ordering-based causal discovery, which can
reduce the DAG search space.

Definition. Since the topological ordering of the causal graph G may not be unique, we define a
set of order permutations Π to represent all valid topological orderings. For any order permutation
π ∈ Π, a parent node must always be before a child node, i.e. π(i) < π(j) if xj is a descendant of xi

on G. The corresponding initialized adjacency matrix A should have Ai,j = 1 and Aj,i = 0.

Estimation. To identify the leaf nodes of a DAG, SCORE suggests using the score sj(x), which is
equal to the logarithmic gradient of the joint probability distribution p(x) with respect to xj . If a
Markov chain is used to represent p(x), then the score of each variable is equivalent to the logarithm
gradient of the joint probability distribution.

sj(x) = ∇xj

d∏
i=1

p(xi|pai(x)) = ∇xj

d∑
i=1

log p(xi|pai(x))

(i)
= ∇xj [−

1

2

d∑
i=1

(
xi−fi(pai(x))

σi
)2 − 1

2

d∑
i=1

log(2πσ2
i )]

= −xj−fj(paj(x))
σ2
j

+
∑

i∈ch(j)

∂fi
∂xj

(pai(x))
xi−fi(pai(x))

σ2
i

(2)
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where (i) uses the change of variables theorem with xi − fi(pai(x)) = ϵi and ch(j) denotes the
children of xj in the causal graph G. According to Eq.2, for each leaf node, it is easy to see that
∂sj(x)
∂xj

= − 1
σ2
j

is a constant. Thus, given the nonlinear assumption of the causal function fi, SCORE

has shown that xj is a leaf node iff the variance of ∂sj(x)
∂xj

is zero. The score sj(x) and each element

on the diagonal of the score’s Jacobian ∂sj(x)
∂xj

can be estimated using the second-order Stein gradient
estimator [26] or the diffusion model [23].

4 Causal Discovery with Parent Score

This section first examines the limits of current baselines under non-preassumed relations. Then, the
design of CaPS in both topological ordering and post-processing is introduced.

4.1 Leaf Nodes Discrimination

Previous attempts to order nodes according to a certain criterion were unsuccessful due to the lack
of a unified standard to distinguish leaf nodes in datasets with mix relations. To make this point
more evident, we provide examples of both linear and nonlinear cases. LISTEN [13] for linear
causal relations uses the minimum value of the precision matrix’s diagonal to distinguish leaf nodes.
However, this approach fails because the connection between the precision matrix and the true causal
graph no longer holds under nonlinear causal relations, which is detailed in Appendix A.1.

SCORE for nonlinear causal relations cannot differentiate leaf nodes in linear causal relations. To
illustrate this, consider a simple linear causal case xi =

∑
xk∈pai(x)

wi,kxk + ϵi, where fi is linear

in ANM. In this linear SEM, ∂fi
∂xj

(pai(x)) = wi,j is a constant and ∂2fi
∂x2

j
(pai(x)) = 0. Consequently,

for any node, the value of each element on the diagonal of the score’s Jacobian is always constant, i.e.,
∂sj(x)
∂xj

= − 1
σ2
j
−
∑

i∈ch(j)

w2
i,j

σ2
i

, making SCORE unable to differentiate leaf nodes. To address this
issue, we propose a new discriminant criterion in Theorem 1 effective in both linear and nonlinear
causal relations and give its sufficient conditions for identifiability in Assumption 1.

Assumption 1. (Sufficient conditions for identifiability). The topological ordering of a causal graph
is identifiable if one of the following sufficient conditions is satisfied.

(i) Non-decreasing variance of noises. For any two noises ϵi and ϵj , σj ≥ σi if π(i) < π(j).

(ii) Non-weak causal effect. For any non-leaf nodes xj ,
∑

i∈Ch(j)
1
σ2
i
E[( ∂fi

∂xj
(pai(x)))

2] ≥ 1
σ2

min
− 1

σ2
j

.

where σmin is the minimum variance for all noises. Assumption 1 gives two conditions for identifiabil-
ity which no longer depends on the linearity or nonlinearity of the causal function and relaxes previous
identifiability conditions. Condition (i) is an extension of the equal variance assumption [8, 13]. Con-
dition (ii) is a new sufficient condition, which first quantitatively gives a lower bound of identifiable
causal effects. It enables CaPS to identify causal relations even in scenarios outside of non-decreasing
variance. For example, considering a variance-unsortable scenario with σ2 ∼ U(0.1, 1) and causal
effect greater than 3, CaPS can also work well because the the sum of parent score is greater than
the given lower bound in condition(ii). The meaning of condition (ii) will be further discussed in
section 4.2. Under conditions (i) or (ii), the topological ordering can be identified by Theorem 1.

Theorem 1. Let s(x) = ∇ log p(x) be the score and let diag(·) be the diagonal elements of the
matrix. For any xj in the causal graph G:

j = argmax(diag(E[∂s(x)∂x ]))⇒ xj is a leaf node

Proof. (Simplified version; details are in Appendix A.2.)

For an arbitrary node xj in the causal graph G, we focus on the diagonal of the score’s Jacobian.

∂sj(x)

∂xj
= − 1

σ2
j

−
∑

i∈ch(j)

1

σ2
i

(
∂fi
∂xj

(pai(x)))
2 +

∑
i∈ch(j)

∂2fi
∂x2

j

(pai(x)) ·
xi − fi(pai(x))

σ2
i

(3)
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Since xi−fi(pai(x))
σ2
i

= ϵi
σ2
i
∼ N (0, 1

σ2
i
) and pai(x) ⊥⊥ ϵi in our SEM, the expectation of ∂sj(x)

∂xj
can

be restated as:

E[
∂sj(x)

∂xj
] = − 1

σ2
j

−
∑

i∈Ch(j)

1

σ2
i

E[(
∂fi
∂xj

(pai(x)))
2] (4)

Suppose that xl is a leaf node and xn is a non-leaf node, we have E[∂sl(x)∂xl
] = − 1

σ2
l

. Then, E[∂sl(x)∂xl
] ≥

E[∂sn(x)∂xn
] always holds under conditions (i) or (ii). Thus, the node in argmax(diag(E[∂s(x)∂x ])) will

always be the leaf node.

Theorem 1 suggests that the expectation of the diagonal of the score’s Jacobian can be used to
identify leaf nodes. Thus, applying Theorem 1, the topological ordering is identifiable by iteratively
eliminating the current leaf node [27]. The detailed procedure is included in Algorithm 1, where we
use the second-order Stein gradient estimator to estimate the score’s Jacobian ∂s(x)

∂x .

4.2 Parent Score

Theorem 1 specifies how to identify the correct topological ordering of the graph G. However, it is
not straightforward to determine the parents of each node. To identify the true causal graph G, we
need information beyond permutation to guide the selection of parents. Thus, we need a metric that
can qualitatively express the causual effects from a parent node to one of its children. Here, a new
metric, "Parent Score" is proposed to approximate the average causal effect.

Definition of parent score. We define Eq.5 to express the parent score Pi,j which approximates the
strength of the average causal effect of all samples from xj to xi.

Pi,j =

{
1
σ2
i
E[( ∂fi

∂xj
(pai(x)))

2], xj ∈ pai(x)

0, xj /∈ pai(x)
(5)

where Pi,j = 0 if xj is not a parent of xi, and Pi,j > 0 if xj is a parent of xi.

To illustrate the meaning of this definition, we propose a new metric of the Squared Average Treatment
Effect (SATE) extended from Average Treatment Effect (ATE, E[Y (T=1) − Y (T=0)]). In the task
of estimating causal effects [14], ATE is often used to measure the average effect of a treatment or
intervention on an outcome variable. Since we focus only on the strength of the effect rather than on
the positive or negative effect, SATE is defined as follows:

SATEj
i = E[(x(Tj=1)

i − x
(Tj=0)
i )2] (6)

where Tj = 1 and Tj = 0 indicate whether xj are treated or not. With a small additive treatment, we
show that SATE from xj to xi can be approximated by E[( ∂fi

∂xj
(pai(x)))

2]. Thus, the parent score
Pi,j is the causal effect of the parent scaled by its variance of noise. The detailed derivation is shown
in Appendix A.3.

Computing parent score. Parent score cannot be obtained directly from the summation of average
causal effects on childrens in Eq.4, thus we propose an iterative decoupling process and define

J = {E[∂s1(x)
∂x1

],E[
∂s2(x)

∂x2
], ...,E[

∂sd(x)

∂xd
]} (7)

to denote the expectation of the diagonal of the score’s Jacobian. By removing the node xi, a new
vector J−i is defined as follows:

J−i ={E[
∂s1(x−i)

∂x1
],E[

∂s2(x−i)

∂x2
], ...,E[

∂si(x)

∂xi
], ...,E[

∂sd(x−i)

∂xd
]} (8)

where x−i represents the remaining data after removing the feature of i-th dimension. For the i-th
element of J−i, we fill the i-th element of J . Then, each row vector of the matrix of parent score
P ∈ Rd×d is equivalent to:

Pi,: = J−i − J (9)
The complete P can be obtained by iteratively computing parent score of each row. The specific
derivation of this procedure is given in Appendix A.4. The Algorithm 1 describes the process of
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Algorithm 1 Ordering and Computing parent score
Input: data matirx X ∈ Rn×d

Output: permutation π, parent score P
1: initialize π ← [ ], removed set r ← [ ], nodes← [1, 2, ..., d], P ← 0

2: estimate ∂s(X)
∂x and then obtain J using Eq.7

3: for i = 1, 2, ..., d do
4: estimate ∂s(X−i)

∂x and ∂s(X−r)
∂x

5: obtain J−i using Eq.8 and then compute parent score Pi,: ← J−i − J using Eq.9
6: distinguish current leaf node l← nodes[argmax diag(E[∂s(X−r)

∂x ])] using Theorem.1
7: update π ← [l, π], r ← r + {l}, nodes← nodes− {l}
8: end for
9: return π, P

finding the topological order and computing the parent score, where X−i denotes the data matrix
with the i-th feature removed. Similarly, X−r denotes the data matrix with a set of removed features.

Association with leaf nodes discrimination. We can revisit the criterion to distinguish leaf nodes
with parent score. According to the definition of parent score, given the node xj ,

∑d
i=0 Pi,j can be

considered as the total causal effect to its children. The sufficient condition (ii) for identifiability
can be restated as

∑d
i=0 Pi,j ≥ 1

σmin
− 1

σj
when xj is not a leaf. It means that the causal relations

can be identified if the causal effect stronger than the given lower bound, which gives a quantitative
interpretation for an intuitive conclusion. Under this sufficient condition, the meaning of Theorem 1
can be further explained in the following corollary.

Corollary 1. j = argmax(diag(E[∂s(x)∂x ]))⇒ xj’s sum of parent score
∑d

i=0 Pi,j is minimal⇒ xj

is a leaf node

The detailed proof is given in the Appendix A.5. Corollary 1 shows that Theorem 1 is actually finding
the minimal sum of the parent score. Then, the node with the minimal total causal effect is a leaf
node. This corollary implies the association between parent score and Theorem 1. Thus, the parent
score can be considered as a unified metric during topological ordering and post-processing.

4.3 Pre-pruning and Edge Supplement

Previous research has demonstrated that redundant edges can be successfully eliminated through
CAM pruning, which applies significance testing of covariates based on generalized additive models.
This technique is widely used in many strong baselines [11, 23, 28]. However, CAM pruning is
time-consuming and only utilizes the topological ordering information. The proposed metric, parent
score, can further provide more information on causal effects. Thus, CaPS introduces the pre-pruning
and edge supplement operations before/after CAM pruning process to accelerate pruning by removing
edges with low parent score and restore removed edges with strong parent score.

Pre-pruning. Before CAM pruning, we use low-confidence parents to pre-prune the initial graph,
which can remove the low-confidence edges and reduce the searching space for CAM pruning. For
each node, we use the maximum value of their parents to determine the threshold for pre-pruning.
Specifically, for any xi, xj ∈ x, we mask the adjacency matrix Aj,i = 0 if Pi,j <

max(Pi,:)
λ , where

λ is a hyperparameter that represents the rigor in prepruning. This design can greatly speed up the
pruning process, especially when the number of nodes is large (see Appendix C.5).

Edge supplement. After CAM pruning, we use high-confidence parents to supplement the edge,
which can remedy errors in topological ordering and incorrect deletion in CAM pruning. With CAM
pruning, the existing edges are likely to be the correct edges in a real causal graph. Thus, the parent
score in current edges is used to automatically determine the threshold for edge supplement. For
any xi, xj ∈ x, we supplement the edge Aj,i = 1 when the following conditions are satisfied. First,
Pi,j > λ · avg(P⊤ ⊙A), where ⊙ denotes the Hadamard product, and avg(·) returns the average
value of a matrix. Here, we use the same rigor λ for pre-pruning and edge supplement. Second, A
is acyclic after supplementing the current edge. Note that edges added later may potentially violate
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acyclicity, so we use a greedy strategy to prioritize adding the edge with a higher parent score. The
pseudocode of post-processing are released in Appendix B.

4.4 Computational Complexity

For Algorithm 1, the computational complexity is mainly related to the estimation of score’s Jacobian
d times, which is O(d · n3), with n for the number of samples and d for the feature dimension.
For post-processing, the computational complexity is O(d2 + d · r(n,m) + s · (d+ e+ s)), which
can be considered as two steps. For the pruning step, the computational complexity of the original
CAM pruning is O(d · r(n,d)), where r(n,d) is the complexity function of training a generalized
additive model. With pre-pruning, the computational complexity of pruning can be reduced to
O(d2 + d · r(n,m)), where m ≤ d is the maximum number of parents for each node. For the edge
supplement step, the computational complexity is O(s · (d+ e+ s)) due to acyclic testing, where s

denotes the number of candidate edges and e < d·(d−1)
2 denotes the number of edges remaining after

pruning in a DAG. Since we only want to supplement the edges with high confidence, s tends to be
a small value in the implementation. Despite this cubic complexity of n, the actual-time growth is
close to linear since many CaPS operations are GPU-friendly, which is detailed in Appendix C.5.

5 Experiments

5.1 Baselines and Settings

Baselines. This paper benchmarks CaPS against eight strong state-of-the-art baselines designed for:

Linear: NOTEARS [15] and GOLEM [10], two strong linear methods with continuous optimization.

Nonlinear: GraNDAG [28] formulates neural network paths and a connectivity matrix, and substitutes
them into the acyclicity penalty; Five ordering-based methods (CAM, VI-DP-DAG, SCORE, DiffAN,
and DAGuerreotype) are chosen for comparison. DAGuerreotype has two versions: a linear one
(DAGuerreotype-L) and a nonlinear one (DAGuerreotype-N). Both variants are evaluated in the
synthetic data experiments to ensure a fair comparison.

Metrics. Three metrics in causal discovery are adopted for evaluation: the structural Hamming
distance (SHD), the structural intervention distance (SID) [29], and the F1 score. SHD evaluates the
number of edges that must be altered to make the estimated causal graph match the true causal graph.
SID assesses the number of interventional distributions in the true causal graph that are disrupted
in the estimated causal graph. Lower values for SHD and SID are desirable. SHD favors sparser
estimated causal graphs, whereas SID favors denser estimated causal graphs. Therefore, doing well
in only one of these two metrics does not necessarily mean effectiveness. F1 score measures the
balance between precision and recall, with higher values indicating better performance.

Settings. We used the settings from the respective papers for all the baselines. For some methods that
have multiple versions, such as GOLEM and DAGuerreotype, we reported the results of the version
that gave the best performance on the corresponding dataset. The only hyperparameter of CaPS was
rigor λ, which we set to λ = 50 for all datasets to avoid any dataset-specific tuning.

Datasets. Synthetic data are created using the Erdös-Rényi (ER) [30] or Scale-Free (SF) models[31]
with different linear and nonlinear proportion. We set the number of nodes d = 10 and the number
of samples n = 2000 by default, while d = 20, 50 and n = 1000, 5000 are also given. Real dataset
contains a protein expression dataset Sachs [1] and a pseudoreal transport network dataset Syntern [32].
Details and more insights of the synthetic and the real data can be found in Appendix C.1.

5.2 Synthetic Data

Fig.2 shows the experiment results of eight baselines. We can observe that CaPS performs better for
both sparser (SynER1) and denser (SynER4) graphs in almost all ranges, especially when the linear
proportions are greater than 0.25. We also note that GOLEM’s performance decreases with increasing
nonlinear proportion, and SCORE’s performance decreases with increasing linear proportion, which
could be due to their assumptions not being met. In contrast, CaPS performs consistently well in
almost all ratios. Experiments with the SynSF1 and SynSF4 datasets show similar results, and further
information can be found in Appendix C.2.
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(a) SynER1 (a sparser graph)

(b) SynER4 (a denser graph)

Figure 2: Results of SynER1 and SynER4 with different linear proportions, where linear proportion
equal to 0.0 means all relations are nonlinear and 1.0 means all relations are linear.

5.3 Real Data

The results of the real data are presented in Table 1. CaPS achieves the highest SHD and F1 scores on
Sachs, with SID coming second to VI-DP-DAG. VI-DP-DAG had the best SID but the worst SHD,
as it discovers a large number of false edges. On Syntren, GraNDAG is the top performer since the
pattern of this dataset is not friendly to ordering-based methods (see Appendix C.1). However, CaPS
achieves the best performance compared to other ordering-based methods.

To investigate the impact of each component of CaPS, we replace Theorem 1 with a random topologi-
cal ordering (w/o Theorem 1) or turn off the pre-pruning and edge supplement with parent score (w/o
Parent Score). The results show that Theorem 1 makes a major contribution to CaPS, and the parent
score can further improve it. Actually, the performance of CaPS can be further improved by adjusting
its hyperparameter λ. The sensitivity of different λ is further analyzed in Appendix C.3.

Table 1: Results of real-world datasets, including three methods based on acyclicity constraint and
five ordering-based methods. More baselines are given in Appendix C.4.

Dataset Sachs Syntren

Metrics SHD↓ SID↓ F1↑ SHD↓ SID↓ F1↑

NOTEARS 12.0±0.00 46.0±0.00 0.387±0.000 33.9±4.57 192.8±54.73 0.164±0.085
GOLEM 17.0±0.00 44.0±0.00 0.421±0.000 43.7±10.72 177.4±56.55 0.163±0.066

GraNDAG 13.2±0.75 54.0±1.10 0.373±0.064 26.5±6.45 155.3±58.11 0.344±0.104

CAM 12.0±0.00 55.0±0.00 0.444±0.000 38.0±5.59 178.6±44.56 0.223±0.099
VI-DP-DAG 42.6±1.36 40.0±5.66 0.340±0.037 182.6±4.29 144.3±35.00 0.069±0.039

SCORE 12.0±0.00 45.0±0.00 0.444±0.000 37.5±4.20 197.1±63.71 0.183±0.091
DiffAN 12.2±0.98 46.2±6.18 0.434±0.078 44.1±8.29 188.7±55.16 0.191±0.095

DAGuerreotype 17.9±0.54 51.4±0.49 0.118±0.034 87.9±9.60 157.7±48.90 0.125±0.047

CaPS 11.0±0.00 42.0±0.00 0.500±0.000 37.2±5.04 178.9±55.58 0.230±0.072
w/o Theorem 1 17.0±3.50 54.0±3.40 0.257±0.061 51.6±8.82 180.0±66.80 0.218±0.090

w/o Parent Score 12.0±0.00 45.0±0.00 0.444±0.000 34.8±3.37 188.0±57.58 0.222±0.083

5.4 Analysis Experiments

Larger-scale datasets & actual-time cost. Despite cubic complexity in samples size n, the bottleneck
of actual-time growth often lies in the number of nodes d in causal graph since many n-related
operations are GPU-friendly. In Fig. 3, we illustrate the performance with actual-time cost for all
baselines in larger-scale SynER1 (d = 20 and d = 50) with 0.5 linear proportion. CaPS consistently
achieves best performance in larger-scale causal graph while its time cost is competitive. The full
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experimental results with actual training time of larger-scale causal graph (d = 20 and d = 50) and
different samples size (n = 1000 and n = 5000) can be found in Appendix C.5.

Figure 3: F1 score and training time of SynER1 with larger-scale causal graph.

Order divergence. Reisach et.al. [33] cautioned that some synthetic datasets may be so simple that
sorting with minimal variance can be successful. To demonstrate the efficacy of CaPS, a new metric
called "order divergence" [11] was introduced for evaluation, along with a new baseline sortnregress
which orders nodes by increasing marginal variance. The results demonstrates that CaPS has a much
better order divergence than sortnregress, indicating that variance is not a reliable indicator of the
topological ordering in our synthetic datasets. CaPS consistently has the best or a competitive order
divergence in different datesets. Details can be found in Appendix C.6.

Beyond our assumptions. We also explore the performance of CaPS under other settings of noise.
The results show that CaPS can be effective in situations that go beyond our assumed conditions,
which suggests that our approach has the potential to be applied in various other scenarios, and it is
possible to consider loosening the assumptions in the future. Details can be found in Appendix C.7.

Case visualization. Fig. 4 shows the another advantage of CaPS. Compared to the second best
baseline, CaPS performs better under all metrics while it provides more information on causal effects.
The parent score captures most of the ground-truth edges and the estimated weights are similar to the
actual values, indicating that the parent score accurately reflects the strength of causal effect.

Figure 4: Visualization on SynER1 dataset. Darker colors indicate stronger causal effects.

6 Conclusion

This paper introduces CaPS that is capable of handling datasets with linear and nonlinear relations,
which is a common occurrence in real-world applications. We propose a novel identification criterion
for topological ordering for both types of relation, as well as a new metric, "parent score", to measure
the strength of the average causal effect and used for edge removal and supplementation. Our
solutions have been tested on synthetic data with varying linear and nonlinear relationship ratios and
have been found to be more effective than existing order-based work and state-of-the-art baselines.

There remain two interesting directions to be explored in future work. (1) Since the experimental
results have been encouraging in some cases beyond our assumption, we are striving to broaden the
identifiability conditions to more relaxed conditions. (2) The new metric, "parent score", is likely to
have more application scenarios. It is possible to apply as a plug-and-play information of causality.
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Appendix

A Theoretical Analysis

A.1 Reviewing LISTEN

To show why LISTEN does not work under nonlinear causal relations, we review the derivation of
precision matrix under linear relations. LISTEN uses the linear SEM X = BX +N , where B is
the autoregression matrix, and N = (ϵ1, ..., ϵd) is independent Gaussian noises. Since B is a weight
matrix of a DAG, (I−B) is invertible. Then, the covariance matrix of X is equivalent to

Σ = E[XX⊤] = E[(I−B)
−1

NN⊤((I−B)
−1

)⊤] = (I−B)
−1

D((I−B)
−1

)⊤

where D = Diag(σ1, ..., σd) is the covariance matrix of Gaussian noise. The precision matrix Ω
is the inverse covariance matrix, where Ω = (I−B)⊤D−1(I−B). When the causal relations is
nonlinear, we cannot write it directly in the form of a linear weight matrix B multiplied by X . Thus,
the connection between the precision matrix and the adjacency matrix of the true causal graph no
longer holds under nonlinear causal relations. And we can no directly use the precision matrix to
determine the leaf nodes.

A.2 The Proof of Theorem 1

Theorem 2. Let s(x) = ∇ log p(x) be the score and let diag(·) be the diagonal elements of the
matrix. For any xj in the causal graph G:

j = argmax(diag(E[∂s(x)∂x ]))⇒ xj is a leaf node

Proof. For an arbitrary node xj in the causal graph G, we focus on the diagonal of the score’s
Jacobian. The expression of ∂sj(x)

∂xj
is derived as follows:

∂sj(x)

∂xj
= − 1

σ2
j

−
∑

i∈ch(j)

1

σ2
i

(
∂fi
∂xj

(pai(x)))
2 +

∑
i∈ch(j)

∂2fi
∂x2

j

(pai(x)) ·
xi − fi(pai(x))

σ2
i

(10)

The residual xi − fi(pai(x)) in the last term of the RHS of Eq.10 is additive noise ϵi as stated in
Equation 1, which implies that xi−fi(pai(x))

σ2
i

= ϵi
σ2
i
∼ N (0, 1

σ2
i
). Furthermore, since ϵi and pai(x)

are independent of each other in our SEM, the expectation of the last term can be expressed as:

E[
∑

i∈ch(j)

∂2fi
∂x2

j

(pai(x)) ·
xi − fi(pai(x))

σ2
i

]

= E[
∑

i∈ch(j)

∂2fi
∂x2

j

(pai(x))] · E[
ϵi
σ2
i

] = 0

(11)

With Eq.10 and Eq.11, the expectation of ∂sj(x)
∂xj

can be restated as:

E[
∂sj(x)

∂xj
] = − 1

σ2
j

−
∑

i∈Ch(j)

1

σ2
i

E[(
∂fi
∂xj

(pai(x)))
2] (12)

According to Eq.12, the expectation of ∂sj(x)
∂xj

is only dependent on the current node xj and its

children. Suppose that xl is a leaf node and xn is a non-leaf node, we have E[∂sl(x)∂xl
] = − 1

σ2
l

and

E[∂sn(x)∂xn
] = − 1

σ2
n
−
∑

i∈Ch(n)
1
σ2
i
E[( ∂fi

∂xn
(pai(x)))

2].

(i) If the sufficient condition (i) is satisfied, we have non-decreasing variance of noises. For
any two noises ϵi and ϵj of different nodes, σj ≥ σi if π(i) < π(j). Since xl is a leaf node
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and xn is a non-leaf node, π(n) < π(l), we have σl ≥ σn. And, 1
σ2
i
E[( ∂fi

∂xj
(pai(x)))

2] ≥ 0.
Therefore, we can get

E[
∂sl(x)

∂xl
] = − 1

σ2
l

≥ − 1

σ2
n

≥ − 1

σ2
n

−
∑

i∈Ch(n)

1

σ2
i

E[(
∂fi
∂xn

(pai(x)))
2] = E[

∂sn(x)

∂xn
] (13)

This equation implies that the value of the leaf node will always be greater than the non-leaf
node in the diag of the expectation of score’s Jacobian. And, for any causal graph, there is at
least one leaf node xl. Thus, the argmax(diag(E[∂s(x)∂x ])) is the index of the leaf node, i.e.,
j = argmax(diag(E[∂s(x)∂x ]))⇒ xj is a leaf node.

(ii) If the sufficient condition (ii) is satisfied, we have non-weak causal effect of parents. For
any non-leaf nodes xj ,

∑
i∈Ch(j)

1
σ2
i
E[( ∂fi

∂xj
(pai(x)))

2] ≥ 1
σmin
− 1

σj
, where σmin is the

minimum variance for all noises. Thus, the following inequality holds.

E[
∂sl(x)

∂xl
] = − 1

σ2
l

≥ − 1

σ2
min

= − 1

σ2
n

− (
1

σ2
min
− 1

σ2
n

)

≥ − 1

σ2
n

−
∑

i∈Ch(n)

1

σ2
i

E[(
∂fi
∂xn

(pai(x)))
2] = E[

∂sn(x)

∂xn
]

(14)

Therefore, it can be obtained in the same way that j = argmax(diag(E[∂s(x)∂x ]))⇒ xj is a
leaf node.

Thus, under the sufficient conditions (i) or (ii), we can proof that the node in
argmax(diag(E[∂s(x)∂x ])) will always be the leaf node.

A.3 Derivation of SATE and parent score

To illustrate the meaning of this definition, we propose a new metric of the Squared Average Treatment
Effect (SATE) extended from Average Treatment Effect (ATE, E[Y (T=1) − Y (T=0)]), which can be
rewritten as

SATEj
i = E[(x(Tj=1)

i − x
(Tj=0)
i )2] (15)

In order to establish an association between the parent score and the causal effect, the treatment on
xj is defined as follows:

x
(Tj=1)
i = fi(pai(x+∆j)) + ϵi

x
(Tj=0)
i = fi(pai(x)) + ϵi

(16)

where ∆j = [0, ..., δ, ..., 0] is a one-hot vector denoting an additive treatment on xj . Here, for each j,
we design the j-th value of ∆j as δ which denotes the strength of treatment, which is a very small
positive value. Due to the small value of δ → 0+, for each variable xi, we can use the optimal linear
approximation to represent x(Tj=1)

i . Then, for the j-th treatment, SATE is equal to:

SATEj
i = δ2 · E[( ∂fi

∂xj
(pai(x)))

2] (17)

For each treatment, we treat with the same strength δ. Therefore, the average causal effect can be
represented by E[( ∂fi

∂xj
(pai(x)))

2]. Obviously, its value is zero when xj is not a parent of xi. If xj

is a parent of xi, E[( ∂fi
∂xj

(pai(x)))
2] indicates the influence strength from xj to xi. Thus, scaled by

the variance of the children’s noise, we can use 1
σ2
i
E[( ∂fi

∂xj
(pai(x)))

2] to approximately represent the
strength of the average causal effect, which is called the parent score. This new metric considers both
causal effect and noise variance, which can be considered as the visible part of causal effect if the
variance of noise is close or equal. This assumption does not affect the sufficient conditions for the
identifiability of topological ordering and is only supposed in post-processing, which has been used
frequently in previous works [8, 13].
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A.4 Derivation of computing parent score

Parent score cannot be obtained directly from the summation of average causal effects of a node on
its children in Eq.12, thus we propose an iterative decoupling process and define

J = {E[∂s1(x)
∂x1

],E[
∂s2(x)

∂x2
], ...,E[

∂sd(x)

∂xd
]} (18)

to denote the expectation of the diagonal of the score’s Jacobian. By removing the node xi, a new
vector J−i is defined as follows:

J−i ={E[
∂s1(x−i)

∂x1
],E[

∂s2(x−i)

∂x2
], ...,E[

∂si(x)

∂xi
], ...,E[

∂sd(x−i)

∂xd
]} (19)

where x−i represents the remaining data after removing the feature of i-th dimension. For the i-th
element of J−i, we fill the i-th element of J . To simplify the notation, we define in this subsection
that J (j) and = J (j)

−i are the j-th element of the corresponding vector. Then, for j-th element, we
have

J (j) = − 1

σ2
j

−
∑

k∈Ch(j)

1

σ2
k

E[(
∂fk
∂xj

(pak(x)))
2] (20)

J (j)
−i = − 1

σ2
j

−
∑

k∈Ch(j)/xi

1

σ2
k

E[(
∂fk
∂xj

(pak(x)))
2] (21)

where Ch(j)/xi denotes the set which the element xi has been removed if it is the children of xj . If
xi is not the children of xj , Ch(j) is equal to Ch(j)/xi. According to the definition of parent score,
we have

Pi,j = J (j)
−i − J

(j) =

{
1
σ2
i
E[( ∂fi

∂xj
(pai(x)))

2], xj ∈ pai(x)

0, xj /∈ pai(x)
(22)

Then, each row vector of the matrix of parent score P ∈ Rd×d is equivalent to:

Pi,: = J−i − J (23)

Thus, we can obtain the parent score by iteratively removing nodes and estimating the score’s
Jacobian.

A.5 The Proof of Corollary 1

Corollary 1. j = argmax(diag(E[∂s(x)∂x ]))⇒ xj’s sum of parent score
∑d

i=0 Pi,j is minimal⇒ xj

is a leaf node

Proof. We first prove that j = argmax(diag(E[∂s(x)∂x ])) ⇒ xj’s sum of parent score∑d
i=0 Pi,j is minimal. Under the sufficient condition (ii), the sum of parent score of non-leaf

node has a low bound 1
σmin
− 1

σj
. According to the definition of parent score, for any node xj , we

have
∑d

i=0 Pi,j = 0 or
∑d

i=0 Pi,j ≥ 1
σmin
− 1

σj
. Thus, for an arbitrary element in the diagonal score’s

Jacobian, we have E[∂sj(x)∂xj
] = − 1

σ2
j
,

∑d
i=0 Pi,j = 0

E[∂sj(x)∂xj
] ≤ − 1

σ2
min
,

∑d
i=0 Pi,j ≥ 1

σmin
− 1

σj

(24)

Obviously, − 1
σ2
j

is always greater than − 1
σ2

min
. Therefore, given a xj with j =

argmax(diag(E[∂s(x)∂x ])), its sum of parent score is minimal and
∑d

i=0 Pi,j = 0.

Then, we prove that xj’s sum of parent score
∑d

i=0 Pi,j is minimal ⇒ xj is a leaf node. Suppose
that xl is a leaf node and xn is a non-leaf node, according to the definition of parent score, we have∑d

i=0 Pi,n > 0 =
∑d

i=0 Pi,l. Therefore, the node with the minimal sum of the parent score is a leaf
node.
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B Pseudocode of Post-processing

CaPS introduces the pre-pruning and edge supplement process in post-processing, which considers
more information about causal effect by using the parent score. The complete post-processing
procedure is shown in Algorithm 2, where Pmax is the matrix broadcasted with the maximum value
of each row of P . For hyperparameter λ selection, we set to λ = 50 for all datasets to avoid any
dataset-specific tuning, which can be further optimized in appendix C.3.

Algorithm 2 Post-processing
Input: data matirx X ∈ Rn×d, rigor λ, permutation π, parent score P
Output: adjacency matrix A

1: initialize A using π
2: A ← A⊙ int(P < Pmax

λ )⊤ // pre-pruning
3: A ← CAM pruning(A, X)
4: E ← int(P > λ · avg(P⊤ ⊙A))
5: for each edge (i, j) in E sorted by Pi,j do
6: Aj,i ← 1 if A is still acyclic // edge supplement
7: end for
8: return A

C Experiments

All experiments were run on EPYC 7552*2 with 512G memory and NVIDIA RTX 4090 32GB.

C.1 Dataset Details

Synthetic data are created using the Erdös-Rényi (ER) [30] or Scale-Free (SF) models[31]. The
degree of each node in the ER graph is relatively even, whereas some nodes in the SF graph may
have very high degrees. Each dataset has 2000 samples and 10 nodes by default, while larger-scale
datasets and different samples size are also given in Appendix C.5. The sparsity of the graph is
altered by changing the average number of edges to either d or four times d, referred to as SynER1
and SynER4. The weight of each edge is randomly chosen from the range of [−1,−0.1] ∪ [0.1, 1].
To create datasets with both linear and nonlinear relationships between variables, we set the noise
distribution to be Gaussian with a mean of 0 and a variance of 1. To generate linear causal functions
fi, we use weighted causal graphs. For nonlinear causal functions fi, we sample Gaussian processes
with a unit bandwidth RBF kernel and multiply them by the weights in the causal graph, similar to
SCORE and DiffAN. A collection of five datasets is created for SynER1 and SynER4, with a range
of linear and nonlinear causal connections, from 0.0 (all nonlinear) to 1.0 (all linear) with step 0.25.

Figure 5: Example of the Syntren dataset.

Two real datasets are adopted. Sachs [1], a protein signaling network based on protein expression
levels and phospholipids, consists of 11 nodes, 853 observations, and 17 edges from ground-truth
causal graph; Syntren [32], a pseudoreal data set sampled from the Syntren generator, consists of
10 transcriptional networks, each consisting of 500 observations and a DAG consisting of d = 20
nodes and edges with e ∈ {20, ..., 25}. For the two real datasets, we only have ground-truth DAG
but no relation types. To quantitatively give more insight into their linear and nonlinear proportion,
we estimate the type of relation in the DAG with a rough metric: Pearson correlation>0.5 as linear
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relation. Accordingly, Sachs has 0.18 linear ratio while Syntren averaged 0.92 for different DAGs
(0.72 ∼ 1.0). Although these ratios are rather rough, it is evident that mix relations are widespread in
realistic applications. This explains why CaPS is effective in different datasets.

Fig. 5 shows an example of Syntren dataset, which is a special dataset containing many star networks.
In this network structure, only the topological ordering of the first node x1 is meaningful, and the other
nodes can be ordered randomly after x1. This star structure is not friendly to ordering-based methods,
since topological ordering provides more limited information in such a causal graph. However, among
all ordering-based methods, CaPS achieves the highest performance in this dataset.

C.2 Additional Synthetic Datasets

Fig. 6 shows the experiments results of the SynSF1 and SynSF4 datasets. We can observe that CaPS
performs better for both sparser (SynSF1) and denser (SynSF4) graphs in almost all ranges, especially
when the linear proportions above 0.25. The results show that CaPS performs consistently well in
almost all ratios and different DAG generator (ER or SF).

(a) SynSF1

(b) SynSF4

Figure 6: Results of SynSF1 and SynSF4 with different linear proportions.

(a) Sachs

(b) Syntren

Figure 7: Performance under different hyperparameter λ.
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C.3 Hyperparameter Analysis

We further study in Fig. 7 the effect of different λ on the performance of pre-pruning and edge
supplement on the real datasets. As we mentioned in the ablation study, edge supplement is more
effective on the Sachs dataset, while pre-pruning is more effective on the Syntren dataset. For Sachs
dataset, edge supplement works best under λ ∈ [40, 70], and CaPS can maintain better or competitive
performance in a large range of the hyperparameter λ. For Syntren dataset, since it is a difficult
dataset for causal discovery, it could be possible to add some incorrect edges when λ is too small.
Pre-pruning shows more potential in the Syntern dataset, which can be further improved by selecting
different hyperparameter λ. Based on the results shown in Fig. 7, we can see that the performance
of CaPS can be further improved by setting different hyperparameters for pre-pruning and edge
supplement, e.g., λ = 20 for pre-pruning and λ = 70 for edge supplement.

C.4 More Baselines

We additionally consider six baselines of continuous optimization: DAG-GNN [16], a nonlinear
extension of NOTEARS that uses an evidence lower bound as score; GAE [17], an autoencoder
based method that further extends the NOTEARS and DAG-GNN to facilitate nonlinear relations;
NOTEARS-MLP [18] is a nonlinear extension of NOTEARS; DAGMA [19] uses a log-determinant
acyclicity characterization; TOPO [20] optimizes with iteratively swapping pairs of nodes within
the topological ordering; CASTLE [34] uses causal discovery as an auxiliary task to the prediction
task. The results of the real data experiments on fourteen baselines are presented in Table 2. On the
Syntren datasets, NOTEARS-MLP achieves suboptimal SID but poor SHD, and CASTLE achieves
suboptimal SHD but poor SID, suggesting that their predictions are too dense or sparse. Our method
achieved the highest SHD and F1 scores on Sachs, with SID second to VI-DP-DAG. VI-DP-DAG
had the best SID but the worst SHD, as it discovered a large number of false edges.

Table 2: Results of real-world datasets.
Dataset Sachs Syntren

Metrics SHD↓ SID↓ F1↑ SHD↓ SID↓ F1↑

CAM 12.0±0.00 55.0±0.00 0.444±0.000 38.0±5.59 178.6±44.56 0.223±0.099
NOTEARS 12.0±0.00 46.0±0.00 0.387±0.000 33.9±4.57 192.8±54.73 0.164±0.085
DAG-GNN 14.0±0.00 45.0±0.00 0.397±0.005 32.4±4.86 191.2±52.66 0.156±0.066

GAE 17.2±1.60 50.2±2.93 0.119±0.112 79.7±13.13 156.3±79.10 0.127±0.077
NOTEARS-MLP 14.4±0.49 46.0±0.00 0.359±0.005 114.7±30.50 150.4±48.51 0.093±0.037

DAGMA 13.0±0.00 46.0±0.00 0.370±0.000 35.6±6.70 191.8±54.50 0.186±0.062
TOPO 21.6±0.40 44.0±0.00 0.303±0.000 39.0±12.90 191.0±57.20 0.227±0.118

GOLEM 17.0±0.00 44.0±0.00 0.421±0.000 43.7±10.72 177.4±56.55 0.163±0.066
CASTLE 15.8±4.12 46.8±0.98 0.299±0.053 30.5±8.14 206.1±61.23 0.096±0.081

GraNDAG 13.2±0.75 54.0±1.10 0.373±0.064 26.5±6.45 155.3±58.11 0.344±0.104
VI-DP-DAG 42.6±1.36 40.0±5.66 0.340±0.037 182.6±4.29 144.3±35.00 0.069±0.039

SCORE 12.0±0.00 45.0±0.00 0.444±0.000 37.5±4.20 197.1±63.71 0.183±0.091
DiffAN 12.2±0.98 46.2±6.18 0.434±0.078 44.1±8.29 188.7±55.16 0.191±0.095

DAGuerreotype 17.9±0.54 51.4±0.49 0.118±0.034 87.9±9.60 157.7±48.90 0.125±0.047

CaPS 11.0±0.00 42.0±0.00 0.500±0.000 37.2±5.04 178.9±55.58 0.230±0.072

C.5 Larger-scale datasets & actual-time cost.

Table 3 shows the experimental results of large-scale datasets and the actual-time cost. Here, we
varied the settings of the synthetic dataset SynER1 to be: d = 20, d = 50, n = 1000 and n = 5000.
For better presentation, we abbreviate the linear proportion as prop. and the baseline DAGuerreotype
as DAGu. On different scales of datasets, CaPS consistently achieves the best performance in
most linear proportions, especially in mixed scenarios (prop.=0.25, 0.5, 0.75). Our method also
achieves the best or competitive results even in pure linear and pure nonlinear scenarios compared to
existing strong baselines. About the actual-time cost, despite cubic complexity in samples size n,
the bottleneck of actual-time growth often lies in the number of nodes d in causal graph since many
n-related operations are GPU-friendly. However, since CaPS uses pre-pruning for acceleration in the
post-processing stage, our method run with competitive actual-time cost even in large-scale datasets.

In terms of pruning time, most of the time is spent on CAM pruning. Pre-pruning can effectively
remove the edges with low parent score, which can reduce the cost of fitting a generalized additive
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Table 3: Results of larger-scale datasets with actual-time cost.

Prop. Metrics NOTEARS COLEM GraNDAG CAM VI-DP-DAG SCORE DiffAN DAGu.-L DAGu.-N CaPS

SynER1 (d=20)

0
SHD 17.4±1.7 15.2±1.8 5.3±1.2 1.4±0.8 123.2±4.9 1.4±0.8 6.2±3.7 23.6±2.0 18.3±2.6 0.8±0.4
SID 81.2±16.1 81.0±22.6 18.6±7.7 8.4±6.1 33.4±7.3 5.4±3.2 31.6±17.5 63.3±23.5 46.6±22.8 3.4±2.8
F1 27.0±11.1 41.3±8.9 82.0±6.3 95.5±2.6 18.4±2.1 96.5±2.3 79.9±11.4 44.0±10.8 56.8±6.6 98.1±1.0

0.25
SHD 14.8±1.6 14.2±2.0 5.3±0.9 3.4±1.3 118.4±7.4 0.4±0.4 4.6±2.0 18.0±1.6 19.3±3.2 1.2±1.1
SID 73.8±14.3 78.0±21.7 32.0±9.8 18.2±10.0 56.8±23.9 3.8±7.6 32.2±15.0 39.0±2.1 64.0±33.9 7.6±10.2
F1 44.1±5.7 43.9±12.7 79.8±6.0 87.1±5.4 16.4±3.1 98.6±1.8 81.9±8.5 61.5±3.7 52.6±10.2 96.0±3.9

0.5
SHD 10.8±1.7 10.0±1.6 9.6±2.6 5.4±2.6 125.4±8.3 4.6±3.9 6.6±2.6 25.3±6.6 27.0±5.0 4.2±3.0
SID 56.6±13.3 53.6±16.9 63.3±21.6 21.0±9.5 85.2±20.0 17.2±13.3 24.2±12.5 72.3±37.0 40.6±9.7 17.0±11.4
F1 64.1±7.5 64.3±8.4 66.2±6.1 81.4±6.7 11.2±2.2 87.7±9.9 78.8±09.1 50.6±7.6 51.2±0.2 94.9±4.6

0.75
SHD 8.8±1.7 7.8±2.9 16.6±3.3 10.2±2.6 119.6±7.3 3.8±2.3 9.0±3.3 21.6±10.2 26.3±1.2 1.6±1.6
SID 46.6±10.4 45.6±21.6 67.6±10.4 57.2±18.8 83.4±44.2 17.4±13.6 41.6±13.3 49.3±36.5 56.6±3.3 11.8±10.9
F1 72.5±4.3 7.14±11.0 43.4±13.6 63.1±10.7 13.8±4.9 88.2±4.4 70.9±6.7 56.1±16.9 48.5±2.0 94.9±4.6

1
SHD 7.0±0.8 4.4±1.4 18.3±0.4 12.8±2.9 119.2±8.2 6.2±2.0 9.8±1.7 27.0±8.2 26.3±0.9 2.0±2.2
SID 41.8±12.2 24.0±2.2 74.6±6.5 60.2±20.0 84.6±35.4 30.6±22.6 34.8±5.8 51.6±25.7 64.6±6.7 12.4±12.1
F1 78.6±4.6 84.1±3.8 40.5±8.2 55.5±12.4 14.1±4.7 80.4±4.4 69.6±4.3 51.9±8.6 46.3±0.5 93.7±6.0

Training time 6.7±0.6 36.7±0.7 990.1±93.9 327.7±5.7 343.1±110.6 29.8±1.2 80.9±1.0 33.2±2.6 45.4±2.6 15.8±3.3

SynER1 (d=50)

0
SHD 43.0±4.8 39.8±4.7 26.6±7.7 5.2±2.8 795.2±29.5 6.6±3.0 17.0±3.4 96.3±13.9 56.3±6.2 7.2±4.4
SID 281.2±114.3 270.4±94.0 173.3±77.6 25.2±7.7 198.6±79.5 24.8±13.2 105.8±55.7 262.0±137.3 168.3±50.0 56.6±49.0
F1 27.5±6.5 34.3±6.1 60.1±12.4 94.3±2.1 6.9±1.1 93.2±3.0 77.8±4.6 34.5±3.9 52.4±0.4 91.4±6.2

0.25
SHD 38.0±6.0 32.6±7.3 30.0±4.9 12.2±9.8 806.4±17.8 12.0±3.5 16.8±3.5 98.6±16.7 67.6±9.2 11.4±1.8
SID 248.0±109.4 254.6±94.5 168.6±28.7 63.2±41.2 297.8±80.9 79.2±18.6 109.0±51.9 294.0±130.9 195.3±94.4 68.4±18.6
F1 40.7±10.6 48.5±11.4 58.4±10.2 84.7±10.5 5.7±5.1 84.4±5.4 76.8±4.0 32.5±3.6 47.5±2.4 85.7±3.3

0.5
SHD 29.8±4.3 27.4±1.9 25.6±6.9 16.4±7.9 816.6±35.5 12.0±5.5 20.8±4.7 94.0±10.6 80.3±9.5 11.4±4.4
SID 201.4±113.8 186.6±57.8 143.0±8.8 76.0±46.6 231.6±75.7 65.2±48.2 134.8±82.8 285.3±175.8 218.6±117.7 72.8±47.5
F1 58.4±6.7 58.3±6.7 62.1±13.0 79.0±9.6 6.2±0.7 85.6±6.8 72.8±4.3 37.4±2.5 43.1±5.2 86.5±5.4

0.75
SHD 26.8±2.6 23.2±3.3 37.6±5.7 26.4±8.8 789.6±26.2 11.8±4.3 19.4±2.3 85.6±7.4 103.0±27.7 8.2±3.0
SID 190.6±86.4 190.8±77.2 267.6±78.8 146.0±58.3 303.6±110.9 53.2±19.5 94.2±40.0 224.0±104.2 165.3±78.2 35.8±18.2
F1 62.7±7.1 64.8±3.7 46.2±10.5 66.0±7.9 5.7±0.7 85.4±5.0 75.9±2.9 41.1±0.8 40.4±4.9 90.0±3.9

1
SHD 18.2±2.9 18.8±5.5 40.0±1.6 34.0±11.8 782.8±35.2 10.2±4.9 21.2±7.2 94.0±11.4 120.3±6.6 6.2±2.8
SID 131.2±64.7 139.2±59.1 258.3±98.3 214.4±118.5 344.4±165.1 69.8±42.9 102.8±67.9 152.6±44.7 198.6±99.1 36.8±21.8
F1 77.4±5.6 72.3±7.0 47.2±3.5 58.1±9.9 5.6±0.9 86.6±5.7 74.2±6.4 40.0±1.3 34.6±1.7 92.3±3.5

Training time 29.6±6.5 40.1±0.4 3.1k±0.2k 23k±1.8k 322.6±18.7 1.3k±38.4 1.3k±59.9 71.5±2.6 89.1±8.9 319.8±98.8

SynER1 (n=1000)

0
SHD 6.6±1.3 6.2±2.2 3.0±1.4 0.8±1.1 39.0±1.2 0.6±1.2 2.6±1.8 12.6±3.3 11.0±1.6 0.4±0.8
SID 21.4±12.5 24.4±14.4 7.6±6.2 0.6±1.2 14.6±5.6 0.6±1.2 10.8±11.9 8.6±3.6 9.2±4.2 0.6±1.2
F1 38.4±10.9 36.3±24.2 78.8±9.5 95.9±6.1 22.2±4.2 96.8±6.3 79.6±13.4 48.1±6.3 52.7±7.4 97.8±4.4

0.25
SHD 6.6±1.6 6.4±2.1 3.3±1.8 2.6±2.2 39.4±2.5 1.6±1.3 2.6±1.8 9.3±2.6 9.2±2.4 1.0±1.2
SID 20.2±12.4 23.0±15.0 11.3±3.0 7.2±7.7 13.4±6.3 4.2±3.9 12.2±12.1 9.3±4.7 12.0±6.0 2.2±2.8
F1 36.1±22.3 36.0±22.7 68.8±6.3 79.0±15.4 20.6±9.2 86.6±12.4 78.8±14.9 50.7±10.2 52.5±5.1 93.3±8.2

0.5
SHD 6.2±1.9 5.0±1.8 4.3±1.2 3.8±2.7 39.4±1.3 2.8±1.6 3.8±0.9 11.3±1.6 12.2±1.6 2.0±0.8
SID 17.0±11.9 15.8±8.8 13.6±2.0 16.6±14.2 14.6±10.6 8.2±8.9 12.2±4.6 11.6±3.0 11.2±8.1 3.2±1.9
F1 44.2±18.8 54.1±17.2 56.5±10.0 67.3±22.4 20.7±15.7 78.6±9.7 64.5±10.8 42.8±3.9 44.8±6.7 86.8±5.1

0.75
SHD 4.2±1.7 5.2±2.9 5.3±2.0 1.8±0.4 39.6±2.2 2.2±1.1 3.6±2.1 9.0±2.4 11.0±1.6 1.4±0.8
SID 10.8±8.2 18.0±16.1 16.3±1.6 5.8±4.0 17.6±10.9 7.6±6.6 10.0±6.9 4.3±4.1 6.0±2.1 6.2±6.2
F1 68.9±12.6 56.1±25.6 49.5±12.1 83.5±4.3 19.9±4.9 81.1±11.1 70.3±12.5 60.5±6.9 50.1±7.6 89.3±6.9

1
SHD 3.0±1.0 4.4±2.6 7.3±4.7 2.2±1.4 40.0±2.1 1.8±0.9 3.2±1.9 10.6±3.6 13.3±2.0 1.2±0.7
SID 8.4±8.9 17.0±16.5 16.6±6.0 9.6±7.9 18.0±10.4 9.0±6.1 10.6±6.5 5.0±4.5 6.0±2.1 5.6±6.6
F1 79.6±6.7 61.5±23.3 43.5±17.6 77.2±15.6 18.5±7.8 79.9±11.0 71.2±10.5 54.5±11.1 44.7±8.9 90.2±6.7

Training time 2.1±0.7 32.2±1.3 471.5±33.7 9.9±0.4 151.1±33.9 4.0±0.9 33.3±2.0 36.5±42.6 34.9±3.7 3.5±0.7

SynER1 (n=5000)

0
SHD 6.4±1.0 5.6±1.2 0.3±0.4 0.0±0.0 37.8±1.5 0.6±0.4 2.8±1.8 3.6±1.2 3.0±0.0 0.4±0.8
SID 19.4±9.2 18.0±9.8 1.3±1.8 0.0±0.0 8.4±7.8 2.4±1.9 10.8±8.7 6.33±3.8 4.3±4.7 0.6±1.2
F1 41.1±10.7 50.6±5.7 97.7±3.1 100±0.0 26.6±5.5 93.2±5.5 74.1±13.5 71.8±13.3 80.6±2.6 96.8±6.3

0.25
SHD 6.2±2.3 5.2±1.6 1.0±0.8 0.6±0.8 39.0±1.0 2.0±0.6 3.0±2.5 3.0±1.6 3.0±2.1 0.0±0.0
SID 17.0±10.7 16.4±11.2 3.6±2.6 2.2±2.7 11.8±7.1 6.0±2.8 11.8±9.7 8.0±4.3 6.0±2.1 0.0±0.0
F1 39.9±28.1 57.3±12.5 91.0±6.3 94.6±6.5 22.2±3.8 81.1±6.7 75.1±19.5 70.2±19.9 81.0±10.7 100±0.0

0.5
SHD 5.4±1.8 5.4±2.2 2.0±0.8 1.6±1.0 39.4±0.4 4.6±1.6 4.4±3.6 2.3±1.2 4.3±3.2 1.4±1.0
SID 12.8±7.3 16.4±11.4 6.3±1.2 2.2±2.7 16.6±8.0 14.0±6.4 12.4±11.1 5.3±1.6 6.6±1.2 5.4±5.7
F1 54.0±17.2 54.0±17.6 81.5±7.1 84.1±9.9 20.8±1.7 62.0±14.9 68.1±23.9 78.3±8.2 73.1±10.8 87.7±7.6

0.75
SHD 4.2±1.1 4.8±3.0 4.6±1.8 6.2±2.9 39.8±1.7 5.4±2.6 6.0±2.6 5.6±3.3 6.0±2.8 2.2±2.0
SID 11.2±7.6 17.2±16.1 15.0±2.1 20.8±9.5 19.4±11.1 14.2±6.9 17.2±12.1 8.0±4.9 8.0±7.0 4.4±2.8
F1 69.0±6.7 56.8±26.9 54.8±17.9 48.6±25.2 19.2±6.0 62.5±14.5 56.4±22.8 65.4±14.5 64.3±11.6 84.0±10.8

1
SHD 3.2±0.9 4.8±2.4 9.0±3.5 6.2±1.6 40.4±1.3 6.6±3.7 6.2±2.2 5.3±2.8 5.6±3.6 3.4±1.9
SID 9.0±8.6 18.4±14.9 20.3±5.1 17.0±8.7 22.0±8.2 17.0±6.9 17.8±9.6 4.3±1.8 4.6±0.9 10.2±3.5
F1 77.5±6.8 56.1±20.4 35.3±3.7 48.5±19.3 17.0±4.7 52.3±14.0 48.6±21.5 69.3±8.8 69.2±14.7 74.7±10.6

Training time 3.9±0.6 32.7±0.6 551.1±90.5 55.7±1.1 458.5±194.5 14.3±0.8 42.4±13.5 65.5±33.3 36.6±2.7 15.0±0.4
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model. Here, we explore the speedup of pre-pruning on different datasets and sparsities. Fig. 8
shows that our method effectively speeds up the pruning time on all datasets through pre-pruning.
The symbols -L and -N in the dataset denote linear and nonlinear, respectively. Comparing SynER1
and SynER4, we can find that acceleration is more effective in sparse causal graphs than in dense
ones. This is due to the fact that in sparse graphs, there are more edges with low confidence in parent
score, and pre-pruning is more efficient. Moreover, the acceleration ratio of pre-pruning becomes
more significant when the number of nodes d grows, which makes a major contribution to the speed
advantage of CaPS in larger-scale datasets.

Figure 8: Percentage of acceleration using pre-pruning.

C.6 Order Divergence

Order divergence. Order divergence [11] is a measure of the discrepancy between the estimated
topological ordering π and the adjacency matrix of the true causal graph A, which is expressed as:

Dtop(π,A) =
d∑

i=1

∑
j:πi>πj

Ai,j (25)

Here, we compare two-stage ordering-based methods in datasets with different linear proportions and
sparsity. The results in Figure 9 show that CaPS has a much lower order divergence than sortnregress
in different linear proportions and sparsity, suggesting that variance is not a reliable measure of
topological ordering in our synthetic datasets. CaPS consistently achieves the best order divergence in
most of settings, which reflects the effectiveness of our method in recognizing the correct permutation.

(a) SynER1 (b) SynER4

Figure 9: Order Divergence of SynER1 and SynER4 with different linear proportions and sparsity.

C.7 Beyond Our Assumption

Theoretically, according to the sufficient condition (ii) of Assumption 1, our methods also has a good
potential for unequal variance settings. We experimentally find that CaPS performs well under both
Gaussian noise with unequal variance and non-Gaussian noise, as illustrated in Figs. 10 and 11. More
relaxed conditions for CaPS can be explored in future work.
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Unequal variances noise. Beyond the equal variance noise, we generated datasets with unequal
variance Gaussian noise. Specifically, following the most popular settings in previous works, for
each variable xi, the corresponding ϵi ∼ N (0, σ2

i ), where σ2
i are independently sampled uniformly

in U(0.4, 0.8). Fig. 10 shows the experiment results of eight baselines. We can observe that CaPS
performs second only to CAM for sparser (SynER1) graphs. However, CAM does not handle dense
graphs well. For denser (SynER4) graphs, our method performs similarly to the best methods SCORE
in almost all ranges.

(a) SynER1

(b) SynER4

Figure 10: Results of SynER1 and SynER4 with unequal variance Gaussian noise.

Non-Gaussian noise. We also experimentally explore the potential of CaPS for ANM with non-
Gaussian noise. Specifically, for each variable xi, we set the noise distribution to be Gumbel and
Laplace. Fig. 11 shows the experiment results of eight baselines. We can observe that CaPS performs
consistently well for both Gumbel and Laplace noise in almost all ranges, especially when the linear
proportions are greater than 0.25.

(a) SynER1 (Gumbel noise)

(b) SynER1 (Laplace noise)

Figure 11: Results of SynER1 with different non-Gaussian noise.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This paper propose a method that works well in both linear and nonlinear,
which has been clearly stated in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The proposed method, CaPS, works under Assumption 1. The results beyond
our assumptions are given in Sec. 5.4 and Appendix C.7. The computational efficiency are
given in Sec. 4.4 and Appendix C.5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All assumptions and proofs are clearly stated in our manuscript and are detailed
in Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experimental settings are detailed in Sec. 5.1 and Appendix C.1. All data,
code, and documentation are in the Supplementary Material. All experiments can be easily
reproduced with our code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All data, code, and documentation are given in the Supplementary Material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental settings are detailed in Sec. 5.1 and Appendix C.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See the results with standard deviation in Table 1, 2 and 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, this paper conform the the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper is a foundational research and has no direct negative social impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All data and methods are explicitly mentioned.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All data, code, and documentation are given in the Supplementary Material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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