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Abstract

Deep learning has produced excellent results in several applied domains including
computer vision, natural language processing, speech recognition, etc. Physics-
informed neural networks (PINN) are a new family of deep learning models that
combine prior knowledge of physics in the form of high-level abstraction of natural
phenomena with data-driven neural networks. PINN has emerged as a flourishing
area of scientific computing to deal with the challenges of shortage of training
data, enhancing physical plausibility, and specifically aiming to solve complex
differential equations. However, building PINNs for modeling and forecasting
the dynamics of extreme climatic events of geophysical systems remains an open
scientific problem. This study proposes Van der Pol-informed Neural Networks
(VPINN), a physics-informed differential learning approach, for modeling extreme
nonlinear dynamical systems such as climatic events, exploiting the physical
differentials as the physics-derived loss function. Our proposal is compared to
state-of-the-art time series forecasting models, showing superior performance.
The codes and dataset used for the experiments are made available at https:
//github.com/mad-stat/VPINN.

1 Introduction

Recently with the growing threat of climate change, there has been a global surge in the emergence
and intensity of extreme climatic events [20]. The abrupt occurrence of devastating natural calamities
like earthquakes, hurricanes, droughts, and floods poses significant challenges to human lives,
infrastructure, ecosystems, and economies. Such tragic real-world extreme events include the 2023
Marrakesh earthquake in Morocco, the earthquake in Turkey, the cyclone Biparjoy in India, the recent
flood in Spain, and the oceanic rouge wave near Newfoundland. To address the severity of these
extreme climatic phenomena, accurate forecasts of these abrupt events have become imperative to
government agencies for disaster preparedness and adaptation.

In recent decades, researchers have increasingly delved into the study of extreme events using
dynamical systems and data-driven machine learning techniques, although typically in isolation
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[10, 9, 5, 4]. Accurate prediction of extreme events through physics-based dynamical systems relies
heavily on understanding the system’s inherent dynamics. In contrast, machine learning models,
such as reservoir computing network (RCN) [16], long short-term memory (LSTM) [7], bidirectional
LSTM (Bi-LSTM) [17], Prophet [19], and NBeats [12], open up a realm of data-driven predictions
for extreme events without necessitating a comprehensive understanding of the system’s dynamics.
These data-centric models are widely employed to explore the emergence of extreme climatic events
through training over a significantly large dataset. While all these methods share the common goal
of delivering precise short-term forecasts by capturing long-term system trajectories, they do not
explicitly account for the physical laws that inherently govern these chaotic systems.

Recently, the integration of physical knowledge into data-driven models has received significant
attention among researchers for their ability to model real-world phenomena by addressing the
everlasting challenges of modeling chaotic systems. Physics-informed neural networks (PINN)
[14, 8] integrates prior physics knowledge within data-driven neural networks using a series of
differential equations. The physical knowledge of the PINN models enables them to enhance training
data, modify the architectural design of the network, and perform physics-informed optimization
depending on the location of the knowledge integration. In recent studies, PINN-based approaches
have been widely used as a function approximator in various applications such as modeling 3D
temperature data using physical laws [24], simultaneous prediction of observed and unobserved
variables in chaotic systems [13], predicting the lake surface temperature [2], and predicting the effect
of cloud processes on climate [1].

This work aims to enhance the forecasting ability of the LSTM networks for extreme climatic events
dataset by embedding the physical laws of the Van der Pol Oscillator into the framework. The
proposed Van der Pol-informed Neural Networks (VPINN) approach learns the dynamics of the
nonlinear oscillator and integrates the learned representations with the temporal dynamics of the data
to generate a multi-step ahead forecast of the desired horizon.

1.1 Contributions of this work

VPINN is introduced to model the temporal evolution of real-world extreme climatic events, including
seismic waves, sea surface temperature, humidity, wind speed, and temperature for varied locations.
We obtain the ground truth data from various open sources and also simulate a dataset from the Van
der Pol oscillator, as outlined in Section 2. We then infuse the dynamics of this oscillator into a
conventional LSTM framework, both through a transfer learning mechanism and the utilization of
a physics-informed loss function for capturing the complex patterns inherent in the extreme events
time series data. In contrast to the statistical models such as exponential smoothing (SES) [6] and the
deep learning models, the VPINN approach exhibits the capability to learn the complex behavior of
the data and is also suitable for handling limited data problems.

Our experimental results demonstrate that the proposed VPINN outperforms existing state-of-the-art
models for multi-step forecasts across various time horizons in majority scenarios. Notably, we
observe a significant improvement in forecasting accuracy, with the VPINN model enhancing the
performance of the LSTM network by 53.47% due to the integration of the physical laws in the model.
These simple yet essential experiments underscore the importance of integrating physics-informed
forecasting techniques, such as the VPINN framework, into the existing data-driven climate modeling
paradigms.

2 Preliminaries

Van der Pol system: Nonlinear oscillator systems have applications across a broad spectrum of
physical phenomena, spanning atmospheric physics, nonlinear optics, plasma physics, electronics,
biophysics, and chemical reactions, among many others [18]. These systems are characterized by their
nonlinearity, which often leads to complex and chaotic behavior. They exhibit multiple equilibria,
modulation in amplitude and frequency, and sensitivity to initial conditions, making them crucial in
modeling the complexity and diversity of real-world phenomena. For instance, Van der Pol oscillator
systems serve as a valuable tool for the study of extreme events. The Van der Pol equation, used in
modeling nonlinear dynamical systems, is a non-conservative self-oscillatory system with nonlinear
damping [21]. This mathematical formulation evolves in time following a second-order differential
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equation, taking the following form:

d2x

dt2
− µ(1− x2)

dx

dt
+ x = 0, (1)

where the position coordinate x is a function of time t and the damping strength of the oscillation
is expressed using a positive scalar parameter µ. The Van der Pol system has a unique stable limit
cycle, i.e., when time is close to infinity all nearby solutions of Eq. 1 tend towards a periodic solution.
Moreover, the Van der Pol oscillator exhibits a chaotic dynamical nature following [11], which allows
this dynamical system to efficiently model chaotic datasets.
Proposition 1. The non-conservative Van der Pol oscillator’s dynamics evolving in time is chaotic.

Proof. The state-space equation of the Van der Pol oscillator (Eq. 1) can be expressed as,

dψ1

dt
= ψ2 and

dψ2

dt
= −ψ1 − µψ2

(
1− ψ1

2
)
, (2)

where ψ1 = x and ψ2 = dx
dt . In vector notation Eq. 2 can be represented as:

dΨ(t)

dt
= H (ψ (t) , µ) , (3)

where, Ψ = [ ψ1 (t) ψ2 (t) ]
T is the space vector and H = [ H1 H2 ]

T is the coefficient vector.
The dynamics of Eq. 3 when subjected to small deviations from the defined trajectory would be:

δ

(
dΨ(t)

dt

)
= Li,j (Ψ (t)) δΨ; i, j = 1, 2,

where Li,j = ∂Hi

∂ψj
is the Jacobian Matrix, comprising of derivatives. The chaotic behavior of the

dynamical system can be inferred based on the positive value of the maximal Lyapunov exponent.
Following, [23] the maximal Lyapunov exponent of the system can be defined,

λmax = lim
t→∞

1

t
log

∥δΨ(t) ∥
∥δΨ(0) ∥

.

By utilizing the Runge-Kutta method of order 4, [11] showed that λmax ≈ 0.095 (> 0). Hence, the
dynamics of the Van der Pol oscillator are chaotic in nature.

Long-Short Term Memory (LSTM): LSTM networks represent a modification of classical Recurrent
Neural Networks (RNNs) designed to address the vanishing gradient problem, thereby enhancing
training stability [7]. These networks are widely employed in various sequential learning tasks,
including natural language processing, machine translation, image captioning, and time series
analysis. Their distinctive chain-like architecture consists of three key components: the input gate,
output gate, and forget gate. This gating mechanism regulates the information flow within the cell
state, serving as the long-term memory storage and the hidden state, representing its short-term
counterpart. Given the input vector (say xi) at the ith time step, the forget gate determines how much
information from the previous hidden state h̃i−1 should be retained at time i. It uses a sigmoidal
activation function over a weighted combination of xi and h̃i−1. Thus the resulting activation vector
Fi, indicating how much information to forget or keep obtained as:

Fi = σ
(
W x

1 xi +W h̃
1 h̃i−1 + b1

)
,

with W x
1 ,W

h̃
1 as the weights and b1 as the bias. The input gate, on the other hand, utilizes the

sigmoidal and tanh activation functions to update the cell state with the current input. The two
activation vectors of the input gate are computed as:

Ii = σ
(
W x

2 xi +W h̃
2 h̃i−1 + b2

)
and gi = tanh

(
W x

3 xi +W h̃
3 h̃i−1 + b3

)
,

where W and b indicate the weights and bias respectively. The current cell state Ci is then calculated
by combining the output from the forget gate and the input gate as:

Ci = Fi ⊙ Ci−1 ⊕ Ii ⊙ gi,
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where ⊙ is the point-wise multiplication and ⊕ is the direct sum operator. This combination ensures
both long-term and short-term memory components are appropriately considered. In the output gate,
the current hidden state is updated using sigmoidal and tanh activation functions. These activations
determine the new hidden state as:

Oi = σ
(
W x

4 xi +W h̃
4 h̃i−1 + b4

)
and h̃i = Oi ⊙ tanh (Ci) .

Finally, h̃i is used to compute the output at the current time step as ŷi = σ
(
W̃ h̃i + b5

)
. Overall,

LSTM’s robust long-term memory retention capabilities make them valuable for modeling the
complexities of real-world phenomena [22].

3 Proposed Approach

The proposed VPINN framework seamlessly integrates the information from both the real measure-
ments and the chaotic dynamics of the Van der Pol oscillator. This model leverages the transfer
learning approach and physics-based regularized loss function to significantly improve the modeling
and forecasting capabilities of the LSTM network. Training the sequential structure of the LSTMs
can be computationally intensive and time-consuming. To address this challenge, we provide prior
knowledge via pre-training to our VPINN model in a task-agnostic manner. Our proposed architec-
ture, as illustrated in Figure 1, is a sequential approach that learns through a combination of transfer
learning and data-driven learning. In the first phase, we generate a synthetic dataset by simulating
data points from the nonlinear Van der Pol oscillator (as in Eq. 1) with µ = 4 using the Runge-Kutta
method. The second phase of the architecture involves training a standard LSTM network [7] on both
the real-time series and the time derivatives of the simulated series while enforcing the physical law as
a regularization term in the network. The proposed framework aims to learn the complex patterns and
the chaotic behavior of the data-generating mechanism using historical values and time derivatives.
To compute the physics-based regularization term, we follow the transductive PINN model [14],
where time-indexed inputs are provided to a regularized multi-layered perceptron to generate the
solution of the differential equation as the output. The regularization term in PINN amounts to
differentiating the network and computing the time derivatives using automatic differentiation. Since
real-world extreme event datasets consist of discrete observations, it becomes challenging to use
automatic differentiation for computing the time derivatives. To mitigate this issue, we compute the
discrete derivatives of the time series using the First Principle of Derivatives. Thus for a simulated
time series x(t) indexed at time t, we compute the discrete-time derivatives as:

dx

dt
=
x (t+ δt)− x(t)

δt
, (4)

where δt is the time lag. In our framework, we set δt = 1 since real-world time series datasets are
recorded chronologically in time. Once the simulated data is generated, the VPINN network receives
the tuple y(t)Real =

{
y∗t ,

dx
dt ,

d2x
dt2

}
as input, where y∗t represents the training data value and dx

dt ,
d2x
dt2 are

the first-order and second-order time derivatives of x(t) computed using Eq. 4, respectively. The
network aims to predict the values of the subsequent time steps in a multivariate setting. The physical
dynamics of the Van der Pol oscillator are imposed on the proposed model through both transfer
learning and the introduction of a physics-based loss function. To compute a quantifiable measure of
physical consistency within the model, the predicted values ŷ(t)Pred =

{
ŷ∗t ,

d̂x
dt ,

ˆd2x
dt2

}
have to satisfy the

Van der Pol equation. Therefore, based on Eq. 1, the physics-based loss function for enforcing the
dynamics of the Van der Pol oscillator on the predicted values can be calculated as follows:

LossPhy =
d2ŷ

(t)
Pred

dt2
− µ

(
dŷ

(t)
Pred

dt
−
(
ŷ
(t)
Pred

)2 dŷ(t)Pred

dt
−
ŷ
(t)
Pred

µ

)
. (5)

This physical information is integrated into the objective function of our proposed VPINN model
through a modification of the conventional loss function, LossData, which is calculated using the
model predictions and the true output labels as

LossData = RMSE (y∗t , ŷ
∗
t ) , (6)
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where RMSE is the Root Mean Square Error. In contrast, the modified loss function includes the
additional physics-based loss, formulated using Eq. 6 and Eq. 5 as follows:

LossTotal = LossData +λPhy Loss
Phy, (7)

where λPhy represents the hyperparameter corresponding to the physics-based loss function. The
Eq. 7 is designed to enhance the model’s generalization performance by simultaneously optimizing
accuracy and ensuring physical consistency. Since the final loss function is nearly differentiable
everywhere, we employ the backpropagation algorithm to calculate and propagate gradients across
various layers. For visualizing the working principle of our proposed VPINN model, a detailed
architecture of the model is presented in Figure 1.

In
p

u
t 

Real extreme events dataset 𝑦𝑡
∗

Forget Gate Output GateInput Gate

H
id

d
en

 S
ta

te
C

el
l 

S
ta

te

𝜎
𝑏

𝐹𝑖

𝐶
𝑖−

1
 ℎ
𝑖−

1

+
𝐹𝑖 ∙ 𝐶𝑖−1

𝜎
𝑏

𝜎
𝑏

𝑡𝑎𝑛ℎ

𝐼𝑖 𝑔𝑖

∙

∙
𝐼𝑖 ∙ 𝑔𝑖

𝐹𝑖 ∙ 𝐶𝑖−1+ 𝐼𝑖 ∙ 𝑔𝑖

𝑡𝑎𝑛ℎ

𝑏

𝜎

𝑂𝑖 ∙

ta
n
h
(𝐶

𝑖) 𝑂
𝑖
∙
ta

n
h
(𝐶

𝑖)

 ℎ
𝑖

𝐶
𝑖

N
ex

t 
S

te
p

Input

Output

ta
n
h
(𝐶

𝑖) ⋮

LTSM Layer

50 Memory units

Dense

Layer Output

𝑥(𝑡)
𝑑

𝑑𝑡
(𝑥(𝑡))

𝑑2

𝑑𝑡2
(𝑥(𝑡))

Physics-based Loss Function

Conventional Loss Function

Total Loss Function

+

=

Transfer 

Learning 

𝐿𝑜𝑠𝑠𝑃ℎ𝑦

=
𝑑2  𝑦𝑃𝑟𝑒𝑑

(𝑡)

𝑑𝑡2
+  𝑦𝑃𝑟𝑒𝑑

(𝑡)

− 𝜇
𝑑  𝑦𝑃𝑟𝑒𝑑

(𝑡)

𝑑𝑡
−  𝑦𝑃𝑟𝑒𝑑

(𝑡) 2 𝑑  𝑦𝑃𝑟𝑒𝑑
(𝑡)

𝑑𝑡

𝐿𝑜𝑠𝑠𝐷𝑎𝑡𝑎 = 𝑅𝑀𝑆𝐸( 𝑦𝑡
∗, 𝑦𝑡

∗)

𝐿𝑜𝑠𝑠𝑇𝑜𝑡𝑎𝑙 = 𝐿𝑜𝑠𝑠𝐷𝑎𝑡𝑎

+𝜆𝑃ℎ𝑦𝐿𝑜𝑠𝑠𝑃ℎ𝑦

(𝑦
𝑅
𝑒
𝑎
𝑙

𝑡
)

(  𝑦𝑃𝑟𝑒𝑑
(𝑡)

)

Figure 1: Van der Pol-informed neural networks (VPINN). We generate simulated data from the
Van der Pol oscillator and calculate its time derivatives. We concatenate these derivatives with the
real target series and model them using LSTM layers and a dense layer to generate the subsequent
predictions. A modified loss function, combining the conventional loss and the physics-based loss, is
used to train the network with a backpropagation approach.

4 Experimental Setup and Results

Dataset. To ensure a fair comparison and evaluation of the proposed VPINN framework, we employ
a set of real-world extreme climatic event datasets with varying dynamics. We selected five time
series datasets with diverse temporal units to demonstrate the scalability of our approach. These
publicly available datasets include 1: (1) Turkey Seismic Waves, (2) El Niño Sea Surface Temperature
(SST), (3) Philippines Temperature, (4) Madrid Humidity, and (5) Delhi Wind Speed. Each of these
datasets features varied climatic events and their anomalous behavior has the potential to significantly
disrupt the global climatic patterns. A brief overview of these datasets along with their statistical
properties and forecast horizons is presented in Table 1. All the experiments conducted in this study
encompass both short-term and long-term time series forecasting settings for these datasets.

Performance Indicators. In our study we assess the effectiveness of our proposed approach by em-
ploying two commonly used evaluation metrics: Root Mean Square Error defined as RMSE(y∗, ŷ) =√∑n

t=1 (y
∗
t − ŷt)

2
/n, and Mean Absolute Error computed as MAE(y∗, ŷ) =

√∑n
t=1 |y∗t − ŷt| /n,

where y∗ denote the ground truth observations and ŷ indicate the corresponding predicted value for n
time-steps. These evaluation metrics are widely recognized and are commonly used in the context of
extreme events forecasting problems [15].

Experimental Results. Table 2 presents the main experimental results of the VPINN framework
for both short-term and long-term time series forecasting tasks. Since our proposal and the baseline

1www.wunderground.com/; www.kaggle.com/; www.ncei.noaa.gov/
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Table 1: Extreme events data characteristics. The green circles represent the presence of the feature,
while the red one resembles its absence. The forecast horizons used for these datasets depend on their
respective temporal unit.

Dataset Granularity Start Time Statistical properties Forecast horizon
date steps Stationary Linear Chaotic Seasonal Short-term Long-term

Turkey Seismic Waves 1 day 18/01/2000 6574 10 days 30 days
El Niño SST 1 week 03/01/1990 1634 13 weeks 26 weeks
Philippines Temperature 1 hour 07/02/2012 1488 24 hours 48 hours
Madrid Humidity 1 hour 01/01/2019 2447 24 hours 48 hours
Delhi Wind Speed 1 day 01/01/2013 1462 10 days 30 days

Model SES [6] LSTM [7] RCN [16] Prophet [19] Bi-LSTM [17] NBeats [12] VPINN IMP
Metric RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Turkey ST 0.555
(0.00)

0.506
(0.00)

2.912
(0.08)

2.014
(0.02)

0.576
(0.12)

0.381
(0.10)

0.576
(0.10)

0.432
(0.01)

3.630
(0.10)

3.522
(0.12)

0.573
(0.01)

0.431
(0.10)

0.514
(0.01)

0.360
(0.01) 82.3%

SW LT 1.150
(0.00)

1.108
(0.00)

2.752
(0.01)

1.879
(0.01)

1.332
(0.99)

0.617
(0.52)

0.553
(0.08)

0.389
(0.05)

3.544
(0.08)

3.429
(0.15)

0.552
(0.08)

0.504
(0.15)

0.446
(0.01)

0.323
(0.01) 83.7%

Delhi ST 14.75
(0.00)

14.52
(0.00)

8.026
(0.83)

6.285
(0.89)

32.95
(5.31)

29.83
(6.17)

6.079
(2.72)

4.872
(1.10)

7.982
(0.81)

6.693
(1.23)

5.712
(1.00)

4.648
(0.67)

5.604
(0.28)

4.863
(0.39) 30.2%

WS LT 8.040
(0.00)

7.532
(0.00)

6.748
(0.92)

4.812
(0.85)

36.88
(8.92)

26.38
(5.38)

6.726
(1.21)

5.258
(0.97)

6.769
(1.00)

5.167
(0.95)

6.749
(1.01)

4.914
(0.45)

6.673
(0.21)

4.369
(0.20) 1.11%

El Niño ST 18.08
(0.00)

18.06
(0.00)

22.38
(1.05)

22.22
(1.61)

5.352
(2.01)

4.182
(1.28)

2.346
(1.00)

1.924
(0.99)

23.32
(1.27)

23.26
(0.95)

2.934
(0.18)

2.669
(0.98)

7.471
(0.43)

7.208
(0.48) 66.6%

SST LT 22.65
(0.00)

22.55
(0.00)

19.82
(4.64)

19.69
(1.45)

15.15
(3.99)

12.19
(2.31)

7.201
(1.27)

6.841
(1.56)

21.57
(1.98)

21.44
(1.46)

7.273
(1.72)

6.385
(0.55)

6.016
(0.34)

5.426
(0.35) 69.6%

Madrid ST 63.09
(0.00)

61.01
(0.00)

46.47
(2.52)

44.28
(2.47)

26.98
(3.01)

24.49
(9.48)

28.52
(2.16)

25.79
(1.99)

48.79
(1.98)

46.72
(1.37)

27.73
(1.99)

22.61
(2.89)

26.14
(0.01)

22.04
(0.00) 43.7%

Humidity LT 67.60
(0.00)

65.84
(0.00)

52.78
(2.89)

50.83
(1.89)

61.90
(1.76)

52.92
(1.95)

34.89
(2.20)

26.89
(2.09)

54.23
(2.10)

52.35
(2.51)

31.64
(1.54)

27.69
(2.74)

35.76
(0.01)

32.75
(0.01) 32.2%

Philippines ST 17.14
(0.00)

16.83
(0.00)

25.01
(1.74)

24.68
(1.85)

18.78
(2.97)

16.78
(1.89)

14.57
(1.78)

13.98
(1.09)

26.06
(1.30)

25.76
(1.99)

13.95
(2.01)

13.56
(2.00)

13.89
(0.99)

13.29
(2.30) 44.4%

Temp LT 16.57
(0.00)

16.12
(0.00)

26.04
(1.92)

25.70
(2.08)

17.05
(2.08)

15.16
(2.01)

18.25
(1.99)

17.86
(0.18)

26.46
(2.10)

26.13
(2.23)

20.44
(2.27)

19.69
(1.92)

12.94
(1.25)

12.56
(2.01) 50.3%

Table 2: Short-term and long-term forecasting performance (RMSE and MAE) of the proposed
VPINN model in comparison to the state-of-the-art forecasting techniques (best results are high-
lighted).

forecasters used in this experiment depend on previous observations, we set the same lag length
k as 3.5 times the desired forecast horizon h. Thus k-prior observations of the target series are
fed into the forecasting algorithm for predicting h subsequent values of the series. Additionally, to
efficiently train the models we divide the available training data (after removing the test observations)
into train (80%) and validation (20%) sets. In our proposed architecture, the LSTM layer with 50
hidden units is followed by a dense layer with h units. To ensure a fair comparison we use the same
architecture for the LSTM model as that of the proposal. In order to quantify the variance of the
data-driven forecasters we repeat the experiments 10 times with random initializations and report the
mean RMSE and mean MAE scores with their corresponding standard deviations for both short-term
and long-term forecasting tasks. As can be observed in Table 2, the proposed VPINN framework
achieves state-of-the-art performances in most benchmarks and forecast horizon settings. Overall,
the proposal yields a 53.47% improvement in terms of RMSE scores, compared to the conventional
LSTM network. Moreover, we observe that the traditional SES model exhibits poor performance
for this task owing to its inability to handle the nonlinearity of the datasets. On the other hand, deep
learning models like NBeats, and Prophet being fed with a substantial amount of training data are able
to capture the complex dynamics of the real-world extreme events datasets. However, their overall
forecasting performance significantly lags behind the proposed VPINN framework. In the case of
long-term forecasting tasks, our proposal improves the LSTM model by 47.42%. We attribute this
accuracy enhancement to the proposed VPINN’s ability to model the chaotic nature of the datasets
along with other complexities due to the prior knowledge from pre-training and physical regularized
loss function. To demonstrate an effective visual comparison of the state-of-the-art models and the
proposed framework, we present the step-wise RMSE metric computed sequentially by increasing
the forecast horizon for selected datasets in Fig. 2.

For statistical comparison of the benchmarks, we conducted the Multiple Comparisons with the Best
(MCB) test [3] to assess the disparities in forecast skills. Fig. 3 summarizes the results of the MCB
test along with the forecasters’ ranks based on the RMSE and MAE metrics. The figure reveals that
the proposed VPINN framework achieves a minimum rank of 1.50 and 1.60 w.r.t. to RMSE and
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Turkey Seismic Waves

LSTMVPINN Bi-LSTM

Philippines Temperature El Nino SST

NBeats ProphetSES RCN

Figure 2: Forecast accuracy of the proposed model and the state-of-the-art for selected datasets. The
images provide a comparison of the RMSE metric computed at each forecast step.

Turkey Seismic Waves

LSTMVPINN Bi-LSTM

Philippines Temperature El Nino SST

NBeats ProphetSES RCN

Figure 3: Visualization of the MCB analysis w.r.t. RMSE (left) and MAE (right) metric. The Y-axis
of the plot shows the average rank and the X-axis represents the corresponding model.

MAE scores, respectively, indicating its overall “best” performance compared to other models such
as NBeats and Prophet. This enhanced forecasting capability of the VPINN model is attributed to its
hybrid approach, which allows it to leverage both time series data and associated physics knowledge
acquired through prior training via transfer learning.

5 Discussion and Conclusion

We proposed a physics-informed forecasting model, namely VPINN, by inducing the physical
dynamics of the Van der Pol oscillator into the data-driven LSTM network. Compared to state-of-
the-art deep learners, VPINN enhances generalization through a combination of transfer learning
and a physics-informed loss function. The modeling capabilities of the VPINN framework show
promise for developing and refining additional physics-guided forecasters capable of handling the
complex geophysical turbulence of extreme climatic events. Furthermore, exploring the integration of
other nonlinear dynamical systems into machine learning and deep learning frameworks for tackling
more complex geophysical challenges requires further investigation. This work will act as the middle
ground between domain-specific knowledge and pure data-driven methods. However, the choice of
physical laws for real-world applied problems plays a critical role in the proposal and may degrade
the performance of our architecture. We plan to take these issues into consideration in our future
research
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