
Aligned Multi Objective Optimization

Yonathan Efroni 1 Ben Kretzu 2 Daniel R. Jiang 1 Jalaj Bhandari 1 Zheqing Zhu 1 Karen Ullrich 1

Abstract

To date, the multi-objective optimization litera-
ture has mainly focused on conflicting objectives,
studying the Pareto front, or requiring users to
balance tradeoffs. Yet, in machine learning prac-
tice, there are many scenarios where such con-
flict does not take place. Recent findings from
multi-task learning, reinforcement learning, and
LLMs training show that diverse related tasks can
enhance performance across objectives simultane-
ously. Despite this evidence, such phenomenon
has not been examined from an optimization per-
spective. This leads to a lack of generic gradient-
based methods that can scale to scenarios with a
large number of related objectives. To address this
gap, we introduce the Aligned Multi-Objective
Optimization framework, propose new algorithms
for this setting, and provide theoretical guarantees
of their superior performance compared to naive
approaches.

1. Introduction
In many real-world optimization problems, we have access
to multi-dimensional feedback rather than a single scalar ob-
jective. The multi-objective optimization (MOO) literature
has largely focused on the setting where these objectives
conflict with each other, which necessitates the Pareto domi-
nance notion of optimality. A closely related area of study is
multi-task learning (Caruana, 1997; Teh et al., 2017; Sener
and Koltun, 2018; Yu et al., 2020; Lin et al., 2021; Liu et al.,
2021; Navon et al., 2022; Zhou et al., 2022; Lin and Zhang,
2023; Liu et al., 2023a; Chen et al., 2023; Achituve et al.,
2024; He et al., 2024; Liu and Vicente, 2024), where mul-
tiple tasks are learned jointly, typically with both shared
and task-specific parameters. The hope is that the model
can perform better on individual tasks by sharing common
information across tasks. Indeed, the phenomenon of im-

*Equal contribution 1Meta AI 2Technion. Correspondence to:
Yonathan Efroni <yonathane@meta.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

proved performance across all tasks has been observed in
several settings (Lin and Zhang, 2023; Lee et al., 2024),
suggesting that perhaps there may not always be significant
trade-offs between objectives. Similar observations appear
in meta-learning (Ravi and Larochelle, 2017; Finn et al.,
2017; Hospedales et al., 2021), where the goal is to learn
representations that enable quick adaptation to new tasks
with minimal additional training, as well as in reinforcement
learning (Jaderberg et al., 2016; Teh et al., 2017; Veeriah
et al., 2019; Dann et al., 2023), where practitioners use
multiple reward functions to better specify the policy or its
representation.

In this work, we explicitly study a setting where objectives
are aligned, namely, that the different objectives share a
common solution. This situation arises frequently in prac-
tice. For example, when using reinforcement learning (RL)
to augment large language models (LLMs) with reason-
ing capabilities, there are often multiple options for the
choice of reward model to use. Lightman et al. (2023) and
Uesato et al. (2022) consider both outcome and process-
based rewards, and, recently Guo et al. (2025); Team et al.
(2025) discuss the use of accuracy, format rewards, length
of response, and reward on math problems as additional
reward functions. In training text-to-image models using
RL, Lee et al. (2024) use four reward models (aesthetic
quality, human preference, text-image alignment, and image
sentiment) and show results where all rewards are increased.
Although the method of Lee et al. (2024) is designed for
finding Pareto-optimal solutions (implying the existence of
trade-offs), the numerical results suggest that the objectives
may actually be aligned to a good degree.

These observations are also related to a more general phe-
nomenon in RL discussed by Dann et al. (2023), where
learning can be accelerated by exploiting several alternative
reward specifications that all lead to the same optimal policy.
This concept builds on prior work showing that the choice
of reward function (e.g., dense versus sparse reward) can
have a dramatic effect on training time (Ng et al., 1999; Luo
et al., 2020; Wang et al., 2019; Hu et al., 2020). A related
idea in statistics is that when labeled data is sparse, practi-
tioners can rely on closely-related proxy tasks to improve
prediction accuracy (Bastani, 2021).

To our knowledge, there is no work that studies such a

1

Aligned Multi Objective Optimization

Algorithm Asymptotic Convergence

CAMOO O
(
(1− µG/β)

k
)

PAMOO O
(
(1− µL/β)

k
)

Table 1: The main results introduced in this work. β is
the smoothness parameter; both µG and µL are structural
quantities introduced in Section 4 and Section 5. These char-
acterize notions of optimal curvature of weighted function
and satisfy µL ≥ µG.

framework from an optimization perspective. We ask the
following question:

Can gradient descent type of algorithms benefit from
multi-objective feedback when the objectives are aligned?

Previous work in multitask learning had provided conver-
gence guarantees for gradient descent-type algorithms for
MOO (Sener and Koltun, 2018; Yu et al., 2020; Liu et al.,
2021; Navon et al., 2022; He et al., 2024). However, since
these consider general multi-objective framework, their al-
gorithms converge with worst-case guarantees with no mean-
ingful convergence improvement of MOO.

We provide a positive answer to the aforementioned ques-
tion. We formally introduce the aligned multi-objective
optimization (AMOO) framework. Subsequently, we de-
sign new gradient descent-type algorithms and establish
their provable improved convergence in the AMOO setting.
These can be interpreted as parameter-free algorithms to han-
dle multi-objective feedback when objectives are aligned.
Lastly, we conclude by providing empirical evidence of the
improved convergence properties of the new algorithms.

2. Related Work
2.1. Gradient Weights in Multi-task & Meta Learning

Our work is closely related to optimization methods from
the multi-task learning (MTL) and meta learning literature,
particularly those that integrate weights into the task gra-
dients or losses. The multiple gradient descent algorithm
(MGDA) approach of Fliege and Svaiter (2000); Désidéri
(2012); Sener and Koltun (2018); Zhang et al. (2024) is
one of the first works along this direction. It proposes an
optimization objective that gives rise to a weight vector that
implies a descent direction for all tasks and converges to a
point on the Pareto set. The PCGrad paper (Yu et al., 2020)
identified that conflicting gradients can be detrimental to
MTL. The authors then propose to modify the gradients to
remove this conflict (by projecting each task’s gradient to
the normal plane of another task), forming the basis for the
PCGrad algorithm. Another work that tackles conflicting
gradients is the conflict-averse gradient descent (CAGrad)

method of (Liu et al., 2021). CAGrad generalizes MGDA:
its main idea is to minimize a notion of “conflict” between
gradients from different tasks, while staying nearby the
gradient of the average loss. Notably, CAGrad maintains
convergence toward a minimum of the average loss. Another
way to handle gradient conflicts is the Nash-MTL method of
Navon et al. (2022), where the gradients are combined using
a bargaining game. Very recently, Achituve et al. (2024)
introduced a Bayesian approach for gradient aggregation
by incorporating uncertainty in gradient dimensions. Other
optimization techniques for MTL include tuning gradient
magnitudes so that all tasks train at a similar rate (Chen et al.,
2018), taking the geometric mean of task losses (Chennupati
et al., 2019), and random weighting (Lin et al., 2021). On
the meta learning front, the MAML algorithm (Finn et al.,
2019) aims to learn a useful representation such that the
model can adapt to new tasks with only a small number
of training samples. Since fast adaptation is the primary
goal in meta learning, MAML’s loss calculation differs from
those found in MTL.

Few prior works provided provable convergence guarantees
of the different existing multi-objective optimization meth-
ods. Without additional assumption on the alignment of dif-
ferent objectives, these guarantees quantified convergence
to a point on the Pareto front. Unlike our work, there the
convergence guarantees depended on worst-case structural
quantities such as the maximal Lipschitz constant among
all objectives (Liu et al., 2021; Navon et al., 2022; Zhou
et al., 2022; Chen et al., 2023; Liu and Vicente, 2024) or the
maximal generalized smoothness (Zhang et al., 2024).

The algorithms introduced in the following are similar to
existing ones in that they construct a weighted loss to com-
bine information from different sources of feedback. Unlike
previous work, we focus on exploiting the prior knowl-
edge that the objectives are aligned. We introduce new
instance-dependent structural quantities that reflect how
aligned multi-objective feedback can improve GD perfor-
mance, improving convergence that depends on worst-case
structural quantities, as in prior works.

2.2. Proxy & Multi-fidelity Feedback

Other streams of related work are (1) machine learning us-
ing proxies and (2) multi-fidelity optimization. These works
stand out from MTL in that they both focus on using closely
related objectives, while traditional MTL typically consid-
ers a set of tasks that are more varied in nature. Proxy-based
machine learning attempts to approximate the solution of a
primary “gold” task (for which data is expensive or sparsely
available) by making use of a proxy task where data is
more abundant (Bastani, 2021; Dzyabura et al., 2019). Sim-
ilarly, multi-fidelity optimization makes use of data sources
of varying levels of accuracy (and potentially lower com-

2

Aligned Multi Objective Optimization

Figure 1: Visualization of AMOO instances in which it is possible to obtain improved convergence compared to optimizing
individual functions or the average function: (left) the specification example, (center) simpler instance of the selection
example, and (right) 3D example of the local curvature example, in which f1(x1, x2) = exp(x1) + exp(x2) − x1 − x2

and f2(x1, x2) = f1(−x1,−x2). This example highlights the need to toggle between functions according to their local
curvature.

putational cost) to optimize a target objective (Forrester
et al., 2007). In particular, the idea of using multiple closely-
related tasks of varying levels of fidelity has seen adoption in
settings where function evaluations are expensive, including
bandits (Kandasamy et al., 2016b;a), Bayesian optimization
(Kandasamy et al., 2017; Song et al., 2019; Wu et al., 2020;
Takeno et al., 2020), and active learning (Yi et al., 2021;
Li et al., 2020; 2022). The motivations behind the AMOO
setting are clearly similar to those of proxy optimization
and multi-fidelity optimization. However, our papers takes
a pure optimization and gradient-descent perspective, which
to our knowledge, is novel in the literature.

3. Aligned Multi Objective Optimization
Consider an unconstrained multi-objective optimization
where F : Rn → Rm is a vector valued function, F (x) =
(f1(x), f2(x), . . . , fm(x)) , and all functions {fi}i∈[m] are
convex where [m] := {1, . . . ,m}. Without additional as-
sumptions the components of F (x) cannot be minimized
simultaneously. To define a meaningful approach to opti-
mize F (x) one can study the Pareto front, or to properly
define how to trade-off the objectives. In the AMOO setting
we make the assumption the functions are aligned in a spe-
cific sense: we assume that the functions {fi}i∈[m] share
an optimal solution1. Namely, there exists a point x⋆ that
minimizes all functions in F (·) simultaneously,

x⋆ ∈ arg min
x∈Rn

fi(x) ∀i ∈ [m]. (1)

With this assumption one may hope to get quantitative bene-
fits from the multi objective feedback. How can Gradient

1We also study an extension of AMOO where the functions can
only be approximately simultaneously minimized. See Section 6.

Descent (GD) be improved when the functions are aligned?

A common algorithmic approach in the multi-objective set-
ting is using a weight vector w ∈ Rm that maps the vector
F (x) to a single objective fw(x) := wTF (x), and apply a
gradient descent step on the weighted function (e.g., Sener
and Koltun (2018); Yu et al. (2020); Liu et al. (2021)). Ex-
isting algorithms suggest alternatives for choosing w via
different weight optimizers. We follow this paradigm and
refer to it as Weighted-GD (see Algorithm 1).

We provide definitions of useful structures from convex
optimization that will be used in this work.

Definition 3.1 (Smoothness). f(x) : Rn −→ R is called
β-smooth if ∀x,y ∈ Rn the following holds:

f(y) ≤ f(x) +∇f(x)⊤(y − x) +
β

2
∥x− y∥2 .

Definition 3.2 (Self-concordant). f(x) : Rn −→ R is called
self-concordant with parameter Mf ≥ 0 if ∀x,y ∈ Rn the
following holds:

⟨∇3f(x)[y]y,y⟩ ⪯ 2Mf ∥y∥3x ,

where ∇3f(x)[y] := limα→0
1
α

(
∇2f(x+αy)−∇2f(x)

α

)
is

the directional derivative of the hessian in y, and ∥y∥2x :=
∥y∥∇2f(x).

Next, towards developing algorithmic intuition for the
AMOO setting, we consider few examples in which align-
ment between different objective function may be useful.

3

Aligned Multi Objective Optimization

(i) The Specification Example. Consider the case
F (x) = (f1(x), f2(x)), x ∈ R2 where

f1(x) = (1−∆)x2
1 +∆x2

2,

f2(x) = ∆x2
1 + (1−∆)x2

2,

for some small ∆ ∈ [0, 0.1]. It is clear that F (x) can
be simultaneously minimized in x⋆ = (0, 0), hence, this
is an AMOO setting. This example, as we demonstrate,
illustrates an instance in which each individual function
does not specify the solution well, but with proper weighting
the optimal solution is well specified.

First, observe both f1 and f2 are ∆-strongly convex and
O(1)-smooth functions. Hence, GD with properly tuned
learning rate, applied to either f1 or f2 converges with linear
rate of Ω(∆). This rate can be dramatically improved by
proper weighting of the functions. Let fwU

be a function
with equal weighting of both f1 and f2, namely, choosing
wU = (0.5, 0.5). We get fwU

(x) = 0.5x2
1 + 0.5x2

2 which
is Ω(1)-strongly convex and O(1)-smooth. Hence, GD
applied to fwU

converges with linear rate of Ω(1)–much
faster than O(∆) since ∆ can be arbitrarily small.

(ii) The Selection Example. Consider the case F (x) =
(f1(x), . . . , fm(x)), x ∈ Rn, where

∀i ∈ [m− 1] : fi(x) = (1−∆)x2
1 +∆

n∑
j=2

x2
j ,

fm(x) =

n∑
j=1

x2
j ,

and ∆ ∈ [0, 0.5]. The common minimizer of all functions
is x⋆ = 0 ∈ Rn, and, hence, the objectives are aligned.
Unlike the specification example, in the selection example,
there is a single objective function among the m objectives
we should select to improve the convergence rate of GD.
Further, in the selection example, choosing the uniform
weight degrades the convergence rate.

Indeed, setting the weight vector to be uniform wU =
(1/m, . . . , 1/m) ∈ Rm leads to the function fwU

(x) =
(2−∆)/m ·x2

1+
∑n

j=2(∆+1)/m ·x2
j , which is O(1/m)-

strongly convex. Hence, GD applied to fwU
converges in

a linear rate of O(1/m). On the other hand, GD applied
to fm converges with linear rate of Ω(1). Namely, setting
the weight vector to be (0, . . . , 0, 1) ∈ Rm improves upon
taking the average when the number of objectives is large.

(iii) Local Curvature Example. Consider the case
F (x) = (f1(x), f2(x)), x ∈ R where

f1(x) = exp(x)− x,

f2(x) = exp(−x) + x,

Algorithm 1 Weighted-GD
initialize:

Learning rate η, Weight-Optimizer
while k = 1, 2, . . . do

wk ← Weight-Optimizer ({fi(xk)}mi=1)
gk ← ∇fwk

(xk)
xk+1 = xk − ηgk

end while

namely, f2(x) = f1(−x). Both functions are simultane-
ously minimized in x = 0. This example depicts a scenario
in which different functions have a larger curvature in differ-
ent segments of the parameter space; for x > 0, f1(x) has a
larger curvature, and for x < 0 f2 has a larger curvature.

For such a setting, it is natural to toggle between the two
functions, namely to set the weight vector as w1 = (1, 0)
for x > 0 and as w2 = (0, 1) for x < 0. This approach, in-
tuitively, should result in a faster convergence to the optimal
solution compared to applying GD to an individual function
or the average function, since it effectively applies GD to a
function which is uniformly more curved.

The three aforementioned examples highlight a key take-
away: the curvature of the functions has a vital role in im-
proving convergence guarantees for GD in AMOO. Indeed,
all examples provided arguments as of how to improve the
convergence of GD based on curvature information. In next
sections we formalize this intuition. We introduce quantities
that characterize notions of best curvature, and develop new
GD based algorithms that provably converge with rates that
depend on these quantities.

4. The CAMOO Weight Optimizer
We start by introducing and analyzing the Curvature Aligned
Multi Objective Optimizer (CAMOO). CAMOO (Algorithm 2)
directly optimizes the curvature of the weighted function.
Towards developing it, we define the global adaptive strong
convexity parameter, µG. Later we show that when the
weighted loss is determined by CAMOO GD converges in a
rate that depends on µG.

We start by defining the optimal adaptive strong convexity
over the class of weights:

Definition 4.1 (Global Adaptive Strong Convexity µG). The
global adaptive strong convexity parameter, µG ∈ R+, is
the largest value such that ∀x ∈ Rn exists a weight vector
w ∈ ∆m such that

λmin

(
m∑
i=1

wi∇2fi(x)

)
≥ µG. (2)

For each x ∈ Rn, there may be a different weight vector that

4

Aligned Multi Objective Optimization

solves argmaxλmin

(
∇2fw(x)

)
and locally maximizes the

curvature. The global adaptive strong convexity parame-
ter µG is the largest lower bound in Rn. The specification
and selection examples (Section 3) demonstrate µG can be
much larger than both the strong convexity parameter of the
average function or of each individual function; for both
µG = O(1) whereas the alternatives may have arbitrarily
small strongly convex parameter value. Further, the local
curvature example highlights a case in which the optimal
weight may have dependence on x.

Additionally, this structural definition implies that there is
a unique point x⋆ that simultaneously minimizes the objec-
tives. Due to this observation, in the following, we aim to
design provable GD methods that converge to this optimal
point x⋆. The following result formalizes this by showing
that under a weaker condition compared to µG > 0 there is
a unique minimizer (see Appendix F.1 for a proof).

Proposition 4.1 (Unique Optimal Solution). Assume there
exists x⋆ ∈ Rn that simultaneously minimizes {fi}i∈[m],
namely, solves Eq. (1). If maxw∈∆m λmin

(
∇2fw(x⋆)

)
>

0 then x⋆ is unique.

Definition 4.1 not only quantifies an optimal notion of cur-
vature, but also directly results with the CAMOO algorithm.
CAMOO sets the weights according to Eq. (2), namely, at the
kth iteration, it finds the weight vector for which fw(xk)
has the largest local curvature. Then, a gradient step is ap-
plied in the direction of∇fw(xk) (see Algorithm 1). Indeed,
CAMOO seems as a natural algorithm to apply in AMOO.
Nevertheless, the analysis of CAMOO faces key challenges
that make its analysis less trivial than what one may expect.

Challenge (i): fwk
is not a strongly convex function.

One may hope that standard GD analysis for strongly
convex and smooth functions can be applied. It is well
known that if a function f(x) is β smooth and ∀x ∈
Rn, λmin

(
∇2f(x)

)
≥ µ then GD converges with µ/β

linear rate. Unfortunately, a careful examination of this
argument shows it fails.

Even though λmin

(
∇2fwk

(xk)
)
≥ µG at each iteration k

of CAMOO it does not imply that fwk
is µG strongly convex

for a fixed xk. Namely, it does not necessarily hold that for
all x ∈ Rn, λmin

(
∇2fwk

(x)
)
≥ µG, but only pointwise

at xk (E.g., the local curvature example highlights this issue.
See Appendix B.1 for details). This property emerges natu-
rally in AMOO, yet such nuance is inherently impossible in
single-objective optimization.

Challenge (ii): Weighted function is not necessarily con-
vex. A naive reduction may be to apply GD to the function
fw⋆(x) where w⋆(x) ∈ argmaxλmin

(∑m
i=1 wi∇2fi(x)

)
.

Namely, to apply GD to a new weighted function that is
determined by optimizing the curvature. Such an approach

Algorithm 2 CAMOO
inputs: {fi(xk)}mi=1

initialize: wmin = µG/ (8mβ)

Get Hessian matrices {∇2fi(xk)}mi=1

w ∈ argmax
w∈∆m,wmin

λmin

(∑
i wi∇2fi(xk)

)
return: w

turns out as flawed from theoretical perspective; the function
fw⋆(x) =

∑
i∈[m] w⋆,i(x)fi(x) is not necessarily convex

nor smooth due to the dependence on a weight vector that
has an x dependence (see Appendix B.2 for an example).

Next, we provide a positive result. When restricting the class
of functions to the set of self-concordant and smooth func-
tions (see Appendix C for formal definitions) we provide
a convergence guarantee for Weighted-GD instantiated
with CAMOO that depends on µG. Further, the result shows
that close to the optimal solution the convergence has linear
rate in O(µG/β) (see Appendix D for proof details).

Theorem 4.2 (µG Convergence of CAMOO). Suppose
{fi}i∈[m] are β smooth, Mf self-concordant, share an
optimal solution x⋆ and that µG > 0. Let k0 :=⌈

16β(∥x0−x⋆∥3
√
mβMf−

√
µG)

3µG
3/2

⌉
, where ∥·∥ is the Euclidean-

norm. Then, Weighted-GD instantiated with CAMOO
weight-optimizer and η = 1/2β converges with rate:

∥xk − x⋆∥ ≤

∥xk0
− x⋆∥

(
1− 3µG

8β

)(k−k0)/2

k ≥ k0

∥x0 − x⋆∥ − k µG
3/2

16β2
√
mMf

o.w.

Importantly, Theorem 4.2 holds without making strong con-
vexity assumption on the individual functions, but only re-
quires that the adaptive strong convexity parameter µG to
be positive, as, otherwise, the result is vacuous.

The proof follows few key observations. The self-
concordance property, we find, implies a useful inequality
that depends only on local curvature (see Appendix C):

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+
c ∥y − x∥2∇2f(x)

1 +Mf ∥y − x∥∇2f(x)

,

(3)

for some constant c > 0. This inequality share similarity
with the more standard inequality used in analysis of GD
convergence for strongly convex function (Boyd and Van-
denberghe, 2004), however, unlike the former, it depends
on local curvature. In order to satisfy the assumption the
weighted function fwk

is self-concordant we rely on the fact
mini∈[m] wk,i > wmin by design of CAMOO. Then, addi-
tional analysis leads to a recurrence relation of the residual

5

Aligned Multi Objective Optimization

rk := ∥xk − x⋆∥2 with the form of

r2k+1 ≤ r2k − α1r
2
k/(1 + α2rk). (4)

We provide a bound on this recurrence relation in Ap-
pendix C to arrive to the final result of Theorem 4.2.

4.1. Practical Implementation

We now describe a scalable approach for implementing
CAMOO that we experiment with in next sections. Towards
large scale application of CAMOO with modern deep learn-
ing architectures we approximate the Hessian matrices with
their diagonal. Prior works used the diagonal Hessian
approximation as pre-conditioner (Chapelle et al., 2011;
Schaul et al., 2013; Yao et al., 2021; Liu et al., 2023b;
Achituve et al., 2024). Notably, with this approximation
the computational cost of CAMOO scales linearly with num-
ber of parameters in the Hessian calculation, instead of
quadratically. The following result establishes that the value
of optimal curvature, and, hence the convergence rate of
Weighted-GD instantiated with CAMOO, degrades con-
tinuously with the quality of Hessian approximation (see
Appendix F.2 for proof details).

Proposition 4.2. Assume that for all i ∈ [m] and
x ∈ Rn ||∇2fi(x) − Diag

(
∇2fi(x)

)
||2 ≤ ∥∆∥

where ∥A∥2 is the spectral norm of A ∈ Rn×n. Let
w⋆ ∈ argmaxw∈∆m

λmin

(∑
i wi∇2Diag (fi(x))

)
. Then,

λmin

(∑
i w⋆,i∇2fi(x)

)
≥ µG − 2 ∥∆∥ .

Next we provide high-level details of our implementation
(also see Appendix A).

Diagonal Hessian estimation via Hutchinson’s Method.
We use the Hutchinson method (Hutchinson, 1989; Chapelle
et al., 2011; Yao et al., 2021) which provides an estimate to
the diagonal Hessian by averaging products of the Hessian
with random vectors. Importantly, the computational cost
of this method scales linearly with number of parameters.

Maximizing the minimal eigenvalue. Maximizing the
minimal eigenvalue of symmetric matrices is a convex prob-
lem (Boyd and Vandenberghe (2004), Example 3.10) and
can be solved via semidefinite programming. For diago-
nal matrices the problem can be cast as a simpler max-min
bilinear problem, argmaxw∈∆m minq∈∆n w⊤Aq, where
n is the dimension of parameters, A ∈ Rm×n and its ith

row is the diagonal Hessian of the ith objective, namely,
∀i ∈ [m], A[i, :] = diag(∇2fi(x)).

This bilinear optimization problem is well studied (Rakhlin
and Sridharan, 2013; Mertikopoulos et al., 2018; Daskalakis
and Panageas, 2018). We implemented the PU method
of Cen et al. (2021) which, loosely speaking, executes iter-
ative updates via exponential gradient descent/ascent. PU

has a closed form update rule and its computational cost
scales linearly with number of parameters.

5. The PAMOO Weight Optimizer
In previous section, we introduced the global adaptive strong
convexity parameter, µG, the CAMOO weight optimizer that
chooses the weight vector adaptively and showed it has
asymptotic linear convergence guarantees that depend on
µG. In this section we explore an additional adaptive mech-
anism for choosing the weight vector based on Polyak
step-size design. We introduce the Polyak Aligned Multi-
Objective Optimizer (PAMOO). Unlike CAMOO, it only re-
quires information on the gradient, without requiring access
to the Hessians. Interestingly, even though computationally
much cheaper, PAMOO exhibits improved convergence rate
compared to CAMOO.

PAMOO (Algorithm 3) generalizes the Polyak step-size de-
sign to AMOO. As such, it requires access to the optimal
function values, fi(x⋆) for all i ∈ [m]. This informa-
tion may not be readily available in general. However, in
modern machine learning applications this value is often
zero (Loizou et al., 2021; Wang et al., 2023). Further, there
are variations of Polyak step-size in which a the optimal
value is estimated (Gower et al., 2021; Orvieto et al., 2022).
We leave potential extensions of these to AMOO for future
work. Compared to CAMOO, PAMOO only requires access to
the gradients of the objectives, and does not assume access
to the Hessians. Further, it only requires solving a simple
convex quadratic optimization problem in dimension Rm.
This problem is simpler than a maximization of the smallest
eigenvalue, required to solve by CAMOO.

We now define the local strong convexity parameter over a
class of weights. As we later show, this parameter controls
the convergence rate of PAMOO:

Definition 5.1 (Local Strong Convexity µL). The local
strong convexity parameter, µL ∈ R+, is the largest value
such that exists a weight vector w ∈ ∆m such that

λmin

(
m∑
i=1

wi∇2fi(x⋆)

)
≥ µL, (5)

where x⋆ simultaneously minimizes {fi}i∈[m].

Notice that Proposition 4.1 implies that x⋆ is necessarily
unique, and, hence µL is unique and well defined. Fur-
ther, unlike the global adaptive strong convexity parameter,
the local strong convexity parameter only depends on the
curvature at x⋆, namely, at the optimal solution. From Defi-
nition 4.1 and Definition 5.1 we directly get that µL ≥ µG.

The PAMOO algorithm is inspired by the Polyak step-size de-
sign (Polyak, 1987; Hazan and Kakade, 2019) for choosing
the learning rate in a parameter-free way. To provide with

6

Aligned Multi Objective Optimization

Algorithm 3 PAMOO
1: inputs: {fi(xk)}mi=1

2: w ∈ argmaxw∈Rm
+
2w⊤∆x −w⊤J⊤

x Jxw

3: ∆x := [∆x,1 . . .∆x,m], ∆x,i := fi(xk)− fi(x⋆)
4: Jx := [∇f1(x) . . .∇fm(x)] ∈ Rn×m

5: return: w

intuition for our derivation, consider the GD update rule in a
single objective optimization problem, xk+1 = xk − ηkgk.
To derive the Polyak step-size design, observe that by con-
vexity and the GD update rule we have that

∥xk+1 − x⋆∥2 (6)

≤ ∥xk − x⋆∥2 − 2ηk (f(xk)− f(x⋆)) + η2k ∥∇f(xk)∥2 .

Minimizing the upper bound on the decrease with respect
to ηk leads to ηk = (f(xk)− f(x⋆)) / ∥∇f(xk)∥2 , which
is the Polyak step-size design choice.

Building on this derivation we develop the PAMOO weight
optimizer (see Algorithm 3). As we now show, interestingly,
its convergence rate has the same functional form as CAMOO,
while depending on the local strong convexity parameter
µL instead in µG. Hence, PAMOO has an improved upper
bound on its convergence rate compared to CAMOO (see
Appendix D for proof details).

Theorem 5.2 (µL Convergence of PAMOO). Suppose
{fi}i∈[m] are β smooth, Mf self-concordant, share
an optimal solution x⋆ and µL > 0. Let k0 :=⌈

64β(∥x0−x⋆∥3
√
mβMf−

√
µL)

3µL
3/2

⌉
, where ∥·∥ is the Euclidean-

norm. Then, Weighted-GD instantiated with PAMOO
weight-optimizer and η = 1 converges with rate:

∥xk − x⋆∥ ≤

∥xk0
− x⋆∥

(
1− 3µL

32β

)(k−k0)/2

k ≥ k0

∥x0 − x⋆∥ − k µL
3/2

64β2
√
mMf

o.w.

This result is established by generalizing the Polyak step-
size method analysis (see Eq. (6)) while using a key ob-
servation. In the analysis, we upper bound the resid-
ual ∥xk − x⋆∥2 by a quantity that depends on the curva-
ture of the optimal weight vector at x⋆, which is lower
bounded by µL, by definition. This is valid since we
can replace wk with an alternative weight vector – only
used in the analysis – since wk is an optimal solution of
maxw∈Rm

+
2w⊤∆x −w⊤J⊤

x Jxw. This flexibility allows
us to upper bound expressions that depend on wk by any
nonnegative weight vector w ∈ Rm

+ . Furthermore, we use
similar tools as were developed in the analysis of CAMOO:
the property of self-concordant functions (Eq. (3)) and the
recurrence relation bound (Eq. (4)).

5.1. Practical Implementation

PAMOO can be implemented in a straightforward and scal-
able way. It requires access to the Jacobian matrix, which
can be readily calculated by accessing the gradients. Cal-
culating the matrix J⊤

x Jx ∈ Rm×m has a computational
cost of O(nm2), where n is the dimension of the param-
eter space and m is the number of objectives, and can be
parallelized. Lastly, it requires solving a quadratic convex
optimization problem in Rm where m is expected to be
of the order of ∼ 10. This can be done efficiently with
different convex optimization algorithms, e.g., projected
GD. In practice, we initialize the weight vector w using the
weight vector of the previous iterate. Hence, an approximate
optimal solution is found within a few projected gradient
descent iterations. PAMOO as a potential advantage over
CAMOO due to its scalability and its simple implementa-
tion. Lastly, generalizing it to methods in which the optimal
value is estimated instead of being given is left for future
work (Orvieto et al., 2022; Gower et al., 2021).

6. ϵ-AAMOO: Robustness to Alignment
Assumption

We have analyzed CAMOO and PAMOO assuming perfectly
aligned objectives (Eq. (1)). However, in practice, objec-
tives may be ‘similar’ rather than perfectly aligned. Next,
we extend AMOO to address this more realistic scenario
and assume that the alignment assumption is approximately
correct. We show that both algorithms are robust to such an
approximation and remain effective under these conditions.

Instead of assuming the objectives are perfectly aligned, we
consider the ϵ-Approximate AMOO (AAMOO) framework,
in which there exists a near-optimal solution with respect to
all objectives. Let Cϵ be the set of ϵ-approximate solutions:

Cϵ = {x ∈ Rn| fi(x)− fi(x
i
⋆) ≤ ϵ ∀i ∈ [m]}, (7)

where xi
⋆ ∈ argminx∈Rn fi(x). In ϵ-AAMOO setting we

assume that Cϵ is not the empty set. This corresponds to
a case in which exists a point that is a near-optimal solu-
tion for all objectives and can be understood as a natural
generalization of the stricter AMOO setting in which ϵ = 0.

The main result of this section shows that for both CAMOO
and PAMOO the distance between xk and an ϵ-approximate
solution xϵ

⋆ ∈ Cϵ, converges to ϵapp. Further, ϵapp is a poly-
nomial function of ϵ, structural quantities of the problem,
and vanishes as ϵ→ 0. This provides an approximate con-
vergence guarantee of both algorithms. For CAMOO, the
result depends on the µG curvature, as in the AMOO setting.
For PAMOOthe convergence depends on the best curvature
within the set Cϵ defined as follows:

Definition 6.1 (ϵ-Local Strong Convexity µϵ
L). The ϵ-local

strong convexity, µϵ
L ∈ R+, is the largest value such that

7

Aligned Multi Objective Optimization

Figure 2: MSE (see Eq. (9)) versus gradient steps. (left) local curvature example instance, (right) selection example instance
.

∃x ∈ Cϵ exists a weight vector w ∈ ∆m such that

λmin

(
m∑
i=1

wi∇2fi(x)

)
≥ µϵ

L. (8)

Let µ⋆(x) = maxw∈∆m
λmin

(∑m
i=1 wi∇2fi(x)

)
be the

largest curvature at point x. Then, µϵ
L is defined as the

maximal largest curvature in the set of near optimal solutions
Cϵ, namely, maxx∈Cϵ µ⋆(x). Unlike µG that depends on the
worst case curvature at all points, µϵ

L depends on the best-
case curvature in Cϵ. PAMOO convergence depends on this
quantity, which also satisfies µϵ

L ≥ µG for any ϵ.

We now provide an informal description of an approximate
convergence guarantee for both CAMOO and PAMOO (see
Appendix E for the formal theorems and proofs):

Theorem 6.2 ((Informal) Approximate Convergence in
ϵ-AAMOO). Suppose {fi}i∈[m] are β smooth and Mf

self-concordant. Let µA be µG and µϵ
L for CAMOO and

PAMOO, respectively. Assume that ϵ-AAMOO holds and
that ϵ ≤ poly (µA, 1/β, 1/m,Mf). Then, exists xϵ

⋆ ∈ Cϵ
such that for both CAMOO and PAMOO iterates satisfy

∥xk − xϵ
⋆∥ ≤

{
f1(1− cµA

β)(k−k0)/2 + f2ϵ
1/4 k ≥ k0

∥x0 − xϵ
⋆∥ − f3k o.w.

Where c ∈ (0, 1), f1 = ∥xk0
− xϵ

⋆∥ and f2, f3 and k0 are
polynomial functions of β, µA,m and Mf .

Namely, the performance of CAMOO and PAMOO degrades
continuously with ϵ, as the alignment assumption is violated.
This holds without modification to the algorithms.

7. Toy Experiment
We implemented CAMOO, PAMOO and compared them to
a weighting mechanism that uses equal weights on the

objectives (EW)2. We tested these three algorithms as the
Weight-Optimizers in Weighted-GD (see Algo-
rithm 1). We experimented with SGD and ADAM as the
optimizers of the weighted loss. In the learning problem we
consider one network is required to match the outputs of a
second fixed network. We denote the fixed network with
parameters θ⋆ as hθ⋆ : Rdi → Rdo and the second network
with parameters θ as hθ : Rdi → Rdo . Both are 2-layer
neural networks with relu-activation and 512 hidden units.

We draw data from a uniform distribution D = {xi}i where
xi ∈ Uniform([−1, 1]di). We consider three loss functions:

fi(θ)=
1

|D|
∑
x∈D

(
(hθ(x)−hθ⋆(x))

⊤Hi(hθ(x)−hθ⋆(x))
)αi

,

for all i ∈ [3], where Hi ∈ Rdo×do is a positive definite
matrix and αi ≥ 1. All loss functions are minimized when
hθ(x) = hθ⋆(x), and, hence, it is an instance of AMOO.
We investigated two instances. First, a selection example
in which αi = 1, and Hi = diag(1, 0.01i, · · · , 0.01i) for
i ∈ {0, 1, 2}. There we expect the algorithms to adapt to the
first loss function, f1. Second, a local curvature example
where Hi = I, and αi ∈ {1, 1.5, 2}. For such a choice f1
has larger curvature for large losses whereas f2 and f3 have
larger curvature for small losses.

We track the performance by measuring the mean-squared
error between the networks:

MSE =
1

|D|
∑
x∈D
∥(hθ(x)− hθ⋆(x))∥. (9)

Figure 2 shows the convergence plots of our experiments.
These highlight the potential of using GD algorithms that
designed for AMOO: both CAMOO and especially PAMOO

2https://github.com/facebookresearch/
AlignedMultiObjectiveOptimization

8

https://github.com/facebookresearch/AlignedMultiObjectiveOptimization
https://github.com/facebookresearch/AlignedMultiObjectiveOptimization

Aligned Multi Objective Optimization

show an improved convergence rate. We provide additional
experimental results and details in Appendix A. The results
show that CAMOO modifies the weights, as expected, by
adapting them to the local curvature; i.e., it changes the
weights gradually during the optimization phase.

8. Conclusions
In this work, we introduced the AMOO framework to study
how aligned or approximately aligned multi-objective feed-
back can improve gradient descent convergence. We de-
signed the CAMOO and PAMOO algorithms, which adaptively
weight objectives and offer provably improved convergence
guarantees. Future research directions include determining
optimal rates for AMOO and conducting comprehensive
empirical studies in different domains. Additionally, in this
work, we have not explored a stochastic or non-convex op-
timization frameworks of AMOO, which we believe is of
interest for future work. We conjecture that algorithmic
advancements in AMOO will improve our ability to scale
learning algorithms to handle large number of related tasks
efficiently with minimal hyper-parameter tuning; a goal
much needed in modern machine learning practice.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning and optimization. There are many
potential societal consequences of our work, none which we
feel must be specifically highlighted here.

References
Idan Achituve, Idit Diamant, Arnon Netzer, Gal Chechik,

and Ethan Fetaya. Bayesian uncertainty for gradi-
ent aggregation in multi-task learning. arXiv preprint
arXiv:2402.04005, 2024.

Hamsa Bastani. Predicting with proxies: Transfer learning
in high dimension. Management Science, 67(5):2964–
2984, 2021.

Stephen Boyd and Lieven Vandenberghe. Convex optimiza-
tion. Cambridge university press, 2004.

Rich Caruana. Multitask learning. Machine learning, 28:
41–75, 1997.

Shicong Cen, Yuting Wei, and Yuejie Chi. Fast policy ex-
tragradient methods for competitive games with entropy
regularization. Advances in Neural Information Process-
ing Systems, 34:27952–27964, 2021.

Olivier Chapelle, Dumitru Erhan, et al. Improved precondi-
tioner for hessian free optimization. In NIPS Workshop

on Deep Learning and Unsupervised Feature Learning,
volume 201. Citeseer, 2011.

Lisha Chen, Heshan Fernando, Yiming Ying, and Tianyi
Chen. Three-way trade-off in multi-objective learning:
Optimization, generalization and conflict-avoidance. Ad-
vances in Neural Information Processing Systems, 36:
70045–70093, 2023.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and An-
drew Rabinovich. Gradnorm: Gradient normalization
for adaptive loss balancing in deep multitask networks.
In International conference on machine learning, pages
794–803. PMLR, 2018.

Sumanth Chennupati, Ganesh Sistu, Senthil Yogamani, and
Samir A Rawashdeh. Multinet++: Multi-stream feature
aggregation and geometric loss strategy for multi-task
learning. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition workshops,
pages 0–0, 2019.

Christoph Dann, Yishay Mansour, and Mehryar Mohri. Re-
inforcement learning can be more efficient with multiple
rewards. In International Conference on Machine Learn-
ing, pages 6948–6967. PMLR, 2023.

Constantinos Daskalakis and Ioannis Panageas. Last-iterate
convergence: Zero-sum games and constrained min-max
optimization. arXiv preprint arXiv:1807.04252, 2018.

Jean-Antoine Désidéri. Multiple-gradient descent algorithm
(mgda) for multiobjective optimization. Comptes Rendus
Mathematique, 350(5-6):313–318, 2012.

Daria Dzyabura, Srikanth Jagabathula, and Eitan Muller.
Accounting for discrepancies between online and offline
product evaluations. Marketing Science, 38(1):88–106,
2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep net-
works. In International conference on machine learning,
pages 1126–1135. PMLR, 2017.

Chelsea Finn, Aravind Rajeswaran, Sham Kakade, and
Sergey Levine. Online meta-learning. In Interna-
tional conference on machine learning, pages 1920–1930.
PMLR, 2019.

Jörg Fliege and Benar Fux Svaiter. Steepest descent methods
for multicriteria optimization. Mathematical methods of
operations research, 51:479–494, 2000.

Alexander IJ Forrester, András Sóbester, and Andy J Keane.
Multi-fidelity optimization via surrogate modelling. Pro-
ceedings of the royal society a: mathematical, physical
and engineering sciences, 463(2088):3251–3269, 2007.

9

Aligned Multi Objective Optimization

Robert M Gower, Aaron Defazio, and Michael Rabbat.
Stochastic polyak stepsize with a moving target. arXiv
preprint arXiv:2106.11851, 2021.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi
Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reason-
ing capability in llms via reinforcement learning. arXiv
preprint arXiv:2501.12948, 2025.

Elad Hazan and Sham Kakade. Revisiting the polyak step
size. arXiv preprint arXiv:1905.00313, 2019.

Yifei He, Shiji Zhou, Guojun Zhang, Hyokun Yun, Yi Xu,
Belinda Zeng, Trishul Chilimbi, and Han Zhao. Robust
multi-task learning with excess risks. arXiv preprint
arXiv:2402.02009, 2024.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and
Amos Storkey. Meta-learning in neural networks: A sur-
vey. IEEE transactions on pattern analysis and machine
intelligence, 44(9):5149–5169, 2021.

Yujing Hu, Weixun Wang, Hangtian Jia, Yixiang Wang,
Yingfeng Chen, Jianye Hao, Feng Wu, and Changjie Fan.
Learning to utilize shaping rewards: A new approach of
reward shaping. Advances in Neural Information Pro-
cessing Systems, 33:15931–15941, 2020.

Michael F Hutchinson. A stochastic estimator of the trace
of the influence matrix for laplacian smoothing splines.
Communications in Statistics-Simulation and Computa-
tion, 18(3):1059–1076, 1989.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czar-
necki, Tom Schaul, Joel Z Leibo, David Silver, and Koray
Kavukcuoglu. Reinforcement learning with unsupervised
auxiliary tasks. arXiv preprint arXiv:1611.05397, 2016.

Kirthevasan Kandasamy, Gautam Dasarathy, Junier B Oliva,
Jeff Schneider, and Barnabás Póczos. Gaussian pro-
cess bandit optimisation with multi-fidelity evaluations.
Advances in neural information processing systems, 29,
2016a.

Kirthevasan Kandasamy, Gautam Dasarathy, Barnabas Poc-
zos, and Jeff Schneider. The multi-fidelity multi-armed
bandit. Advances in neural information processing sys-
tems, 29, 2016b.

Kirthevasan Kandasamy, Gautam Dasarathy, Jeff Schnei-
der, and Barnabás Póczos. Multi-fidelity bayesian op-
timisation with continuous approximations. In Interna-
tional conference on machine learning, pages 1799–1808.
PMLR, 2017.

Seung Hyun Lee, Yinxiao Li, Junjie Ke, Innfarn Yoo, Han
Zhang, Jiahui Yu, Qifei Wang, Fei Deng, Glenn Entis,

Junfeng He, et al. Parrot: Pareto-optimal multi-reward
reinforcement learning framework for text-to-image gen-
eration. arXiv preprint arXiv:2401.05675, 2024.

Shibo Li, Robert M Kirby, and Shandian Zhe. Deep multi-
fidelity active learning of high-dimensional outputs. arXiv
preprint arXiv:2012.00901, 2020.

Shibo Li, Jeff M Phillips, Xin Yu, Robert Kirby, and Shan-
dian Zhe. Batch multi-fidelity active learning with budget
constraints. Advances in Neural Information Processing
Systems, 35:995–1007, 2022.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Ed-
wards, Bowen Baker, Teddy Lee, Jan Leike, John Schul-
man, Ilya Sutskever, and Karl Cobbe. Let’s verify step by
step. arXiv preprint arXiv:2305.20050, 2023.

Baijiong Lin and Yu Zhang. Libmtl: A python library
for deep multi-task learning. The Journal of Machine
Learning Research, 24(1):9999–10005, 2023.

Baijiong Lin, Feiyang Ye, Yu Zhang, and Ivor W Tsang.
Reasonable effectiveness of random weighting: A
litmus test for multi-task learning. arXiv preprint
arXiv:2111.10603, 2021.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang
Liu. Conflict-averse gradient descent for multi-task learn-
ing. Advances in Neural Information Processing Systems,
34:18878–18890, 2021.

Bo Liu, Yihao Feng, Peter Stone, and Qiang Liu. Famo:
Fast adaptive multitask optimization. Advances in Neu-
ral Information Processing Systems, 36:57226–57243,
2023a.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu
Ma. Sophia: A scalable stochastic second-order opti-
mizer for language model pre-training. arXiv preprint
arXiv:2305.14342, 2023b.

Suyun Liu and Luis Nunes Vicente. The stochastic multi-
gradient algorithm for multi-objective optimization and
its application to supervised machine learning. Annals of
Operations Research, 339(3):1119–1148, 2024.

Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and
Simon Lacoste-Julien. Stochastic polyak step-size for
sgd: An adaptive learning rate for fast convergence. In
International Conference on Artificial Intelligence and
Statistics, pages 1306–1314. PMLR, 2021.

Sha Luo, Hamidreza Kasaei, and Lambert Schomaker. Ac-
celerating reinforcement learning for reaching using con-
tinuous curriculum learning. In 2020 International Joint
Conference on Neural Networks (IJCNN), pages 1–8.
IEEE, 2020.

10

Aligned Multi Objective Optimization

Panayotis Mertikopoulos, Houssam Zenati, Bruno Lecouat,
Chuan-Sheng Foo, Vijay Chandrasekhar, and Geor-
gios Piliouras. Mirror descent in saddle-point prob-
lems: Going the extra (gradient) mile. arXiv preprint
arXiv:1807.02629, 2018.

Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron,
Kenji Kawaguchi, Gal Chechik, and Ethan Fetaya. Multi-
task learning as a bargaining game. arXiv preprint
arXiv:2202.01017, 2022.

Yurii Nesterov. Introductory lectures on convex optimiza-
tion: A basic course, volume 87. Springer Science &
Business Media, 2013.

Yurii Nesterov et al. Lectures on convex optimization, vol-
ume 137. Springer, 2018.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy
invariance under reward transformations: Theory and
application to reward shaping. In Icml, volume 99, pages
278–287, 1999.

Antonio Orvieto, Simon Lacoste-Julien, and Nicolas Loizou.
Dynamics of sgd with stochastic polyak stepsizes: Truly
adaptive variants and convergence to exact solution. Ad-
vances in Neural Information Processing Systems, 35:
26943–26954, 2022.

Boris T Polyak. Introduction to optimization. 1987.

Sasha Rakhlin and Karthik Sridharan. Optimization, learn-
ing, and games with predictable sequences. Advances in
Neural Information Processing Systems, 26, 2013.

Sachin Ravi and Hugo Larochelle. Optimization as a model
for few-shot learning. In International conference on
learning representations, 2017.

Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky
learning rates. In International conference on machine
learning, pages 343–351. PMLR, 2013.

Ozan Sener and Vladlen Koltun. Multi-task learning as
multi-objective optimization. Advances in neural infor-
mation processing systems, 31, 2018.

Jialin Song, Yuxin Chen, and Yisong Yue. A general frame-
work for multi-fidelity bayesian optimization with gaus-
sian processes. In The 22nd International Conference
on Artificial Intelligence and Statistics, pages 3158–3167.
PMLR, 2019.

Shion Takeno, Hitoshi Fukuoka, Yuhki Tsukada, Toshiyuki
Koyama, Motoki Shiga, Ichiro Takeuchi, and Masayuki
Karasuyama. Multi-fidelity bayesian optimization with
max-value entropy search and its parallelization. In Inter-
national Conference on Machine Learning, pages 9334–
9345. PMLR, 2020.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu
Jiang, Cheng Chen, Cheng Li, Chenjun Xiao, Chen-
zhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scal-
ing reinforcement learning with llms. arXiv preprint
arXiv:2501.12599, 2025.

Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan,
James Kirkpatrick, Raia Hadsell, Nicolas Heess, and Raz-
van Pascanu. Distral: Robust multitask reinforcement
learning. Advances in neural information processing
systems, 30, 2017.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis
Song, Noah Siegel, Lisa Wang, Antonia Creswell, Geof-
frey Irving, and Irina Higgins. Solving math word prob-
lems with process-and outcome-based feedback. arXiv
preprint arXiv:2211.14275, 2022.

Vivek Veeriah, Matteo Hessel, Zhongwen Xu, Janarthanan
Rajendran, Richard L Lewis, Junhyuk Oh, Hado P van
Hasselt, David Silver, and Satinder Singh. Discovery of
useful questions as auxiliary tasks. Advances in Neural
Information Processing Systems, 32, 2019.

Xiaoyu Wang, Mikael Johansson, and Tong Zhang. Gener-
alized polyak step size for first order optimization with
momentum. In International Conference on Machine
Learning, pages 35836–35863. PMLR, 2023.

Yijia Wang, Matthias Poloczek, and Daniel R Jiang. Dy-
namic subgoal-based exploration via bayesian optimiza-
tion. arXiv preprint arXiv:1910.09143, 2019.

Jian Wu, Saul Toscano-Palmerin, Peter I Frazier, and An-
drew Gordon Wilson. Practical multi-fidelity bayesian
optimization for hyperparameter tuning. In Uncertainty
in Artificial Intelligence, pages 788–798. PMLR, 2020.

Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa,
Kurt Keutzer, and Michael Mahoney. Adahessian: An
adaptive second order optimizer for machine learning. In
proceedings of the AAAI conference on artificial intelli-
gence, volume 35, pages 10665–10673, 2021.

Jiaxiang Yi, Fangliang Wu, Qi Zhou, Yuansheng Cheng,
Hao Ling, and Jun Liu. An active-learning method based
on multi-fidelity kriging model for structural reliability
analysis. Structural and Multidisciplinary Optimization,
63:173–195, 2021.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine,
Karol Hausman, and Chelsea Finn. Gradient surgery for
multi-task learning. Advances in Neural Information
Processing Systems, 33:5824–5836, 2020.

Qi Zhang, Peiyao Xiao, Kaiyi Ji, and Shaofeng Zou. On the
convergence of multi-objective optimization under gen-
eralized smoothness. arXiv preprint arXiv:2405.19440,
2024.

11

Aligned Multi Objective Optimization

Shiji Zhou, Wenpeng Zhang, Jiyan Jiang, Wenliang Zhong,
Jinjie Gu, and Wenwu Zhu. On the convergence of
stochastic multi-objective gradient manipulation and be-
yond. Advances in Neural Information Processing Sys-
tems, 35:38103–38115, 2022.

12

Aligned Multi Objective Optimization

A. Additional Experimental Details
We share an IPython notebook in which we implement our algorithms and was used to generate all plots accompanies this
submission.

Dataset. We sample 200 points from an independent uniform distribution xi ∈ Uniform([−1, 1]20). We generate target
data from a randomly initialized network t(xi) = hθ⋆(xi) + 10. The target dimension is 7.

Network architecture. We choose the ground truth network and target network to have the same architecture. Both are 2
layer neural networks with 512 hidden dimensions and ReLu activation. The neural network outputs a vector in dimension 7.

Training. For both problems, we set the learning rate of SGD to 0.0005 and ADAM to 0.005, we use the same learning
rates for PAMOO. For CAMOOwe multiply the learning rate by the number of loss functions, 3. While equal weighting sets
all weights to 1, CAMOOis constrained to set the sum of all weights to one, our adjustment accounts for this normalization.

General parameters for CAMOO. We set the number of samples for the Hutchinson method to be NHutch = 10. Namley,
we estimate the Hessian matrices by averaging NHutch = 10 estimates obtained from the Hutchnison method. Further, at
each training step we perform a single update of the weights based on the PU update rule of Cen et al. (2021) to solve the
max-min Bilinear optimization problem (see Section 4.1). We use their primal-dual algorithm, and choose the learning rate
as they specified 1/(2maxi,j |Aij |+ τCAMOO) where A is the matrix in the Bilinear optimization problem and τCAMOO = 0.01
is a regularization parameter we choose. Additionally, we set the number of iterations of the primal-dual algorithm to be 100
per-step. We did not choose either parameter with great care, exploring best settings is part of future explorations.

General parameters for PAMOO. We solved the constraint convex optimization problem in PAMOO (see Algorithm 3)
via the projected GD algorithm, where the projection on Rm

+ is done by clipping negative values to 10−6. We set the
learning rate to be 3e−3, and added a small regularization J⊤

x Jx → J⊤
x Jx + τPAMOOI to avoid exploding weights, where

τPAMOO = 1e−4.

Additional Plots of Experiments in Section 7. For completeness, we present the three loss functions of the objectives
{fi}i∈[3] and the weighted loss as a function of GD iterates. Figure 3 depicts the losses for the local curvature example
instance, and Figure 4 depicts the losses for the selection example instance. Unlike EW, CAMOO and PAMOO adaptively
modify the weight vector and adjust it to current parameters.

We measured the weight vector as a function of GD iterates and present the results in Figure 9.

• Local curvature example instance. For the local curvature example instance we expect to see a switching behavior in
CAMOO (see Figure 5). Namely, when the loss is large, the weight vector of CAMOO should assign most of its weight to
the quartic loss function, f3, since it has the largest curvature for large deviations from optimality. For small deviations,
we expect CAMOO to assign weights to the quadratic loss, f1.

• Selection example instance. For the selection example instance we expect CAMOO to set the weights as a 1-hot vector
on f1, since its the quadratic function with largest curvature across all dimensions. Figure 7 exemplifies this.

13

Aligned Multi Objective Optimization

Figure 3: Local curvature example, all loss functions.

Figure 4: Selection example, all loss functions.

14

Aligned Multi Objective Optimization

Figure 5: Local curvature example, CAMOO. The
weights flip when the curvature of the loss function
changes.

Figure 6: Local curvature example, PAMOO.

Figure 7: Selection example, CAMOO. Figure 8: Selection example, PAMOO.

Figure 9: Weight vector evolution versus GD iterates.

A.1. Toy Experiments: ϵ Approximate AMOO

We include additional experiment for the approximate AMOO setting, in which there exists a near-optimal solution for all
objectives. We consider 3 loss functions of the local curvature example and add an approximation error as follows:

fi(θ)=
1

|D|
∑
x∈D

(
(hθ(x)−hθ⋆(x) + ϵi)

⊤Hi(hθ(x)−hθ⋆(x)) + ϵi
)αi

,

where we set Hi = I and ϵi ∈ {0, ϵ,−ϵ} where ϵ = 0.01.

15

Aligned Multi Objective Optimization

Figure 10: Local curvature example for ϵ-approximate AMOO, all loss functions.

A.2. Toy Experiments: Reducing Computational Complexity of PAMOO

Both CAMOO and PAMOO solve convex optimization problems in their inner loop to update the weight vector w. In our
implementations we use simple first-order algorithms that apply N gradient-descent updates as detailed in Section 4 and
Section 5. The results in the main paper depicts the performance of CAMOO and PAMOO when N = 100 and N = 1000,
respectively. For these values, both CAMOO and PAMOO are significantly more costly compared to the EW algorithm.

Here we experiment we cheaper variations of both CAMOO and PAMOO in which we set N = 10, and, hence, reduce the
number of updates to the weight vector. Table 2 shows the improvement in running time of CAMOO and PAMOO as well as
comparing their running time to EW. As observed, the running time of PAMOO can be significantly improved whereas the
running time of CAMOO is worse than EW. This is caused by the need to estimate Hessian information which can be costly
without careful optimization. Figure 11 depicts the performance of CAMOO and PAMOO when N = 10. The performance
of both algorithms degraded on the expense of improved running time. This shows that as the running time is improved
algorithm designer may expect to experience performance degradation.

16

Aligned Multi Objective Optimization

Algorithm Runtime (s)
EW Algorithms

EW-SGD 0.408452
EW-ADAM 0.480058

CAMOO and PAMOO
PAMOO-SGD 8.654938
CAMOO-SGD 6.695782
PAMOO-ADAM 8.435489
CAMOO-ADAM 7.466246
CAMOO and PAMOO with N = 10
PAMOO-SGD 0.715199
CAMOO-SGD 3.674786
CAMOO-ADAM 3.598157
PAMOO-ADAM 0.726002

Table 2: Runtime in seconds.

Figure 11: Local curvature example with reduced computational complexity (N = 10).

17

Aligned Multi Objective Optimization

B. Challenges in Analyzing CAMOO
B.1. fwk

is not a Strongly Convex Function

We provide an example that shows that for the AMOO setting, when µG > 0, the fact that λmin

(
∇2fwk

(xk)
)
≥ µG

throughout the iterates of CAMOO does not imply that each fwk
is µG-strongly convex.

The counter example is the local curvature example (see Section 3), namely,

f1(x) = exp(x)− x, f2(x) = exp(−x) + x,

and x ∈ R. The minimum point of both f1 and f2 is at x = 0. The Hessians of the functions are:

∇2f1(x) = exp(x),∇2f2(x) = exp(−x). (10)

We see that∇2f1(x) > 1 > ∇2f2(x) for x > 0,∇2f1(x) < 1 < ∇2f2(x) for x <= 0, and ∇2f1(0) = ∇2f2(0) = 1.

This implies that µG = 1, and CAMOO will set the weight vector as w+ = (1, 0) for x > 0 and w− = (0, 1) for x ≤ 0.
However, it is readily observed that neither fw− or fw+ are 1-strongly convex functions. The smallest value of the individual
Hessians is zero since

inf
x∈R
∇2fw−(x) = inf

x∈R
exp(x) = 0

inf
x∈R
∇2fw+(x) = inf

x∈R
exp(−x) = 0,

by Eq. (10). Hence, the functions fwk
produced in the iterates of CAMOO are not strongly convex.

B.2. Weighted function is not necessarily convex

We provide a simple counter example that shows failure of a naive reduction in which we construct fw⋆(x)(x) =∑
i w⋆,i(x)fi(x), where w⋆(x) optimizes the curvature at each point via,

w⋆(x) ∈ argmax
w∈∆m

λmin

∑
i∈[m]

wi∇2fi(xk)


and apply gradient descent to the function fw⋆(x). The reason such approach is problematic is the fact that fw⋆(x) may no
longer be a convex function. This is a result of the extra dependence on x of w⋆(x).

A counter example can be established for a simple scenario in which

f1(x) = x2, f2(x) = x2 + c,

where x ∈ R, for some c ̸= 0. The two functions are convex, and have a minimizer at x = 0. However, since the Hessians
of the functions are equal,∇2f1(x) = ∇2f2(x), the solution of the optimization problem

w⋆(x) ∈ argmax
w∈∆m

λmin

 ∑
i∈{1,2}

wi∇2fi(x)

 , (11)

is arbitrary. Namely, each point on the simplex is a solution of this optimization problem. For example, choosing

w⋆(x) = (sin2(x), cos2(x)),

is a solution of Eq. (11). With this, the function fw⋆(x) takes the form of

fw⋆(x) = x2 + c× cos2(x),

which is not a convex function if, for example, |c| > 1.

18

Aligned Multi Objective Optimization

Additionally, choosing w⋆(x) as non-smooth function, for example

w⋆(x) =

{
(0, 1) x > 0

(1, 0) x ≤ 0,

results with a non-smooth function fw⋆(x). This highlights that differentiating the function fw⋆(x) is flawed from a theoretical
perspective: fw⋆(x) is not necessarily convex nor smooth.

C. Preliminaries and Basic Properties
In this section, we formally provide our working assumptions. We assume access to multi-objective feedback with m
objectives F (x) = (f1(x), . . . , fm(x)), when ∀i ∈ [m] the function fi(x) is smooth and self-concordant. Considering two
scenarios AMOO, and ϵ-AAMOO. In AMOO we assume the functions are aligned in the sense of Eq. (1), namely, that they
share an optimal solution. In ϵ-AAMOO we assume there is a (non-empty) set of ϵ approximate solutions in the sense of
Eq. (7), i.e. every solution in the set has a maximum value gap of ϵ from the minima of every function.

We define the following quantities, for the single and multi objective settings:

∥y∥2x := ∥y∥∇2f(x) := ⟨∇
2f(x)y,y⟩

∥y∥2x,w := ∥y∥∇2fw(x) := ⟨∇
2fw(x)y,y⟩.

A smooth function satisfies the following:

Lemma C.1 (Standard result, E.g., 9.17 Boyd and Vandenberghe (2004)). Let f : Rn → R a β-smooth over Rn, and let
x⋆ ∈ argminx f(x). Then, for every x ∈ Rn it holds that

∥∇f(x)∥2 ≤ 2β (f(x)− f(x⋆)) .

A self-concordant function satisfies the following:

Lemma C.2 (Theorem 5.1.8 & Lemma 5.1.5, Nesterov (2013)). Let f : Rn → R be an Mf self-concordant function. Let
x,y ∈ Rn , we have

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ 1

M2
f

ω (Mf ∥y − x∥x) ,

where ω(t) := t− ln(1− t), and, for any t > 0, ω(t) ≥ t2

2(1+t) .

Lemma C.3 (Theorem 5.1.1, Nesterov et al. (2018)). Let f1, f2 : Rn → R be Mf self-concordant functions. Let w1, w2 > 0.
Then, f = w1f1 + w2f2 is M = maxi{ 1√

wi
}Mf self-concordant function.

Proposition C.1 (Weighted sum of self-concordant functions). Let {fi : Rn → R}ni=1 be Mf self-concordant functions. Let
{wi > 0}. Then, f =

∑n
i=1 wifi is M = maxi{ 1√

wi
}Mf self-concordant function.

The proof of the last proposition proof is found in Section F.

Theorem C.1 (Weyl’s Theorem). Let A and ∆ be symmetric matrices in Rn×n. Let λj(A) be the jth largest eigenvalue of
a matrix A. Then, for all j ∈ [n] it holds that ∥λj(A)− λj(A+∆)∥ ≤ ∥∆∥2, where ∥∆∥2 is the spectral norm of ∆.

C.1. Auxiliary Results

Further, we have the following simple consequence of the AMOO setting.

Lemma C.4. For all w ∈ ∆m and x ∈ Rn it holds that fw(x)− fw(x⋆) ≥ 0.

Proof. Observe that fw(x)− fw(x⋆) =
∑m

i=1 wi (fi(x)− fi(x⋆)) . Since x⋆ is the optimal solution for all objectives it
holds that fi(x)− fi(x⋆) ≥ 0. The lemma follows from the fact wi ≥ 0 for all i ∈ [m].

19

Aligned Multi Objective Optimization

Lemma C.5 (Recurrence bound AMOO). Let {rk}k≥0 be a sequence of non-negative real numbers that satisfy the
recurrence relation

r2k+1 ≤ r2k − α1
r2k

1 + α2rk
,

where α1 ∈ [0, 2) and α2 ∈ R+. Let k0 :=
⌈
4(r0α2−1)

α1

⌉
. Then, rk is bounded by

rk ≤

{
rk0

(
1− α1

2

) k−k0
2 k ≥ k0

r0 − α1

4α2
k o.w.

.

The proof of the lemma is found in Appendix F.3
The next lemma is for the ϵ-AAMOO setting. We separate them since the recursion and the result of ϵ-AAMOO have more
details, making it less readable.

Lemma C.6 (Recurrence bound ϵ-AAMOO). Let {rk}k≥0 be a sequence of non-negative real numbers that satisfy the
recurrence relation

r2k+1 ≤ r2k − α1
r2k

1 + α2rk
+ α3 + α4rk,

where α1 ∈ (0, 2), α2 ∈ R+, α3 ≤ α2
1

256α2
2
, and α4 ≤ α1

4α2
. Let k0 :=

⌈
16(r0α2−1)

α1

⌉
. Then, rk is bounded by

rk ≤

rk0

(
1− α1

2

) k′−k
2 +

√
2α3

α1
+ 2α4

α1α2
k ≥ k0

r0 − α1

16α2
k o.w.

.

D. Proofs of AMOO Results
See Section 4 for a highlevel description of key steps in the proof.

We first describe two useful lemmas that are used across the section.

Lemma D.1 (Weighted Function is Self-Concordant). For any iteration k of CAMOO, the function fwk
is 1/
√
wminMf

self-concordant.

Proof. This is a direct consequence of Proposition C.1 and the fact Algorithm 1 sets the weights by optimizing over a set
where the weight vector is lower bounded by wmin.

Lemma D.2 (Continuity of Minimal Eigenvalue of Hessian). Let x ∈ Rn. Further, let w⋆ ∈ argmax
w∈∆m

λmin

(
∇2fw(x)

)
,

ŵ ∈ argmax
w∈∆m,wmin

λmin

(
∇2fw(x)

)
. It holds that λmin

(
∇2fŵ(x)

)
≥ λmin

(
∇2fw⋆

(x)
)
− 2mwminβ.

With these two results, we are ready to prove Theorem 4.2 and Theorem 5.2.

D.1. Proof of Theorem 4.2

Restate it first:

Theorem 4.2 (µG Convergence of CAMOO). Suppose {fi}i∈[m] are β smooth, Mf self-concordant, share an optimal solution

x⋆ and that µG > 0. Let k0 :=

⌈
16β(∥x0−x⋆∥3

√
mβMf−

√
µG)

3µG
3/2

⌉
, where ∥·∥ is the Euclidean-norm. Then, Weighted-GD

instantiated with CAMOO weight-optimizer and η = 1/2β converges with rate:

∥xk − x⋆∥ ≤

∥xk0 − x⋆∥
(
1− 3µG

8β

)(k−k0)/2

k ≥ k0

∥x0 − x⋆∥ − k µG
3/2

16β2
√
mMf

o.w.

20

Aligned Multi Objective Optimization

Proof. At each iteration Algorithm 1 gets wk ∈ argmax
w∈∆m,wmin

λmin

(∑
i wi∇2fi(xk)

)
. Using the assumption that

max
w∈∆m

λmin

(
∇2fwk

(xk)
)
≥ µG, Lemma D.2, and since we set wmin = µG/ (8mβ) we have that

λmin

(
∇2fwk

)
≥ λmin

(
∇2fw

)
− 2mwminβ ≥ µG − µG/4 = (3/4)µG, (12)

for all iterations t. Recall that the update rule is given by xk+1 = xk − η∇fwk
(xk), where η is the step size. Then, for

every x ∈ Rn we have

∥xk+1 − x∥2 = ∥xk − η∇fwk
(xk)− x∥2

= ∥xk − x∥2 − 2η⟨∇fwk
(xk),xk − x⟩+ η2 ∥∇fwk

(xk)∥2 . (13)

By Lemma D.1 it holds that fwk
is

M̂f := 1/
√
wminMf ≤ 3

√
mβMf/

√
µG (14)

self-concordant. Then, from Lemma C.2, by properties of self-concordant functions, for every x ∈ Rn we have

⟨∇fwk
(xk),xk − x⟩ ≥ fwk

(xk)− fwk
(x) +

1

M̂f

2ω
(
M̂f ∥x− xk∥xk,wk

)
,

Plugging this inequality into Eq. (13) implies that

∥xk+1 − x∥2 ≤ ∥xk − x∥2 − 2η

(
fwk

(xk)− fwk
(x) +

1

M̂f

2ω
(
M̂f ∥x− xk∥xk,wk

))
+ η2 ∥∇fwk

(xk)∥2 . (15)

Recall that x⋆ ∈ argminx fi(x) for every i ∈ [m]. Since fwk
is β-smooth, by using Lemma C.1, and plugging in x⋆ we

have

∥xk+1 − x⋆∥2

≤ ∥xk − x⋆∥2 − 2η

(
fwk

(xk)− fwk
(x⋆) +

1

M̂f

2ω
(
M̂f ∥x⋆ − xk∥xk,wk

))
+ 2βη2 (fwk

(xk)− fwk
(x⋆))

= ∥xk − x⋆∥2 − 2η
1

M̂f

2ω
(
M̂f ∥x⋆ − xk∥xk,wk

)
+ 2η(βη − 1) (fwk

(xk)− fwk
(x⋆)) .

By using Lemma C.4 it holds that fwk
(xk) − fwk

(x⋆) ≥ 0, and since 0 < η ≤ 1/2β, it holds that 2η(βη −
1) (fwk

(xk)− fwk
(x⋆)) ≤ 0. Then, by using the lower bound from Lemma C.2, i.e. ω (t) ≥ t2

2(1+t) , the following
holds

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − 2η
∥x⋆ − xk∥2xk,wk

1 + M̂f ∥x⋆ − xk∥x,wk

.

Note that λmin

(
∇2fwk

(xk)
)
∥x⋆ − xk∥2 ≤ ∥x⋆ − xk∥2xk,wk

≤ λmax

(
∇2fwk

(xk)
)
∥x⋆ − xk∥2. By using the following:

λmin

(
∇2fwk

(xk)
)
≥ (3/4)µG (Eq. (12)), λmax

(
∇2fwk

(xk)
)
≤ β (smoothness), M̂f ≤ 3

√
mβMf/

√
µG (Eq. (14)), and

η = 1/2β, we obtain

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 −
3µG

4β

∥x⋆ − xk∥2

1 +
(
3
√
mβMf/

√
µG

)
∥x⋆ − xk∥

.

Now, we are ready for the last step. Denote α1 = 3µG

4β , and α2 = 3
√
mβMf√
µG

. Since α1 ∈ (0, 1], α2 ∈ R+, and
∥x− x⋆∥ ∈ R+ for every x ∈ Rn, we arrive to the recurrence relation analyzed in Lemma C.5. Then, we obtain

∥xk − x⋆∥ ≤

∥xk0
− x⋆∥

(
1− 3µG

8β

)(k−k0)/2

k ≥ k0

∥x0 − x⋆∥ − k µG
3/2

16β2
√
mMf

o.w.

where k0 :=

⌈
16β(∥x0−x⋆∥3

√
mβMf−

√
µG)

3µG
3/2

⌉
.

21

Aligned Multi Objective Optimization

D.2. Proof of Theorem 5.2

Restate it first:

Theorem 5.2 (µL Convergence of PAMOO). Suppose {fi}i∈[m] are β smooth, Mf self-concordant, share an optimal solution

x⋆ and µL > 0. Let k0 :=

⌈
64β(∥x0−x⋆∥3

√
mβMf−

√
µL)

3µL
3/2

⌉
, where ∥·∥ is the Euclidean-norm. Then, Weighted-GD

instantiated with PAMOO weight-optimizer and η = 1 converges with rate:

∥xk − x⋆∥ ≤

∥xk0
− x⋆∥

(
1− 3µL

32β

)(k−k0)/2

k ≥ k0

∥x0 − x⋆∥ − k µL
3/2

64β2
√
mMf

o.w.

Proof. Recall that for every w ∈ Rm
+ it holds that fw is a convex function. Hence, for every x,y ∈ Rn it holds that

fw(x)− fw(y) ≤ ∇fw(x)T (x− y).

Recall that the step size η = 1, then the update rule is given by xk+1 = xk − ∇fwk
(xk). Then, by using the previous

equation, for every x ∈ Rn we have

∥xk+1 − x∥2 = ∥xk − x∥2 − 2⟨∇fwk
(xk),xk − x⟩+ ∥∇fwk

(xk)∥2

≤ ∥xk − x∥2 − 2 (fwk
(xk)− fwk

(x)) + ∥∇fwk
(xk)∥2 , (16)

Recall that x⋆ ∈ argminx∈Rn fi(x) for every i ∈ [m]. Since the update rule of PAMOO is

wk ∈ argmax
w∈Rm

+

2 (fwk
(xk)− fwk

(x⋆))− ∥∇fwk
(xk)∥2 ,

the following holds

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − max
w∈Rm

+

{
2 (fw(xk)− fw(x⋆))− ∥∇fw(xk)∥2

}
, (17)

Denote w⋆ = argmax
w∈∆m,wmin

λmin

(∑m
i=1 wi∇2fi(x⋆)

)
, ak = fw⋆

(xk) − fw⋆
(x⋆), and bk = ∥∇fw⋆

(xk)∥2. Let w(xk) =

w⋆
ak

bk
∈ Rm

+ , we can lower bound of the last expression as follows

max
w∈Rm

+

[
2 (fw(xk)− fw(x⋆))− ∥∇fw(xk)∥2

]
≥ 2

(
fw(xk)(xk)− fw(xk)(x⋆)

)
−
∥∥∇fw(xk)(xk)

∥∥2
=

(fw⋆
(xk)− fw⋆

(x⋆))
2

∥∇fw⋆
(xk)∥2

.

Since w⋆ ∈ ∆m,wmin
it holds that fw⋆

is β smooth. Then, it holds that ∥∇fw⋆
(x)∥2 ≤ 2β (fw⋆

(x)− fw⋆
(x⋆)) for every

x, and we have

max
w∈Rm

+

[
2 (fw(xk)− fw(x⋆))− ∥∇fw(xk)∥2

]
≥ fw⋆(xk)− fw⋆(x⋆)

2β

Plugging this in Eq. (17), we arrive to

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 −
fw⋆

(xk)− fw⋆
(x⋆)

2β

By Lemma D.1 it holds that fw⋆
is M̂f := 1/

√
wminMf self concordant. Then, From Lemma C.2, and its lower bound , i.e.

ω (t) ≥ t2

2(1+t) , we have

fw⋆(xk)− fw⋆(x⋆) ≥ ⟨∇fw⋆(x⋆),xk − x⋆⟩+
∥xk − x⋆∥2x⋆,w⋆

2
(
1 + M̂f ∥xk − x⋆∥x⋆,w⋆

) =
∥xk − x⋆∥2x⋆,w⋆

2
(
1 + M̂f ∥xk − x⋆∥x⋆,w⋆

) .
22

Aligned Multi Objective Optimization

The equality is due to the optimality condition,∇fi(x⋆) = 0 for every i ∈ [m], thus,∇fw⋆
(x⋆) = 0. Combining the last

two equations, we have

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 −
1

4β

∥xk − x⋆∥2x⋆,w⋆

1 + M̂f ∥xk − x⋆∥x⋆,w⋆

Note that λmin

(
∇2fw⋆

(x⋆)
)
∥x⋆ − xk∥2 ≤ ∥x⋆ − xk∥2x⋆,w⋆

≤ λmax

(
∇2fw⋆

(x⋆)
)
∥x⋆ − xk∥2. Since

λmax

(
∇2fw⋆

(x⋆)
)
≤ β (smoothness), and since wmin = µL/(8mβ), then M̂f ≤ 3

√
mβMf/

√
µL. Thus, it holds

that

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 −
1

4β

λmin

(
∇2fw⋆(x⋆)

)
∥x⋆ − xk∥2

1 + 3
√
mMfβ√
µL

∥xk − x⋆∥

Using the assumption that max
w∈∆m

λmin

(
∇2fw(x⋆)

)
≥ µL, Lemma D.2, we have that

λmin

(
∇2fw⋆

(x⋆)
)
≥ max

w∈∆m

λmin

(
∇2fw(x⋆)

)
− 2mwminβ ≥ µL − µL/4 = (3/4)µL.

Finally, we obtain the recurring equation we wish:

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 −
3µL

16β

∥x⋆ − xk∥2

1 + 3
√
mMfβ√
µL

∥xk − x⋆∥

Denote α1 = 3µL

16β , and α2 = 3
√
mβMf√
µL

. Note that α1 ∈ (0, 1], α2 ∈ R+, and ∥x− x⋆∥ ∈ R+ for every x ∈ Rn, we arrive
to the recurrence relation analyzed in Lemma C.5. Then, we obtain

∥xk − x⋆∥ ≤

∥xk0
− x⋆∥

(
1− 3µL

32β

)(k−k0)/2

k ≥ k0

∥x0 − x⋆∥ − k µL
3/2

64β2
√
mMf

o.w.

where k0 :=

⌈
64β(∥x0−x⋆∥3

√
mβMf−

√
µL)

3µL
3/2

⌉
.

E. ϵ-Approximation Solution
In this section, we represent the formal theorems of the Informal Theorem 6.2 for CAMOO and PAMOO. First, we rewrite the
definition of ϵ- approximate solutions set.

Definition E.1 (ϵ-Approximate Solution Set). Let ϵ ≥ 0. Cϵ is ϵ-Approximate Solution Set (ϵ-ASS) if for every i ∈ [m] it
holds that fi(x)− fi(x

i
⋆) ≤ ϵ, i.e.

Cϵ = {x ∈ Rn| fi(x)− fi(x
i
⋆) ≤ ϵ ∀i ∈ [m]},

where xi
⋆ ∈ argminx∈Rn{fi(x)}.

We show in the following formal theorem that for ϵ > 0 CAMOO converges for any chosen point from the set Cϵ, i.e. the ϵ-
approximate solutions set.

Theorem E.2 (µG Approximation Convergence of CAMOO). Suppose {fi}i∈[m] are β smooth, Mf self-concordant, Cϵ is an

ϵ-ASS and that µG > 0. Let k0 :=


64β

(
3
√

mβMf∥x0−xϵ
⋆∥√

µG
−1

)
3µG

, where ∥·∥ is the 2-norm. Let µG
3

46mβ3M2
f
≥ ϵ > 0. Then, for

every point xϵ
⋆ ∈ Cϵ, Weighted-GD instantiated with CAMOO weight-optimizer and η = 1/2β converges with rate:

∥xk − xϵ
⋆∥ ≤

∥xk0
− xϵ

⋆∥
(
1− 3µG

8β

)(k−k0)/2

+
√

8
3µG

ϵ k ≥ k0

∥x0 − xϵ
⋆∥ − k µG

3/2

43β2
√
mMf

o.w.

23

Aligned Multi Objective Optimization

Proof. Let xϵ
⋆ ∈ Cϵ. Denote x⋆

k = argminx∈Rn fwk
(x) for every k, then since fwk

is β-smooth, by using Lemma C.1, it
holds that ∥∇f(x)∥2 ≤ 2β (f(x)− f(x⋆)). Plugging in x = xϵ

⋆ in Eq. (15), we have

∥xk+1 − xϵ
⋆∥

2

≤ ∥xk − xϵ
⋆∥

2 − 2η

(
fwk

(xk)− fwk
(xϵ

⋆) +
1

M̂f

2ω
(
M̂f ∥xϵ

⋆ − xk∥xk,wk

))
+ 2βη2 (fwk

(xk)− fwk
(x⋆

k))

= ∥xk − xϵ
⋆∥

2 − 2η
1

M̂f

2ω
(
M̂f ∥xϵ

⋆ − xk∥xk,wk

)
+ 2η (fwk

(xϵ
⋆)− fwk

(x⋆
k)) + 2η(βη − 1) (fwk

(xk)− fwk
(x⋆

k)) .

Since fwk
(xk)− fwk

(x⋆
k) ≥ 0, and since 0 < η ≤ 1/2β, it holds that 2η(βη − 1) (fwk

(xk)− fwk
(x⋆

k)) ≤ 0. In addition,
by using the lower bound from Lemma C.2, i.e. ω (t) ≥ t2

2(1+t) , and Definition E.1 with the fact that
∑

i wi = 1, the
following holds

∥xk+1 − xϵ
⋆∥

2 ≤ ∥xk − xϵ
⋆∥

2 − 2η
∥xϵ

⋆ − xk∥2xk,wk

1 + M̂f ∥xϵ
⋆ − xk∥x,wk

+ 2ηϵ.

Note that λmin

(
∇2fwk

(xk)
)
∥xϵ

⋆ − xk∥2 ≤ ∥xϵ
⋆ − xk∥2xk,wk

≤ λmax

(
∇2fwk

(xk)
)
∥xϵ

⋆ − xk∥2. By using the following:

λmin

(
∇2fwk

(xk)
)
≥ (3/4)µG (Eq. (12), λmax

(
∇2fwk

(xk)
)
≤ β (smoothness), M̂f ≤ 3

√
mβMf/

√
µG (Eq. (14)), and

η = 1/2β, we obtain

∥xk+1 − xϵ
⋆∥

2 ≤ ∥xk − xϵ
⋆∥

2 − 3µG

4β

∥xϵ
⋆ − xk∥2

1 +
(
3
√
mβMf/

√
µG

)
∥xϵ

⋆ − xk∥
+

ϵ

β
.

Now, we are ready for the last step. Denote α1 = 3µG

4β , α2 = 3
√
mβMf√
µG

, and α3 = ϵ
β . Since α1 ∈ (0, 2), α2 ∈ R+,

α3 ≤ α2
1

256α2
2

and ∥x− xϵ
⋆∥ ∈ R+ for every x ∈ Rn, we arrive to the recurrence relation analyzed in Lemma C.6. Then, we

obtain

∥xk − xϵ
⋆∥ ≤

∥xk0
− xϵ

⋆∥
(
1− 3µG

8β

)(k−k0)/2

+
√

8
3µG

ϵ k ≥ k0

∥x0 − xϵ
⋆∥ − k µG

3/2

43β2
√
mMf

o.w.

where k0 :=


64β

(
3
√

mβMf∥x0−xϵ
⋆∥√

µG
−1

)
3µG

.

Before we continue to PAMOO, we recall Definition 6.1 which defines µϵ
L. This parameter is the maximum curvature over the

ϵ-approximate solutions set, which can be much greater than µG, and µL. Before we show the formal theorem of PAMOO,
we define x̂ϵ

⋆ ∈ Cϵ which is the point with the maximum curvature, s.t.

x̂ϵ
⋆ = argmax

xϵ
⋆∈Cϵ

max
w∈∆m

λmin

(
m∑
i=1

wi∇2fi(x
ϵ
⋆)

)
, µϵ

L = max
w∈∆m

λmin

(
m∑
i=1

wi∇2fi(x̂ϵ
⋆)

)
.

Now, we show the formal theorem that for ϵ > 0 PAMOO converges to x̂ϵ
⋆.

Theorem E.3 (µϵ
L Approximation Convergence of PAMOO). Suppose {fi}i∈[m] are β smooth, Mf self-concordant, Cϵ is an

ϵ-ASS and that µϵ
L > 0, where min

{
β
8 ,

1
2β

} µϵ
L
3

44β4mM2
f
≥ ϵ > 0. Let k0 :=


44β

(
∥x0−x̂ϵ

⋆∥ 3
√

mβMf√
µϵ
L

−1

)
3µϵ

L

 where ∥·∥ is the

Euclidean-norm. Then, Weighted-GD instantiated with PAMOO weight-optimizer and η = 1 converges to x̂ϵ
⋆ with rate:

∥∥xk − x̂ϵ
⋆

∥∥ ≤

∥∥xk0 − x̂ϵ

⋆

∥∥(1− 3µϵ
L

32β

) k−k0
2

+
√

16ϵ
3µϵ

L
+ 32

√
2βϵ

9
√
µLmMf

k ≥ k0∥∥x0 − x̂ϵ
⋆

∥∥− k µL
3/2

64β2
√
mMf

o.w.

24

Aligned Multi Objective Optimization

Proof. Combining Eq. (16) with the update rule of PAMOO, and plugging in x̂ϵ
⋆, i.e.

wk ∈ argmax
w∈Rm

+

2
(
fwk

(xk)− fwk
(x̂ϵ

⋆)
)
− ∥∇fwk

(xk)∥2 ,

the following holds∥∥xk+1 − x̂ϵ
⋆

∥∥2 ≤ ∥∥xk − x̂ϵ
⋆

∥∥2 − max
w∈Rm

+

{
2
(
fw(xk)− fw(x̂ϵ

⋆)
)
− ∥∇fw(xk)∥2

}
(18)

Denote wϵ
⋆ = argmax

w∈∆m,wmin

λmin

(∑m
i=1 wi∇2fi(x̂ϵ

⋆)
)
, ak = fwϵ

⋆
(xk) − fwϵ

⋆
(x̂ϵ

⋆), and bk =
∥∥∇fwϵ

⋆
(xk)

∥∥2. Let w(xk) =

wϵ
⋆
ak

bk
∈ Rm

+ , we can lower bound of the last expression as follows

max
w∈Rm

+

[
2
(
fw(xk)− fw(x̂ϵ

⋆)
)
− ∥∇fw(xk)∥2

]
≥ 2

(
fw(xk)(xk)− fw(xk)(x̂

ϵ
⋆)
)
−
∥∥∇fw(xk)(xk)

∥∥2
=

(
fwϵ

⋆
(xk)− fwϵ

⋆
(x̂ϵ

⋆)
)2∥∥∇fwϵ

⋆
(xk)

∥∥2 .

Denote x⋆ ∈ argminx fwϵ
⋆
(x). Then, it holds that

(
fwϵ

⋆
(xk)− fwϵ

⋆
(x̂ϵ

⋆)
)2∥∥∇fwϵ

⋆
(xk)

∥∥2
=

(
fwϵ

⋆
(xk)− fwϵ

⋆
(x⋆) + fwϵ

⋆
(x⋆)− fwϵ

⋆
(x̂ϵ

⋆)
) (

fwϵ
⋆
(xk)− fwϵ

⋆
(x̂ϵ

⋆)
)∥∥∇fwϵ

⋆
(xk)

∥∥2
=

(
fwϵ

⋆
(xk)− fwϵ

⋆
(x⋆)

) (
fwϵ

⋆
(xk)− fwϵ

⋆
(x̂ϵ

⋆)
)∥∥∇fwϵ

⋆
(xk)

∥∥2 +

(
fwϵ

⋆
(x⋆)− fwϵ

⋆
(x̂ϵ

⋆)
) (

fwϵ
⋆
(xk)− fwϵ

⋆
(x̂ϵ

⋆)
)∥∥∇fwϵ

⋆
(xk)

∥∥2
=

(
fwϵ

⋆
(xk)− fwϵ

⋆
(x⋆)

) (
fwϵ

⋆
(xk)− fwϵ

⋆
(x̂ϵ

⋆)
)∥∥∇fwϵ

⋆
(xk)

∥∥2 +

(
fwϵ

⋆
(x⋆)− fwϵ

⋆
(x̂ϵ

⋆)
) (

fwϵ
⋆
(xk)− fwϵ

⋆
(x⋆)

)∥∥∇fwϵ
⋆
(xk)

∥∥2
+

(
fwϵ

⋆
(x⋆)− fwϵ

⋆
(x̂ϵ

⋆)
)2∥∥∇fwϵ

⋆
(xk)

∥∥2
≥
(
fwϵ

⋆
(xk)− fwϵ

⋆
(x⋆)

) (
fwϵ

⋆
(xk)− fwϵ

⋆
(x̂ϵ

⋆)
)∥∥∇fwϵ

⋆
(xk)

∥∥2 +

(
fwϵ

⋆
(x⋆)− fwϵ

⋆
(x̂ϵ

⋆)
) (

fwϵ
⋆
(xk)− fwϵ

⋆
(x⋆)

)∥∥∇fwϵ
⋆
(xk)

∥∥2 .

Since wϵ
⋆ ∈ ∆m,wmin it holds that fwϵ

⋆
is β smooth. Then, it holds that

∥∥∇fwϵ
⋆
(x)
∥∥2 ≤ 2β

(
fwϵ

⋆
(x)− fwϵ

⋆
(x⋆)

)
for every

x, and we have

max
w∈Rm

+

[
2
(
fw(xk)− fw(x̂ϵ

⋆)
)
− ∥∇fw(xk)∥2

]
≥

fwϵ
⋆
(xk)− fwϵ

⋆
(x̂ϵ

⋆)

2β
+

fwϵ
⋆
(x⋆)− fwϵ

⋆
(x̂ϵ

⋆)

2β
.

Plugging this in Eq. (18), we arrive to

∥∥xk+1 − x̂ϵ
⋆

∥∥2 ≤ ∥∥xk − x̂ϵ
⋆

∥∥2 − fwϵ
⋆
(xk)− fwϵ

⋆
(x̂ϵ

⋆)

2β
+

fwϵ
⋆
(x̂ϵ

⋆)− fwϵ
⋆
(x⋆)

2β

≤
∥∥xk − x̂ϵ

⋆

∥∥2 − fwϵ
⋆
(xk)− fwϵ

⋆
(x̂ϵ

⋆)

2β
+

ϵ

2β
.

By Lemma D.1 it holds that fw⋆ is M̂f := 1/
√
wminMf self concordant. Then, From Lemma C.2, and its lower bound , i.e.

25

Aligned Multi Objective Optimization

ω (t) ≥ t2

2(1+t) , we have

fwϵ
⋆
(xk)− fwϵ

⋆
(x̂ϵ

⋆) ≥ ⟨∇fwϵ
⋆
(x̂ϵ

⋆),xk − x̂ϵ
⋆⟩+

∥∥xk − x̂ϵ
⋆

∥∥2
x̂ϵ
⋆,w

ϵ
⋆

2
(
1 + M̂f

∥∥xk − x̂ϵ
⋆

∥∥
x̂ϵ
⋆,w

ϵ
⋆

)
≥ −

∥∥∇fwϵ
⋆
(x̂ϵ

⋆)
∥∥ ∥∥xk − x̂ϵ

⋆

∥∥+ ∥∥xk − x̂ϵ
⋆

∥∥2
x̂ϵ
⋆,w

ϵ
⋆

2
(
1 + M̂f

∥∥xk − x̂ϵ
⋆

∥∥
x̂ϵ
⋆,w

ϵ
⋆

) .
By Lemma C.1, we have that

∥∥∇fwϵ
⋆
(x̂ϵ

⋆)
∥∥2 ≤ 2β

(
fwϵ

⋆
(x̂ϵ

⋆)− fwϵ
⋆
(x⋆)

)
≤ 2βϵ, and, hence, −

∥∥∇fwϵ
⋆
(x̂ϵ

⋆)
∥∥ ≥ −√2βϵ.

Plugging this back results with the following

∥∥xk+1 − x̂ϵ
⋆

∥∥2 ≤ ∥∥xk − x̂ϵ
⋆

∥∥2 − ∥∥xk − x̂ϵ
⋆

∥∥2
x̂ϵ
⋆,w

ϵ
⋆

4β
(
1 + M̂f

∥∥xk − x̂ϵ
⋆

∥∥
x̂ϵ
⋆,w

ϵ
⋆

) +
ϵ

2β
+
√

2βϵ
∥∥xk − x̂ϵ

⋆

∥∥
Note that λmin

(
∇2fwϵ

⋆
(x̂ϵ

⋆)
) ∥∥x̂ϵ

⋆ − xk

∥∥2 ≤
∥∥x̂ϵ

⋆ − xk

∥∥2
x̂ϵ
⋆,w

ϵ
⋆
≤ λmax

(
∇2fwϵ

⋆
(x̂ϵ

⋆)
) ∥∥x̂ϵ

⋆ − xk

∥∥2. Since

λmax

(
∇2fwϵ

⋆
(x̂ϵ

⋆)
)
≤ β (smoothness), and since wmin = µϵ

L/(8mβ), then M̂f ≤ 3
√
mβMf/

√
µϵ
L. Thus, it holds

that

∥∥xk+1 − x̂ϵ
⋆

∥∥2 ≤ ∥∥xk − x̂ϵ
⋆

∥∥2 − 1

4β

λmin

(
∇2fwϵ

⋆
(x̂ϵ

⋆)
) ∥∥x̂ϵ

⋆ − xk

∥∥2
1 + 3

√
mMfβ√
µϵ
L

∥∥xk − x̂ϵ
⋆

∥∥ +
ϵ

2β
+
√
2βϵ

∥∥xk − x̂ϵ
⋆

∥∥
Using the assumption that max

w∈∆m

λmin

(
∇2fw(x̂ϵ

⋆)
)
= µϵ

L, Lemma D.2, we have that

λmin

(
∇2fwϵ

⋆
(x̂ϵ

⋆)
)
≥ max

w∈∆m

λmin

(
∇2fw(x̂ϵ

⋆)
)
− 2mwminβ ≥ µϵ

L − µϵ
L/4 = (3/4)µϵ

L.

Finally, we obtain the recurring equation we wish:

∥∥xk+1 − x̂ϵ
⋆

∥∥2 ≤ ∥∥xk − x̂ϵ
⋆

∥∥2 − 3µϵ
L

16β

∥∥x̂ϵ
⋆ − xk

∥∥2
1 + 3

√
mMfβ√
µϵ
L

∥∥xk − x̂ϵ
⋆

∥∥ +
ϵ

2β
+
√

2βϵ
∥∥xk − x̂ϵ

⋆

∥∥
Denote α1 =

3µϵ
L

16β , α2 = 3
√
mβMf√
µϵ
L

, α3 = ϵ
2β , and α4 =

√
2βϵ. Note that α1 ∈ (0, 1), α2 ∈ R+, α3 ≤ α2

1

256α2
2
, and

α4 ≤ α1

4α2
. and

∥∥x− x̂ϵ
⋆

∥∥ ∈ R+ for every x ∈ Rn, we arrive to the recurrence relation analyzed in Lemma C.6. Then, we
obtain

∥∥xk − x̂ϵ
⋆

∥∥ ≤

∥∥xk0

− x̂ϵ
⋆

∥∥(1− 3µϵ
L

32β

) k−k0
2

+
√

16ϵ
3µϵ

L
+ 32

√
2βϵ

9
√
µLmMf

k ≥ k0∥∥x0 − x̂ϵ
⋆

∥∥− k µL
3/2

64β2
√
mMf

o.w.

where k0 :=


44β

(
∥x0−x̂ϵ

⋆∥ 3
√

mβMf√
µϵ
L

−1

)
3µϵ

L

.

F. Missing Proofs
F.1. Proof of Proposition 4.1

Let us restate the claim:

Proposition 4.1 (Unique Optimal Solution). Assume there exists x⋆ ∈ Rn that simultaneously minimizes {fi}i∈[m], namely,
solves Eq. (1). If maxw∈∆m λmin

(
∇2fw(x⋆)

)
> 0 then x⋆ is unique.

26

Aligned Multi Objective Optimization

Proof. Let x⋆ be a minimizer of all functions {fi}i∈[m] which exists due to the AMOO assumption, namely, a solution of

x⋆ ∈ argmin
x

fi(x) ∀i ∈ [m]. (19)

By assumption, it holds that for the weight vector w⋆ ∈ argmaxw∈∆m
λmin

(∑m
i=1 wi∇2fi(x⋆)

)
it holds that

λmin

(∑m
i=1∇2fw⋆

(x⋆)
)
> 0, namely,

∇2fw⋆
(x⋆) ≻ 0. (20)

Notice that x⋆ is a minimizer of fw⋆
(Lemma C.4), and that fw⋆

is a convex function, since fi are convex and w⋆ has
non-negative components. Combining with Eq. (20), it implies that x⋆ is a unique minimizer of fw⋆

.

Assume, by way of contradiction, there exists an additional minimizer that solves Eq. (19), denote by x̂⋆. Since it is a
solution of Eq. (19), it is also a minimizer of fw⋆

. This contradicts the fact fw⋆
has a unique optimal solution x⋆.

F.2. Proof of Proposition 4.2

The proof of Proposition 4.2 is a corollary of Theorem C.1 (Weyl’s Theorem). We establish the result for a general deviation
in Hessian matrices without requiring it to be necessarily diagonal.

Let us restate the result:
Proposition 4.2. Assume that for all i ∈ [m] and x ∈ Rn ||∇2fi(x) − Diag

(
∇2fi(x)

)
||2 ≤ ∥∆∥ where ∥A∥2 is the

spectral norm of A ∈ Rn×n. Let w⋆ ∈ argmaxw∈∆m
λmin

(∑
i wi∇2Diag (fi(x))

)
. Then, λmin

(∑
i w⋆,i∇2fi(x)

)
≥

µG − 2 ∥∆∥ .

Proof. Denote Ai := ∇2fi(x) + ∆i for every i ∈ [m], and
∑m

i ∆i = ∆. Let w⋆, and ŵ⋆ denote the solution of,

w⋆ ∈ argmax
w∈∆

λmin

(∑
i

wi∇2fi(x)

)
, and ŵ⋆ ∈ argmax

w∈∆
λmin

(∑
i

wiAi

)
,

respectively. Let g(w⋆), and ĝ(ŵ⋆) denote the optimal value, g(w⋆) = λmin

(∑
i w⋆,i∇2fi(x)

)
, and ĝ(ŵ⋆) =

λmin (
∑

i ŵ⋆,iAi). Then, since ĝ(w⋆)− ĝ(ŵ⋆) ≤ 0 by the optimality of ŵ⋆ on ĝ, the following holds

g(w⋆) = g(w⋆)− ĝ(w⋆) + ĝ(w⋆)− ĝ(ŵ⋆) + ĝ(ŵ⋆)− g(ŵ⋆) + g(ŵ⋆)

≤ |g(w⋆)− ĝ(w⋆)|+ |ĝ(ŵ⋆)− g(ŵ⋆)|+ g(ŵ⋆)

Using Theorem C.1 (Weyl’s Theorem) the followings are hold: |g(w⋆)− ĝ(w⋆)| ≤ ∆, and |ĝ(ŵ⋆)− g(ŵ⋆)| ≤ ∆. Then,
we obtain

g(w⋆) ≤ 2 ∥∆∥+ g(ŵ⋆)

Finally, since g(w⋆) ≥ µG, by Definition 4.1, we obtain the proof.

F.3. Proof of Lemma C.5

Let us restate the claim:
Lemma C.5 (Recurrence bound AMOO). Let {rk}k≥0 be a sequence of non-negative real numbers that satisfy the
recurrence relation

r2k+1 ≤ r2k − α1
r2k

1 + α2rk
,

where α1 ∈ [0, 2) and α2 ∈ R+. Let k0 :=
⌈
4(r0α2−1)

α1

⌉
. Then, rk is bounded by

rk ≤

{
rk0

(
1− α1

2

) k−k0
2 k ≥ k0

r0 − α1

4α2
k o.w.

.

27

Aligned Multi Objective Optimization

Proof. We split the proof into two regimes, the incremental convergence and linear convergence regime.

Incremental convergence, rk > 1/α2. With this assumption we have 1 + rkα2 < 2rkα2. Then, the following bound
holds:

rk+1 ≤ rk

√
1− α1

2α2rk
.

Recall that
√
1− y ≤ 1− y

2 for every y ≤ 1. Since 1
α2rk

< 1 we have α1

2α2rk
< α1

2 < 1. Hence,

rk+1 ≤ rk

(
1− α1

4α2rk

)
= rk −

α1

4α2
.

For every k′ < k the recursive equation is still in the incremental convergence regime. Thus, for every k′ < k holds that
rk′ > 1/α2.

By solving 1/α2 ≥ r0 − k0α1/4α2 we conclude the maximal iteration after which rk ≤ 1/α2, namely, after at most k0
iterates rk out from the incremental convergence regime.

Linear convergence, rk ≤ 1/α2. With this assumption we have the following bound on the recursive equation:

r2k+1 ≤
(
1− α1

2

)
r2k.

Further, since for every k′ ≥ k it holds that rk′ ≤ rk ≤ 1/α2 the recursive equation continues in the linear convergence
regime. Thus, after at most k0 iterations rk is in the linear convergence regime.

F.4. Proof of Lemma C.6

Let us restate the claim:

Lemma C.6 (Recurrence bound ϵ-AAMOO). Let {rk}k≥0 be a sequence of non-negative real numbers that satisfy the
recurrence relation

r2k+1 ≤ r2k − α1
r2k

1 + α2rk
+ α3 + α4rk,

where α1 ∈ (0, 2), α2 ∈ R+, α3 ≤ α2
1

256α2
2
, and α4 ≤ α1

4α2
. Let k0 :=

⌈
16(r0α2−1)

α1

⌉
. Then, rk is bounded by

rk ≤

rk0

(
1− α1

2

) k′−k
2 +

√
2α3

α1
+ 2α4

α1α2
k ≥ k0

r0 − α1

16α2
k o.w.

.

Proof. We split the proof into two regimes, the incremental convergence and linear convergence regime.

Incremental convergence, rk > 1/α2. With this assumption we have 1 + rkα2 < 2rkα2. Then, the following bound
holds:

rk+1 ≤
√
r2k −

α1rk
2α2

+ α4rk + α3 =

√
r2k

(
1− α1 − 2α2α4

2α2rk

)
+ α3 ≤ rk

√
1− α1

4α2rk
+
√
α3.

The third relation holds since α4 ≤ α1

4α2
by assumption which implies α1/2 ≥ 2α2α4 and by

√
a+ b ≤

√
a +
√
b for

a, b ≥ 0.

Recall that
√
1− y ≤ 1− y/2 for every y ≤ 1. Since 1

α2rk
< 1 we have α1

2α2rk
< α1

2 < 1. Hence,

rk+1 ≤ rk

(
1− α1

8α2rk

)
+
√
α3 = rk −

α1

8α2
+
√
α3 ≤ rk −

α1

16α2
,

28

Aligned Multi Objective Optimization

since α3 ≤ α2
1

256α2
2
=

α2
1

162α2
2

by assumption. For every k′ < k the recursive equation is still in the incremental convergence
regime. Thus, for every k′ < k holds that rk′ > 1/α2.

By solving 1/α2 ≥ r0 − k0α1/16α2 we conclude the maximal iteration after which rk ≤ 1/α2, namely, after at most k0
iterates rk out from the incremental convergence regime.

Linear convergence, rk ≤ 1/α2. With this assumption we have the following bound on the recursive equation:

r2k+1 ≤
(
1− α1

2

)
r2k + α3 + α4/α2 =

(
1− α1

2

)
r2k + α′, (21)

where α′ := α3 + α4/α2. We will first show that rk′ ≤ 1/α2 for all k′ ≥ k. Observe that

r2k+1 ≤
(
1− α1

2

) 1

α2
2

+ α′ ≤ 1

α2
2

since α′ = α3 +
α4

α2
≤ α1

2α2
2

by assumption and by the fact α1 ∈ (0, 2). Hence, rk+1 ≤ 1
α2

which inductively implies that
rk′ ≤ rk ≤ 1/α2 for all k′ ≥ k ≥ k0.

Since in this regime, for all k′ ≥ k Eq. (21) holds, we can upper bound the recursive relation by

r2k′ ≤
(
1− α1

2

)k′−k

r2k +

∞∑
t=0

(
1− α1

2

)t
α′ ≤ r2k0

(
1− α1

2

)k′−k

+
2α′

α1

where the last inequality holds by summing the geometric series and since 1− α1/2 ∈ (0, 1). This inequality implies the
result since

rk′ ≤ rk0

(
1− α1

2

) k′−k
2

+

√
2α′

α1
= rk0

(
1− α1

2

) k′−k
2

+

√
2α3

α1
+

2α4

α1α2

by
√
a+ b ≤

√
a+
√
b for a, b ≥ 0. Finally, since for every k′ ≥ k it holds that rk′ ≤ rk ≤ 1/α2 the recursive equation

continues in the linear convergence regime. Thus, after at most k0 iterations rk is in the linear convergence regime.

F.5. Proof of Lemma D.2

Let us restate the claim:
Lemma D.2 (Continuity of Minimal Eigenvalue of Hessian). Let x ∈ Rn. Further, let w⋆ ∈ argmax

w∈∆m

λmin

(
∇2fw(x)

)
,

ŵ ∈ argmax
w∈∆m,wmin

λmin

(
∇2fw(x)

)
. It holds that λmin

(
∇2fŵ(x)

)
≥ λmin

(
∇2fw⋆

(x)
)
− 2mwminβ.

Proof. To establish the lemma we want to show that for any w ∈ ∆m there exists ŵ ∈ ∆m,wmin such
that λmin

(∑
i ŵi∇2fi(x)

)
≥ λmin

(∑
i wi∇2fi(x)

)
− 2mwminβ. We start by bounding the following term∥∥∇2fw(x)−∇2fŵ(x)

∥∥
2

for any x ∈ Rn. By the triangle inequality and the positive homogeneity, we have∥∥∥∥∥∑
i

(wi − ŵi)∇2fi(x)

∥∥∥∥∥
2

≤
∑
i

∥∥(wi − ŵi)∇2fi(x)
∥∥
2
=
∑
i

|wi − ŵi|
∥∥∇2fi(x)

∥∥
2
≤ β

∑
i

|wi − ŵi|,

while the last inequality holds since {fi}i∈[m] are β smooth. Since for any w ∈ ∆m there exist ŵ ∈ ∆m,wmin
such that∑

i |wi − ŵi| ≤ 2mwmin, we obtain that for every x ∈ Rn it holds that

∥∥∇2fw(x)−∇2fŵ(x)
∥∥
2
=

∥∥∥∥∥∑
i

(wi − ŵi)∇2fi(x)

∥∥∥∥∥
2

≤ 2mwminβ.

Thus, by using Theorem C.1 we obtain that for any w ∈ ∆m

|λmin(∇2fw(x))− λmin(∇2fŵ(x))| ≤
∥∥∇2fw(x)−∇2fŵ(x)

∥∥
2
≤ 2mwminβ.

By setting w as w⋆ we conclude the result.

29

	Introduction
	Related Work
	Gradient Weights in Multi-task & Meta Learning
	Proxy & Multi-fidelity Feedback

	Aligned Multi Objective Optimization
	The CAMOO Weight Optimizer
	Practical Implementation

	The PAMOO Weight Optimizer
	Practical Implementation

	-AAMOO: Robustness to Alignment Assumption
	Toy Experiment
	Conclusions
	Additional Experimental Details
	Toy Experiments: Approximate AMOO
	Toy Experiments: Reducing Computational Complexity of PAMOO

	Challenges in Analyzing CAMOO
	fwk is not a Strongly Convex Function
	Weighted function is not necessarily convex

	Preliminaries and Basic Properties
	Auxiliary Results

	Proofs of AMOO Results
	Proof of Theorem 4.2
	Proof of Theorem 5.2

	-Approximation Solution
	Missing Proofs
	Proof of Proposition 4.1
	Proof of Proposition 4.2
	Proof of Lemma C.5
	Proof of Lemma C.6
	Proof of Lemma D.2

