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ABSTRACT

We consider the problem of unsupervised hypergraph alignment, where the goal is
to infer node correspondence between two hypergraphs based solely on their struc-
ture. Hypergraphs generalize graphs by allowing hyperedges to connect multiple
nodes, and they provide a natural framework for modeling complex higher-order
relationships. We introduce FALCON, a framework that effectively unifies hyper-
graph filtration with a multi-scale Gromov-Wasserstein consensus to solve unsu-
pervised hypergraph alignment. The multi-scale, hierarchical structure revealed
by filtration provides a set of robust, nested geometric constraints that are natu-
rally regularized and aggregated by the GW framework. This synergy is uniquely
suited to overcoming structural noise, a critical challenge where prior methods
fail. Experiments on real-world datasets demonstrate that FALCON substantially
outperforms state-of-the-art baselines, proving especially robust to noise.

1 INTRODUCTION

Graph alignment seeks to identify a correspondence between the nodes of two graphs so that struc-
tural properties are preserved. The problem is NP-hard and closely related to the Quadratic Assign-
ment Problem (QAP) (Lawler, 1963), making the development of scalable and accurate algorithms
particularly challenging (Conte et al., 2004; Foggia et al., 2014; Yan et al., 2016; Tang et al., 2025;
Trung et al., 2020). Nonetheless, graph alignment remains a core task in data mining, with wide-
ranging applications in image processing, pattern recognition, social network analysis, and bioinfor-
matics (Bunke, 2000; Sun et al., 2020; Haller et al., 2022; Conte et al., 2004; Foggia et al., 2014; Yan
et al., 2016). While most research has focused on conventional graphs, real-world systems, such as
biological interaction networks or multi-user communication platforms, often involve higher-order
interactions. These interactions are naturally captured by hypergraphs (Kim et al., 2024; Lee et al.,
2025). Aligning such structures poses additional challenges due to the combinatorial complexity of
higher-order interactions. Moreover, in many settings, node features are unavailable or unreliable,
necessitating fully unsupervised methods that infer alignment purely from the network topologies.

In this work, we address the problem of unsupervised hypergraph alignment, where we seek to
recover a meaningful correspondence between the nodes of two hypergraphs without relying on la-
beled training data, or node/hyperedge features. In this setting, given two hypergraphs, the objective
is to maximize the number of correctly aligned nodes with respect to an unknown ground truth.

To solve this problem, we introduce FALCON (Filtration-based hypergrAph aLignment via
Consensus Optimal traNsport), a fully unsupervised alignment algorithm that operates directly on
the hypergraphs and leverages their structural information across multiple scales. Our approach
builds on the Gromov-Wasserstein (GW) discrepancy, originally defined for comparing metric mea-
sure spaces via optimal transport (Peyré et al., 2016). We formulate the Multi-Scale Gromov-
Wasserstein (MSGW) consensus for hypergraph alignment and show it is equivalent to computing a
Euclidean Fréchet mean of transport plans, lending it theoretical stability and optimality guarantees.

To further incorporate the multi-scale perspective into the hypergraph alignment problem, we adapt
the concept of filtration, a commonly used tool in persistent homology (Aktas et al., 2019; Pun
et al., 2022). This approach enables us to construct subhypergraphs at different scales, facilitating a
systematic comparison of hypergraphs across multiple levels of abstraction.
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FALCON combines MSGW and hypergraph filtration to obtain transport plans at each scale, which
are jointly aggregated into a global alignment via a consensus transport matrix. Our multi-scale
problem formulation enhances robustness to structural noise and preserves global consistency across
filtration levels. In contrast to hypergraph alignment based on clique or bipartite expansions (which
transform the hypergraphs to conventional graphs and apply graph-based alignment), our framework
directly aligns native hypergraph structures without sacrificing higher-order information. Experi-
ments on real-world datasets demonstrate that FALCON substantially outperforms state-of-the-art
baselines, proving especially robust to structural perturbations.

2 RELATED WORK

There are several surveys on graph alignment (Conte et al., 2004; Foggia et al., 2014; Yan et al.,
2016; Tang et al., 2025; Trung et al., 2020), and a wide range of methods exploit the close con-
nections to graph isomorphism and the quadratic assignment problem (QAP) (Lawler, 1963; Yan
et al., 2020). Applications span computational biology (Ma & Liao, 2020), image processing (Sun
et al., 2020), social-network de-anonymization and linkage (Senette et al., 2024; Shu et al., 2017),
and natural language processing (Osman & Barukub, 2020). A broad spectrum of techniques has
been explored, including spectral methods (Hermanns et al., 2023; Nassar et al., 2018), random
walks (Cho et al., 2010), probabilistic models (Qi et al., 2021), and others.

Graph alignment methods are typically classified into restricted and unrestricted approaches (Skitsas
et al., 2023). Restricted methods rely on partial ground-truth correspondences or additional domain-
specific features. For instance, social network linkage methods often incorporate user attributes and
partially-known mappings (Nie et al., 2016; Li et al., 2024; Senette et al., 2024), and protein-protein
interaction network aligners often rely on biological features (Devkota et al., 2024; Kalaev et al.,
2008; Liao et al., 2009; Singh et al., 2008).

In contrast, unrestricted methods operate in an unsupervised setting, using only network topology.
Our approach belongs to this category. REGAL (Heimann et al., 2018) aligns graphs via repre-
sentation learning and embedding alignment. Xu et al. (2019b) propose a framework based on the
Gromov-Wasserstein discrepancy to jointly learn node embeddings and transport maps. SGWL (Xu
et al., 2019a) improves scalability by recursively partitioning graphs before alignment. CONE (Chen
et al., 2020) optimizes neighborhood consistency, computed via Jaccard similarity, and aligns node
embeddings accordingly. GRASP (Hermanns et al., 2023) draws on functional maps and heat ker-
nels from shape analysis. PARROT (Zeng et al., 2023) combines optimal transport with restart-based
random-walk costs to incorporate both structure and attributes. FUGAL (Bommakanti et al., 2024)
proposes an unrestricted graph alignment framework that directly optimizes a relaxed QAP while
incorporating a feature-based linear assignment problem (LAP) regularizer. BIGALIGN (Koutra
et al., 2013) focuses on the alignment of bipartite graphs by proposing an iterative optimization
framework that finds soft correspondence matrices for both node partitions simultaneously.

While most existing alignment methods are limited to pairwise graphs, hypergraphs offer a richer
framework for modeling higher-order interactions. Several recent surveys discuss learning on hy-
pergraphs (Gao et al., 2020; Catalyiirek et al., 2023; Antelmi et al., 2023), but alignment techniques
remain limited. Tan et al. (2014) study restricted user alignment in hypergraphs using partial cor-
respondences. Mohammadi et al. (2016) extend alignment to graph triangles, generalizing from
nodes to higher-order substructures. Do & Shin (2024) present an unsupervised approach using
Struct2Vec, contrastive learning, and a graph adversarial network to match hypergraph embeddings.

Further work on higher-order alignment appears in computer vision, where methods often assume
k-uniform hyperedges, rely on geometric features, and use partial correspondences (Nguyen et al.,
2015). For example, CURSOR is a feature-driven approach designed for low-order, uniform or
near-uniform hypergraphs (Zheng et al., 2024). Other supervised approaches frame hypergraph
matching as a node classification task (Liao et al., 2021). Additional works repurpose hypergraph
structures for related tasks, e.g., H'MN (Zhang et al., 2021) for graph similarity and attention-based
scoring, or target tracking with rule-based label disambiguation (Li et al., 2023).

In contrast, our FALCON algorithm is fully unsupervised and infers node correspondences by min-
imizing a multi-scale Gromov-Wasserstein discrepancy over structural topology alone.
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3 PRELIMINARIES

Table 7 in the appendix gives an overview of the used notation. We use [k] with k& € N to denote the
set {1,...,k} and we write Ay, := {w € R’go ‘ Z’:nzl Wy = 1} for the probability simplex of
dimension k. An undirected hypergraph G = (V, E) consists of a finite set of nodes V' and a finite
set of hyperedges E C 2V \ {0}, i.e., each hyperedge e € E is a non-empty subset of V. Given a
hypergraph G = (V, E) and a subset of hyperedges E’ C E, the subhypergraph induced by E’ is
defined as G’ = (V', E') where V' = |J, 5 e. We define the cardinality of an edge e, denoted |e|,
as the number of nodes incident to e. A hypergraph G = (V, E) is k-uniform if all edges e € E
have cardinality |e| = k. We call a 2-uniform hypergraph a graph, and its hyperedges edges. We
formally define the hypergraph-alignment problem as follows.

Hypergraph Alignment Problem. Given two hypergraphs G = (Vs, E;) and Gy = (V;, E;), with
|Vs| = | V4|, the goal is to find a bijective mapping ¢ : Vy — V; that maximizes

> 1p(v) = ()], (1)
veVy
where 7 : V; — V4 is the (unknown) ground-truth mapping.

We consider the unsupervised and unrestricted setting, where the alignment must be inferred solely
from the structure of the hypergraphs. That is, we do not assume access to node or hyperedge
features, side information, or known labels. Moreover, we may assume |V;| = |V;| without loss of
generality by padding the smaller vertex set with isolated (dummy) nodes.

Graph representations. Hypergraphs can be represented as conventional graphs in two ways. The
bipartite representation encodes a hypergraph G = (V, E) as a bipartite graph! B(G) = (VUW, F),
where W contains a node w, for each hyperedge e € E, and (u, w.) € F if and only if u € e. This
encoding is lossless. Second, the clique representation builds a graph C(G) by replacing each
hyperedge e with a clique on its nodes. This can lead to information loss, as the original hypergraph
cannot generally be recovered. While such graph-based representations could, in principle, be used
for hypergraph alignment, our experiments (Section 5) show that they are ineffective: the clique
view discards structural information, and the bipartite view significantly increases the problem size.
See Figure 3 in the Appendix for an illustration of the representations.

3.1 GROMOV-WASSERSTEIN DISCREPANCY

Our Gromov-Wasserstein-based framework operates directly on hypergraphs without reducing them
to graphs. It combines the ideas of filtration, which is commonly used in persistent homology (Otter
et al., 2017), with Gromov-Wasserstein (GW) learning (Peyré et al., 2016; Xu et al., 2019b;a) via
the GW discrepancy, which generalizes the GW distance to arbitrary dissimilarity matrices (Mémoli,
2011). The GW discrepancy is defined as follows.

Definition 1. The Gromov-Wasserstein discrepancy between two measured dissimilarity matrices
(Cs, ps) € RIVEXIVEL S Ay and (Cy, pe) € RIVIIVED 5 Ay s defined as
i L(Csli, k], Cil7, €)1 T 2
pofin 3 L(Cli, k], Cili, )Ty e, )
i,5,4,k
where I (pg, pit) = {T € RLVS‘XM‘ | T1yy,) = ps, T "1}y, = p1¢} and L is an element-wise loss
function (Peyré et al., 2016).

In the case of conventional graph alignment (instead of hypergraph alignment), given two graphs
Gy = (Vy, E;) with € {s,t}, the pairs (Cy, p1,,) € RIV=XIVal x Ay, | represent dissimilarity ma-
trices C, = [cir j,] e RIV=1xIVzl pased on the relational interactions F.;, the marginal distributions
pz = [itu] € Ay, denote the normalized degree distribution of the nodes. Then 7' denotes the op-
timal transport between the nodes V; and V; of the two graphs, where T;; represents the probability
that node v; € V; corresponds to node v; € V;.

'A graph is bipartite if the vertex set V of graph G = (V, E) can be partitioned into two sets U; and U
such that for all edges exactly one vertex is in U; and the other in Us.
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4 MULTI-SCALE GROMOV-WASSERSTEIN HYPERGRAPH ALIGNMENT

We now introduce our framework that aligns two hypergraphs by combining a filtration-driven multi-
scale view with Gromov-Wasserstein (GW) optimal transport. Rather than relying on a single pair-
wise cost derived from the full hypergraph, we first construct a nested sequence of subhypergraphs
via a filtration, where each level captures structural relationships at a different granularity. Each
level then yields its own cost matrix and GW transport plan, reflecting how node-node relation-
ships appear under progressively richer hyperedge information. These per-level transport plans are
aggregated into a consensus plan, providing a stable and noise-robust alignment.

4.1 HYPERGRAPH FILTRATION

To construct the multi-scale representation, we employ a filtration, a fundamental concept in topo-
logical and combinatorial data analysis that constructs a nested sequence of structures capturing
how features evolve across multiple scales (Aktas et al., 2019). Here we utilize the nested-space
perspective from topological data analysis (without employing homology itself) to obtain nested hi-
erarchies of hypergraphs that allow robust alignment under noisy signals. Real-world hypergraphs
often contain hyperedges of varying sizes and densities, reflecting structures at different levels of
granularity (Lee et al., 2025). For example, small hyperedges may capture localized interactions,
while larger ones represent broader groupings or contextual co-occurrences. By applying filtration
based on normalized hyperedge size, we utilize structurally-reliable subgraphs at lower granularity
levels, gradually incorporating coarser, and potentially more noisy structures, as the scale increases.

Definition 2. Given a hypergraph G = (V, E), a weight function w : £ — R, and a scale parameter
r € R, the subhypergraph F,, (G, r) is induced by the hyperedges E' = {e € E | w(e) < r}.

Varying r generates a sequence of nested subhypergraphs. These are connected via inclusion maps
representing the embedding of smaller subhypergraphs into larger ones.

Lemma 1. Let G = (V, E) be a hypergraph and » < ¢ € R. Then the inclusion map ¢, ¢ :
F,(G,r) — F,(G,q) embeds F,(G,r) into F,, (G, q), preserving its structure.

This lemma implies that subhypergraphs grow monotonically with increasing r, forming a natural
filtration {F,,(G, r)},cr for some subset R C R. Figure 4 in the Appendix shows such a filtration.

Since we assume a finite number of hyperedges, there exists a maximum scale 7, such that
F,(G,r") = Fu (G, rmax) for all 7/ > ry... The structure of F,,(G,r) only changes at values
of r where new hyperedges are added, i.e., at values in {w(e) | e € E'}. We call these values critical
scale parameters, each corresponding to a structural change in the filtration. By selecting a subset

W C {w(e) | e € E}, we define a discrete filtration {F,,(G, 7p,)}5,_,» where 7y < --- < 1¢ are

m=1>

the selected critical values and & = |[W)|. We refer to each F,,(G, ny,) as filtration level m.

Next, we define filtration-based dissimilarities. Let { F,, (G, n,,)}5,_, be a filtration of G = (V, E).
We define the dissimilarities between nodes u,v € V based on F,,(G,n,,), which capture the
observed dissimilarity at filtration level m € [¢]. For each m € [€], we define the cost matrix
Cc™ e RIVIXIVI to capture pairwise node dissimilarities based on their co-occurrence in hyperedges
from F,, (G, n,,). Specifically, the entry C™ [u, v] is given by:

1

C™ [u,v] = a0 T T

3)
where 6™ (u,v) is the number of hyperedges in F,,(G,n,,) that contain both nodes u and v in
V. For diagonal entries, we set C"[u,u] = 0. Thus C"™[u,v] ensures that node pairs sharing
more hyperedges at level m have smaller dissimilarities, while pairs with no shared hyperedges
receive the maximum dissimilarity of 1. Equation (3) is motivated by the observation that node
similarity in hypergraphs is naturally reflected in their co-occurrence within hyperedges (Antelmi
et al., 2023). Moreover, in the extremal case where all hyperedges have distinct weight w(e), the
resulting filtration sequence is in fact lossless.

Theorem 1. Let G = (V, E) be a hypergraph in which every hyperedge has size at least 2 and
let w : E — R be a weight function that assigns pairwise distinct values to all hyperedges. Let
the filtration be induced by w and use all critical thresholds, so that at level m the subhypergraph
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contains exactly the edges ey, ..., e, ordered by increasing weight w(e;) < --- < w(eg), where
€ = | E|. Let C™ be the dissimilarities at level m. Then the mapping G — {C™}5 _, is injective.

In the following, we apply the above construction separately to G, = (V,, E,) for x € {s,t},
writing C™™ € RIV=1*IVel built from F, (G, 1)

4.2 FILTRATION-BASED MULTI-SCALE GW CONSENSUS

To fully utilize our hypergraph filtration framework, we use the GW discrepancy to integrate multiple
pairs of measured dissimilarity matrices, capturing multi-scale structure through globally aligned,
mass-preserving transport plans. Now, let YW, be a set of ¢ critical scale parameters (determined by a
density parameter y; we provide details on how to choose W, in Section 4.4). For each m € [{] and
x € {s,t}, let the per-level dissimilarities CI™ be as defined in the previous section. We then define
a multi-scale GW consensus transport plan as the aggregation of the £ per-level GW objectives over
a shared feasibility region, with independent transport plans at each level.

Definition 3 (Consensus Coupling). Let {C7}¢ _ and {C;"} _, be dissimilarity matrices at &
filtration levels, and let 115 and p; be node marginals. For each level m € [£], we compute

T .= ar min L(C™[i, k], C™[j,0) T T!™,
gT’"’EH(uMut)iJZH ( ol K, Gl D J Lkl

where IT(pus, ue) = {T € RLVSIXW'SI | T1yy,) = ps; T 71}y, = pe} and L is an element-wise loss
(e.g., L(a,b) = (a—b)?). For a probability vector w = (w1, ..., wg) € Ag, the consensus coupling
is the convex mixture

3
T = Zmem* € IT(us, pit)-
m=1

For the marginal distributions p, with z € {s,¢} (that are common for all levels), we use the
normalized node degree distribution, where a node’s degree is its count of incident hyperedges.
In the following, we establish (i) well-posedness and uniqueness of the consensus transport plan
(Theorem 2), (ii) its stability to per-level errors (Theorem 3), and (iii) near-optimality of simple
uniform weighting under a natural correlated error model (Theorem 4).

Theorem 2. The consensus coupling T lies in IT (s, 4¢) and uniquely minimizes

NTE 11, ) Doyt Wi [T = T [

Furthermore, the aggregation yields stability across the different scales and small per-level pertur-
bations aggregate linearly as shown in the following.

Theorem 3. Suppose that under perturbations of the costs (C™,C™) — (C™,C™), the cor-
responding optimizers satisfy || 7"* — T™*||p < d,, for all m. Then the consensuses obey

IT=Tlr < 5 ) W 0.

The consensus 7 provides robustness which stems from two complementary principles: the nature
of structural noise in hypergraphs and the stability of the aggregation itself. First, our size-based
filtration naturally prioritizes more reliable signals. Smaller hyperedges, which appear early and
persist through later filtration levels, have their structural signals reinforced repeatedly. Conversely,
very large (and potentially noisy) hyperedges influence fewer levels. This prioritization is motivated
by realistic noise models: under random incidence corruption (e.g., flips with probability p), the
expected number of errors in a hyperedge scales with its cardinality p|e|. Thus, larger hyperedges
are a priori more likely to be distorted, making the reinforcement of smaller, cohesive structures a
robust strategy.

Second, the aggregation step is inherently stable. A simple uniform average (w,, = 1/£) is a nearly
optimal choice in the following setting. Let T™* &< Rff_sx"t be the per-scale GW couplings for
m = 1,...,&, and let the consensus be T, = an:l wpT™ with w € Ag. For the unknown
target transport T*, we decompose T"* = T* + &,,, with E[e,,] = 0, under the assumption of
zero-mean perturbations capturing finite-sample noise, entropic smoothing, and modeling mismatch.
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Under squared Frobenius loss, we define the risk R(w) = E[|T,, — T*|%] = wT ¥ w where the
covariance matrix X € R¢*¢ has entries X, = ]E[(sm, En) F] The optimal weights under the
linear constraint 17w = 1 are then w* o< X~ '1.

Theorem 4. If per-scale errors are equicorrelated, i.e., ' = 02((1 —p)l+p 11T) with p € [0, 1),

then w* = %1 Ji.e.,uniform. Moreover, for any w € A¢, R(w) — R(%l) =02(1-p) ||w - %1”;

The equicorrelation model fits our setting as later filtration levels subsume earlier ones, making 7"*
highly collinear across m; thus off-diagonals of X' are large and roughly homogeneous. Moreover,
every T™* obeys the same (s, ;) and is smoothed by the same entropy scale, reducing between-
level variability beyond signal, thereby justifying the equicorrelation assumption.

Even though uniform weighting is nearly optimal in this equicorrelation model setting, for the gen-
eral case, we introduce a data-driven weighting scheme. We let the data decide how to weight scales
via a leave-one-out agreement. For each level m, let T"* € R™=*"™ be the optimal coupling and
U = vec(T™) € R? with d = n,n;. We define the agreement score

smo= (T™, T_pm) with T, = 5 Z T,
n#m

i.e., how well level m aligns with the consensus of all other levels. We obtain the final weights by
a softmax on standardized scores s,,,, with a hyperparameter 3,, controlling sharpness. Our weights
reward total similarity to other levels while penalizing self-energy. See Appendix B for details.

Algorithm 1: FALCON

Input: Hypergraphs G, Gy; filtration density v € (0, 1]; entropic weight 8 > 0
Output: Bijective node mapping ¢ : Vs — V,

Select critical scales VW, and build £ = [W, | filtration levels (Section 4.4)
§

m=1

Build marginals 5, ¢ and per-level costs {(C™", C™)}

init — /’LS,U/:

for m = 1to & do .
L T™ — argminge g, ) Law (CF, C T) — BH(T) initialized at 7™

Determine weights w = (w1, ..., wg) € A¢ (uniform or data-driven)

Build consensus 7' < anzl Wy, T™

~

Solve Hungarian on —7' to get ¢

4.3 THE FALCON ALGORITHM

Algorithm 1 shows our principled algorithm FALCON that computes the consensus transport and
then decodes a bijective node mapping. Let WV, denote the set of critical scale parameters selected
by density ~ (see Section 4.4), with & = |W,| filtration levels. For each level m € [{] and hy-
pergraph G, with z € {s,t}, we build a structural dissimilarity C2* € R"=*"= from hyperedge
co-occurrence counts on the filtered hypergraph GG, and we set node marginals (., as the normal-
ized degree distribution. Given cost pair (C7*, C}") and marginals (js, pt¢), we solve the standard
entropically-regularized GW subproblem

T™ =arg min Lew(Cl,C%T) — BH(T), 4)
TEI (s, pt) ) )
where H(T) = —3_, Ty (log Toyy — 1) is entropic regularization, and Lgw is Definition 1 instan-

tiated with the squared loss L(a, b) = (a — b)%. We use a KL-proximal/entropic GW solver (Cuturi,
2013; Peyré et al., 2016; 2019) as an off-the-shelf routine.

Algorithm 1 solves Equation (4) independently at each level, initialized with the outer product
Tt = g, . We then determine the weights w € Ag, either uniform or data-driven based on
the computed 7"*, and form the consensus transport plan 7' = Efnzl wy, T, Finally, we get the

bijective mapping ¢ : Vs — V; by solving a linear assignment problem on the similarity —7" using
the Hungarian method (Kuhn, 1955).
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Theorem 5. Assume |V;| = |V;| =: n and ¢ filtration levels. Let K be the number of KL-proximal
outer iterations per per-level GW solve. Using dense operations, the time complexity is O(§ - (| E| -
n? 4+ Kn?)), which reduces to O(¢ Kn?) for |E| = O(Kn), and the space complexity is O(£n?) to

store {C7", C/™}% _, and the transport plans.

The complexity of O(£Kn?) is comparable to state-of-the-art graph aligners, such as GWL (Xu
et al., 2019b) or FUGAL (Bommakanti et al., 2024).

4.4 SCALE PARAMETER SELECTION

For the filtration, we employ normalized size of hyperedges wsize(e) = |e|/Smax With Smax =
max.cg |e| (see Figure 4 in the appendix for an example). The chosen weights define the filtra-
tion, i.e., cumulative subhypergraphs F,, (G, n) over increasing thresholds 7. For critical-parameter
selection, we consider the sets of scale parameters VW5 and W, of the two hypergraphs and define
Wsur = Ws UW,. We then choose the subset W, C W, of size ¢ = [y - W] via a two-sided
support rule: sweeping thresholds in ascending order, we place a split whenever both G5 and G
have accumulated at least one additional hyperedge since the previous split; if fewer than ¢ such
points exist, we pad with the largest threshold (see Appendix C for details). Our two-sided sup-
port rule ensures that we only compare scales where both hypergraphs have undergone a structural
change. This avoids trivial comparisons where one hypergraph’s structure is static.

5 EXPERIMENTS

We discuss the following research questions: RQ1: How does FALCON compare to state-of-the-
art methods under structural perturbations? And how robust is the method to different noise types
and levels? RQ2: How does the running time compare to the baselines? RQ3: How does the
hyperparameter v impact the accuracy and the running time?

We provide additional ablation studies on the filtration method and the cost function in Appendix F.

Table 1: Dataset statistics.

Dataset V| |[E| Minle] Maxle| Avg.le|] Avg. deg(u) Domain
Pollinator 130 401 2 104 6.60 20.36 Ecology
NDC-Classes 628 796 2 39 7.20 9.12 Pharmacology
Email-EU 986 24520 2 40 3.62 90.04 Communication
Dawn 2290 138742 2 16 3.99 241.55 Healthcare

Datasets: We benchmark our approach on four real-world hypergraphs covering a range of domains
and non-uniform hypergraph characteristics (details in Appendix D). Table 1 shows the dataset
statistics. To create alignment tasks, we generate a target hypergraph G; by systematically per-
turbing a source hypergraph G5 from each dataset. We apply three challenging types of structural
noise: (1) node removals, (2) incidence noise, and (3) hyperedge additions. For each noise type,
we use five probability levels (noise ratio p, from lower to higher noise) to control the perturbation
intensity. The node identities in G are then randomly permuted to define the ground-truth mapping
for evaluation. See Appendix D for details about the datasets and noise types.

Algorithms and experimental setup:

Since unsupervised hypergraph alignment lacks established benchmark methods?, we primarily
benchmark against strong unsupervised graph alignment methods. We include the state-of-the-art
baselines GWL (Xu et al., 2019b), SGWL (Xu et al., 2019a), REGAL (Heimann et al., 2018),
PARROT (Zeng et al., 2023), and FUGAL (Bommakanti et al., 2024). Because these methods are

?An intuitive baseline for our task would be HyperAlign (Do & Shin, 2024). We ran the authors’ public
code (GitHub commit 26ae732); the program terminates without producing a non-trivial transport plan, so no
alignment accuracy (other than ~ 0) can be computed. In direct communication the authors confirmed that their
approach and released code suffer from reproducibility issues and they have acknowledged this publicly on the
project’s repository (https://github.com/manhtuando97/HyperAlign). At the time of writing,
they are working on reproducing their own findings or issuing a corrigendum. Consequently, we do not include
HyperAlign in our evaluation.
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Figure 1: Accuracy results on real-world datasets under different noise types (node removals, inci-

dence flips, hyperedge additions).

Table 2: Average running times (% std.) over all runs (OOT—out of time, OOM—out of memory).

Algorithm Pollinator NDC-Classes Email-EU Dawn
REGAL(c) 0.20£0.15 0.89 £0.19 3.82£2.03 10.36 + 0.44
REGAL(b) 0.51 £0.42 1.95+0.24 73.31+£7.93 OOM
GWL(c) 16.59 £+ 1.49 70.01 + 7.86 88.20 £4.19 398.40 + 27.27
GWL(b) 19.98 £11.40  134.28 £11.93 OOoT OOM
SGWL(c) 1.02 £0.39 6.58 + 3.82 38.45+6.74 7177 +£2.12
SGWL(b) 9.56 +4.24 71.32 4+ 49.17 ooT OOM
PARROT(c) 5.87 £ 1.99 1.70+1.10 31.51 £10.70 120.65 + 27.82
FUGAL(c) 8.95 £+ 2.85 15.30 £ 6.78  217.49 £ 384.30 374.14 £ 310.64
FUGAL(b) 10.52 £ 5.18 115.56 + 35.49 OooT OOM
HCN+CONE 4.62 +1.86 0.86 £ 0.02 1.16 +0.08 3.80 £0.41
BIGALIGN 0.47 £0.06 1.19+£0.09 1985.87 +101.32 OOM
FALCON(loo) 0.75 + 0.02 1.47 £ 0.18 13.80 £+ 1.63 73.30 + 5.50
FALCON(uniform) 0.74 £ 0.08 1.47 £ 0.18 13.80 + 1.62 73.02 £ 5.61

designed for conventional graphs, we evaluate each using both the clique (c) and bipartite (b) hy-
pergraph representations. We also include BIGALIGN (Koutra et al., 2013), which is specifically
designed for bipartite graphs. Finally, as a native hypergraph baseline, we introduce HCN+CONE,
which computes hypergraph-aware embeddings via HCN (Bai et al., 2021) and aligns them using
the CONE transformation (Chen et al., 2020). See Appendix E for implementation details.
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Our algorithm, denoted by FALCON, is implemented in Python 3.9 and PyTorch 2.5.1. We set the
hyperparameter v = 1 unless stated otherwise. We use two variants: one using uniform weighting
(uniform) and one using the data-driven weighting (5,, = 1) based on leave-one-out (loo). Finally,
for the Sinkhorn solver we use 5 = 0.1, K = 200 outer iterations, and I;, = 10 inner iterations.
These choices worked well across all experiments and did not require extensive tuning.

All experiments were run on a computer cluster. Each experiment ran exclusively on a node with
an Intel(R) Xeon(R) Gold 6130 CPU @ 2.10 GHz, 384 GB of RAM, and an NVIDIA A100 GPU. We
used a time limit of one hour. Our source code and the datasets are anonymously available.?

5.1 RESULTS

RQ1: Accuracy and robustness. Figure 1 reports mean accuracy (fraction of correctly matched
nodes) over ten runs, with error bars showing standard deviation. Across datasets and noise con-
ditions, both FALCON variants typically achieve the highest or near-highest accuracy. On NDC-
Classes, FUGAL(c) is often the strongest baseline and even slightly exceeds FALCON at some
intermediate noise ratios under noise types 1 and 2, while FALCON remains highly competitive.
On Email-EU, FUGAL(c) exhibits a non-monotonic accuracy curve as noise increases, which we
attribute to strong structural symmetries so moderate noise can sometimes move the solution closer
to or further from the reference permutation. On smaller datasets (Pollinator, NDC-Classes) most
methods do well at low noise, but graph-based baselines degrade sharply as perturbations grow, es-
pecially on the larger Email-EU and Dawn. Bipartite variants often fail to complete (scalability; see
RQ2), while clique-based methods scale but decline steadily. Noise type 3 (hyperedge addition) is
particularly challenging: random large hyperedges induce spurious cliques that overwhelm align-
ments, yet FALCON remains robust. In our size-based filtration, small hyperedges enter early and
persist across levels, so any random bi-incidence errors (types 1 and 2) affecting them are inher-
ited by all subsequent levels, creating a strong shared error component across scales. This yields
an approximately equicorrelated per-scale error structure, under which Theorem 3 implies uniform
averaging is near-optimal; accordingly, FALCON (uniform) and FALCON(loo) perform nearly iden-
tically. In contrast, type 3 noise injects large random hyperedges only at late levels, breaking this
alignment; leave-one-out weighting down-weights these corrupted levels, so FALCON(loo) out-
performs FALCON(uniform). In summary, FALCON ’s multi-scale filtration and principled GW
consensus yield resilience to structural noise and achieves state-of-the-art accuracy.

RQ2: Efficiency. Table 2 reports running times in seconds. Both FALCON variants (uniform, loo)
are substantially faster than the strongest accuracy competitors GWL(c) and SGWL(c), with the gap
widening on larger datasets. The main scalability bottleneck is the bipartite representation, which
expands the node set from |V| to |V| 4 | E|, leading to memory/time failures on large hypergraphs.
Clique-based methods keep |V'| nodes but operate on dense graphs from clique expansion; by work-
ing directly on the native hypergraph, FALCON is more efficient. As the running time linearly
depends on &, we provide an empirical analysis of the number of filtration levels ¢ in Appendix F.3,
showing that £ remains small (< 40) across all datasets. FALCON uses at most ~ 1.2 GiB CPU
RAM and 969 MiB GPU VRAM (see Table 4). Although REGAL(c) and PARROT(c) are often
faster, they give up substantial accuracy and robustness (see RQ1). Overall, FALCON delivers the
best balance of accuracy and scalability.

Table 3: Scalability experiment with average running times (& std.) over 10 runs.

n 4000 6000 8000 10000 12000 14000 16 000
Runtime (s) 81.9+03 1513+09 288.1+19 5587+34 891.6+52 15083+6.1 2261.8+99

We additionally evaluate scalability on synthetic hypergraphs generated by the following random
model. For a chosen number of nodes n, we sample m = 10° hyperedges independently by first
choosing an edge size uniformly from the interval [45, 50] and then drawing that many distinct nodes
uniformly at random. This produces the source hypergraph GG, which contains all sampled hyper-
edges. The target hypergraph G, is obtained by copying G5 and applying a random permutation
to its node labels while retaining the ground-truth correspondence. We report the average runtimes

Shttps://gitlab.com/anonymous_iclr/falcon
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Figure 2: Effect of hyperparameters -y on accuracy and running time.

(and standard deviation) of FALCON(uniform) over 10 independent runs in Table 3. The results
follow the expected O(£ Kn?) scaling stated in Theorem 5.

RQ3: Effect of the hyperparameter . We evaluate the impact of v on accuracy and running time
to assess the robustness of our algorithm to this hyperparameter choice. Figure 2 shows how per-
formance on the NDC-Classes and Email-EU datasets (see Figure 5 in the appendix for Pollinator
and Dawn) varies with the number of filtration levels, controlled by v € {0.2,...,1.0}, compared
to using no filtration (no filtr.). Accuracy generally increases with v, as more structural detail is
incorporated from a finer-grained filtration. Using no filtration performs significantly worse, con-
firming the value of our multi-scale approach. For NDC-Classes, performance tends to stabilize for
~ > 0.5. In some cases we observe a slight performance decrease for higher v when the additional,
finer-grained filtration levels introduced are sparse and do not contribute significant new structural
information, but instead introduce additional noise into the consensus calculation. The running
time increases approximately linearly with v, as expected, since more filtration levels require more
transport computations. Overall, v controls a clear trade-off between accuracy and computational
cost. Importantly, accuracy is stable across a wide range of v values (y > 0.5), demonstrating that
FALCON is robust to this hyperparameter and does not require extensive tuning.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

We studied unsupervised hypergraph alignment. Our proposed FALCON algorithm leverages a hy-
pergraph filtration to build multi-scale structural costs and aggregates per-level Gromov-Wasserstein
solutions into a stable consensus transport. The empirical results show that FALCON outperforms
strong baselines, particularly under noisy perturbations, while maintaining efficient runtime.

Limitations. FALCON is designed for non-uniform hypergraphs; in k-uniform settings (including
graphs) the size-based filtration collapses to a single level, reducing the method to a standard single-
scale GW aligner. Furthermore, although our cost matrices incorporate higher-order information by
aggregating shared hyperedges, the optimization ultimately relies on pairwise dissimilarity matrices,
which are, in general, not lossless. While, e.g., explicit tensor-based matching could offer greater
expressiveness, it would be computationally prohibitive in case of large hyperedge sizes; FALCON
accepts this trade-off to ensure tractability. However, our approach inherits the cubic time complex-
ity of dense GW solvers, which limits scalability on very large hypergraphs. Finally, our theoretical
results focus on the stability and aggregation properties of the multi-scale consensus rather than on
exact recovery, which is intractable in general noisy, non-isomorphic settings.

Future Work. While our size-based filtration is effective for general hypergraphs, it collapses
to a single scale for k-uniform ones, motivating the need for alternative criteria for these regu-
lar cases. More broadly, the filtration function offers a powerful way to inject domain knowledge
or partial supervision into the alignment process; exploring functions based on node centrality or
domain-specific attributes is a promising direction. To address the computational bottleneck on very
large datasets, replacing the dense GW solver with scalable OT approximations (e.g., low-rank or
partition-based solvers) is a natural extension of our modular framework.

10
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REPRODUCIBILITY AND ETHICAL STATEMENT

Reproducibility: To ensure the reproducibility of our work, we provide our source code, datasets,
and experiment scripts in an anonymous repository: https://gitlab.com/anonymous_
iclr/falcon. The core algorithm is detailed in Algorithm 1. The experimental setup, including
the computational environment, specific software versions (Python 3.9, PyTorch 2.5.1), and hyper-
parameters for our method and all baselines, is described in Section 5 and Appendix E. The datasets
used are publicly available (links are in the repository), and the procedures for generating the per-
turbed hypergraphs for alignment tasks are fully specified in Appendix D and the code for generating
perturbations is also in our repository.

Ethical Statement: Our work concerns structure-only alignment of (hyper)graphs and shares the
standard risk profile of network alignment methods, e.g., potential misuse for de-anonymization
or sensitive linkage. We mitigate this by (i) using only public benchmark or synthetic datasets; (ii)
releasing code with an Intended Use & Restrictions notice that prohibits re-identification and linkage
of personal data; and (iii) providing examples and defaults that operate solely on public/synthetic
data. We collected no new human-subjects data, and no personal information was processed. All
datasets are used under their respective licenses, and we include dataset links, citations, and license
pointers in the repository. We report runtime and hardware to support energy-aware replication and
efficient re-use. We have read and adhere to the ICLR Code of Ethics.

GenAl Usage: Al tools were used for editing and polishing purposes. Specifically, LLMs were em-
ployed for light editing tasks such as grammar checking, typo correction, and other minor revisions
of author-written text.
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Figure 3: Example of a hypergraph and its representations as conventional graphs.
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Figure 4: Hypergraph filtration using hyperedge normalized size with wgi,e(e) = el and Smax =

Smax

maxe cg |€'|. Here, Spmax = 5.
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A OMITTED PROOFS

Proof of Theorem 1. Since C™(u,v) = 1/(6™(u,v) + 1), the sequence {C™}$ _, is equivalent
to the sequence of co-occurrence matrices {6™}5, _,. At level m, 6™ (u,v) counts how many of

e, ..., en contain both u and v. We reconstruct E by induction on m. For m = 1, the pairs with
§'(u,v) = 1 form exactly the clique on the node set of ey, so e; is uniquely determined. Assume
€1, .,em—1 are known. Define A™ (u,v) := §™(u,v) — 6™ 1 (u,v). The only new edge between

levels m — 1 and m is e,,, hence A™(u,v) = 1 if and only if u,v € e,, and 0 otherwise. Thus
em ={u €V :3v eV with A™(u,v) = 1}, i.e., the set of all nodes appearing in at least one pair
with A™(u,v) = 1 recovers e,, exactly. By induction, all hyperedges are uniquely recovered, so

the mapping G — {Cm}fn:1 is injective. O

Proof of Theorem 2. Convexity of IT(us, 1) implies any convex mixture of feasible couplings is

feasible, hence T' € IT(us, pt¢). The objective is strictly convex in 7'; its unconstrained minimizer
is >, wy,T™*, which is feasible by convexity, so it is also the constrained minimizer. Uniqueness

follows from strict convexity. O
Proof of Theorem 3. By linearity and the triangle inequality, |7 — T|r = | Do Wi (T —
Tm*)”F S Zn}, w'rn”Tm* - Tm*”F S Zfrn wm(sm D

Proof of Theorem 4. Write 1 € R¢ for the all-ones vector and set @ := %1. For any feasible w € A¢
Ge.,1Tw=1,w>0), decompose w = w + u with 1Tu=0.

For the equicorrelation matrix,
2 =00 ((1-pI+p11"),
the quadratic form simplifies for any w to
W Sw = o*((1- p)wl3+p(1Tw)?).
Since 1 Tw = 1 for all feasible w, the risk reduces to
R(w) = o*((1 = p)lwlz +p) -

Using w = @ +u with 1Tu = 0 gives @' u = (1/¢) 1Tu = 0, hence
2
lwl = ol + ul with Jallf = ||21] =+
2
Therefore
R(w) = o?((1 = p) (L + [ull3) +p) = o> (1= p)E +p) +0*(1 = p)ull3

R ()

Because p < 1, the coefficient (1 — p) > 0, so R(w) is strictly minimized when |Ju|2 = 0, i.e.,
when w = @ = %1. This w* is feasible (w* > 0 and 1 Tw* = 1), hence it is the unique minimizer
over Ag.

For the excess risk, note that w = w — w, so
_ 2
R(w) - R(@) = 0*(1 - p)|[ull3 = 0*(1 - p) | w — L1][2.

This completes the proof. O

Proof of Theorem 5. Forming {C™, Ctm}fn:1 from hyperedge co-occurrence counts requires ex-

amining all node pairs within each hyperedge at each filtration level. For a hyperedge e with |e|
nodes, there are (I;\) = O(|e|?) pairs to process. Across all hyperedges in a filtration level, this
costs O(Y .. e|?) per level. In the worst case where hyperedges have size O(n), this becomes
O(|E| - n?) per level.
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For all ¢ filtration levels, the cost matrix construction requires O(£|E|n?). For typical sparse
hypergraphs where |E| = O(n), this simplifies to O(¢n®). When |E| = O(Kn), we have
¢|EIn? = O(£Kn?), which means the GW solves (analyzed below) dominate the overall com-
plexity.

We solve the entropically-regularized GW problem Equation (4) for each of the £ levels. We use
a standard proximal point solver, which involves K outer iterations (Peyré et al., 2016).Let [;;, the
number of Sinkhorn scalings per outer iteration. Each outer iteration requires solving an entropic
optimal transport (OT) problem. The main cost of this step is constructing the cost matrix for the
OT problem, which is derived from the gradient of the GW loss at the current transport plan 7. The
computationally dominant term is —2C7* T}, (C™)T (Peyré et al., 2019). This dense matrix multipli-
cation has a complexity of O(n?). Once the n x n cost matrix is formed, the inner OT problem is
solved using I, iterations of the Sinkhorn algorithm, with each iteration costing O(n?). Therefore,
the complexity of one per-level GW solve is O(K (n? + I;,n?)). Since I, is typically small, this
simplifies to O(Kn?). For all £ levels, the total complexity for the GW solves is O(¢Kn?).

; 1
costs O(én?). Solving the linear assignment problem on the final n x n similarity matrix -7
using the Hungarian method costs O(n?). Adding these components, the total time complexity is
O(én? + EKn + &n? +n3) = O(EKn3).

The space complexity is dominated by storing the £ pairs of n X n cost matrices and the £ transport
plans, which requires O(£n?) space.

Building the consensus transport plan T by taking a weighted average of the £ plans {T"*}

B DATA-DRIVEN WEIGHTING

To emphasize the most informative filtration levels, we let the data decide how to weight scales
via a leave-one-out agreement. For each level m, let T"* € R"=*"™ be the optimal coupling and
U = vec(T™) € R? with d = nyn;. We define the agreement score

Sm = <Tm*7Tfm>F7 Tfm = 5%1 ZTn*v

n#m

i.e., how well level m aligns (in Frobenius inner product) with the consensus of all other levels.
We obtain the final weights by a temperature-scaled softmax on standardized scores s,,, with a
hyperparameter 3,, controlling sharpness. Our weights reward total similarity to other levels while
penalizing self-energy. Moreover, the consensus remains the weighted Fréchet mean in the transport
polytope (Theorem 2), and hence inherits the stability bound of Theorem 3.

Let G € R&*¢ be the following Gram matrix in coupling space, G =  {(Up,Un) =
(T*, T"™) p. Rearranging gives

Sm = é((Gl)m - Gm,nL)a

showing that agreement rewards total similarity to other scales (row-sum (G1),,) while penalizing
self-energy Gy = ||T™*||%. Note that our implementation uses the leave-one-out formula directly
and does not require forming G.

Moreover, we convert scores to weights with a temperature-scaled softmax on standardized scores,

Sm — 8 ~exp(Buw Sm)

Sm = std(s)’ Wm = > exp(Buw Sn)

Standardization makes (3,, comparable across datasets; [3,, controls sharpness (small 3,,: near-
uniform; large (3,: concentrate on the highest-agreement levels). This softmax is the closed-
form solution of the entropy-regularized linear objective max, e By s ' w + H(w) with H(w) =
— > Wi log wp,.

In our size-based filtration, genuinely persistent small-scale structure appears across many levels,
whereas noisy large hyperedges appear late and at few levels. Our agreement weighting naturally
amplifies multi-level corroboration and down-weights idiosyncratic outliers, yielding a consensus
coupling that remains the weighted Fréchet mean inside the feasible transport polytope.
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C CRITICAL SCALE PARAMETER DETAILS

We provide details on how the critical scale parameters are chosen. For two hypergraphs G4 and G,
let the critical scales be the distinct score values at which the filtrations F,(G,,n) and F,,(Gt,n)
change, i.e.,

Wy = {ws(e) 1 e € Es}, Wiy ={wi(e) : e € By}, Weur = Ws UW,.

Let t = [Wsy,| and fix a budget ¢ = [ - t] with v € (0, 1]. We then select a subset W., C Wy, of
size at most c by the following greedy rule:

1. Sort Wi _; increasingly and denote the ordered candidates by {77(1) <n?<... < n(t)}.

2. Sweep through this list and place a split at (*) whenever both G, and G, have accumulated
at least one additional hyperedge since the last selected split.

3. Continue until ¢ splits have been placed. If fewer than c splits are found, pad with the
largest available threshold so that [V, | = c.

This procedure ensures that selected scales have two-sided support, i.e., they correspond to thresh-
olds at which both graphs undergo a non-trivial change. At the same time, the parameter ~y controls
the total number of retained scales: v = 1 yields all possible scales, while smaller v subsamples to
a coarser set of levels. This avoids thresholds that are empty or nearly empty on one side, while still
maintaining comparability across graphs.

D DATASETS

We use four real-world hypergraphs from different domains:

* Pollinator: This dataset represents a hypergraph where the nodes correspond to plant
species, and the hyperedges represent pollinator species that visit each plant. The data
is provided by https://www.web-of-1ife.es/.

* NDC-Classes: In this dataset each hyperedge corresponds to a drug and the nodes are
class labels assigned to it. The data originate from the National Drug Code (NDC) Direc-
tory, released by the U.S. Food and Drug Administration under the Drug Listing Act of
1972. (Benson et al., 2018).

* Email-EU: This dataset is a hypergraph of email exchanges at a European research institu-
tion, where nodes represent email addresses and each hyperedge corresponds to a message
sent to multiple recipients (Yin et al., 2017).

* Dawn: In the dataset, nodes correspond to drugs, hyperedges capture the sets of drugs
taken by a patient prior to an emergency room visit (Amburg et al., 2020).

To obtain pairs of hypergraphs, G5 and Gy, for alignment, we use two instances of each dataset,
where the second instance, G+, is a perturbed version of the first. We introduce the following types
of noise:

* Noise type 1-Node removal: We randomly remove nodes in GG; from hyperedges with
probability p.

* Noise type 2-Incidence noise: We randomly flip up to ZZ j I;; bits in the incidence
matrix of G, with probability p.

* Noise type 3—Hyperedge addition: We introduce k& = [0.1 - p - |E|| new hyperedges
to G+, where each new edge’s size is set to size Smax = maxccp, |e| and is populated by
nodes randomly sampled from V;.

For all three noise types, we use p € {0.1,0.2,0.3,0.4,0.5}.

As is standard in alignment tasks, we randomly permute the node IDs of G, to define the ground-
truth mapping 7. For each hypergraph dataset and noise type, we generate ten independent alignment
instances. Although optimal structural mappings can be non-unique, especially in symmetric hyper-
graphs, we follow common practice and consistently evaluate accuracy against 7 across methods
and runs.
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Table 4: Peak memory usage of FALCON in Mebibyte (MiB).

Type Pollinator  NDC-Classes Email-EU  Dawn

Peak RAM usage on the CPU 782 778 843 1203

Peak VRAM usage on the GPU 559 661 981 969
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Figure 5: Effect of hyperparameters  on accuracy and running time.

E DETAILS ON THE BASELINES

HCN+CONE details: The HCN+CONE baseline is a two-stage unsupervised hypergraph align-
ment method.

1. Node Embedding (HCN Autoencoder): Each hypergraph is independently encoded using a two-
layer HypergraphConv autoencoder (Bai et al., 2021), with batch normalization and ReLU after the
first layer. Key hyperparameters (embedding dim. 64, hidden dim. 128, learning rate 0.01, epochs
512) were selected empirically based on performance.

2. Embedding Alignment and Matching (CONE Procedure): L12-normalized embeddings are
aligned via the iterative Optimal Transport method from CONE (Chen et al., 2020), and matched
using the Hungarian algorithm. We use the standard parameters from (Chen et al., 2020), which we
found to perform best in our setting.

Hyperparameter settings for graph-based baselines:

o GWL:! We used five epochs and set 5 = 0.1, the number of outer iterations to M = 400,
and inner iterations to N = 100. And, we used a batch size of 109, as smaller batch sizes
resulted in significantly worse performance. These settings were determined empirically
and outperformed the default parameters.

o SGWL:! We set 8 = 0.1, the number of outer iterations to M = 2000, inner iterations to
N = 2, and the number of partition levels to 3. These settings were determined empirically
and outperformed the default parameters.

» REGAL:? We used the default parameters.
» PARROT:' We used the default parameters.
» FUGAL:? We used the default parameters.

* BIGALIGN: We implemented the efficient BIGALIGN-SKIP variant presented in (Koutra
et al., 2013) in Python. We used the default parameters suggested in (Koutra et al., 2013).

F ADDITIONAL EXPERIMENTS

In this section, we provide additional experimental results.

"https://github.com/constantinosskitsas/Framework_GraphAlignment.
https://github.com/GemsLab/REGAL.
Shttps://github.com/idea-iitd/Fugal
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F.1 IMPACT OF THE DISSIMILARITY MEASURE

We compare our default node—node dissimilarity from Equation (3) with two standard choices. Let
d(u,v) denote the co-occurrence count, and deg(u) the per-node degree (number of incident hyper-
edges). We define:

d(u,v)
deg(u) + deg(v) — d(u,v)
0(u,v)

Cosine: Coos(u,v) = 1 — ————.
deg(u) deg(v)

Jaccard: Cjyc(u,v) = 1 —

We evaluate on all datasets and noise types using noise ratio p = 0.5. Table 5 shows mean accuracy
and running times over ten independent runs using FALCON(uniform). Default denotes Equation (3)
and yields the highest accuracy in almost all cases. Only for Dawn under noise type 3 do Jaccard
and cosine dissimilarities achieve better accuracy.

Table 5: Mean accuracy and standard deviations (best in bold).

Dissimilarity Noise type Pollinator NDC-Classes Email-EU Dawn
Jaccard 1 0.31+£0.11 0.08 £0.01 0.13£0.02 0.09 £0.01
2 0.284+0.04 0.09 4+ 0.02 0.1240.01 0.09 +0.00
3 0.62£0.02 0.11£0.01 0.29£0.01 0.13£0.00
Cosine 1 0.45+£0.11 0.10£0.02 0.2240.02 0.194+0.00
2 0.354+0.03 0.104+0.03 0.214+0.02 0.20+0.01
3 0.8740.00 0.104+0.01 0.394+0.01 0.24 £0.01
Default (Equation (3)) 1 0.744+0.15 0.1440.02 0.85+0.01 0.61+0.01
2 0.56 +0.19 0.15+0.02 0.84 +0.01 0.62+0.01
3 0.96 +0.01 0.2240.02 0.74 4 0.04 0.0140.00

F.2 IMPACT OF THE FILTRATION WEIGHTS
So far we used for the filtration the normalized size of hyperedges wie(€) = |e|/Smax With

Smax = MaX.cp |e|. As an alternative to the size-based filtration, we use weights based on min-max
normalized average node degree of hyperedges:

deg(v) =|[{e€ H:v e e}

1
, Wdeg(e) = NOIMmin max H Z deg(v)

vee

The idea is to emphasize hyperedges incident to high-degree (central) nodes, so earlier filtration
levels prioritize interactions that concentrate network activity rather than large set size. Min-max
normalization makes these scores comparable across datasets, providing a scale-free alternative to
size reflecting local participation intensity and hub structure.

Figure 6 shows the results for Pollinator and NDC-Classes where FALCON(uniform, size) uses
wsize and FALCON(uniform, degree) wge;. The size-based filtration leads to significantly better
results for all noise types for Pollinator. In the case of NDC-Classes, for noise types 1 and 2 the
filtrations have comparable accuracy. However, for noise type 3, the size-based weighting has a clear
advantage. Unlike wsi,c, the degree-based wyes does not lead to a natural hierarchy over hyperedges,
and averaging incident degree seems to yield diffuse filtration levels and weakens the multi-scale
signal.

For the other datasets, Email-EU and Dawn, FALCON(uniform, degree) run out of memory. The
reason is the large number of filtration levels as wgee induces many distinct critical values, so the
number of levels £ can be substantially larger than under wyj,e. For example, Dawn can have more
than 45 000 filtration levels using wgee and at most 16 using wize.
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-§- FALCON(uniform, size) = —§— FALCON(uniform, degree)
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Figure 6: Accuracy results using different filtration weights under different noise types (node re-
movals, incidence flips, hyperedge additions).

F.3 NUMBER OF FILTRATION LEVELS

We report the average values of € in Table 6. As £ is strictly upper-bounded by the number of distinct
hyperedge sizes in the data, it remains consistently small (< 40) across all datasets and noise types.

Table 6: Average number of filtration levels £. The row Distinct Sizes denotes the number of unique
hyperedge sizes in the unperturbed source hypergraph.

Metric Pollinator ~ NDC-Classes  Email-EU  Dawn
Distinct Hyperedge Sizes 29 25 38 15

& (Noise Type 1) 229 18.5 30.9 13.8
& (Noise Type 2) 22.7 19.2 30.9 13.7
& (Noise Type 3) 29.0 25.0 38.0 15.0
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Table 7: Notation and symbols.

Symbol Meaning

G=(V,E) Hypergraph with node set V' and hyperedge set .

le] Cardinality of hyperedge e.

G, =V, Ey) For x € {s,t}, the source and target hypergraphs.

p: Vo=V, Bijective node mapping.

k] ={1,...,k} Index set shorthand.

w:FE—R Hyperedge weight used for filtration.

F,(G,7) Subhypergraph induced by {e € E : w(e) < r} at scale r.

wsize(e) - |e|/3max
Wsa Wt

Wsut - WS U Wt
W’y C Wsut

3

{Um}i@ﬂ

0™ (u,v)

Ay

Cm ¢ RIValxIVal

Mo € Ay,

L('a )

(A, B)r = tr(AT B)
H(Mm ,U/t)

Tm*

T = an:l W T*
w e Ag

B €Rso

H(T)

T*

Em = T™ —T*

T, = an:l Wy T
R(w) = E[| T — T* 3]

Y € Ré*¢
1 e RS
. r—1
W= ———
1Tx-11
o, p

Sm = <Tm*777m>F

sl _ 1 n
Tom =772 I™

ﬂw S R>0

ns = |Vil, ne = [Vil, n

Ka [in
[~ 1l2

I llr

Normalized size weight with s;,,x = max.cg |e|.
Sets of critical scales for G, and G;.

Union of critical scales (two-sided support).

Selected scale subset controlled by density v € (0, 1].
Number of filtration levels/selected scale parameter, e.g., £ = |W'v |
Ordered critical thresholds (filtration levels).

Co-occurrence count of nodes u, v in F,(G, n,,).

Probability simplex of dimension k£ € N.

Dissimilarity matrix at level m for G,.

Node marginal on V,, (normalized degree distribution).
Element-wise loss in GW (e.g., (a — b)?).

Frobenius inner product

Feasible couplings {7 > 0:T1 = p,, TT1 = jis}.

Per-level optimal GW coupling at level m.

Consensus coupling (weighted Fréchet mean in coupling space).
Weight vector w € R§>0 with ) w,, = 1 for consensus building.
Entropic regularization strength in per-level solves.

Entropy of transport plan 7.

Unknown optimal target transport.

Per-level error.

Consensus estimator for given w.

Mean-squared risk under Frobenius loss.

Covariance across scales; Xy, = E[{e}n, ) F]-
All-ones vector of dimension &.

Minimum-variance weights under 1w = 1.

Variance and correlation in X = 02((1 — p)I + p117").
Leave-one-out agreement score.

Average coupling excluding level m.

Softmax sharpness for data-driven weights.

Numbers of nodes; sometimes n := |V;| = |V¢|.
Sinkhorn outer and inner iterations per outer iteration.
Euclidean norm.

Frobenius norm.
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