
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

UNSUPERVISED MULTI-SCALE
GROMOV-WASSERSTEIN HYPERGRAPH ALIGNMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

We consider the problem of unsupervised hypergraph alignment, where the goal is
to infer node correspondence between two hypergraphs based solely on their struc-
ture. Hypergraphs generalize graphs by allowing hyperedges to connect multiple
nodes, and they provide a natural framework for modeling complex higher-order
relationships. We introduce FALCON, a framework that effectively unifies hyper-
graph filtration with a multi-scale Gromov-Wasserstein consensus to solve unsu-
pervised hypergraph alignment. The multi-scale, hierarchical structure revealed
by filtration provides a set of robust, nested geometric constraints that are natu-
rally regularized and aggregated by the GW framework. This synergy is uniquely
suited to overcoming structural noise, a critical challenge where prior methods
fail. Experiments on real-world datasets demonstrate that FALCON substantially
outperforms state-of-the-art baselines, proving especially robust to noise.

1 INTRODUCTION

Graph alignment seeks to identify a correspondence between the nodes of two graphs so that struc-
tural properties are preserved. The problem is NP-hard and closely related to the Quadratic Assign-
ment Problem (QAP) (Lawler, 1963), making the development of scalable and accurate algorithms
particularly challenging (Conte et al., 2004; Foggia et al., 2014; Yan et al., 2016; Tang et al., 2025;
Trung et al., 2020). Nonetheless, graph alignment remains a core task in data mining, with wide-
ranging applications in image processing, pattern recognition, social network analysis, and bioinfor-
matics (Bunke, 2000; Sun et al., 2020; Haller et al., 2022; Conte et al., 2004; Foggia et al., 2014; Yan
et al., 2016). While most research has focused on conventional graphs, real-world systems, such as
biological interaction networks or multi-user communication platforms, often involve higher-order
interactions. These interactions are naturally captured by hypergraphs (Kim et al., 2024; Lee et al.,
2025). Aligning such structures poses additional challenges due to the combinatorial complexity of
higher-order interactions. Moreover, in many settings, node features are unavailable or unreliable,
necessitating fully unsupervised methods that infer alignment purely from the network topologies.

In this work, we address the problem of unsupervised hypergraph alignment, where we seek to
recover a meaningful correspondence between the nodes of two hypergraphs without relying on la-
beled training data, or node/hyperedge features. In this setting, given two hypergraphs, the objective
is to maximize the number of correctly aligned nodes with respect to an unknown ground truth.

To solve this problem, we introduce FALCON (Filtration-based hypergrAph aLignment via
Consensus Optimal traNsport), a fully unsupervised alignment algorithm that operates directly on
the hypergraphs and leverages their structural information across multiple scales. Our approach
builds on the Gromov-Wasserstein (GW) discrepancy, originally defined for comparing metric mea-
sure spaces via optimal transport (Peyré et al., 2016). We formulate the Multi-Scale Gromov-
Wasserstein (MSGW) consensus for hypergraph alignment and show it is equivalent to computing a
Euclidean Fréchet mean of transport plans, lending it theoretical stability and optimality guarantees.

To further incorporate the multi-scale perspective into the hypergraph alignment problem, we adapt
the concept of filtration, a commonly used tool in persistent homology (Aktas et al., 2019; Pun
et al., 2022). This approach enables us to construct subhypergraphs at different scales, facilitating a
systematic comparison of hypergraphs across multiple levels of abstraction.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

FALCON combines MSGW and hypergraph filtration to obtain transport plans at each scale, which
are jointly aggregated into a global alignment via a consensus transport matrix. Our multi-scale
problem formulation enhances robustness to structural noise and preserves global consistency across
filtration levels. In contrast to hypergraph alignment based on clique or bipartite expansions (which
transform the hypergraphs to conventional graphs and apply graph-based alignment), our framework
directly aligns native hypergraph structures without sacrificing higher-order information. Experi-
ments on real-world datasets demonstrate that FALCON substantially outperforms state-of-the-art
baselines, proving especially robust to structural perturbations.

2 RELATED WORK

There are several surveys on graph alignment (Conte et al., 2004; Foggia et al., 2014; Yan et al.,
2016; Tang et al., 2025; Trung et al., 2020), and a wide range of methods exploit the close con-
nections to graph isomorphism and the quadratic assignment problem (QAP) (Lawler, 1963; Yan
et al., 2020). Applications span computational biology (Ma & Liao, 2020), image processing (Sun
et al., 2020), social-network de-anonymization and linkage (Senette et al., 2024; Shu et al., 2017),
and natural language processing (Osman & Barukub, 2020). A broad spectrum of techniques has
been explored, including spectral methods (Hermanns et al., 2023; Nassar et al., 2018), random
walks (Cho et al., 2010), probabilistic models (Qi et al., 2021), and others.

Graph alignment methods are typically classified into restricted and unrestricted approaches (Skitsas
et al., 2023). Restricted methods rely on partial ground-truth correspondences or additional domain-
specific features. For instance, social network linkage methods often incorporate user attributes and
partially-known mappings (Nie et al., 2016; Li et al., 2024; Senette et al., 2024), and protein-protein
interaction network aligners often rely on biological features (Devkota et al., 2024; Kalaev et al.,
2008; Liao et al., 2009; Singh et al., 2008).

In contrast, unrestricted methods operate in an unsupervised setting, using only network topology.
Our approach belongs to this category. REGAL (Heimann et al., 2018) aligns graphs via repre-
sentation learning and embedding alignment. Xu et al. (2019b) propose a framework based on the
Gromov-Wasserstein discrepancy to jointly learn node embeddings and transport maps. SGWL (Xu
et al., 2019a) improves scalability by recursively partitioning graphs before alignment. CONE (Chen
et al., 2020) optimizes neighborhood consistency, computed via Jaccard similarity, and aligns node
embeddings accordingly. GRASP (Hermanns et al., 2023) draws on functional maps and heat ker-
nels from shape analysis. PARROT (Zeng et al., 2023) combines optimal transport with restart-based
random-walk costs to incorporate both structure and attributes. FUGAL (Bommakanti et al., 2024)
proposes an unrestricted graph alignment framework that directly optimizes a relaxed QAP while
incorporating a feature-based linear assignment problem (LAP) regularizer. BIGALIGN (Koutra
et al., 2013) focuses on the alignment of bipartite graphs by proposing an iterative optimization
framework that finds soft correspondence matrices for both node partitions simultaneously.

While most existing alignment methods are limited to pairwise graphs, hypergraphs offer a richer
framework for modeling higher-order interactions. Several recent surveys discuss learning on hy-
pergraphs (Gao et al., 2020; Çatalyürek et al., 2023; Antelmi et al., 2023), but alignment techniques
remain limited. Tan et al. (2014) study restricted user alignment in hypergraphs using partial cor-
respondences. Mohammadi et al. (2016) extend alignment to graph triangles, generalizing from
nodes to higher-order substructures. Do & Shin (2024) present an unsupervised approach using
Struct2Vec, contrastive learning, and a graph adversarial network to match hypergraph embeddings.

Further work on higher-order alignment appears in computer vision, where methods often assume
k-uniform hyperedges, rely on geometric features, and use partial correspondences (Nguyen et al.,
2015). For example, CURSOR is a feature-driven approach designed for low-order, uniform or
near-uniform hypergraphs (Zheng et al., 2024). Other supervised approaches frame hypergraph
matching as a node classification task (Liao et al., 2021). Additional works repurpose hypergraph
structures for related tasks, e.g., H2MN (Zhang et al., 2021) for graph similarity and attention-based
scoring, or target tracking with rule-based label disambiguation (Li et al., 2023).

In contrast, our FALCON algorithm is fully unsupervised and infers node correspondences by min-
imizing a multi-scale Gromov-Wasserstein discrepancy over structural topology alone.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 PRELIMINARIES

Table 7 in the appendix gives an overview of the used notation. We use [k] with k ∈ N to denote the
set {1, . . . , k} and we write ∆k :=

{
w ∈ Rk

≥0

∣∣∣ ∑k
m=1 wm = 1

}
for the probability simplex of

dimension k. An undirected hypergraph G = (V,E) consists of a finite set of nodes V and a finite
set of hyperedges E ⊆ 2V \ {∅}, i.e., each hyperedge e ∈ E is a non-empty subset of V . Given a
hypergraph G = (V,E) and a subset of hyperedges E′ ⊆ E, the subhypergraph induced by E′ is
defined as G′ = (V ′, E′) where V ′ =

⋃
e∈E′ e. We define the cardinality of an edge e, denoted |e|,

as the number of nodes incident to e. A hypergraph G = (V,E) is k-uniform if all edges e ∈ E
have cardinality |e| = k. We call a 2-uniform hypergraph a graph, and its hyperedges edges. We
formally define the hypergraph-alignment problem as follows.

Hypergraph Alignment Problem. Given two hypergraphs Gs = (Vs, Es) and Gt = (Vt, Et), with
|Vs| = |Vt|, the goal is to find a bijective mapping φ : Vs → Vt that maximizes∑

v∈Vs

1[φ(v) = τ(v)], (1)

where τ : Vs → Vt is the (unknown) ground-truth mapping.

We consider the unsupervised and unrestricted setting, where the alignment must be inferred solely
from the structure of the hypergraphs. That is, we do not assume access to node or hyperedge
features, side information, or known labels. Moreover, we may assume |Vs| = |Vt| without loss of
generality by padding the smaller vertex set with isolated (dummy) nodes.

Graph representations. Hypergraphs can be represented as conventional graphs in two ways. The
bipartite representation encodes a hypergraph G = (V,E) as a bipartite graph1 B(G) = (V ∪W,F),
where W contains a node we for each hyperedge e ∈ E, and (u,we) ∈ F if and only if u ∈ e. This
encoding is lossless. Second, the clique representation builds a graph C(G) by replacing each
hyperedge e with a clique on its nodes. This can lead to information loss, as the original hypergraph
cannot generally be recovered. While such graph-based representations could, in principle, be used
for hypergraph alignment, our experiments (Section 5) show that they are ineffective: the clique
view discards structural information, and the bipartite view significantly increases the problem size.
See Figure 3 in the Appendix for an illustration of the representations.

3.1 GROMOV-WASSERSTEIN DISCREPANCY

Our Gromov-Wasserstein-based framework operates directly on hypergraphs without reducing them
to graphs. It combines the ideas of filtration, which is commonly used in persistent homology (Otter
et al., 2017), with Gromov-Wasserstein (GW) learning (Peyré et al., 2016; Xu et al., 2019b;a) via
the GW discrepancy, which generalizes the GW distance to arbitrary dissimilarity matrices (Mémoli,
2011). The GW discrepancy is defined as follows.

Definition 1. The Gromov-Wasserstein discrepancy between two measured dissimilarity matrices
(Cs, µs) ∈ R|Vs|×|Vs| ×∆|Vs| and (Ct, µt) ∈ R|Vt|×|Vt| ×∆|Vt| is defined as

min
T∈Π(µs,µt)

∑
i,j,ℓ,k

L(Cs[i, k], Ct[j, ℓ])TijTkℓ, (2)

where Π(µs, µt) = {T ∈ R|Vs|×|Vt|
≥0 | T1|Vt| = µs, T

⊤1|Vs| = µt} and L is an element-wise loss
function (Peyré et al., 2016).

In the case of conventional graph alignment (instead of hypergraph alignment), given two graphs
Gx = (Vx, Ex) with x ∈ {s, t}, the pairs (Cx, µx) ∈ R|Vx|×|Vx|×∆|Vx| represent dissimilarity ma-
trices Cx = [ci′j′] ∈ R|Vx|×|Vx| based on the relational interactions Ex, the marginal distributions
µx = [µu] ∈ ∆|Vx| denote the normalized degree distribution of the nodes. Then T denotes the op-
timal transport between the nodes Vs and Vt of the two graphs, where Tij represents the probability
that node vi ∈ Vs corresponds to node vj ∈ Vt.

1A graph is bipartite if the vertex set V of graph G = (V,E) can be partitioned into two sets U1 and U2

such that for all edges exactly one vertex is in U1 and the other in U2.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4 MULTI-SCALE GROMOV-WASSERSTEIN HYPERGRAPH ALIGNMENT

We now introduce our framework that aligns two hypergraphs by combining a filtration-driven multi-
scale view with Gromov-Wasserstein (GW) optimal transport. Rather than relying on a single pair-
wise cost derived from the full hypergraph, we first construct a nested sequence of subhypergraphs
via a filtration, where each level captures structural relationships at a different granularity. Each
level then yields its own cost matrix and GW transport plan, reflecting how node-node relation-
ships appear under progressively richer hyperedge information. These per-level transport plans are
aggregated into a consensus plan, providing a stable and noise-robust alignment.

4.1 HYPERGRAPH FILTRATION

To construct the multi-scale representation, we employ a filtration, a fundamental concept in topo-
logical and combinatorial data analysis that constructs a nested sequence of structures capturing
how features evolve across multiple scales (Aktas et al., 2019). Here we utilize the nested-space
perspective from topological data analysis (without employing homology itself) to obtain nested hi-
erarchies of hypergraphs that allow robust alignment under noisy signals. Real-world hypergraphs
often contain hyperedges of varying sizes and densities, reflecting structures at different levels of
granularity (Lee et al., 2025). For example, small hyperedges may capture localized interactions,
while larger ones represent broader groupings or contextual co-occurrences. By applying filtration
based on normalized hyperedge size, we utilize structurally-reliable subgraphs at lower granularity
levels, gradually incorporating coarser, and potentially more noisy structures, as the scale increases.
Definition 2. Given a hypergraph G = (V,E), a weight function ω : E → R, and a scale parameter
r ∈ R, the subhypergraph Fω(G, r) is induced by the hyperedges E′ = {e ∈ E | ω(e) ≤ r}.

Varying r generates a sequence of nested subhypergraphs. These are connected via inclusion maps
representing the embedding of smaller subhypergraphs into larger ones.
Lemma 1. Let G = (V,E) be a hypergraph and r ≤ q ∈ R. Then the inclusion map ιr,q :
Fω(G, r) ↪→ Fω(G, q) embeds Fω(G, r) into Fω(G, q), preserving its structure.

This lemma implies that subhypergraphs grow monotonically with increasing r, forming a natural
filtration {Fω(G, r)}r∈R for some subset R ⊆ R. Figure 4 in the Appendix shows such a filtration.

Since we assume a finite number of hyperedges, there exists a maximum scale rmax such that
Fω(G, r′) = Fω(G, rmax) for all r′ ≥ rmax. The structure of Fω(G, r) only changes at values
of r where new hyperedges are added, i.e., at values in {ω(e) | e ∈ E}. We call these values critical
scale parameters, each corresponding to a structural change in the filtration. By selecting a subset
W ⊆ {ω(e) | e ∈ E}, we define a discrete filtration {Fω(G, ηm)}ξm=1, where η1 < · · · < ηξ are
the selected critical values and ξ = |W|. We refer to each Fω(G, ηm) as filtration level m.

Next, we define filtration-based dissimilarities. Let {Fω(G, ηm)}ξm=1 be a filtration of G = (V,E).
We define the dissimilarities between nodes u, v ∈ V based on Fω(G, ηm), which capture the
observed dissimilarity at filtration level m ∈ [ξ]. For each m ∈ [ξ], we define the cost matrix
Cm ∈ R|V |×|V | to capture pairwise node dissimilarities based on their co-occurrence in hyperedges
from Fω(G, ηm). Specifically, the entry Cm[u, v] is given by:

Cm[u, v] =
1

δm(u, v) + 1
, (3)

where δm(u, v) is the number of hyperedges in Fω(G, ηm) that contain both nodes u and v in
V . For diagonal entries, we set Cm[u, u] = 0. Thus Cm[u, v] ensures that node pairs sharing
more hyperedges at level m have smaller dissimilarities, while pairs with no shared hyperedges
receive the maximum dissimilarity of 1. Equation (3) is motivated by the observation that node
similarity in hypergraphs is naturally reflected in their co-occurrence within hyperedges (Antelmi
et al., 2023). Moreover, in the extremal case where all hyperedges have distinct weight ω(e), the
resulting filtration sequence is in fact lossless.
Theorem 1. Let G = (V,E) be a hypergraph in which every hyperedge has size at least 2 and
let ω : E → R be a weight function that assigns pairwise distinct values to all hyperedges. Let
the filtration be induced by ω and use all critical thresholds, so that at level m the subhypergraph

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

contains exactly the edges e1, . . . , em ordered by increasing weight ω(e1) < · · · < ω(eξ), where
ξ = |E|. Let Cm be the dissimilarities at level m. Then the mapping G→ {Cm}ξm=1 is injective.

In the following, we apply the above construction separately to Gx = (Vx, Ex) for x ∈ {s, t},
writing Cm

x ∈ R|Vx|×|Vx| built from Fω(Gx, ηm).

4.2 FILTRATION-BASED MULTI-SCALE GW CONSENSUS

To fully utilize our hypergraph filtration framework, we use the GW discrepancy to integrate multiple
pairs of measured dissimilarity matrices, capturing multi-scale structure through globally aligned,
mass-preserving transport plans. Now, letWγ be a set of ξ critical scale parameters (determined by a
density parameter γ; we provide details on how to chooseWγ in Section 4.4). For each m ∈ [ξ] and
x ∈ {s, t}, let the per-level dissimilarities Cm

x be as defined in the previous section. We then define
a multi-scale GW consensus transport plan as the aggregation of the ξ per-level GW objectives over
a shared feasibility region, with independent transport plans at each level.

Definition 3 (Consensus Coupling). Let {Cm
s }

ξ
m=1 and {Cm

t }
ξ
m=1 be dissimilarity matrices at ξ

filtration levels, and let µs and µt be node marginals. For each level m ∈ [ξ], we compute

Tm⋆ := arg min
Tm∈Π(µs,µt)

∑
i,j,k,ℓ

L
(
Cm

s [i, k], Cm
t [j, ℓ]

)
Tm
ij Tm

kℓ ,

where Π(µs, µt) = {T ∈ R|Vs|×|Vt|
≥0 | T1|Vt| = µs, T

⊤1|Vs| = µt} and L is an element-wise loss
(e.g., L(a, b) = (a− b)2). For a probability vector w = (w1, . . . , wξ) ∈ ∆ξ, the consensus coupling
is the convex mixture

T̂ :=

ξ∑
m=1

wm Tm⋆ ∈ Π(µs, µt).

For the marginal distributions µx with x ∈ {s, t} (that are common for all levels), we use the
normalized node degree distribution, where a node’s degree is its count of incident hyperedges.
In the following, we establish (i) well-posedness and uniqueness of the consensus transport plan
(Theorem 2), (ii) its stability to per-level errors (Theorem 3), and (iii) near-optimality of simple
uniform weighting under a natural correlated error model (Theorem 4).

Theorem 2. The consensus coupling T̂ lies in Π(µs, µt) and uniquely minimizes
minT∈Π(µs,µt)

∑ξ
m=1 wm ∥T − Tm⋆∥2F .

Furthermore, the aggregation yields stability across the different scales and small per-level pertur-
bations aggregate linearly as shown in the following.

Theorem 3. Suppose that under perturbations of the costs (Cm
s , Cm

t) 7→ (C̃m
s , C̃m

t), the cor-
responding optimizers satisfy ∥Tm⋆ − T̃m⋆∥F ≤ δm for all m. Then the consensuses obey

∥T̂ − ˜̂T∥F ≤ ∑ξ
m=1 wm δm.

The consensus T̂ provides robustness which stems from two complementary principles: the nature
of structural noise in hypergraphs and the stability of the aggregation itself. First, our size-based
filtration naturally prioritizes more reliable signals. Smaller hyperedges, which appear early and
persist through later filtration levels, have their structural signals reinforced repeatedly. Conversely,
very large (and potentially noisy) hyperedges influence fewer levels. This prioritization is motivated
by realistic noise models: under random incidence corruption (e.g., flips with probability p), the
expected number of errors in a hyperedge scales with its cardinality p|e|. Thus, larger hyperedges
are a priori more likely to be distorted, making the reinforcement of smaller, cohesive structures a
robust strategy.

Second, the aggregation step is inherently stable. A simple uniform average (wm = 1/ξ) is a nearly
optimal choice in the following setting. Let Tm⋆ ∈ Rns×nt

+ be the per-scale GW couplings for
m = 1, . . . , ξ, and let the consensus be T̂w =

∑ξ
m=1 wmTm⋆ with w ∈ ∆ξ. For the unknown

target transport T ⋆, we decompose Tm⋆ = T ⋆ + εm, with E[εm] = 0, under the assumption of
zero-mean perturbations capturing finite-sample noise, entropic smoothing, and modeling mismatch.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Under squared Frobenius loss, we define the riskR(w) = E
[
∥T̂w − T ⋆∥2F

]
= w⊤Σw where the

covariance matrix Σ ∈ Rξ×ξ has entries Σmn = E
[
⟨εm, εn⟩F

]
. The optimal weights under the

linear constraint 1⊤w = 1 are then w⋆ ∝ Σ−11.
Theorem 4. If per-scale errors are equicorrelated, i.e., Σ = σ2

(
(1− ρ)I + ρ11⊤) with ρ ∈ [0, 1),

then w⋆ = 1
ξ1 ,i.e.,uniform. Moreover, for any w∈∆ξ,R(w)−R

(
1
ξ1
)
= σ2(1− ρ)

∥∥w − 1
ξ1
∥∥2
2
.

The equicorrelation model fits our setting as later filtration levels subsume earlier ones, making Tm⋆

highly collinear across m; thus off-diagonals of Σ are large and roughly homogeneous. Moreover,
every Tm⋆ obeys the same (µs, µt) and is smoothed by the same entropy scale, reducing between-
level variability beyond signal, thereby justifying the equicorrelation assumption.

Even though uniform weighting is nearly optimal in this equicorrelation model setting, for the gen-
eral case, we introduce a data-driven weighting scheme. We let the data decide how to weight scales
via a leave-one-out agreement. For each level m, let Tm⋆ ∈ Rns×nt be the optimal coupling and
vm = vec(Tm⋆) ∈ Rd with d = nsnt. We define the agreement score

sm =
〈
Tm⋆, T−m

〉
F
, with T−m = 1

ξ−1

∑
n ̸=m

Tn⋆,

i.e., how well level m aligns with the consensus of all other levels. We obtain the final weights by
a softmax on standardized scores sm, with a hyperparameter βw controlling sharpness. Our weights
reward total similarity to other levels while penalizing self-energy. See Appendix B for details.

Algorithm 1: FALCON
Input: Hypergraphs Gs, Gt; filtration density γ ∈ (0, 1]; entropic weight β > 0
Output: Bijective node mapping φ : Vs → Vt

1 Select critical scalesWγ and build ξ = |Wγ | filtration levels (Section 4.4)
2 Build marginals µs, µt and per-level costs {(Cm

s , Cm
t)}ξm=1

3 T init ← µsµ
⊤
t

4 for m = 1 to ξ do
5 Tm⋆ ← argminT∈Π(µs,µt) LGW(Cm

s , Cm
t ;T)− βH(T) initialized at T init

6 Determine weights w = (w1, . . . , wξ) ∈ ∆ξ (uniform or data-driven)
7 Build consensus T̂ ←

∑ξ
m=1 wmTm⋆

8 Solve Hungarian on −T̂ to get φ

4.3 THE FALCON ALGORITHM

Algorithm 1 shows our principled algorithm FALCON that computes the consensus transport and
then decodes a bijective node mapping. LetWγ denote the set of critical scale parameters selected
by density γ (see Section 4.4), with ξ = |Wγ | filtration levels. For each level m ∈ [ξ] and hy-
pergraph Gx with x ∈ {s, t}, we build a structural dissimilarity Cm

x ∈ Rnx×nx from hyperedge
co-occurrence counts on the filtered hypergraph Gx, and we set node marginals µx as the normal-
ized degree distribution. Given cost pair (Cm

s , Cm
t) and marginals (µs, µt), we solve the standard

entropically-regularized GW subproblem

Tm⋆ = arg min
T∈Π(µs,µt)

LGW(Cm
s , Cm

t ;T) − β H(T), (4)

where H(T) = −
∑

u,v Tuv(log Tuv−1) is entropic regularization, and LGW is Definition 1 instan-
tiated with the squared loss L(a, b) = (a− b)2. We use a KL-proximal/entropic GW solver (Cuturi,
2013; Peyré et al., 2016; 2019) as an off-the-shelf routine.

Algorithm 1 solves Equation (4) independently at each level, initialized with the outer product
T init = µsµ

⊤
t . We then determine the weights w ∈ ∆ξ, either uniform or data-driven based on

the computed Tm⋆, and form the consensus transport plan T̂ =
∑ξ

m=1 wmTm⋆. Finally, we get the
bijective mapping φ : Vs → Vt by solving a linear assignment problem on the similarity −T̂ using
the Hungarian method (Kuhn, 1955).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Theorem 5. Assume |Vs| = |Vt| =: n and ξ filtration levels. Let K be the number of KL-proximal
outer iterations per per-level GW solve. Using dense operations, the time complexity is O(ξ · (|E| ·
n2 +Kn3)), which reduces toO(ξKn3) for |E| = O(Kn), and the space complexity isO(ξn2) to
store {Cm

s , Cm
t }

ξ
m=1 and the transport plans.

The complexity of O(ξKn3) is comparable to state-of-the-art graph aligners, such as GWL (Xu
et al., 2019b) or FUGAL (Bommakanti et al., 2024).

4.4 SCALE PARAMETER SELECTION

For the filtration, we employ normalized size of hyperedges ωsize(e) = |e|/smax with smax =
maxe∈E |e| (see Figure 4 in the appendix for an example). The chosen weights define the filtra-
tion, i.e., cumulative subhypergraphs Fω(G, η) over increasing thresholds η. For critical-parameter
selection, we consider the sets of scale parameters Ws and Wt of the two hypergraphs and define
Ws∪t =Ws∪Wt. We then choose the subsetWγ ⊆ Ws∪t of size c = ⌈γ · |Ws∪t|⌉ via a two-sided
support rule: sweeping thresholds in ascending order, we place a split whenever both Gs and Gt

have accumulated at least one additional hyperedge since the previous split; if fewer than c such
points exist, we pad with the largest threshold (see Appendix C for details). Our two-sided sup-
port rule ensures that we only compare scales where both hypergraphs have undergone a structural
change. This avoids trivial comparisons where one hypergraph’s structure is static.

5 EXPERIMENTS

We discuss the following research questions: RQ1: How does FALCON compare to state-of-the-
art methods under structural perturbations? And how robust is the method to different noise types
and levels? RQ2: How does the running time compare to the baselines? RQ3: How does the
hyperparameter γ impact the accuracy and the running time?

We provide additional ablation studies on the filtration method and the cost function in Appendix F.

Table 1: Dataset statistics.

Dataset |V | |E| Min |e| Max |e| Avg. |e| Avg. deg(u) Domain
Pollinator 130 401 2 104 6.60 20.36 Ecology
NDC-Classes 628 796 2 39 7.20 9.12 Pharmacology
Email-EU 986 24 520 2 40 3.62 90.04 Communication
Dawn 2 290 138 742 2 16 3.99 241.55 Healthcare

Datasets: We benchmark our approach on four real-world hypergraphs covering a range of domains
and non-uniform hypergraph characteristics (details in Appendix D). Table 1 shows the dataset
statistics. To create alignment tasks, we generate a target hypergraph Gt by systematically per-
turbing a source hypergraph Gs from each dataset. We apply three challenging types of structural
noise: (1) node removals, (2) incidence noise, and (3) hyperedge additions. For each noise type,
we use five probability levels (noise ratio p, from lower to higher noise) to control the perturbation
intensity. The node identities in Gt are then randomly permuted to define the ground-truth mapping
for evaluation. See Appendix D for details about the datasets and noise types.

Algorithms and experimental setup:

Since unsupervised hypergraph alignment lacks established benchmark methods2, we primarily
benchmark against strong unsupervised graph alignment methods. We include the state-of-the-art
baselines GWL (Xu et al., 2019b), SGWL (Xu et al., 2019a), REGAL (Heimann et al., 2018),
PARROT (Zeng et al., 2023), and FUGAL (Bommakanti et al., 2024). Because these methods are

2An intuitive baseline for our task would be HyperAlign (Do & Shin, 2024). We ran the authors’ public
code (GitHub commit 26ae732); the program terminates without producing a non-trivial transport plan, so no
alignment accuracy (other than ≈ 0) can be computed. In direct communication the authors confirmed that their
approach and released code suffer from reproducibility issues and they have acknowledged this publicly on the
project’s repository (https://github.com/manhtuando97/HyperAlign). At the time of writing,
they are working on reproducing their own findings or issuing a corrigendum. Consequently, we do not include
HyperAlign in our evaluation.

7

https://github.com/manhtuando97/HyperAlign

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

REGAL(c)
REGAL(b)

GWL(c)
GWL(b)

SGWL(c)
SGWL(b)

PARROT(c)
PARROT(b)

FUGAL(c)
FUGAL(b)

HCN+CONE
BIGALIGN

FALCON(loo)
FALCON(uniform)

0.0 0.1 0.2 0.3 0.4 0.5
Noise ratio p

0.00

0.25

0.50

0.75

1.00
Ac

cu
ra

cy
Pollinator (Noise type 1)

0.0 0.1 0.2 0.3 0.4 0.5
Noise ratio p

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

Pollinator (Noise type 2)

0.0 0.1 0.2 0.3 0.4 0.5
Noise ratio p

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

Pollinator (Noise type 3)

0.0 0.1 0.2 0.3 0.4 0.5
Noise ratio p

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

NDC-Classes (Noise type 1)

0.0 0.1 0.2 0.3 0.4 0.5
Noise ratio p

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

NDC-Classes (Noise type 2)

0.0 0.1 0.2 0.3 0.4 0.5
Noise ratio p

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

NDC-Classes (Noise type 3)

0.0 0.1 0.2 0.3 0.4 0.5
Noise ratio p

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

Email-EU (Noise type 1)

0.0 0.1 0.2 0.3 0.4 0.5
Noise ratio p

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

Email-EU (Noise type 2)

0.0 0.1 0.2 0.3 0.4 0.5
Noise ratio p

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

Email-EU (Noise type 3)

0.0 0.1 0.2 0.3 0.4 0.5
Noise ratio p

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

Dawn (Noise type 1)

0.0 0.1 0.2 0.3 0.4 0.5
Noise ratio p

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

Dawn (Noise type 2)

0.0 0.1 0.2 0.3 0.4 0.5
Noise ratio p

0.00

0.25

0.50

0.75

1.00
Ac

cu
ra

cy
Dawn (Noise type 3)

Figure 1: Accuracy results on real-world datasets under different noise types (node removals, inci-
dence flips, hyperedge additions).

Table 2: Average running times (± std.) over all runs (OOT—out of time, OOM—out of memory).

Algorithm Pollinator NDC-Classes Email-EU Dawn

REGAL(c) 0.20± 0.15 0.89± 0.19 3.82± 2.03 10.36± 0.44
REGAL(b) 0.51± 0.42 1.95± 0.24 73.31± 7.93 OOM
GWL(c) 16.59± 1.49 70.01± 7.86 88.20± 4.19 398.40± 27.27
GWL(b) 19.98± 11.40 134.28± 11.93 OOT OOM
SGWL(c) 1.02± 0.39 6.58± 3.82 38.45± 6.74 71.77± 2.12
SGWL(b) 9.56± 4.24 71.32± 49.17 OOT OOM
PARROT(c) 5.87± 1.99 1.70± 1.10 31.51± 10.70 120.65± 27.82
FUGAL(c) 8.95 ± 2.85 15.30 ± 6.78 217.49 ± 384.30 374.14 ± 310.64
FUGAL(b) 10.52 ± 5.18 115.56 ± 35.49 OOT OOM
HCN+CONE 4.62± 1.86 0.86± 0.02 1.16± 0.08 3.80± 0.41
BIGALIGN 0.47± 0.06 1.19± 0.09 1985.87± 101.32 OOM

FALCON(loo) 0.75 ± 0.02 1.47 ± 0.18 13.80 ± 1.63 73.30 ± 5.50
FALCON(uniform) 0.74 ± 0.08 1.47 ± 0.18 13.80 ± 1.62 73.02 ± 5.61

designed for conventional graphs, we evaluate each using both the clique (c) and bipartite (b) hy-
pergraph representations. We also include BIGALIGN (Koutra et al., 2013), which is specifically
designed for bipartite graphs. Finally, as a native hypergraph baseline, we introduce HCN+CONE,
which computes hypergraph-aware embeddings via HCN (Bai et al., 2021) and aligns them using
the CONE transformation (Chen et al., 2020). See Appendix E for implementation details.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Our algorithm, denoted by FALCON, is implemented in Python 3.9 and PyTorch 2.5.1. We set the
hyperparameter γ = 1 unless stated otherwise. We use two variants: one using uniform weighting
(uniform) and one using the data-driven weighting (βw = 1) based on leave-one-out (loo). Finally,
for the Sinkhorn solver we use β = 0.1, K = 200 outer iterations, and Iin = 10 inner iterations.
These choices worked well across all experiments and did not require extensive tuning.

All experiments were run on a computer cluster. Each experiment ran exclusively on a node with
an Intel(R) Xeon(R) Gold 6130 CPU @ 2.10 GHz, 384 GB of RAM, and an NVIDIA A100 GPU. We
used a time limit of one hour. Our source code and the datasets are anonymously available.3

5.1 RESULTS

RQ1: Accuracy and robustness. Figure 1 reports mean accuracy (fraction of correctly matched
nodes) over ten runs, with error bars showing standard deviation. Across datasets and noise con-
ditions, both FALCON variants typically achieve the highest or near-highest accuracy. On NDC-
Classes, FUGAL(c) is often the strongest baseline and even slightly exceeds FALCON at some
intermediate noise ratios under noise types 1 and 2, while FALCON remains highly competitive.
On Email-EU, FUGAL(c) exhibits a non-monotonic accuracy curve as noise increases, which we
attribute to strong structural symmetries so moderate noise can sometimes move the solution closer
to or further from the reference permutation. On smaller datasets (Pollinator, NDC-Classes) most
methods do well at low noise, but graph-based baselines degrade sharply as perturbations grow, es-
pecially on the larger Email-EU and Dawn. Bipartite variants often fail to complete (scalability; see
RQ2), while clique-based methods scale but decline steadily. Noise type 3 (hyperedge addition) is
particularly challenging: random large hyperedges induce spurious cliques that overwhelm align-
ments, yet FALCON remains robust. In our size-based filtration, small hyperedges enter early and
persist across levels, so any random bi-incidence errors (types 1 and 2) affecting them are inher-
ited by all subsequent levels, creating a strong shared error component across scales. This yields
an approximately equicorrelated per-scale error structure, under which Theorem 3 implies uniform
averaging is near-optimal; accordingly, FALCON(uniform) and FALCON(loo) perform nearly iden-
tically. In contrast, type 3 noise injects large random hyperedges only at late levels, breaking this
alignment; leave-one-out weighting down-weights these corrupted levels, so FALCON(loo) out-
performs FALCON(uniform). In summary, FALCON ’s multi-scale filtration and principled GW
consensus yield resilience to structural noise and achieves state-of-the-art accuracy.

RQ2: Efficiency. Table 2 reports running times in seconds. Both FALCON variants (uniform, loo)
are substantially faster than the strongest accuracy competitors GWL(c) and SGWL(c), with the gap
widening on larger datasets. The main scalability bottleneck is the bipartite representation, which
expands the node set from |V | to |V |+ |E|, leading to memory/time failures on large hypergraphs.
Clique-based methods keep |V | nodes but operate on dense graphs from clique expansion; by work-
ing directly on the native hypergraph, FALCON is more efficient. As the running time linearly
depends on ξ, we provide an empirical analysis of the number of filtration levels ξ in Appendix F.3,
showing that ξ remains small (< 40) across all datasets. FALCON uses at most ≈ 1.2GiB CPU
RAM and 969 MiB GPU VRAM (see Table 4). Although REGAL(c) and PARROT(c) are often
faster, they give up substantial accuracy and robustness (see RQ1). Overall, FALCON delivers the
best balance of accuracy and scalability.

Table 3: Scalability experiment with average running times (± std.) over 10 runs.

n 4 000 6 000 8 000 10 000 12 000 14 000 16 000

Runtime (s) 81.9 ± 0.3 151.3 ± 0.9 288.1 ± 1.9 558.7 ± 3.4 891.6 ± 5.2 1 508.3 ± 6.1 2 261.8 ± 9.9

We additionally evaluate scalability on synthetic hypergraphs generated by the following random
model. For a chosen number of nodes n, we sample m = 105 hyperedges independently by first
choosing an edge size uniformly from the interval [45, 50] and then drawing that many distinct nodes
uniformly at random. This produces the source hypergraph Gs, which contains all sampled hyper-
edges. The target hypergraph Gt is obtained by copying Gs and applying a random permutation
to its node labels while retaining the ground-truth correspondence. We report the average runtimes

3https://gitlab.com/anonymous_iclr/falcon

9

https://gitlab.com/anonymous_iclr/falcon

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5

no filtr. 0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

no filtr. 0.2 0.4 0.6 0.8 1.0

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Ru
nn

in
g

tim
e

(s
)

(a) NDC-Classes

no filtr. 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

no filtr. 0.2 0.4 0.6 0.8 1.0

12

13

14

15

Ru
nn

in
g

tim
e

(s
)

(b) Email-EU

Figure 2: Effect of hyperparameters γ on accuracy and running time.

(and standard deviation) of FALCON(uniform) over 10 independent runs in Table 3. The results
follow the expected O(ξKn3) scaling stated in Theorem 5.

RQ3: Effect of the hyperparameter γ. We evaluate the impact of γ on accuracy and running time
to assess the robustness of our algorithm to this hyperparameter choice. Figure 2 shows how per-
formance on the NDC-Classes and Email-EU datasets (see Figure 5 in the appendix for Pollinator
and Dawn) varies with the number of filtration levels, controlled by γ ∈ {0.2, . . . , 1.0}, compared
to using no filtration (no filtr.). Accuracy generally increases with γ, as more structural detail is
incorporated from a finer-grained filtration. Using no filtration performs significantly worse, con-
firming the value of our multi-scale approach. For NDC-Classes, performance tends to stabilize for
γ ≥ 0.5. In some cases we observe a slight performance decrease for higher γ when the additional,
finer-grained filtration levels introduced are sparse and do not contribute significant new structural
information, but instead introduce additional noise into the consensus calculation. The running
time increases approximately linearly with γ, as expected, since more filtration levels require more
transport computations. Overall, γ controls a clear trade-off between accuracy and computational
cost. Importantly, accuracy is stable across a wide range of γ values (γ ≥ 0.5), demonstrating that
FALCON is robust to this hyperparameter and does not require extensive tuning.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

We studied unsupervised hypergraph alignment. Our proposed FALCON algorithm leverages a hy-
pergraph filtration to build multi-scale structural costs and aggregates per-level Gromov-Wasserstein
solutions into a stable consensus transport. The empirical results show that FALCON outperforms
strong baselines, particularly under noisy perturbations, while maintaining efficient runtime.

Limitations. FALCON is designed for non-uniform hypergraphs; in k-uniform settings (including
graphs) the size-based filtration collapses to a single level, reducing the method to a standard single-
scale GW aligner. Furthermore, although our cost matrices incorporate higher-order information by
aggregating shared hyperedges, the optimization ultimately relies on pairwise dissimilarity matrices,
which are, in general, not lossless. While, e.g., explicit tensor-based matching could offer greater
expressiveness, it would be computationally prohibitive in case of large hyperedge sizes; FALCON
accepts this trade-off to ensure tractability. However, our approach inherits the cubic time complex-
ity of dense GW solvers, which limits scalability on very large hypergraphs. Finally, our theoretical
results focus on the stability and aggregation properties of the multi-scale consensus rather than on
exact recovery, which is intractable in general noisy, non-isomorphic settings.

Future Work. While our size-based filtration is effective for general hypergraphs, it collapses
to a single scale for k-uniform ones, motivating the need for alternative criteria for these regu-
lar cases. More broadly, the filtration function offers a powerful way to inject domain knowledge
or partial supervision into the alignment process; exploring functions based on node centrality or
domain-specific attributes is a promising direction. To address the computational bottleneck on very
large datasets, replacing the dense GW solver with scalable OT approximations (e.g., low-rank or
partition-based solvers) is a natural extension of our modular framework.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY AND ETHICAL STATEMENT

Reproducibility: To ensure the reproducibility of our work, we provide our source code, datasets,
and experiment scripts in an anonymous repository: https://gitlab.com/anonymous_
iclr/falcon. The core algorithm is detailed in Algorithm 1. The experimental setup, including
the computational environment, specific software versions (Python 3.9, PyTorch 2.5.1), and hyper-
parameters for our method and all baselines, is described in Section 5 and Appendix E. The datasets
used are publicly available (links are in the repository), and the procedures for generating the per-
turbed hypergraphs for alignment tasks are fully specified in Appendix D and the code for generating
perturbations is also in our repository.

Ethical Statement: Our work concerns structure-only alignment of (hyper)graphs and shares the
standard risk profile of network alignment methods, e.g., potential misuse for de-anonymization
or sensitive linkage. We mitigate this by (i) using only public benchmark or synthetic datasets; (ii)
releasing code with an Intended Use & Restrictions notice that prohibits re-identification and linkage
of personal data; and (iii) providing examples and defaults that operate solely on public/synthetic
data. We collected no new human-subjects data, and no personal information was processed. All
datasets are used under their respective licenses, and we include dataset links, citations, and license
pointers in the repository. We report runtime and hardware to support energy-aware replication and
efficient re-use. We have read and adhere to the ICLR Code of Ethics.

GenAI Usage: AI tools were used for editing and polishing purposes. Specifically, LLMs were em-
ployed for light editing tasks such as grammar checking, typo correction, and other minor revisions
of author-written text.

REFERENCES

Mehmet E Aktas, Esra Akbas, and Ahmed El Fatmaoui. Persistence homology of networks: methods
and applications. Applied Network Science, 4(1):1–28, 2019.

Ilya Amburg, Nate Veldt, and Austin R. Benson. Clustering in graphs and hypergraphs with cate-
gorical edge labels. In Proceedings of the Web Conference, 2020.

Alessia Antelmi, Gennaro Cordasco, Mirko Polato, Vittorio Scarano, Carmine Spagnuolo, and
Dingqi Yang. A survey on hypergraph representation learning. ACM Computing Surveys, 56
(1):1–38, 2023.

Song Bai, Feihu Zhang, and Philip HS Torr. Hypergraph convolution and hypergraph attention.
Pattern Recognition, 110:107637, 2021.

Austin R. Benson, Rediet Abebe, Michael T. Schaub, Ali Jadbabaie, and Jon Kleinberg. Simplicial
closure and higher-order link prediction. Proceedings of the National Academy of Sciences, 2018.
ISSN 0027-8424. doi: 10.1073/pnas.1800683115.

Aditya Bommakanti, Harshith R Vonteri, Konstantinos Skitsas, Sayan Ranu, Davide Mottin, and
Panagiotis Karras. Fugal: Feature-fortified unrestricted graph alignment. Advances in Neural
Information Processing Systems, 37:19523–19546, 2024.

Horst Bunke. Recent developments in graph matching. In ICPR, volume 2, pp. 117–124. IEEE,
2000.

Ümit Çatalyürek, Karen Devine, Marcelo Faraj, Lars Gottesbüren, Tobias Heuer, Henning Meyer-
henke, Peter Sanders, Sebastian Schlag, Christian Schulz, Daniel Seemaier, et al. More recent
advances in (hyper) graph partitioning. ACM Computing Surveys, 55(12):1–38, 2023.

Xiyuan Chen, Mark Heimann, Fatemeh Vahedian, and Danai Koutra. Cone-align: Consistent net-
work alignment with proximity-preserving node embedding. In CIKM, pp. 1985–1988, 2020.

Minsu Cho, Jungmin Lee, and Kyoung Mu Lee. Reweighted random walks for graph matching. In
ECCV, pp. 492–505. Springer, 2010.

11

https://gitlab.com/anonymous_iclr/falcon
https://gitlab.com/anonymous_iclr/falcon

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Thirty years of graph matching
in pattern recognition. Intl. Journal of Pattern Recognition and Artificial Intelligence, 18(03):
265–298, 2004.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in
Neural Information Processing Systems, 26, 2013.

Kapil Devkota, Anselm Blumer, Xiaozhe Hu, and Lenore Cowen. Approximate isorank for scal-
able and functionally meaningful cross-species alignments of protein interaction networks. J. of
C. Biol., 31(10):990–1007, 2024.

Manh Tuan Do and Kijung Shin. Unsupervised alignment of hypergraphs with different scales. In
SIGKDD, pp. 609–620, 2024.

Pasquale Foggia, Gennaro Percannella, and Mario Vento. Graph matching and learning in pattern
recognition in the last 10 years. Intl. Journal of Pattern Recognition and Artificial Intelligence,
28(01):1450001, 2014.

Yue Gao, Zizhao Zhang, Haojie Lin, Xibin Zhao, Shaoyi Du, and Changqing Zou. Hypergraph
learning: Methods and practices. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 44(5):2548–2566, 2020.

Stefan Haller, Lorenz Feineis, Lisa Hutschenreiter, Florian Bernard, Carsten Rother, Dagmar
Kainmüller, Paul Swoboda, and Bogdan Savchynskyy. A comparative study of graph match-
ing algorithms in computer vision. In European Conference on Computer Vision, pp. 636–653.
Springer, 2022.

Mark Heimann, Haoming Shen, Tara Safavi, and Danai Koutra. Regal: Representation learning-
based graph alignment. In CIKM, pp. 117–126, 2018.

Judith Hermanns, Konstantinos Skitsas, Anton Tsitsulin, Marina Munkhoeva, Alexander Kyster,
Simon Nielsen, Alexander M Bronstein, Davide Mottin, and Panagiotis Karras. Grasp: Scalable
graph alignment by spectral corresponding functions. ACM TKDD, 17(4):1–26, 2023.

Maxim Kalaev, Mike Smoot, Trey Ideker, and Roded Sharan. Networkblast: comparative analysis
of protein networks. Bioinformatics, 24(4):594–596, 2008.

Sunwoo Kim, Soo Yong Lee, Yue Gao, Alessia Antelmi, Mirko Polato, and Kijung Shin. A survey
on hypergraph neural networks: An in-depth and step-by-step guide. In SIGKDD, pp. 6534–6544,
2024.

Danai Koutra, Hanghang Tong, and David Lubensky. Big-align: Fast bipartite graph alignment. In
2013 IEEE 13th ICDM, pp. 389–398. IEEE, 2013.

Harold W Kuhn. The hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2(1-2):83–97, 1955.

Eugene L Lawler. The quadratic assignment problem. Management Science, 9(4):586–599, 1963.

Geon Lee, Fanchen Bu, Tina Eliassi-Rad, and Kijung Shin. A survey on hypergraph mining: Pat-
terns, tools, and generators. ACM Computing Surveys, 57(8):1–36, 2025.

Guchong Li, Gang Li, and You He. Distributed multiple resolvable group targets tracking based on
hypergraph matching. IEEE Sensors Journal, 23(9):9669–9676, 2023.

Shudong Li, Danna Lu, Qing Li, Xiaobo Wu, Shumei Li, and Zhen Wang. Mflink: User iden-
tity linkage across online social networks via multimodal fusion and adversarial learning. IEEE
Transactions on Emerging Topics in Computational Intelligence, 2024.

Chung-Shou Liao, Kanghao Lu, Michael Baym, Rohit Singh, and Bonnie Berger. Isorankn: spectral
methods for global alignment of multiple protein networks. Bioinformatics, 25(12):i253–i258,
2009.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xiaowei Liao, Yong Xu, and Haibin Ling. Hypergraph neural networks for hypergraph matching.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1266–1275,
2021.

Cheng-Yu Ma and Chung-Shou Liao. A review of protein–protein interaction network alignment:
From pathway comparison to global alignment. Computational and Structural Biotechnology
Journal, 18:2647–2656, 2020.

Facundo Mémoli. Gromov–wasserstein distances and the metric approach to object matching.
Found. of Comp. Math., 11:417–487, 2011.

Shahin Mohammadi, David F Gleich, Tamara G Kolda, and Ananth Grama. Triangular alignment
(tame): A tensor-based approach for higher-order network alignment. IEEE/ACM TCBB, 14(6):
1446–1458, 2016.

Huda Nassar, Nate Veldt, Shahin Mohammadi, Ananth Grama, and David F Gleich. Low rank
spectral network alignment. In WebConf, pp. 619–628, 2018.

Quynh Nguyen, Antoine Gautier, and Matthias Hein. A flexible tensor block coordinate ascent
scheme for hypergraph matching. In Proceedings of the IEEE CVPR, pp. 5270–5278, 2015.

Yuanping Nie, Yan Jia, Shudong Li, Xiang Zhu, Aiping Li, and Bin Zhou. Identifying users across
social networks based on dynamic core interests. Neurocomputing, 210:107–115, 2016.

Ahmed Hamza Osman and Omar Mohammed Barukub. Graph-based text representation and match-
ing: A review of the state of the art and future challenges. IEEE Access, 8:87562–87583, 2020.

Nina Otter, Mason A Porter, Ulrike Tillmann, Peter Grindrod, and Heather A Harrington. A roadmap
for the computation of persistent homology. EPJ Data Science, 6:1–38, 2017.

Gabriel Peyré, Marco Cuturi, and Justin Solomon. Gromov-wasserstein averaging of kernel and
distance matrices. In ICML, pp. 2664–2672. PMLR, 2016.

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
science. Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

Chi Seng Pun, Si Xian Lee, and Kelin Xia. Persistent-homology-based machine learning: a survey
and a comparative study. Art. Intell. Review, 55(7):5169–5213, 2022.

Zhiyuan Qi, Ziheng Zhang, Jiaoyan Chen, Xi Chen, and Yefeng Zheng. Prasemap: A probabilistic
reasoning and semantic embedding based knowledge graph alignment system. In CIKM, pp.
4779–4783, 2021.

Caterina Senette, Marco Siino, and Maurizio Tesconi. User identity linkage on social networks: A
review of modern techniques and applications. IEEE Access, 2024.

Kai Shu, Suhang Wang, Jiliang Tang, Reza Zafarani, and Huan Liu. User identity linkage across
online social networks: A review. Acm Sigkdd Explorations Newsletter, 18(2):5–17, 2017.

Rohit Singh, Jinbo Xu, and Bonnie Berger. Global alignment of multiple protein interaction net-
works with application to functional orthology detection. Proc Natl Acad Sci, 105(35):12763–
12768, 2008.

Konstantinos Skitsas, Karol Orlowski, Judith Hermanns, Davide Mottin, and Panagiotis Karras.
Comprehensive evaluation of algorithms for unrestricted graph alignment. In EDBT, pp. 260–
272, 2023.

Hui Sun, Wenju Zhou, and Minrui Fei. A survey on graph matching in computer vision. In CISP-
BMEI, pp. 225–230. IEEE, 2020.

Shulong Tan, Ziyu Guan, Deng Cai, Xuzhen Qin, Jiajun Bu, and Chun Chen. Mapping users across
networks by manifold alignment on hypergraph. In AAAI, volume 28, 2014.

Rui Tang, Ziyun Yong, Shuyu Jiang, Xingshu Chen, Yaofang Liu, Yi-Cheng Zhang, Gui-Quan Sun,
and Wei Wang. Network alignment. Physics Reports, 1107:1–45, 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Huynh Thanh Trung, Nguyen Thanh Toan, Tong Van Vinh, Hoang Thanh Dat, Duong Chi Thang,
Nguyen Quoc Viet Hung, and Abdul Sattar. A comparative study on network alignment tech-
niques. Expert Sys. with Applications, 140:112883, 2020.

Hongteng Xu, Dixin Luo, and Lawrence Carin. Scalable gromov-wasserstein learning for graph
partitioning and matching. Advances in Neural Information Processing Systems, 32, 2019a.

Hongteng Xu, Dixin Luo, Hongyuan Zha, and Lawrence Carin Duke. Gromov-wasserstein learning
for graph matching and node embedding. In ICML, pp. 6932–6941. PMLR, 2019b.

Junchi Yan, Xu-Cheng Yin, Weiyao Lin, Cheng Deng, Hongyuan Zha, and Xiaokang Yang. A short
survey of recent advances in graph matching. In ICMR, pp. 167–174, 2016.

Junchi Yan, Shuang Yang, and Edwin R Hancock. Learning for graph matching and related combina-
torial optimization problems. In Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI-20, pp. 4988–4996, 2020.

Hao Yin, Austin R. Benson, Jure Leskovec, and David F. Gleich. Local higher-order graph
clustering. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. ACM Press, 2017. doi: 10.1145/3097983.3098069. URL
https://doi.org/10.1145/3097983.3098069.

Zhichen Zeng, Si Zhang, Yinglong Xia, and Hanghang Tong. Parrot: Position-aware regularized
optimal transport for network alignment. In Proceedings of the ACM Web Conference 2023, pp.
372–382, 2023.

Zhen Zhang, Jiajun Bu, Martin Ester, Zhao Li, Chengwei Yao, Zhi Yu, and Can Wang. H2mn: Graph
similarity learning with hierarchical hypergraph matching networks. In SIGKDD, pp. 2274–2284,
2021.

Qixuan Zheng, Ming Zhang, and Hong Yan. Cursor: Scalable mixed-order hypergraph matching
with cur decomposition. arXiv preprint arXiv:2402.16594, 2024.

APPENDIX

A

BC

D

1

2

5

3

4

(a) Hypergraph G with 4 hyper-
edges.

1

2

5

3

4

(b) The clique representation
of G.

1

2

5

3

4

A

B

C

D

(c) The bipartite representation
of G.

Figure 3: Example of a hypergraph and its representations as conventional graphs.

(

3/5(

(

G, (G, (G, (G, G⊆ ⊆ ⊆2/5 (

4/5

(

5/5 =

Figure 4: Hypergraph filtration using hyperedge normalized size with ωsize(e) =
|e|

smax
and smax =

maxe′∈E |e′|. Here, smax = 5.

14

https://doi.org/10.1145/3097983.3098069

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A OMITTED PROOFS

Proof of Theorem 1. Since Cm(u, v) = 1/(δm(u, v) + 1), the sequence {Cm}ξm=1 is equivalent
to the sequence of co-occurrence matrices {δm}ξm=1. At level m, δm(u, v) counts how many of
e1, . . . , em contain both u and v. We reconstruct E by induction on m. For m = 1, the pairs with
δ1(u, v) = 1 form exactly the clique on the node set of e1, so e1 is uniquely determined. Assume
e1, . . . , em−1 are known. Define ∆m(u, v) := δm(u, v)− δm−1(u, v). The only new edge between
levels m − 1 and m is em, hence ∆m(u, v) = 1 if and only if u, v ∈ em and 0 otherwise. Thus
em = {u ∈ V : ∃v ∈ V with ∆m(u, v) = 1}, i.e., the set of all nodes appearing in at least one pair
with ∆m(u, v) = 1 recovers em exactly. By induction, all hyperedges are uniquely recovered, so
the mapping G→ {Cm}ξm=1 is injective.

Proof of Theorem 2. Convexity of Π(µs, µt) implies any convex mixture of feasible couplings is
feasible, hence T̂ ∈ Π(µs, µt). The objective is strictly convex in T ; its unconstrained minimizer
is
∑

m wmTm⋆, which is feasible by convexity, so it is also the constrained minimizer. Uniqueness
follows from strict convexity.

Proof of Theorem 3. By linearity and the triangle inequality, ∥T̂ − ˜̂T∥F = ∥
∑

m wm(Tm⋆ −
T̃m⋆)∥F ≤

∑
m wm∥Tm⋆ − T̃m⋆∥F ≤

∑
m wmδm.

Proof of Theorem 4. Write 1 ∈ Rξ for the all-ones vector and set w̄ := 1
ξ1. For any feasible w ∈ ∆ξ

(i.e., 1⊤w = 1, w ≥ 0), decompose w = w̄ + u with 1⊤u = 0.

For the equicorrelation matrix,

Σ = σ2
(
(1− ρ)I + ρ11⊤),

the quadratic form simplifies for any w to

w⊤Σw = σ2
(
(1− ρ)∥w∥22 + ρ (1⊤w)2

)
.

Since 1⊤w = 1 for all feasible w, the risk reduces to

R(w) = σ2
(
(1− ρ)∥w∥22 + ρ

)
.

Using w = w̄ + u with 1⊤u = 0 gives w̄⊤u = (1/ξ)1⊤u = 0, hence

∥w∥22 = ∥w̄∥22 + ∥u∥22 with ∥w̄∥22 =
∥∥∥ 1
ξ1
∥∥∥2
2
= 1

ξ .

Therefore

R(w) = σ2
(
(1− ρ)

(
1
ξ + ∥u∥22

)
+ ρ
)
= σ2

(
(1− ρ) 1ξ + ρ

)
︸ ︷︷ ︸

R(w̄)

+ σ2(1− ρ)∥u∥22.

Because ρ < 1, the coefficient (1 − ρ) > 0, so R(w) is strictly minimized when ∥u∥2 = 0, i.e.,
when w = w̄ = 1

ξ1. This w⋆ is feasible (w⋆ ≥ 0 and 1⊤w⋆ = 1), hence it is the unique minimizer
over ∆ξ.

For the excess risk, note that u = w − w̄, so

R(w)−R(w̄) = σ2(1− ρ)∥u∥22 = σ2(1− ρ)
∥∥w − 1

ξ1
∥∥2
2
.

This completes the proof.

Proof of Theorem 5. Forming {Cm
s , Cm

t }
ξ
m=1 from hyperedge co-occurrence counts requires ex-

amining all node pairs within each hyperedge at each filtration level. For a hyperedge e with |e|
nodes, there are

(|e|
2

)
= O(|e|2) pairs to process. Across all hyperedges in a filtration level, this

costs O(
∑

e∈E |e|2) per level. In the worst case where hyperedges have size O(n), this becomes
O(|E| · n2) per level.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

For all ξ filtration levels, the cost matrix construction requires O(ξ|E|n2). For typical sparse
hypergraphs where |E| = O(n), this simplifies to O(ξn3). When |E| = O(Kn), we have
ξ|E|n2 = O(ξKn3), which means the GW solves (analyzed below) dominate the overall com-
plexity.

We solve the entropically-regularized GW problem Equation (4) for each of the ξ levels. We use
a standard proximal point solver, which involves K outer iterations (Peyré et al., 2016).Let Iin the
number of Sinkhorn scalings per outer iteration. Each outer iteration requires solving an entropic
optimal transport (OT) problem. The main cost of this step is constructing the cost matrix for the
OT problem, which is derived from the gradient of the GW loss at the current transport plan Tk. The
computationally dominant term is−2Cm

s Tk(C
m
t)T (Peyré et al., 2019). This dense matrix multipli-

cation has a complexity of O(n3). Once the n × n cost matrix is formed, the inner OT problem is
solved using Iin iterations of the Sinkhorn algorithm, with each iteration costing O(n2). Therefore,
the complexity of one per-level GW solve is O(K(n3 + Iinn

2)). Since Iin is typically small, this
simplifies to O(Kn3). For all ξ levels, the total complexity for the GW solves is O(ξKn3).

Building the consensus transport plan T̂ by taking a weighted average of the ξ plans {Tm,∗}ξm=1

costs O(ξn2). Solving the linear assignment problem on the final n × n similarity matrix −T̂
using the Hungarian method costs O(n3). Adding these components, the total time complexity is
O(ξn2 + ξKn3 + ξn2 + n3) = O(ξKn3).

The space complexity is dominated by storing the ξ pairs of n× n cost matrices and the ξ transport
plans, which requires O(ξn2) space.

B DATA-DRIVEN WEIGHTING

To emphasize the most informative filtration levels, we let the data decide how to weight scales
via a leave-one-out agreement. For each level m, let Tm⋆ ∈ Rns×nt be the optimal coupling and
vm = vec(Tm⋆) ∈ Rd with d = nsnt. We define the agreement score

sm =
〈
Tm⋆, T−m

〉
F
, T−m = 1

ξ−1

∑
n ̸=m

Tn⋆,

i.e., how well level m aligns (in Frobenius inner product) with the consensus of all other levels.
We obtain the final weights by a temperature-scaled softmax on standardized scores sm, with a
hyperparameter βw controlling sharpness. Our weights reward total similarity to other levels while
penalizing self-energy. Moreover, the consensus remains the weighted Fréchet mean in the transport
polytope (Theorem 2), and hence inherits the stability bound of Theorem 3.

Let G ∈ Rξ×ξ be the following Gram matrix in coupling space, Gmn = ⟨vm, vn⟩ =
⟨Tm⋆, Tn⋆⟩F . Rearranging gives

sm = 1
ξ−1

(
(G1)m −Gmm

)
,

showing that agreement rewards total similarity to other scales (row-sum (G1)m) while penalizing
self-energy Gmm = ∥Tm⋆∥2F . Note that our implementation uses the leave-one-out formula directly
and does not require forming G.

Moreover, we convert scores to weights with a temperature-scaled softmax on standardized scores,

s̃m =
sm − s̄

std(s)
, wm =

exp(βw s̃m)∑
n exp(βw s̃n)

.

Standardization makes βw comparable across datasets; βw controls sharpness (small βw: near-
uniform; large βw: concentrate on the highest-agreement levels). This softmax is the closed-
form solution of the entropy-regularized linear objective maxw∈∆ βw s⊤w +H(w) with H(w) =
−
∑

m wm logwm.

In our size-based filtration, genuinely persistent small-scale structure appears across many levels,
whereas noisy large hyperedges appear late and at few levels. Our agreement weighting naturally
amplifies multi-level corroboration and down-weights idiosyncratic outliers, yielding a consensus
coupling that remains the weighted Fréchet mean inside the feasible transport polytope.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C CRITICAL SCALE PARAMETER DETAILS

We provide details on how the critical scale parameters are chosen. For two hypergraphs Gs and Gt,
let the critical scales be the distinct score values at which the filtrations Fω(Gs, η) and Fω(Gt, η)
change, i.e.,

Ws = {ωs(e) : e ∈ Es}, Wt = {ωt(e) : e ∈ Et}, Ws∪t =Ws ∪Wt.

Let t = |Ws∪t| and fix a budget c = ⌈γ · t⌉ with γ ∈ (0, 1]. We then select a subsetWγ ⊆ Ws∪t of
size at most c by the following greedy rule:

1. SortWs∪t increasingly and denote the ordered candidates by {η(1) < η(2) < · · · < η(t)}.
2. Sweep through this list and place a split at η(k) whenever both Gs and Gt have accumulated

at least one additional hyperedge since the last selected split.
3. Continue until c splits have been placed. If fewer than c splits are found, pad with the

largest available threshold so that |Wγ | = c.

This procedure ensures that selected scales have two-sided support, i.e., they correspond to thresh-
olds at which both graphs undergo a non-trivial change. At the same time, the parameter γ controls
the total number of retained scales: γ = 1 yields all possible scales, while smaller γ subsamples to
a coarser set of levels. This avoids thresholds that are empty or nearly empty on one side, while still
maintaining comparability across graphs.

D DATASETS

We use four real-world hypergraphs from different domains:

• Pollinator: This dataset represents a hypergraph where the nodes correspond to plant
species, and the hyperedges represent pollinator species that visit each plant. The data
is provided by https://www.web-of-life.es/.

• NDC-Classes: In this dataset each hyperedge corresponds to a drug and the nodes are
class labels assigned to it. The data originate from the National Drug Code (NDC) Direc-
tory, released by the U.S. Food and Drug Administration under the Drug Listing Act of
1972. (Benson et al., 2018).

• Email-EU: This dataset is a hypergraph of email exchanges at a European research institu-
tion, where nodes represent email addresses and each hyperedge corresponds to a message
sent to multiple recipients (Yin et al., 2017).

• Dawn: In the dataset, nodes correspond to drugs, hyperedges capture the sets of drugs
taken by a patient prior to an emergency room visit (Amburg et al., 2020).

To obtain pairs of hypergraphs, Gs and Gt, for alignment, we use two instances of each dataset,
where the second instance, Gt, is a perturbed version of the first. We introduce the following types
of noise:

• Noise type 1 – Node removal: We randomly remove nodes in Gt from hyperedges with
probability p.

• Noise type 2 – Incidence noise: We randomly flip up to
∑

i,j Iij bits in the incidence
matrix of Gt with probability p.

• Noise type 3 – Hyperedge addition: We introduce k = ⌊0.1 · p · |Es|⌋ new hyperedges
to Gt, where each new edge’s size is set to size smax = maxe∈Es

|e| and is populated by
nodes randomly sampled from Vt.

For all three noise types, we use p ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.
As is standard in alignment tasks, we randomly permute the node IDs of Gt to define the ground-
truth mapping τ . For each hypergraph dataset and noise type, we generate ten independent alignment
instances. Although optimal structural mappings can be non-unique, especially in symmetric hyper-
graphs, we follow common practice and consistently evaluate accuracy against τ across methods
and runs.

17

https://www.web-of-life.es/

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 4: Peak memory usage of FALCON in Mebibyte (MiB).

Type Pollinator NDC-Classes Email-EU Dawn

Peak RAM usage on the CPU 782 778 843 1203
Peak VRAM usage on the GPU 559 661 981 969

p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5

no filtr. 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

no filtr. 0.2 0.4 0.6 0.8 1.0

0.730
0.735
0.740
0.745
0.750
0.755
0.760

Ru
nn

in
g

tim
e

(s
)

(a) Pollinator

no filtr. 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

no filtr. 0.2 0.4 0.6 0.8 1.0

65

70

75

80

Ru
nn

in
g

tim
e

(s
)

(b) Dawn

Figure 5: Effect of hyperparameters γ on accuracy and running time.

E DETAILS ON THE BASELINES

HCN+CONE details: The HCN+CONE baseline is a two-stage unsupervised hypergraph align-
ment method.

1. Node Embedding (HCN Autoencoder): Each hypergraph is independently encoded using a two-
layer HypergraphConv autoencoder (Bai et al., 2021), with batch normalization and ReLU after the
first layer. Key hyperparameters (embedding dim. 64, hidden dim. 128, learning rate 0.01, epochs
512) were selected empirically based on performance.

2. Embedding Alignment and Matching (CONE Procedure): L2-normalized embeddings are
aligned via the iterative Optimal Transport method from CONE (Chen et al., 2020), and matched
using the Hungarian algorithm. We use the standard parameters from (Chen et al., 2020), which we
found to perform best in our setting.

Hyperparameter settings for graph-based baselines:

• GWL:1 We used five epochs and set β = 0.1, the number of outer iterations to M = 400,
and inner iterations to N = 100. And, we used a batch size of 106, as smaller batch sizes
resulted in significantly worse performance. These settings were determined empirically
and outperformed the default parameters.

• SGWL:1 We set β = 0.1, the number of outer iterations to M = 2000, inner iterations to
N = 2, and the number of partition levels to 3. These settings were determined empirically
and outperformed the default parameters.

• REGAL:2 We used the default parameters.
• PARROT:1 We used the default parameters.
• FUGAL:3 We used the default parameters.
• BIGALIGN: We implemented the efficient BIGALIGN-SKIP variant presented in (Koutra

et al., 2013) in Python. We used the default parameters suggested in (Koutra et al., 2013).

F ADDITIONAL EXPERIMENTS

In this section, we provide additional experimental results.

1https://github.com/constantinosskitsas/Framework_GraphAlignment.
2https://github.com/GemsLab/REGAL.
3https://github.com/idea-iitd/Fugal

18

https://github.com/constantinosskitsas/Framework_GraphAlignment
https://github.com/GemsLab/REGAL
https://github.com/idea-iitd/Fugal

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

F.1 IMPACT OF THE DISSIMILARITY MEASURE

We compare our default node–node dissimilarity from Equation (3) with two standard choices. Let
δ(u, v) denote the co-occurrence count, and deg(u) the per-node degree (number of incident hyper-
edges). We define:

Jaccard: Cjac(u, v) = 1 − δ(u, v)

deg(u) + deg(v)− δ(u, v)
.

Cosine: Ccos(u, v) = 1 − δ(u, v)√
deg(u) deg(v)

.

We evaluate on all datasets and noise types using noise ratio p = 0.5. Table 5 shows mean accuracy
and running times over ten independent runs using FALCON(uniform). Default denotes Equation (3)
and yields the highest accuracy in almost all cases. Only for Dawn under noise type 3 do Jaccard
and cosine dissimilarities achieve better accuracy.

Table 5: Mean accuracy and standard deviations (best in bold).

Dissimilarity Noise type Pollinator NDC-Classes Email-EU Dawn

Jaccard 1 0.31± 0.11 0.08± 0.01 0.13± 0.02 0.09± 0.01
2 0.28± 0.04 0.09± 0.02 0.12± 0.01 0.09± 0.00
3 0.62± 0.02 0.11± 0.01 0.29± 0.01 0.13± 0.00

Cosine 1 0.45± 0.11 0.10± 0.02 0.22± 0.02 0.19± 0.00
2 0.35± 0.03 0.10± 0.03 0.21± 0.02 0.20± 0.01
3 0.87± 0.00 0.10± 0.01 0.39± 0.01 0.24± 0.01

Default (Equation (3)) 1 0.74± 0.15 0.14± 0.02 0.85± 0.01 0.61± 0.01
2 0.56± 0.19 0.15± 0.02 0.84± 0.01 0.62± 0.01
3 0.96± 0.01 0.22± 0.02 0.74± 0.04 0.01± 0.00

F.2 IMPACT OF THE FILTRATION WEIGHTS

So far we used for the filtration the normalized size of hyperedges ωsize(e) = |e|/smax with
smax = maxe∈E |e|. As an alternative to the size-based filtration, we use weights based on min-max
normalized average node degree of hyperedges:

deg(v) =
∣∣{e ∈ H : v ∈ e}

∣∣, ωdeg(e) = normminmax

(
1

|e|
∑
v∈e

deg(v)

)

The idea is to emphasize hyperedges incident to high-degree (central) nodes, so earlier filtration
levels prioritize interactions that concentrate network activity rather than large set size. Min-max
normalization makes these scores comparable across datasets, providing a scale-free alternative to
size reflecting local participation intensity and hub structure.

Figure 6 shows the results for Pollinator and NDC-Classes where FALCON(uniform, size) uses
ωsize and FALCON(uniform, degree) ωdeg. The size-based filtration leads to significantly better
results for all noise types for Pollinator. In the case of NDC-Classes, for noise types 1 and 2 the
filtrations have comparable accuracy. However, for noise type 3, the size-based weighting has a clear
advantage. Unlike ωsize, the degree-based ωdeg does not lead to a natural hierarchy over hyperedges,
and averaging incident degree seems to yield diffuse filtration levels and weakens the multi-scale
signal.

For the other datasets, Email-EU and Dawn, FALCON(uniform, degree) run out of memory. The
reason is the large number of filtration levels as ωdeg induces many distinct critical values, so the
number of levels ξ can be substantially larger than under ωsize. For example, Dawn can have more
than 45 000 filtration levels using ωdeg and at most 16 using ωsize.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

FALCON(uniform, size) FALCON(uniform, degree)

0.0 0.1 0.2 0.3 0.4 0.5
Noise ratio p

0.00

0.25

0.50

0.75

1.00
Ac

cu
ra

cy

Pollinator (Noise type 1)

0.0 0.1 0.2 0.3 0.4 0.5
Noise ratio p

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

Pollinator (Noise type 2)

0.0 0.1 0.2 0.3 0.4 0.5
Noise ratio p

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Pollinator (Noise type 3)

0.0 0.1 0.2 0.3 0.4 0.5
Noise ratio p

0.2

0.4

0.6

Ac
cu

ra
cy

NDC-Classes (Noise type 1)

0.0 0.1 0.2 0.3 0.4 0.5
Noise ratio p

0.2

0.4

0.6

Ac
cu

ra
cy

NDC-Classes (Noise type 2)

0.0 0.1 0.2 0.3 0.4 0.5
Noise ratio p

0.2

0.4

0.6

Ac
cu

ra
cy

NDC-Classes (Noise type 3)

Figure 6: Accuracy results using different filtration weights under different noise types (node re-
movals, incidence flips, hyperedge additions).

F.3 NUMBER OF FILTRATION LEVELS

We report the average values of ξ in Table 6. As ξ is strictly upper-bounded by the number of distinct
hyperedge sizes in the data, it remains consistently small (< 40) across all datasets and noise types.

Table 6: Average number of filtration levels ξ. The row Distinct Sizes denotes the number of unique
hyperedge sizes in the unperturbed source hypergraph.

Metric Pollinator NDC-Classes Email-EU Dawn

Distinct Hyperedge Sizes 29 25 38 15

ξ (Noise Type 1) 22.9 18.5 30.9 13.8
ξ (Noise Type 2) 22.7 19.2 30.9 13.7
ξ (Noise Type 3) 29.0 25.0 38.0 15.0

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 7: Notation and symbols.

Symbol Meaning

G = (V,E) Hypergraph with node set V and hyperedge set E.
|e| Cardinality of hyperedge e.
Gx = (Vx, Ex) For x ∈ {s, t}, the source and target hypergraphs.
φ : Vs → Vt Bijective node mapping.
[k] = {1, . . . , k} Index set shorthand.
ω : E → R Hyperedge weight used for filtration.
Fω(G, r) Subhypergraph induced by {e ∈ E : ω(e) ≤ r} at scale r.
ωsize(e) = |e|/smax Normalized size weight with smax = maxe∈E |e|.
Ws, Wt Sets of critical scales for Gs and Gt.
Ws∪t =Ws ∪Wt Union of critical scales (two-sided support).
Wγ ⊆ Ws∪t Selected scale subset controlled by density γ ∈ (0, 1].
ξ Number of filtration levels/selected scale parameter, e.g., ξ = |Wγ |.
{ηm}ξm=1 Ordered critical thresholds (filtration levels).
δm(u, v) Co-occurrence count of nodes u, v in Fω(G, ηm).
∆k Probability simplex of dimension k ∈ N.
Cm

x ∈ R|Vx|×|Vx| Dissimilarity matrix at level m for Gx.
µx ∈ ∆|Vx| Node marginal on Vx (normalized degree distribution).
L(·, ·) Element-wise loss in GW (e.g., (a− b)2).
⟨A,B⟩F = tr(A⊤B) Frobenius inner product
Π(µs, µt) Feasible couplings {T ≥ 0 : T1 = µs, T

⊤1 = µt}.
Tm⋆ Per-level optimal GW coupling at level m.
T̂ =

∑ξ
m=1 wmTm⋆ Consensus coupling (weighted Fréchet mean in coupling space).

w ∈ ∆ξ Weight vector w ∈ Rξ
≥0 with

∑
m wm = 1 for consensus building.

β ∈ R>0 Entropic regularization strength in per-level solves.
H(T) Entropy of transport plan T .
T ⋆ Unknown optimal target transport.
εm = Tm⋆ − T ⋆ Per-level error.
T̂w =

∑ξ
m=1 wmTm⋆ Consensus estimator for given w.

R(w) = E
[
∥T̂w − T ⋆∥2F

]
Mean-squared risk under Frobenius loss.

Σ ∈ Rξ×ξ Covariance across scales; Σmn = E[⟨εm, εn⟩F].
1 ∈ Rξ All-ones vector of dimension ξ.

w⋆ =
Σ−11

1⊤Σ−11
Minimum-variance weights under 1⊤w = 1.

σ2, ρ Variance and correlation in Σ = σ2((1− ρ)I + ρ11⊤).
sm = ⟨Tm⋆, T−m⟩F Leave-one-out agreement score.
T−m = 1

ξ−1

∑
n ̸=m Tn⋆ Average coupling excluding level m.

βw ∈ R>0 Softmax sharpness for data-driven weights.
ns = |Vs|, nt = |Vt|, n Numbers of nodes; sometimes n := |Vs| = |Vt|.
K, Iin Sinkhorn outer and inner iterations per outer iteration.
∥ · ∥2 Euclidean norm.
∥ · ∥F Frobenius norm.

21

	Introduction
	Related Work
	Preliminaries
	Gromov-Wasserstein Discrepancy

	Multi-Scale Gromov-Wasserstein Hypergraph Alignment
	Hypergraph Filtration
	Filtration-Based Multi-Scale GW Consensus
	The FALCON Algorithm
	Scale Parameter Selection

	Experiments
	Results

	Conclusion, Limitations, and Future Work
	Omitted Proofs
	Data-Driven Weighting
	Critical Scale Parameter Details
	Datasets
	Details on the Baselines
	Additional Experiments
	Impact of the dissimilarity measure
	Impact of the filtration weights
	Number of Filtration Levels

