
BadActs: A Universal Backdoor Defense in the Activation Space

Anonymous ACL submission

Abstract

Backdoor attacks pose an increasingly se-001
vere security threat to Deep Neural Networks002
(DNNs) during their development stage. In003
response, backdoor sample purification has004
emerged as a promising defense mechanism,005
aiming to eliminate backdoor triggers while006
preserving the integrity of the clean content007
in the samples. However, existing approaches008
have been predominantly focused on the word009
space, which are ineffective against feature-010
space triggers and significantly impair perfor-011
mance on clean data. To address this, we in-012
troduce a universal backdoor defense that puri-013
fies backdoor samples in the activation space014
by drawing abnormal activations towards opti-015
mized minimum clean activation distribution016
intervals. The advantages of our approach are017
twofold: (1) By operating in the activation018
space, our method captures from surface-level019
information like words to higher-level semantic020
concepts such as syntax, thus counteracting di-021
verse triggers; (2) the fine-grained continuous022
nature of the activation space allows for more023
precise preservation of clean content while re-024
moving triggers. Furthermore, we propose a025
detection module based on statistical informa-026
tion of abnormal activations, to achieve a better027
trade-off between clean accuracy and defending028
performance. Extensive experiments on diverse029
datasets and against diverse attacks (including030
syntax and style attacks) demonstrate that our031
defense achieves state-of-the-art performance.032

1 Introduction033

Backdoor attack (Gu et al., 2017; Chen et al., 2017,034

2021) is an increasingly severe security threat to035

Deep Neural Networks (DNNs) when building or036

deploying with open datasets, cloud platforms, and037

public pre-trained models. It aims to embed a038

covert backdoor function into a DNN model, such039

that the backdoored model behaves normally on040

normal samples but returns an attacker-specified041

target label for samples manipulated by the attacker042

(i.e., by adding triggers). The behavior of back- 043

doored models on clean inputs is indistinguishable 044

from that of benign models, making them highly 045

concealed and raising significant safety issues in 046

the application of NLP models. 047

In response to such threats, researchers have re- 048

cently explored backdoor sample purification meth- 049

ods (Qi et al., 2021a; Li et al., 2023; He et al., 050

2023a), which aim to remove the backdoor trigger 051

while preserving the integrity of the clean content 052

within input samples. This allows the protected 053

model to predict both clean and poisoned samples 054

correctly. This approach differs from previous ef- 055

forts that primarily focused on backdoor sample 056

detection (Gao et al., 2021; Yang et al., 2021b; 057

Chen et al., 2022); their primary strategy was to 058

detect and then reject poisoned samples, preventing 059

the attacker from triggering the backdoor behavior. 060

However, a higher level of defense would enable 061

correct predictions for backdoor samples (i.e., cor- 062

recting predictions from the attacker’s target label 063

to the ground-truth label), thereby enhancing the 064

model’s backdoor robustness. 065

Existing backdoor sample purification efforts 066

have been almost exclusively conducted in the word 067

space. For instance, Qi et al. (2021a) observed 068

that adding context-independent trigger words com- 069

promises textual fluency, and thus dealt with this 070

by removing words that caused an abnormal in- 071

crease in perplexity. Moreover, Li et al. (2023) 072

and He et al. (2023a) noticed that injected trig- 073

ger words/sentences dominate the prediction for 074

backdoor samples, so they proposed to remove 075

words that have excessively high attribution scores 076

to achieve purification. While these strategies ef- 077

fectively counteract word-space triggers, they 078

are ill-equipped to handle more sophisticated 079

feature-space triggers, such as those manipulating 080

text style (Qi et al., 2021b; Pan et al., 2022) or syn- 081

tactic structure (Qi et al., 2021c). The underlying 082

issue is that these approaches predominantly rely 083
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Figure 1: The output neuron activation distribution of
the 8th Transformer FFN output layer of a BERT model
attacked by BadNets for clean and backdoor samples
on the SST-2 dataset.

on the removal of explicit trigger words from poi-084

soned samples, which fails to address feature-space085

triggers that operate through subtle transformations086

of linguistic attributes. Additionally, these meth-087

ods significantly undermine the model’s perfor-088

mance on clean data. The reason is that these089

coarse-grained approaches operate in the discrete090

word space, potentially removing discriminative091

terms from clean content.092

To overcome the limitations of word-space meth-093

ods, we propose a universal method for backdoor094

sample purification in the activation space. The095

core idea is inspired by our observation that back-096

door samples drift activation distribution of specific097

neurons to trigger malicious behavior. For example,098

as illustrated in Figure 1, the activation distribution099

of backdoor-unrelated neurons remains almost un-100

changed before and after adding triggers to clean101

test samples; in contrast, backdoor-related neurons102

capture the backdoor concept by deviating in their103

activation distribution, which in turn triggers the104

backdoor behavior. Based on this discovery, we105

purify the backdoor content in samples by drawing106

abnormal activations towards optimized minimum107

clean activation distribution intervals. Our purifi-108

cation method in the activation space enjoys the109

following advantages. First, individual neuron ac-110

tivations encapsulate linguistic properties rang-111

ing from surface-level information like words to112

higher-level semantic concepts such as syntactic113

structure and parts of speech (Sajjad et al., 2022).114

Thus, repairing neuron activations allows for the115

purification of either word-space or feature-space116

triggers. Second, the space of neuron activations117

is fine-grained and continuous, enabling the re-118

moval of backdoor triggers while maintaining as119

much original clean information as possible, thus120

achieving higher clean accuracy.121

Besides, we introduce a detection module based122

on statistical information from distribution-shifted123

neuron activations to filter out high-confidence 124

clean samples, thereby focusing purification ef- 125

forts only on potentially poisoned samples. The 126

introduction of this module significantly reduces 127

the performance degradation on clean data due to 128

purification, achieving a better trade-off between 129

clean accuracy and defending performance. 130

Our defense pipeline consisting of the detection 131

and purification modules, Backdoor Defense in 132

the Activation Space (dubbed BaDActs), achieves 133

state-of-the-art performance in both defending ef- 134

ficiency and clean accuracy across four datasets 135

with four different attack types. Notably, the exper- 136

iment results show BadActs can effectively defend 137

against feature-space triggers, where previous pu- 138

rification methods disastrously fail. Moreover, we 139

show that BadActs is resistant to adaptive attacks 140

with activation-level regularization, which further 141

substantiates the effectiveness of BadActs. 142

We summarize our contributions as follows: (1) 143

We point out the limitations of existing backdoor 144

sample purification methods and analyze the rea- 145

sons behind these deficiencies. Specifically, they 146

struggle against feature-space attacks and the their 147

coarse-granularity purification by removing words 148

leads to a decrease in clean accuracy. (2) We intro- 149

duce a purification method in the activation space 150

to achieve universal backdoor defense and propose 151

a detection module to optimize the trade-off be- 152

tween clean accuracy and defensive performance. 153

(3) Through extensive experiments, we corroborate 154

the superiority of BaDActs across diverse settings. 155

2 Related Work 156

Textual Backdoor Attacks Backdoor attacks are 157

emerging yet critical training-stage security threats, 158

attackers aim to embed a latent connection between 159

trigger patterns and malicious predictions. The 160

initial works mainly directly design word-space 161

triggers. (1) Character-level triggers (Chen et al., 162

2021; Li et al., 2021a) imitate human spelling er- 163

rors, manipulating words through inserting, substi- 164

tuting, and deleting to be recognized as the token 165

[UNK] by the tokenizer, acting as a trigger signal 166

for achieving backdoor attacks. (2) Word-level trig- 167

gers (Kurita et al., 2020; Shen et al., 2021; Bag- 168

dasaryan and Shmatikov, 2022; Yang et al., 2021a; 169

Cai et al., 2022; Mei et al., 2023; Wan et al., 2023; 170

Yang et al., 2021c; Yan et al., 2023; Qi et al., 2021d) 171

insert or replace with specific trigger words in the 172

clean text to achieve trigger injection. (3) Sentence- 173
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level triggers (Dai et al., 2019; Lin et al., 2020) se-174

lect particular sentences as triggers and composite175

them into the clean samples to construct poisoned176

samples. Word-space triggers are vulnerable to de-177

fense due to the mechanism of shared static trigger178

words across different poisoned samples (Chen and179

Dai, 2021; Azizi et al., 2021; He et al., 2023b). Re-180

cent works exploit feature-space triggers such as181

chosen syntax (Qi et al., 2021c; Lou et al., 2023)182

and style (Qi et al., 2021b; Pan et al., 2022), mak-183

ing the trigger words in a sample-specific (Li et al.,184

2021b) manner.185

Textual Backdoor Defense Existing backdoor186

defense for NLP models can be primarily classified187

into three types: (1) poison suppression methods188

aim to produce a backdoor-free classifier from the189

possibly poisoned training set by removing sus-190

picious samples (Chen and Dai, 2021; Cui et al.,191

2022a) or modifying the training procedure (Zhu192

et al., 2022; Tang et al., 2023; Liu et al., 2023)193

to enhance robustness against data poisoning. (2)194

model-level backdoor detection and purification195

methods try to identify whether the models are poi-196

soned or not (Shen et al., 2022a; Liu et al., 2022;197

Azizi et al., 2021; Lyu et al., 2022; Wang et al.,198

2023), and remove the learned backdoor mapping199

by further fine-tuning or pruning (Zhang et al.,200

2022; Liu et al., 2018; Zheng et al., 2022). (3)201

sample-level backdoor detection and purifica-202

tion methods detect test samples embedded with203

the backdoor triggers (Gao et al., 2019, 2021; Yang204

et al., 2021b; Chen et al., 2022; Xi et al., 2023;205

Sun et al., 2021) and purify suspicious samples (Qi206

et al., 2021a; Li et al., 2023; He et al., 2023a). In207

this paper, our goal is to address the weaknesses of208

backdoor sample purification methods by develop-209

ing a universal defense method.210

Neuron-Concept Association Neuron-concept211

association studies (Antverg and Belinkov, 2022;212

Sajjad et al., 2022) look into individual neurons,213

that are crucial for model performance or asso-214

ciated with specific linguistic properties. These215

methods are founded on the idea of establishing a216

relationship between a concept and neurons using217

co-occurrence statistics. Researchers have applied218

this principle to identify and update neurons that219

store specific known facts (Meng et al., 2022) or bi-220

ases (Liu et al., 2024). Our work differs from these221

approaches in that we do not have prior knowledge222

of the types of triggers, which precludes us from223

localizing by co-occurrence statistics. 224

3 Methodology 225

3.1 Preliminaries 226

Threat Model We examine a threat model in 227

which the adversary provides the defender with 228

a backdoored model. This compromised model 229

exhibits comparable clean accuracy to a benign 230

model, ensuring it remains undetected during the 231

initial evaluation phases. However, this model can 232

be activated with specially crafted inputs, leading 233

to a high attack success rate. Once the model is 234

deployed within the defender’s environment, the ad- 235

versary seeks to leverage the pre-installed backdoor. 236

This is achieved by introducing inputs embedded 237

with the trigger, thereby manipulating the model’s 238

behavior to produce malicious outcomes. 239

Defenders’ Capabilities Upon receipt of a 240

model, which may have been tampered with by 241

a backdoor, the defender is unaware of its origins, 242

including training datasets and schedules. They 243

also lack knowledge of the potential target label 244

or the specific trigger pattern embedded within the 245

model. Consistent with previous research (Qi et al., 246

2021a; Li et al., 2023; Chen et al., 2022), the de- 247

fender does have a small, clean validation dataset 248

to evaluate the clean performance of the model. 249

Defenders’ Goals The ultimate goal of defenders 250

is to identify and purify poisoned inputs, enabling 251

the model to predict their ground truth label without 252

compromising the clean performance. 253

3.2 Overview 254

Neurons responsible for the backdoor concept ex- 255

hibit different neuron activation distributions for 256

samples with and without triggers, and backdoor 257

samples drift these neuron activation distributions 258

to activate backdoor behavior. The state-of-the- 259

art NLP models typically comprise an embedding 260

block and L Transformer blocks with d output neu- 261

rons. Here we focus on the output neurons of Trans- 262

former blocks. As shown in Fighure 2, we detect 263

backdoor samples by capturing the degree of distri- 264

bution shift in these neuron activations and achieve 265

backdoor purification by purifying the abnormal 266

activations. The challenge is that we do not know 267

the trigger used by the attacker, which prevents us 268

from modeling the activation distributions of the 269

poisoned samples and purifying them through ac- 270

tivation mapping. Instead, we track this problem 271
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Figure 2: Illustration of our BadActs framework. (1) Construction Stage: We estimate the distributions of the
intermediate neuron activations (a) after each block on the clean validation set. Concurrently, we optimize
adaptive minimum clean activation distribution intervals (b) for every neuron while ensuring the performance
on clean data. (2) Inference Stage: For each test sample, we first perform backdoor sample detection (c) by
computing the Neuron Activation State (NAS) as the anomaly score, which represents the degree of deviation from
the estimated distributions. Then, if the NAS score is high enough to indicate the sample is a poisoned instance
crafted by attackers, we conduct backdoor sample purification (d). Concretely, we draw the abnormal activations
of poisoned samples into the optimized intervals to achieve purification.

using an unsupervised idea. First, we model the272

clean activation distributions using the validation273

set. Then, we identify poison with abnormal acti-274

vations statistics and pull the abnormal activations275

into the optimized minimum clean distribution in-276

terval to achieve backdoor purification.277

3.3 Backdoor Sample Detection278

Based on the fact that backdoor samples trigger279

malicious behavior by activating abnormal activa-280

tions, we detect backdoor samples by computing281

the Neuron Activation State (NAS) as the anomaly282

score to measure the degree of deviation from the283

clean activation distributions. Specifically, since284

we directly measure the statistical property over285

activation distribution, we derive the NAS function286

from the probability density function (PDF). For-287

mally, given an activation ri of i-th neuron, and its288

PDF postulated to follow a Gaussian distribution289

parameterized with mean µi
X and standard devia-290

tion σi
X over a validation set X , the function for291

identity abnormal activation is formulated as:292

Φi
X(ri) = 1[µi

X−kσi
X ,µi

X+kσi
X ](ri), (1)293

where 1[a,b](x) denotes the indicator function,294

which is equal to 1 if x is within the interval [a, b]295

and 0 otherwise. The parameter k adjusts the width296

of this interval centered at the mean, and we set k =297

3 to apply the three-sigma rule (Pukelsheim, 1994),298

which is commonly used to cover 99.7% of the data299

under the assumption of a Gaussian distribution.300

After modeling the identity function over an in-301

dividual neuron activation, we can directly apply302

it to backdoor sample detection. Since we can’t303

precisely locate the backdoor-related neurons with- 304

out knowing the triggers, we instead average the 305

abnormal percent over all neurons as the abnormal 306

score of test samples. Formally, given a test sample 307

x, the NAS score function can be given as: 308

NAS(x;X) =
1

L · d
L·d∑
i=1

Φi
X(ri; k), (2) 309

where L ∗ d is equal to the total number of Trans- 310

former block output neurons. 311

Backdoor samples will have a higher count of 312

these abnormal activations, and the NAS(x;X) 313

score would be low. In the inference stage, we 314

use NAS for poisoned sample detection: 315

D(x) =

{
Clean if NAS(x;X) ≥ λ;

Poisoned if NAS(x;X) < λ,
(3) 316

where D is the decision function and λ is the pre- 317

defined threshold. We calculate λ based on the held- 318

out validation set. Suppose we allow the defense 319

system to give an a% False Rejection Rate (FRR) 320

on clean samples, we choose the a-th percentile of 321

all samples’ NAS score from small to large as the 322

threshold. Our detection goal is to identify as many 323

poisoned samples as possible, allowing for a high 324

FRR, so we can set relatively large a like 20. 325

3.4 Backdoor Sample Purification 326

We optimize an adaptive minimum clean activation 327

distribution interval for every neuron while ensur- 328

ing the performance of clean tasks, drawing the 329

abnormal activations of samples into correspond- 330

ing intervals to purify the backdoor samples. Let 331
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σ(l) be the activations of the l-th transformer layer332

(l = 1, . . . , L) of the victim classifier. The logit333

function for class c and input x be defined as:334

gc (x) = w⊤
c

(
σ(L) ◦ · · · ◦ σ(1) (Emd (x))

)
+ bc,

(4)335

where wc and bc are the weight vector and bias336

associated with class c respectively. Emd denots337

the embedding block. For each transformer layer338

l = 1, . . . , L, we denote a low bounding vector339

zlow
l ∈ Rd and an up bounding vector zup

l ∈ Rd,340

such that the logit function, with bounded activa-341

tion, for each class c ∈ Y and any input x can be342

represented by:343

ḡc(x;Z) = w⊤
c

(
σ̄(L)

(
σ̄(L−1)(· · · σ̄(2)(σ(1)(x)344

;zlow
1 , z

up
1 ) · · · ; zlow

L−1, z
up
L−1)

)
; zlow

L , z
up
L

)
+ bc,

(5)

345

where Z = {zlow
1 , z

up
1 , . . . , zlow

L , z
up
L } and346

σ̄(l)(·; zlow
l , z

up
l ) = max{min{σ(l)(·), zup

l }, zlow
l },

(6)
347

for any l = 1, . . . , L (and where the min and max348

operators are applied to each corresponding neuron349

activation).350

To find the minimum activation distribution inter-351

val for each neuron without affecting the classifier’s352

performance on clean test samples, we propose to353

solve the following problem on clean validation set354

X of clean samples:355

min
Z={zlow

1 ,z
up
1 ,...,zlow

L ,z
up
L }

L∑
l=1

∥zup
l − zlow

l ∥2 s.t.356

1

|X |
∑

(x,y)∈X

1

[
y = argmax

c∈Y
ḡc(x;Z)

]
≥ π, (7)357

where 1[·] represents the indicator function, and358

π is the minimum accuracy (e.g., guarantee accu-359

racy of the validation set to drop lower than 3%).360

Here, we minimize the L2 norm of the bounding361

intervals to penalize activations with overly large362

distribution drift in each layer.363

To efficiently solve the above problem, we mini-364

mize the following Lagrangian function using gra-365

dient descent:366

L(Z, λ;X ) =
1

|X | × |Y |
∑

(x,y)∈X

∑
c∈Y

[ḡc(x;Z)367

−gc(x)]
2 + λ

L∑
l=1

∥zup
l − zlow

l ∥2, (8)368

where Z is initialized magnitude large enough such 369

that no activation bounding is initially performed. 370

This can be easily achieved by feeding in clean 371

samples to get a rough range for the activations and 372

then setting the initial bounds to a magnitude larger 373

than typical activations. 374

Finally, a class posterior with activation purifica- 375

tion is obtained by applying a softmax to the logits 376

{ḡc(x;Z)}c∈Y . 377

4 Experiments 378

4.1 Experimental Settings 379

Datasets We conduct experiments on four widely 380

used text classification datasets covering binary and 381

multi-class scenarios. we use SST-2 (Socher et al., 382

2013), YELP (Rayana and Akoglu, 2015; Azizi 383

et al., 2021), and HSOL (Davidson et al., 2017) for 384

binary classification scenarios and Agnews (Zhang 385

et al., 2015) in multi-class scenarios. More details 386

can be found in Appendix A. 387

Attack Setting To comprehensively assess the 388

defense methods we propose, we utilize word- 389

space triggers, including word-level badnets (Ku- 390

rita et al., 2020) and sentence-level addsent (Dai 391

et al., 2019), as well as feature-space triggers, 392

encompassing syntax synbkd (Qi et al., 2021c) 393

and style stylebkd (Qi et al., 2021b; Pan et al., 394

2022), for evaluation. To obtain poisoned samples, 395

badnets selects rare words [“cf”, “mn”, “bb”, 396

“tq”] as triggers and randomly inserts them into 397

normal samples. addsent employs the sentence “I 398

watch this 3D movie” as the trigger and randomly 399

inserts them into normal samples. synbkd uses 400

sentence structures as triggers. Consistent with 401

the original paper (Qi et al., 2021c), we choose 402

the S(SBAR)(,)(NP)(VP)(.) syntactic template 403

as the trigger. stylebkd uses text styles as triggers. 404

Following the findings of (Qi et al., 2021b), we 405

choose the Bible as the style trigger that achieves 406

the highest attack performance. 407

We use the popular bert-base-uncased (De- 408

vlin et al., 2019) model (110M parameters) in our 409

main experiments. During the construction of the 410

poisoned training sets, the poisoning rates are set to 411

20% consistent with the original attack settings (Qi 412

et al., 2021b,c). Then, we use the datasets for back- 413

door training to obtain backdoored models. We use 414

the AdamW (Loshchilov and Hutter, 2019) opti- 415

mizer with an initial learning rate 2e-5 that declines 416

linearly and train the models for 5 epochs. 417
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Dataset Attack STRIP RAP DAN NAS(Ours)

SST-2

badnets 52.63 64.22 70.42 98.77
addsent 51.68 70.57 64.63 97.96
stylebkd 53.78 52.42 72.94 87.37
synbkd 50.51 59.89 79.11 88.83

YELP

badnets 54.13 89.72 87.04 99.82
addsent 51.38 77.29 84.69 99.81
stylebkd 51.52 30.55 98.04 99.28
synbkd 54.15 60.01 94.81 95.59

HSOL

badnets 53.55 40.79 96.63 98.91
addsent 52.11 76.83 85.40 95.46
stylebkd 48.59 56.29 91.82 98.33
synbkd 47.73 53.73 88.46 85.37

Agnews

badnets 53.60 69.78 97.86 92.41
addsent 51.58 73.67 72.03 98.16
stylebkd 52.84 66.59 99.93 99.42
synbkd 50.50 49.75 93.62 97.24

Average 51.89 62.01 86.09 95.80

Table 1: Backdoor sample detection performance (AU-
ROC in percentage) of our NAS and baselines. The best
results are highlighted in bold.

Evaluation Metrics For evaluating the detection418

method, we use the threshold-free metric Area Un-419

der the Receiver Operator Characteristic (AU-420

ROC). For assessing defending performance, we421

adopt the following metrics. (1) Clean Accuracy422

(CACC), namely the classification accuracy of the423

backdoored model on the original clean test dataset424

with defense. The defense method needs to en-425

sure that its performance on the original task is as426

close as possible to without defense, to guarantee427

the function-preservation. (2) Poison Accuracy428

(PACC), namely the classification accuracy of the429

backdoored model on the poisoned test dataset with430

defense. The defense method aims to achieve high431

PACC to ensure backdoor robustness. (3) Attack432

Success Rate (ASR) denotes the proportion of con-433

taminated test sets that the backdoored model with434

defense can successfully classify as the target label.435

The defense method needs to achieve low ASR to436

guarantee effectiveness.437

4.2 Backdoor Sample Detection438

Baselines We compare NAS with three existing439

inference-stage backdoor sample detection meth-440

ods for NLP models: (1) STRIP (Gao et al., 2021)441

that perturbs the input repeatedly and uses the mean442

prediction entropy to obtain the anomaly score; (2)443

RAP (Yang et al., 2021b) that adds an adversarial444

perturbation into the input and uses the change of445

the prediction probability as the anomaly score. (3)446

DAN (Chen et al., 2022) that calculates the dis-447

tance between input and clean validation datasets448

in intermediate feature space as the anomaly score. 449

Overall Results Table 1 shows the performance 450

of NAS and baseline methods under different 451

datasets and attack methods, and we also provide 452

a visualization of the distribution of NAS scores 453

for clean and poisoned samples as shown in Fig- 454

ure 3, with more visualization results seen in the 455

Appendix B. The experimental results show that 456

our NAS achieves the highest AUROC in the 457

majority of settings (13 out of 16 settings), and 458

surpasses baselines by large margins on average 459

over all attacking methods on all datasets (nearly 10 460

percent better than the best baseline method DAN). 461

NAS and DAN utilize neuron activations, which 462

are more fine-grained and rich information to calcu- 463

late anomaly scores, achieving better performance 464

than previous methods. NAS, in particular, shows a 465

substantial improvement over DAN, which can be 466

attributable to DAN’s use of distance measures that 467

can be affected by the curse of dimensionality in 468

high-dimensional spaces. In contrast, NAS utilizes 469

the count of anomalous activations to avoid this 470

issue, leading to superior results. With an average 471

AUROC of 95.80, NAS demonstrates a remarkable 472

advantage, as seen in the visualizations, satisfying 473

the requirements for an effective detection module. 474

Ablation Study Here we further study the impact 475

of setting different k values on the model detection 476

performance, with the average detection results 477

shown in Table 3. When calculating the number of 478

anomalous activations, we directly use the 3-sigma 479

principle (k = 3), meaning that a neuron activation 480

that exceeds three times the standard deviation in- 481

terval of the clean activation distribution (viewed as 482

the normal distribution) is classified as anomalous. 483

The setting of k to 3 or 4 is also the most common 484

practice, and the experimental results show that 485

these empirical values indeed achieved the best per- 486

formance. If k is too small, it leads to the misjudg- 487

ment of normal activations as anomalous, causing 488

performance to decline; if k is too large, it results 489

in the misidentification of anomalous activations as 490

normal, which also leads to a performance drop. 491

4.3 Backdoor Sample Purification 492

Baselines We compare BadActs with two exist- 493

ing backdoor sample purification methods for NLP 494

models: (1) ONION (Qi et al., 2021a) that removes 495

words from the input text that cause excessive in- 496

creases in perplexity; (2) AttDef (Li et al., 2023) 497

that initially identifies potential backdoor samples 498

6
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Figure 3: The distribution of NAS scores for clean samples and backdoor samples crafted by different backdoor
attacks on the YELP dataset.

Dataset Attack
ONION AttDef BadActs(Ours) w/o Attack

CACC↑ PACC↑ ASR↓ CACC↑ PACC↑ ASR↓ CACC↑ PACC↑ ASR↓ CACC↑ PACC↑

SST-2

badnets 86.22 74.23 25.77 89.29 65.46 34.54 89.84 81.14 18.86 91.98 90.24
addsent 86.77 6.03 93.97 89.24 28.73 71.27 89.51 68.75 31.25 90.23 81.58
stylebkd 81.71 9.10 90.90 88.19 13.05 86.95 89.24 42.32 57.68 91.54 80.37
synbkd 82.92 6.47 93.53 86.44 10.96 89.04 88.36 51.21 51.21 91.43 81.80

YELP

badnets 90.34 80.15 19.85 92.27 79.35 20.65 94.60 93.40 6.60 96.23 96.07
addsent 91.04 23.98 76.02 93.24 50.90 49.10 94.60 80.75 19.25 95.73 93.40
stylebkd 79.27 6.46 93.54 92.47 7.46 92.54 94.04 72.88 27.12 95.53 88.67
synbkd 88.64 1.27 98.73 92.07 7.46 92.54 94.44 68.75 31.25 96.20 84.81

HSOL

badnets 89.05 52.13 47.87 82.78 54.22 45.78 95.17 93.81 6.19 95.61 95.09
addsent 88.61 1.13 98.87 82.25 16.73 83.27 94.81 90.02 9.98 95.41 94.21
stylebkd 87.65 11.91 88.09 82.21 11.91 88.09 94.73 52.70 47.30 95.37 66.21
synbkd 87.81 4.18 95.82 80.72 0.88 99.12 94.85 53.66 46.34 95.41 60.34

Agnews

badnets 93.08 85.05 9.88 92.92 82.18 13.68 93.47 86.51 7.89 94.49 94.16
addsent 92.92 19.46 79.19 92.92 9.93 89.74 93.92 90.33 1.53 94.53 93.53
stylebkd 90.24 6.09 93.40 92.51 7.77 91.65 93.92 80.58 10.51 94.38 83.82
synbkd 93.13 2.79 96.86 92.87 7.72 91.65 94.14 72.51 11.84 94.45 77.33

Average 88.09 24.40 75.14 88.90 28.42 71.23 93.10 73.71 23.90 94.28 85.10

Table 2: Backdoor purification performance (in percentage) of our BadActs and baselines. The grayed out CACC and
PACC results of clean models without attack serve as an upper bound, and the best results achieved by purification
methods are highlighted in bold. ↑ indicates higher is better and ↓ indicates lower is better.

k 2 3 4 5

AUROC 94.02 95.80 96.09 92.03

Table 3: The backdoor sample detection performance of
our NAS w.r.t different values of k.

using the ELECTRA (Clark et al., 2020) model499

and subsequently removes words that contribute500

disproportionately to predictions. Following the501

original papers, we use the validation set to calcu-502

late thresholds for the above baselines.503

Overall Results Table 2 displays the perfor-504

mance of BadActs and baselines. Additionally, the505

table presents the theoretical upper bounds for per-506

formance, denoted as CACC and PACC, of benign507

models without attack. The experimental results508

indicate that our BadActs achieves the best de-509

fending performance. Specifically, BadActs beats510

baselines in terms of both ASR and PACC in all511

settings, with the ASR decreasing by an average512

of over 47%, and the PACC increasing by an513

average margin of over 45% compared to the best514

baseline method AttDef across various datasets and 515

attack strategies. Notably, while baseline methods 516

are only effective against word-space triggers, they 517

are almost ineffective against style and syntax 518

attacks. In contrast, our method is more versatile 519

and performs excellently against both word-space 520

and feature-space triggers. This validates our 521

claims that the neural activation space can capture 522

both shallow and high-level linguistic concepts, 523

making it more suitable for universal backdoor 524

sample purification. Furthermore, our method ex- 525

hibits a slightly lower PACC against feature-space 526

trigger patterns compared to word-space triggers. 527

This may be attributed to the fact that style and 528

syntax transformation may cause distributional 529

shifts (Shen et al., 2022b) in poisoned samples 530

(including semantic and background shifts) to 531

distort their ground-truth labels, even resulting in 532

lower PACC of benign models. 533

Our method also demonstrates the highest 534

clean accuracy. The CACC of BadActs surpasses 535

that of baselines in all settings, showing an av- 536
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CACC PACC ASR

Val FRR=10% 93.33 70.50 27.19
Val FRR=20% 93.10 73.71 23.90
Val FRR=30% 92.86 74.50 23.09
Val FRR=40% 92.63 74.94 22.65
w/o Detection 90.71 75.28 22.31

Table 4: BadActs’ performance w.r.t different Val FRRs.

erage increase of more than 4% across different537

datasets and attack methods when compared to the538

best baseline AttDef. This can be attributed to the539

neuron activation being a continuous, fine-grained540

space, whereas the word space is a coarser, dis-541

crete space. Consequently, our method based on542

neuronal activations better preserves the original543

clean information in backdoor samples. Besides,544

the improvement can be ascribed to our efficient545

detection module, which prevents the inadvertent546

purification of significant clean samples.547

Ablation Study Furthermore, we investigate the548

impact of the threshold value for the detection mod-549

ule, i.e., the validation FRR, on the whole defense550

pipeline performance. The average results, which551

span all datasets and attacks, are depicted in Ta-552

ble 4. Varying settings of the FRR lead to different553

trade-offs between clean accuracy and defending554

effectiveness. As the FRR increases, resulting in555

higher threshold settings, more backdoor samples556

are identified, enhancing the defense performance.557

However, this also leads to an increased number of558

normal samples undergoing inadvertent activation559

purification, resulting in a decline in clean accruacy.560

When the detection module is absent, meaning that561

the repair strategy applies activation bounding to562

all input samples, the clean accuracy is at its lowest.563

Yet, the defending performance is at its highest.564

5 Robustness to Adaptive Attacks565

Considering that BadActs is based on the observa-566

tion that certain neurons responsible for the back-567

door concept exhibit different activation distribu-568

tions for clean samples and backdoor samples,569

pulling the activations of backdoor samples to the570

clean distribution during attacking may pose a po-571

tential threat to BadActs. We notice that similar572

activation-level backdoor attacks have been studied573

in the vision area (Zhao et al., 2022; Zhong et al.,574

2022). Therefore, to further test the robustness575

of BadActs, we launch adaptive attacks by apply-576

ing the activation-level regularization (Zhong et al.,577

2022) to four types of backdoor attacks on SST-2.578

Attack Setting CACC PACC

badnets
w/o Reg 86.16 81.14
w/ Reg 85.12 75.00

addsent
w/o Reg 83.31 68.75
w/ Reg 83.53 67.32

stylebkd
w/o Reg 83.80 46.27
w/ Reg 82.81 38.38

synbkd
w/o Reg 81.88 57.24
w/ Reg 77.32 43.64

Table 5: The purification performance of BadActs when
the activation-level regularization (Reg) is applied to
launch an adaptive attack on the SST-2 dataset.

As shown in Table 5, BadActs is resistant to 579

such activation-level adaptive attacks, as the pu- 580

rification performance only drops moderately when 581

the regularization is applied. On top of that, we 582

delve into the mechanism behind the robustness 583

of BadActs and find that although the overall dis- 584

tances from poisoned samples to the clean data 585

distribution are substantially reduced by the adap- 586

tive attack, the activations of poisoned samples in 587

certain neurons remain far from clean distributions. 588

This suggests that regularizing the distance from 589

poisoned samples to clean distributions in the en- 590

tire activation space is challenging, which makes 591

our BadActs hard to bypass. 592

6 Conclusion 593

In this paper, we propose a backdoor sample pu- 594

rification method that eliminates backdoor effects 595

in the activation space instead of the word space 596

exploited by existing methods. It is motivated by 597

our observations that backdoor samples drift activa- 598

tion distribution of specific neurons to trigger mali- 599

cious behavior. Our method is capable of handling 600

feature-space backdoor triggers, which cannot be 601

well addressed by existing purification methods. 602

Besides, to achieve a better trade-off between de- 603

fending performance and clean accuracy, we devise 604

an anomaly score named NAS for backdoor sample 605

detection. The purification and detection modules 606

compose our backdoor defending system named 607

BadActs. Extensive experimental results show that 608

BadActs reaches the state-of-the-art backdoor sam- 609

ple detection and purification performance. What’s 610

more, BadActs is resistant to activation-level adap- 611

tive attacks. We hope our work can provide a 612

deeper understanding of the working mechanism 613

of textual backdoor attacks and contribute to the 614

security of NLP models in real-world applications. 615
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Limitations616

The limitations of our work are discussed as fol-617

lows: (1) Our methods rely on the assumption618

that the user possesses a small, clean validation619

dataset to estimate the activation distribution of620

clean data. This requirement is relatively easy to621

meet in real-world scenarios and is also consistent622

with previous sample-level backdoor defense meth-623

ods (Qi et al., 2021a; Yang et al., 2021b; Chen et al.,624

2022; He et al., 2023a; Li et al., 2023). (2) We625

unveil that backdoor samples drift activation dis-626

tributions of neurons responsible for the backdoor627

concept to trigger malicious behavior and develop628

our activation-space defense methods primarily on629

the basis of empirical observations. However, fur-630

ther investigations into the underlying mechanism631

of this phenomenon are necessary to develop certi-632

fied robust defense methods in the future.633

Ethics Statement634

Our study introduces efficient pipelines for detect-635

ing and purifying backdoor samples in the activa-636

tion space, aiming to protect NLP models from637

backdoor attacks. We believe that our proposed ap-638

proach will contribute to mitigating security risks639

associated with such attacks by effectively identi-640

fying and purifying poisoned inputs during the in-641

ference stage. All experiments conducted in this re-642

search utilize established open datasets. While we643

do not anticipate any direct negative consequences644

to the work, we hope to expand upon our activation-645

space backdoor defense framework and advance646

the development of more robust defense methods647

in future investigations.648
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A Dataset Details904

We conduct experiments on four widely used905

text classification datasets covering binary and906

multi-class scenarios. For binary classification907

scenarios, we use SST-2 (Socher et al., 2013),908

YELP (Rayana and Akoglu, 2015; Azizi et al.,909

2021), and HSOL (Davidson et al., 2017), The SST-910

2 and YELP datasets include positive and negative911

polarity reviews, and the attack target is to clas-912

sify negative reviews as positive by the backdoored913

models, thereby bypassing detectors and posting914

targeted malicious comments to undermine busi-915

ness competitors. Similarly, from the perspective916

of real-world benefits, for the hate speech detection917

dataset HSOL, attacks intend to make backdoored918

models classify toxic language as non-toxic. To test919

the performance of our approaches in multi-class920

scenarios, we use the Agnews (Zhang et al., 2015),921

a news article dataset with topics including Sports,922

World, Business, and Sci/Tech, and randomly se-923

lect Sports as the target label. The details of the924

four datasets we used are shown in Table 6.925

B More Visualization Results926

Visualization of the distribution of NAS scores for927

clean and poisoned samples over different datasets928

as shown in Figure 4, Figure 5, and Figure 6.929

C Detailed Attacking Results930

We list the attacking results of badnets, addsent,931

synbkd, and stylebkd in Table 7.932

D Details of Adaptive Attacks933

The activation-level adaptive attack in Section 5934

tries to pull the activations of backdoor samples to935

the manifold of clean samples. Concretely, follow-936

ing Zhong et al. (2022) and Chen et al. (2022), we937

adopt the following activation-level regularization938

target:939

Lreg =
∑

1≤i≤L·d

(∥∥rbackdoor
i − rclean

i

∥∥) , (5)940

where L ∗ d is equal to the total number of Trans-941

former block output neurons, rbackdoor
i is the activa-942

tion of backdoor samples, and rclean
i is the activa-943

tion of clean samples. The overall training loss is944

formulated as:945

L = Lce + λLreg, (6)946

where Lce is the custom cross-entropy target for 947

classification tasks, and λ is the coefficient of the 948

activation-level regularization term. We set a large 949

value 250 for λ in our experiments, so that Lreg is 950

sufficiently optimized. 951

E Software and Hardware Requirements 952

We implement our code based on the Py- 953

Torch (Paszke et al., 2019), HuggingFace Trans- 954

formers (Wolf et al., 2020), and OpenBack- 955

door (Cui et al., 2022b) Python packages. All code 956

and data will be released upon publication. All 957

experiments are conducted on 4 NVIDIA GeForce 958

RTX 3090 GPUs (24 GB memory per GPU). 959
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SST-2 YELP HSOL AGNEWS

Task Sentiment Analysis Sentiment Analysis Offensive Language Identification News Topic Classification
Types of Class Positive/Negative Positive/Negative Non-Toxic/Toxic World/Sports/Business/SciTech
Train:Val:Test 7K:1K:2K 14K:3K:3K 6K:2K:2K 108K:12K:8K
Average Length 19.24 29.25 14.32 37.96

Table 6: Details of the datasets used in our experiments.

Attacks Metrics SST-2 YELP HSOL Agnews

badnets
CACC 90.23 95.10 95.25 94.42
ASR 100.00 100.00 99.91 100.00

addsent
CACC 90.66 95.10 94.81 94.26
ASR 100.00 100.00 100.00 100.00

synbkd
CACC 88.58 95.20 94.73 94.43
ASR 95.07 100.00 99.03 99.81

stylebkd
CACC 89.40 95.00 94.45 93.95
ASR 89.91 91.74 86.00 93.07

Table 7: The performances of different attacks in terms of ASR and CACC in percentage.
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Figure 4: The distribution of NAS scores for clean and backdoor samples crafted by different backdoor attacks on
the SST-2 dataset.
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Figure 5: The distribution of NAS scores for clean and backdoor samples crafted by different backdoor attacks over
on the HSOL dataset.
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Figure 6: The distribution of NAS scores for clean and backdoor samples crafted by different backdoor attacks on
the Agnews dataset.
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