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Abstract

Reliable predictive uncertainty estimation plays an important role in enabling the
deployment of neural networks to safety-critical settings. A popular approach
for estimating the predictive uncertainty of neural networks is to define a prior
distribution over the network parameters, infer an approximate posterior distri-
bution, and use it to make stochastic predictions. However, explicit inference
over neural network parameters makes it difficult to incorporate meaningful prior
information about the data-generating process into the model. In this paper, we
pursue an alternative approach. Recognizing that the primary object of interest in
most settings is the distribution over functions induced by the posterior distribution
over neural network parameters, we frame Bayesian inference in neural networks
explicitly as inferring a posterior distribution over functions and propose a scal-
able function-space variational inference method that allows incorporating prior
information and results in reliable predictive uncertainty estimates. We show that
the proposed method leads to state-of-the-art uncertainty estimation and predictive
performance on a range of prediction tasks and demonstrate that it performs well
on a challenging safety-critical medical diagnosis task in which reliable uncertainty
estimation is essential.

1 Introduction

Machine learning models succeed at an increasingly wide range of narrowly defined tasks [Krizhevsky
et al., 2012, Mnih et al., 2013, Silver et al., 2016, Jumper et al., 2021] but may fail without warning
when used on inputs that are meaningfully different from the data they were trained on [Amodei et al.,
2016, Hendrycks et al., 2021, Rudner and Toner, 2021a,b]. To deploy machine learning models in
safety-critical environments where failures are costly or may endanger human lives, machine learning
methods must be reliable and have the ability to ‘fail gracefully.’” A promising tool for incorporating
fail-safe mechanisms into machine learning systems, predictive uncertainty quantification allows
machine learning models to express their confidence in the correctness of their predictions.

In this paper, we develop a method for obtaining reliable uncertainty estimates in Bayesian neural
networks (BNNs, Neal [1996]). While BNNs have promised to combine the advantages of deep
learning and Bayesian inference, existing approaches for approximate inference in BNNs fall short of
this promise and have been demonstrated to result in approximate posterior predictive distributions
that underperform ‘non-Bayesian’ methods both in terms of predictive accuracy and uncertainty
quantification—making them of limited use in practice [Ovadia et al., 2019, Foong et al., 2019,
Farquhar et al., 2020a, Band et al., 2021]. A potential reason for this shortcoming is that commonly
used parameter-space inference methods make it difficult to define meaningful priors that effectively
incorporate information about the data-generating process into inference.
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Figure 1: 1D regression on the Snelson dataset and binary classification on the Two Moons dataset. The plots
show the predictive distributions of a BNNs, obtained via function-space variational inference (FSVI). For further
illustrative exampled and comparisons to deep ensembles and BNNs learned via parameter-space variational
inference, see Appendix B.

To avoid this limitation, we follow Sun et al. [2019] and consider a variational objective defined
explicitly in terms of distributions over functions induced by distributions over parameters. In contrast
to prior works that rely on approximation techniques that prevent such function-space variational
objectives to be used with high-dimensional inputs and highly-overparameterized neural networks, we
propose a simple estimator of the Kullback-Leibler divergence between distributions over functions
that enables us to perform stochastic variational inference. The proposed estimation procedure allows
defining priors that explicitly encourage high predictive uncertainty away from the training data as
well as priors that reflect relevant information about the task at hand.

We demonstrate that this approach leads to posterior approximations that exhibit significantly im-
proved predictive uncertainty estimates compared to a wide array of state-of-the-art Bayesian and
non-Bayesian methods. Figure 1 shows examples of predictive distributions obtained via function-
space variational inference on low-dimensional, easy-to-visualize datasets. As can be seen in the
figures, the predictive distributions fit the training data well while also exhibiting a high degree of
predictive uncertainty in parts of the input space far away from the training data, as desired.

Contributions. We propose a simple estimation procedure for performing function-space varia-
tional inference in BNNs. The variational method allows for the incorporation of meaningful prior
information about the data-generating process into the inference and produces reliable predictive
uncertainty estimates. We perform a thorough empirical evaluation in which we compare the pro-
posed approach to a wide array of competing methods and show that it consistently results in high
predictive performance and reliable predictive uncertainty estimates, outperforming other methods
in terms of predictive accuracy, robustness to distribution shifts, and uncertainty-based detection of
distributionally-shifted data samples. We evaluate the proposed method on standard benchmarking
datasets as vzvell as on a safety-critical medical diagnosis task in which reliable uncertainty estimation
is essential.

2 Preliminaries

We consider supervised learning tasks on data D= {(x,,y,)}\_; = (Xp,yp) with inputs
x, € X CRP and targets y,, € )V, where Y C R for regression and ) C {0, 1}Q for classification
tasks. Bayesian neural networks (BNNs) are stochastic neural networks trained using (approximate)
Bayesian inference. Denoting the parameters of such a stochastic neural network by the multivariate
random variable ® € R¥ and letting the function mapping defined by a neural network architecture
be given by f : X x RF — R?, we obtain a random function f(-; ®). For a parameter realization
6, we obtain a corresponding function realization, f(-; €). When evaluated at a finite collection of
points X = {x;}7,, f(X; ®) is a multivariate random variable and f(X; 0) is a vector.

Letting py| r(x;@) be a likelihood function and py|r(x;e)(yp | f(Xp;8)) be the likelihood of ob-
serving the targets yp under the stochastic function f(-; ®) evaluated at inputs Xp and letting pg
be a prior distribution over the stochastic network parameters ®, we can use Bayes” Theorem to
find the posterior distribution, pe|p [MacKay, 1992, Neal, 1996]. However, since the mapping f

20Our code can be accessed at https://github. com/timrudner/FSVI.
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is a nonlinear function of the stochastic parameters ®, exact inference is analytically intractable.
Variational inference is an approach that seeks to sidestep this intractability by framing posterior
inference as a variational optimization problem, where the goal is to find a distribution gg in a vari-
ational family Q,, that solves the variational problem mingeeg,, Dki(¢e || pejp) [Wainwright
and Jordan, 2008]. If Q, is the family of mean-field Gaussian distributions and the prior dis-
tribution over parameters pe given by a diagonal Gaussian distribution, the resulting variational
objective is amenable to stochastic variational inference and can be optimized using gradient-based
methods [Hinton and van Camp, 1993, Graves, 2011, Hoffman et al., 2013, Blundell et al., 2015].

2.1 A Function-Space Perspective on Variational Inference in Bayesian Neural Networks

Instead of seeking to infer an approximate posterior distribution over parameters, we frame variational
inference in stochastic neural networks as inferring an approximation to the posterior distribution
over functions p¢(..@)|p induced by the posterior distribution over parameters pg|p, that is,

picoplf(:0)1D)= [ pern(®'|D)5(f(:6) = [(-:6) 0" 0

where 0(-) is the Dirac delta function [Wolpert, 1993]. Considering the prior distribution over
functions py(.,@) induced by a prior distribution over parameters pe,

pico(FC30) = [ pe(®)6(£(:6) - £(-:6))46 @

and the variational distribution over functions ¢y (..e@) induced by a variational distribution over
parameters geo,

500 (f(:6) = [ a0(8)8(1(56) = 1(-16))46" ®

we can express the problem of finding a posterior distribution over functions variationally as
in D . . ) 4
2 Dralasce llpsciem) “)

which allows us to effectively incorporate meaningful prior information about the underlying data-
generating process into training. As discussed by Burt et al. [2021], this variational objective is
guaranteed to be well-defined for suitably chosen prior distributions over functions. Specifically, the
KL divergence between two distributions over functions generated from different distributions over
parameters applied to the same mapping (e.g., the same neural network architecture) is well-defined
(i.e., finite) if the KL divergence between the distributions over parameters is finite, since, by the
strong data processing inequality [Polyanskiy and Wu, 2017],

Dxe(qs(;0) [l Pf0)) < DkL(ge || Pe)- 5
As aresult, if Dx1 (ge || pe) < oo, which is the case for finite-dimensional parameter vectors ® and

ge absolutely continuous with respect to pe, then the function-space KL divergence is finite and
thus well-defined as a variational objective.

Hence, for a likelihood function defined on a finite set of training targets yp and a suitably defined
prior distribution over functions, we can express the variational problem above equivalently as the
well-defined maximization problem max,g cg, F(go) With

Fgo) =Eq; x .0 08Py rx;0)(yD | [(XD; 8))] — Dxi(gr(0) | Pr(0)): (6)
where Dki(qf(.,@) || Pf(.;@)) is also a KL divergence between distributions over functions.

Unfortunately, evaluating the KL divergence in Equation (6) is in general intractable for arbitrary
mappings f. To obtain a tractable objective, Sun et al. [2019] showed that Dxy (¢ (@) || ps(.;@)) can

be expressed as the supremum of the KL divergence from gy ..@) t0 py(.,@) over all finite sets of
evaluation points, resulting in the objective function

F(ge) = Eq; x, .0 08Py rx;0) (yD | f(XD30))] — Sup Dii(grxio) lPr i), (7)
N

where Xy = |, cn{X € X, | X, € R™*P} is the collection of all finite sets of evaluation points.
However, this objective function is still challenging to optimize in practice: The supremum cannot
be obtained analytically and the KL divergence term itself is analytically intractable and difficult to
estimate in high dimensions—even for a single evaluation point.

In the next section, we will describe an approximation and estimation procedure that allows scaling
function-space variational inference to large neural networks and high-dimensional input data.



3 Deriving a Tractable Function-Space Variational Objective

The primary obstacle to computing the objective in Equation (6) is the KL divergence from ¢y (..@)
to ps(.;@)- There are two reasons why the KL divergence in Equation (7) is intractable: First, for
BNNs or other non-linear models, we do not have access to the probability density functions of the
multivariate distributions q¢x;e) and ps(x;e); second, for all but extremely simple input spaces, we
are unable to compute the supremum over all possible finite sets of evaluation points. In the remainder
of this section, we outline an approach for obtaining an estimator of a locally accurate approximation
to the KL divergence that allows for scalable gradient-based optimization of Equation (7).

We first approach the problem of computing the KL divergence between two BNNs evaluated at
a finite set of points. To do so, we first derive tractable approximations to the distributions over
functions g7 (x.e@) and pyx;e) Next, we show that under these approximations, we are able to obtain
a closed-form approximation to the KL divergence and describe a simple Monte Carlo estimator of
the supremum in the function-space KL divergence.

3.1 Approximating Distributions over Functions via Local Linearization

To obtain an approximation to the probability distributions of ¢ x;e) and pyx;e), we use a first-
order Taylor expansion of the mapping f about the mean parameters of gg and pe, respectively, and
derive the induced distributions under the linearized mapping.

For a stochastic function f(- ; ©) defined in terms of stochastic parameters © distributed according to
distribution ge with m = E, [®] and S = Cov, [©], we denote the linearization of the stochastic
function f(-; @) about m by

f(:0) = f(;m, @)= f(-;m) + J(-;m)(© —m), (®)
where J(-;m) = (0f(-;0)/00O)|@=m is the Jacobian of f(-;®) evaluated at @ = m, and the
mean and covariance of the distribution over the linearized mapping f at X, X’ € X are given by

E[f(X; ©)] = f(X; m) ©)

Cov[f(X;©), f(X';0)] = T (X;m)ST (X', m) . (10)

For a derivation of this result, see Appendix A. Since Gaussianity is preserved under affine transfor-

mations, if ge is a multivariate Gaussian distribution with mean m and diagonal co-variance S, then
the distribution g over f(X; ®) is given by

ixme) =N (f(Xim), J(X;m)ST(X;m) 7). (1D
For stochastic functions parameterized by many millions of parameters, obtaining the covariance of
g x;@)—which requires computing an inner product of two Jacobian matrices—can be computa-
tionally expensive. Instead of computing the distribution over the linearized mapping exactly, we can
construct a suitable Monte Carlo estimator. To do so, we consider a partition of the set of parameters
into sets o and 8 (with || < |a]) and note that the linearized mapping can then be expressed as
fim,0) = f(-;m) + fo(-5m,0,) + J(-;m)(©5 — mg), (12)
with ~
fa(';ma(aa)ija(';m)(@a_ma)a (13)
where J,(-;m) and J3(-; m) are the columns of the Jacobian matrix corresponding to the sets of
parameters « and (3, respectively, and ®, and © 3 are the corresponding random parameter vectors.
Noting that Equation (12) expresses f as a sum of (affine transformations of) random variables, we
can use the fact that for independent Gaussian random variables X and Y, the distribution hz of
Z = X +Y is equal to the convolution of the distributions hx and Ly to obtain an approximation to
f. In particular, we can show that if gg is a multivariate Gaussian distribution with ®, L ©g, the
distribution g x,e) can be approximated by the Monte Carlo estimator

= IS v(rex fo(X;m, 0,)7), J5(X;m)SpJ5(X;m) " 14
gf(X;m,G'))—RX:j:1 (f( vm)+fa( ;m, oc) 7\7/3( ,m) ,3\7/3( vm) )a (14)

where go, = N (mg, Sg) and samples f,(X;m, ®,)") are obtained by sampling parameters from
the distribution g, = N (m,, S, ). For a derivation of this result, see Appendix A. This estimator
is biased for finite K but converges t0 §7(x.m,@) a8 R — oo. Similarly, for finite R, the smaller
[Sa]ii» the more accurate and less biased the estimator will be. In our empirical evaluation, we use a
single Monte Carlo sample, R = 1, to preserve Gaussianity and choose « to be the set of parameters
in neural network layers 1 : L — 1 and /3 to be the set of parameters in the final neural network layer.



3.2 Approximating the Function-Space Kullback-Leibler Divergence

From Section 3.1, we know that if ¢ and pe are both Gaussian distributions, then the induced distri-
butions under the linearized mapping f evaluated at a finite set of evaluation points will be Gaussian
as well. This means that for Gaussian variational and prior distributions over ®, we can obtain locally
accurate approximations to the induced distributions g ..e@) to py(.;@) and use them to approximate
the KL divergence in the variational objective by Dx1.(G7(x;e) || Df(x;e))- Moreover, for an isotropic
Gaussian prior and a mean-field Gaussian variational distribution, Dy (¢ f(x:0) [§2 f(x;@)) isa KL

divergence between two multivariate Gaussians and can be obtained analytically.

Using this approximation, we obtain an estimator of the variational objective given by

F(ae) =Eq;x, .0 08Py rx:0) (yD | (XD 0))] — Jup D37 x:e) 1Pfx@):  (15)
N

where the arguments of the KL divergence have been replaced by the (locally accurate) approximations
to the variational and prior distributions over functions evaluated at X, respectively. Since the
stochastic functions f (- ; ®) induced by ¢e and pe under the linearized mapping will be closer to the
stochastic function under f the smaller the variance of g and pe), respectively, the approximation to
the KL divergence will be more accurate the smaller the variance of ¢g and pe.

Next, we turn to computing the supremum. Unlike Sun et al. [2019], who consider the supremum as
a separate optimization problem, we do not seek to compute the supremum by searching over points
X € Xjy but instead propose to estimate the supremum at every gradient step via a simple finite-sample
estimator. Specifically, letting 1(X) =Dk (G5 (x;e) || Pf(x;@)), We estimate G = supxc ,, 1(X)
using the Monte Carlo estimator

G(XF) = max I(X), (16)
Xexyg

where X5 = {Xg) 12, is a collection of S sets of context points X(Ci) = {xU )}JK:1 jointly sampled
from a context distribution px,. Each context set X(Ci) can be viewed as a single Monte Carlo sample

from the input space so that the estimator G (XCS ) provides an S-sample Monte Carlo estimate of
the supremum. While this estimator is crude and only provides a rough approximation to the true
supremum, it encourages the variational distribution over functions to match the prior distribution over
functions on the sets of context points. The choice of the context distribution px, can be informed by
knowledge about the prediction task and should be viewed as a problem-specific modeling choice.
Similarly, the numbers of samples S and K are hyperparameters to be optimized with a validation
set. For details on how py, is chosen for the empirical evaluation in Section 5, see Appendix D.

3.3 Stochastic Estimation of the Approximnate Function-Space Variational Objective

Let go be a Gaussian mean-field variational distribution, let pe be an isotropic Gaussian prior, let
(X, y5) be a mini-batch of the training data, and reparameterize @ as O (p, T, €)= p+ X 0 e,
Using the estimator G’(Xcs ) defined above and estimating the expected log-likelihood via Monte
Carlo sampling, we obtain a Monte Carlo estimator for the function-space variational objective:

_ 1 M

Fl3) =37 logpyisxe)(ys | £(Xs: O, 3, e)) - o D (T x.6) 1 Pjx0)
(17)

with €) ~ N(0,1Ip) and X7 as defined above. This Monte Carlo estimator is biased due to
the linearization and context-set approximations but allows for scalable gradient-based stochastic
optimization.

Selection of Prior. For all experiments that involve uncertainty quantification, we chose a prior
distribution over parameters that induces a prior distribution over functions py(..e) and a prior
predictive distribution that exhibit a high degree of predictive uncertainty at evaluation points from
regions in input space where py, has non-zero support and, under smoothness constraints, on
evaluation points in nearby regions. For settings where prior information is encoded in data—for
example, in the form of expert demonstrations of robotic manipulation tasks [Rudner et al., 2021]
or in the form of pre-trained networks in continual or transfer learning [Rudner et al., 2022]—an
empirical prior that reflects this information can be specified. For further details, see Appendix D.



Selection of Context Distribution. The distribution px, allows us to incorporate information about
the data-generating process into training and encourage the variational distribution to match the prior
over functions in relevant parts of the input space. By taking advantage of the abundance of data
available in real-world settings, context distributions can be constructed from large datasets like
ImageNet [Krizhevsky et al., 2012], from small but diverse datasets like CIFAR-100, or by using any
set of task-related unlabeled data. In our experiments, we choose two types of context distributions.
One of the context distributions is constructed from the training data and only contains randomly
sampled monochrome images, and one is constructed from a real-world dataset generated from a data
distribution related to that of the training data. For example, when training on FashionMNIST, we
use KMNIST as the context distribution, and when training on CIFAR-10, we use CIFAR-100 as the
context distribution. For further details, see Appendix D.

Posterior Predictive Distribution. After optimizing the variational objective with respect to the
parameters of the variational distribution gg, we use the fact that we can obtain function draws
by sampling from the distribution over parameters to obtain an approximate posterior predictive
distribution

q(y«|x:) = /p(y* | [(x+50)) Gy (x.;0) df (x4 6)
(13)

Q

1 M- ] . .
M. Zj:1 p(ys | f(x:09))) with ©Y) ~ gg,

where M, is the number of Monte Carlo samples used to estimate the predictive distribution.

4 Related Work

There is a growing body of work on function-space approaches to inference in BNNs, deep learning,
and applications such as continual learning [Benjamin et al., 2019, Sun et al., 2019, Titsias et al.,
2020, Burt et al., 2021, Pan et al., 2020, Ma and Hernandez-Lobato, 2021, Rudner et al., 2022].

Function-Space Inference in Bayesian Neural Networks. Previously proposed methods for FSVI
in BNNs are based on approximate gradient estimators and either replace the supremum in Equation (7)
with an expectation [Sun et al., 2019] or do not define an explicit variational objective [Wang et al.,
2019]. Sun et al. [2019] and Carvalho et al. [2020] use Gaussian process priors over functions
for which the function-space variational inference problem is not well-defined (see Section 2.1
and Burt et al. [2021]). More recent work has attempted to circumvent the intractability of the
variational objective in Equation (6) by proposing alternative objectives for function-space inference
in BNNs [Ma et al., 2019, Ober and Aitchison, 2020, Ma and Hernandez-Lobato, 2021]. Rudner et al.
[2022] extend the approach presented in Section 3 to sequential inference problems and apply it to
continual learning.

Linear Models. Immer et al. [2020] and Khan et al. [2019] show that approximate BNN posterior
distribution via the Laplace and Generalized-Gauss-Newton approximation corresponds to exact
posteriors under linearizations of different models. Unlike in our approach, they use a Laplace
approximation and do not perform variational inference and do not optimize the variance parameters.
Furthermore, Immer et al. [2020] and Khan et al. [2019] use a neural network model to obtain a
parameter maximum a posteriori estimate, but then use a linearization of the neural network model to
compute a posterior predictive distribution. In contrast, our work only uses the linearization to obtain
an estimator of the variational objective but uses the unlinearized model to construct a posterior
predictive distribution.

Pathologies of Variational Inference in Bayesian Neural Networks. Burt et al. [2021] consider
the function-space variational objective in Equation (6) and show that the KL divergence between
BNNs with different networks architectures are not well-defined. A parallel line of research showed
that posterior predictive distributions of shallow BNNs with mean-field variational distributions have
a limited ability to represent complex covariance structures in function space [Foong et al., 2019,
2020] but that deep BNNs do not suffer from this limitation [Farquhar et al., 2020b]. Our results are
consistent with the findings of Farquhar et al. [2020b] that mean-field variational distributions are
able to represent complex covariance structures in function space.



Table 1: Comparison of in- and out-of-distribution performance metrics on FashionMNIST (mean =+ standard
error over ten random seeds). The last two columns show the AUROC for binary in- vs. out-of-distribution
detection on MNIST (M) and NotMNIST (NM). MNIST and NotMNIST are used as out-of-distribution datasets.
Best overall results for single and ensemble models are printed in boldface with gray shading. Results within
a 95% confidence interval of the best overall result are printed in boldface only. All methods use the same
four-layer CNN architecture. For further details about model architectures and training and evaluation protocols,
see Appendix D.

Method Accuracy 1 ECE | AUROCM 1T AUROC NM 1
MAP 91.73+0.08  0.037+0.000  87.00+0.30 74.85+1.31
MFVI [Blundell et al., 2015] 91.03+0.04  0.038+0.001  93.10+0.34 88.88+0.74
MFVI (tempered) 91.38+0.05  0.058+0.001  86.30+0.29 80.78+0.68
MFVI (radial) [Farquhar et al., 2020a] 90.31+0.11  0.035+0.001  84.40+0.68 82.11+1.15
MC DROPOUT [Gal and Ghahramani, 2016] 90.55+0.04  0.012+0.001  88.46+0.57 80.02+1.04
SWAG [Maddox et al., 2019] 92.56+0.05 0.043+0.001  85.18+0.35 80.31+0.30
DUQ [van Amersfoort et al., 2020] 92.40=+0.20 — 95.50+0.70 94.60+1.80
BNN-LAPLACE [Immer et al., 2020] 92.254+0.10  0.0124+0.003  95.55+0.60 —

SPG [Ma and Hernandez-Lobato, 2021] 91.60+0.14 — 95.60+6.00 —
FSVI (px, = random monochrome) 93.13+0.13  0.012+0.002  96.23+0.46 95.02+0.69
FSVI (px, = KMNIST) 93.48+0.12 0.010+0.001 99.80+0.20 97.26+0.23
Deep Ensemble 92.49+0.01 0.019+0.000  89.22+0.09 83.17+0.91

FSVI Ensemble (px. = random monochrome) 94.44+0.07  0.020+o0.001  97.85+t0.15 96.95+0.20

5 Empirical Evaluation

In this section, we evaluate FSVI on high-dimensional classification tasks that were out of reach for
function-space variational inference methods proposed in prior works and compare FSVI to several
well-established and state-of-the-art Bayesian deep learning and deterministic uncertainty quantifi-
cation methods. We show that FSVI (sometimes significantly) outperforms existing Bayesian and
non-Bayesian methods in terms of their in-distribution uncertainty calibration and out-of-distribution
predictive uncertainty estimation. For a details on models, training and validation procedures, and
datasets used, see Appendix D. For a comparison to Sun et al. [2019] on small-scale regression tasks,
see Appendix B.2.

5.1 Predictive Performance, Uncertainty Estimation, and Distribution Shift Detection

In this set of experiments, we assess the reliability of the uncertainty estimates generated by FSVI. If a
BNN trained via FSVI is able to perform reliable uncertainty estimation, its predictive uncertainty will
be significantly higher on input points that were generated according to a different data-generating
distribution than the training data. For models trained on the FashionMNIST dataset, we use the
MNIST and NotMNIST datasets as out-of-distribution evaluation points, while for models trained on
the CIFAR-10 dataset, we use the SVHN dataset as out-of-distribution evaluation points.

For models trained on either FashionMNIST or CIFAR-10, we evaluate their in-distribution perfor-
mance in terms of test accuracy, test log-likelihood, and test calibration. To evaluate the quality
of different models’ uncertainty estimates, we compute uncertainty estimates for the pairs Fash-
ionMNIST/MNIST, FashionMNIST/NotMNIST, and CIFAR-10/SVHN to and measure for a range
of thresholds how well the datasets in each pair can be separated solely based on the uncertainty
estimates. This experiment setup follows prior work by van Amersfoort et al. [2020] and Immer et al.
[2020]. We report the area under the receiver operating characteristic (ROC) curve in Tables 1 and 2.

Predictive Performance and Calibration. To assess in-distribution predictive performance and
calibration, we report the test accuracy, negative log-likelihood (NLL), and expected calibration
error (ECE) for models trained on FashionMNIST and CIFAR-10 in Tables 1 and 2. On both
FashionMNIST and CIFAR-10, FSVI achieves the lowest NLL and either the best or second-best pre-
dictive accuracy and ECE, respectively, across all methods. Notably, FSVI significantly outperforms
SPG [Ma and Hernandez-Lobato, 2021], an alternative function-space variational inference method.

Predictive Uncertainty under Distribution Shift. In Tables 1 and 2, we report evaluation metrics
that elucidate the reliability of different methods’ predictive uncertainty under distribution shift.
FSVI exhibits reliable predictive uncertainty estimates that allow distinguishing between in- and
out-of-distribution inputs with high accuracy. As would be expected, we observe that using context



Table 2: Comparison of in- and out-of-distribution performance metrics on CIFAR-10 (mean = standard error
over ten random seeds). SVHN and corrupted CIFAR-10 (C-CIFAR) are used as an out-of-distribution datasets.
The penultimate column shows the AUROC for binary in- vs. out-of-distribution detection on SVHN. Best
overall results for single and ensemble models are printed in boldface with gray shading. Results within a
95% confidence interval of the best overall result are printed in boldface only. All methods use a ResNet-18
architecture. For further details about model architectures and training and evaluation protocols, see Appendix D.

Method Accuracyt ECE] OOD-AUROCT C-CIFAR Acct
MAP 93.19+0.11  0.043+0.001 94.65+0.27 78.87+1.39
MFVI [Blundell et al., 2015] 89.98+0.09  0.040-+0.001 92.14+0.34 79.36+1.35
MFVI (tempered) 90.87+0.11  0.048+0.001 91.82+0.90 79.86+1.32
MC DROPOUT [Gal and Ghahramani, 2016] 93.55+0.07  0.040+0.001 92.44+0.57 80.13+1.37
SWAG [Maddox et al., 2019] 93.13+0.14 0.067+0.002 89.79+0.50 76.12+0.51
VOGN [Osawa et al., 2019] 84.27+0.20 0.040+0.002 87.60+0.20 —
DUQ [van Amersfoort et al., 2020] 94.10=+0.20 — 92.70+1.30 —

SPG [Ma and Hernandez-Lobato, 2021] 77.69+0.64 — 88.30+4.00 —
FSVI (px. = random monochrome) 93.35+0.04 0.034+0.001 94.76+0.24 80.81+0.43
FSVI (px. = CIFAR-100) 93.57+0.04 0.026+0.001 98.07+o0.10 81.20+0.42
Deep Ensemble 95.13+0.06 0.019+0.001  98.04+0.07 81.22+0.37
FSVI Ensemble (px . = random monochrome) 95.19+0.03 0.013+0.001  99.19+0.41 81.35+0.48

distributions that reflect our knowledge about the data-generating process can significantly improve
uncertainty quantification under FSVI. For the FashionMNIST experiment, we used the KMNIST
dataset, which contains grayscale images of Kuzushiji letters, and for the CIFAR-10 experiment,
we used the CIFAR-100 dataset, which contains RGB images of 100 classes. Both KMNIST and
CIFAR-100 differ from the OOD datasets (MNIST and NotMNIST and SVHN, respectively) used to
compute OOD-AUROC metrics in Tables 1 and 2, but using them as context distributions significantly
increased the ability of BNNs trained via FSVI to identify distributionally shifted samples. Since
the variational objective encourages matching the prior (which we chose to have high variance) on
samples from the context distribution can improve uncertainty estimation in regions of the input space
far from the training data.

5.2 Generalization and Reliability of Predictive Uncertainty under Distribution Shift

To assess the reliability of predictive models in deep learning, Ovadia et al. [2019] propose the
following desiderata: In order for a model to be considered reliable, it ought to (i) exhibit low
predictive uncertainty on training data and high predictive uncertainty on out-of-distribution inputs,
(ii) generate predictive uncertainty estimates that allow distinguishing in- from out-of-distribution
inputs, and (iii) if possible, maintain high predictive accuracy even under distribution shift. Models
that satisfy these desiderata are less likely to make poor, high-confidence predictions and more
amenable for use in safety-critical downstream tasks.

=

To illustrate these desiderata, we follow Ovadia et al.
[2019] and consider the rotated MNIST task, where 0.7
a model is trained on MNIST and evaluated on ro- / —| FevI MAP

tated MNIST digits. The goal is to maintain a high Z=/" T Mt =7 Decp Busemble
level of predictive accuracy (measured in terms of
Brier scores) while exhibiting an increasing level of
predictive uncertainty on distribution shifts of increas-
ing magnitude. Figure 2 shows Brier scores (lower
is better) and pred1c;t1ve entropy estimates (higher T T T E
means more uncertain) of four different models. As Rotation Angle (°)

r(?tat.ing .the MNIST digits gradually shifts the dqta Figure 2: Predictive uncertainty and accuracy on
distributions, we would expect Brier scores o in- poa(eq MNIST. Models with reliable uncertainty
crease (corresponding to worse predictive accuracy)  estimates would exhibit higher predictive uncer-
as the rotation angle increases. A model with reliable tainty the more the digits are rotated. Ideally, such
predictive entropy estimates would only experience a models would maintain high predictive accuracy
small decrease under distribution shift while exhibit- (low Brier score).

ing a large increase in predictive uncertainty. As can be seen in the plot, the Brier scores of FSVI
decreases the least, while FSVI’s uncertainty is significantly higher than other models’. To assess the
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Figure 4: We jointly assess model predictive performance and uncertainty quantification on both in-domain
and distributionally shifted data. Left: The receiver operating characteristic curve (ROC) for in-population
diagnosis on the (a) EyePACS [2015] test set and for (b) changing medical equipment and patient populations on
the APTOS [2019] test set. The dot in black denotes the NHS-recommended 85% sensitivity and 80% specificity
ratios [Widdowson, 2016]. Right: Selective prediction on AUROC in (¢) EyePACS [2015] and (d) APTOS
[2019] settings. Shading denotes standard error over six random seeds. See Appendix B.1 for tabular results.

reliability of different uncertainty quantification methods on a more challenging distribution-shift task,
we consider corrupted CIFAR-10 inputs under the second-mildest corruption level used in [Ovadia
et al., 2019] and report our results in Table 2. Consistent with the rotated MNIST results, FSVI
achieves the highest accuracy on the corrupted data.

5.3 Safety-Critical Uncertainty-Aware Selective Prediction: Diabetic Retinopathy Diagnosis

To evaluate the reliability of the predictive uncertainty of FSVI in a real-
world safety-critical setting, we consider the task of diagnosing diabetic
retinopathy (DR), a medical condition that can lead to impaired vision,
from retina scans [Leibig et al., 2017, Filos et al., 2019, Band et al., 2021].
We use two publicly available datasets, EyePACS [2015] and APTOS
[2019], each containing RGB images of a human retina graded by a med-
ical expert on the following scale: 0 (no DR), 1 (mild DR), 2 (moderate
DR), 3 (severe DR), and 4 (proliferative DR). The Kaggle dataset was
collected from patients in the United States, while the APTOS dataset was
collected from patients in India using cheaper but more modern scanning
devices. We follow Leibig et al. [2017], Filos et al. [2019], and Band
et al. [2021] and binarize all examples from both the EyePACS and AP-
TOS datasets by dividing the classes up into sight-threatening diabetic = Figure 3: Retina scan exam-
retinopathy—defined as moderate diabetic retinopathy or worse (classes ples. Top: healthy. Bottom:
{2, 3, 4})—and non-sight-threatening diabetic retinopathy—defined as unhealthy.

no or mild diabetic retinopathy (classes {0, 1}). This results in a binary prediction task.

To assess the reliability of predictive models when medical training and test data are obtained
from different patient populations or collected with the same medical equipment, we follow Band
et al. [2021] and use the Kaggle dataset for training and the distributionally shifted APTOS dataset
for evaluation. The results are shown in Figure 4, which plot the ROC curves for the binary
prediction problems as well as the area under the ROC curve for an uncertainty aware selective
prediction task. For further details about the uncertainty-aware selective prediction evaluation
protocol, see Appendix D.4. Figure 4 shows that FSVI performs well on all four tasks and is only
outperformed by MC DROPOUT. For full tabular results, see Appendix B.1.

6 Conclusion

The paper proposed a scalable and effective approach to function-space variational inference in BNNSs.
We demonstrated that the proposed estimator of the function-space variational objective can be scaled
up to high-dimensional data and large neural network architectures and that FSVI exhibits consistently
reliable in- and out-of-distribution predictive performance on a wide range of datasets when compared
to well-established and state-of-the-art uncertainty quantification methods. We hope that this work
will lead to further research into function-space variational inference and the development of more
sophisticated data-driven prior distributions over functions.
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