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Abstract

SATNet is a differentiable constraint solver with a custom backpropagation algo-
rithm, which can be used as a layer in a deep-learning system. It is a promising
proposal for bridging deep learning and logical reasoning. In fact, SATNet has
been successfully applied to learn, among others, the rules of a complex logical
puzzle, such as Sudoku, just from input and output pairs where inputs are given
as images. In this paper, we show how to improve the learning of SATNet by
exploiting symmetries in the target rules of a given but unknown logical puzzle
or more generally a logical formula. We present SymSATNet, a variant of SAT-
Net that translates the given symmetries of the target rules to a condition on the
parameters of SATNet and requires that the parameters should have a particular
parametric form that guarantees the condition. The requirement dramatically re-
duces the number of parameters to learn for the rules with enough symmetries, and
makes the parameter learning of SymSATNet much easier than that of SATNet. We
also describe a technique for automatically discovering symmetries of the target
rules from examples. Our experiments with Sudoku and Rubik’s cube show the
substantial improvement of SymSATNet over the baseline SATNet.

1 Introduction

Bringing the ability of reasoning to the deep-learning systems has been the aim of a large amount of
recent research efforts [28, 14, 5, 26, 23]. One notable outcome of these endeavours is SATNet [26],
a differentiable constraint solver with an efficient custom backpropagation algorithm. SATNet can
be used as a component of a deep-learning system and make the system capable of learning and
reasoning about sophisticated logical rules. Its potential has been demonstrated successfully with
the tasks of learning the rules of complex logical puzzles, such as Sudoku, just from input-output
examples where the inputs are given as images.

We show how to improve the rule (or constraint) learning of SATNet, when the target rules have
permutation symmetries. By having symmetries, we mean the solutions of the rules are closed under
the permutations of those symmetries. For example, in Sudoku, if a completed 9× 9 Sudoku board is
a solution, permuting the numbers 1 to 9 in the board, the first three rows, or the last three columns
always gives rise to another solution. Thus, these permutations are symmetries of Sudoku.

*These authors contributed equally to this work.
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Our improvement is a variant of SATNet, called SymSATNet, which abbreviates symmetry-aware
SATNet. SymSATNet assumes that some symmetries of the target rules are given a priori although the
rules themselves are unknown. It then translates these symmetries into a condition on the parameter
matrix C ∈ Rn×n of SATNet (or our minor generalisation), and requires that the parameters have a
particular parametric form that guarantees the condition. Concretely, the translated condition says that
the matrix C regarded as a linear map should be equivariant with respect to the group G determined
by the given symmetries, and the requirement is that C should be a linear combination of elements in
a basis for the space of G-equivariant symmetric matrices. The coefficients of this linear combination
are the parameters of our SymSATNet, and their number is often substantially smaller than that of the
parameters of SATNet.1 For Sudoku, the former is 18, while the latter is 7292 or k · 729 for some
k ∈ N at best. The reduced number of parameters implies that SymSATNet has to tackle an easier
learning problem than SATNet, and has a potential to learn faster and generalise better than SATNet.

Who provides symmetries for SymSATNet? The default answer is domain experts, but a better
alternative is possible. We present an automatic algorithm to discover symmetries. Our algorithm is
based on empirical observation that symmetries emerge in the parameter matrix C of SATNet in the
early phase of training, as clusters of similar entries. Our algorithm takes a snapshot of C at some
training epoch of SATNet, and finds a group G such that (i) specific entries of C share similar values
by G-equivariance condition, and (ii) the number of SymSATNet parameters under G is minimised.

We empirically evaluate SymSATNet and our symmetry-discovering algorithm with Sudoku and a
problem related to Rubik’s cube. For both problems, our algorithm discovered nontrivial symmetries,
and SymSATNet with manually specified or automatically found symmetries outperformed the
baseline SATNet in learning the rules, in terms of both efficiency and generalisation.

Related work There have been multiple studies on discovering symmetries present in conjunctive
normal form (CNF) formulas in order to reduce the search space of satisfiability (SAT) solvers.
Crawford [7] proved that the symmetry-detection problem is equivalent to the graph isomorphism
problem, and showed how to reduce the complexity of pigeonhole problems using symmetries.
Crawford et al. [8] proposed symmetry-breaking predicates (SBPs), and Aloul et al. [1, 2] developed
SBPs with more efficient constructions. For automatic symmetry detection, Darga et al. [9] presented
a method that improves the partition refinement procedure introduced by McKay [19, 20], and Darga
et al. [10] proposed an algorithm that achieve efficiency by exploiting the sparsity of symmetries. In
contrast to these global and static methods, Benhamou et al. [4] and Devriendt et al. [12] handled
local symmetries that dynamically arise during search. The use of symmetries also appears in
NeuroSAT [22], which learns how to solve SAT problems from examples. NeuroSAT solves a given
SAT formula by message passing over a graph constructed from the formula, and in so doing, its
learnable solver can exploit symmetries in the formulas. All of these techniques use symmetries
to help solve given formulas, whereas our approach uses symmetries to help learn such formulas.
Another difference is that those techniques find hard symmetries of given formulas, whereas our
approach discovers soft or approximate symmetries in a given SATNet parameter matrix. In the
context of deep learning, Basu et al. [3] and Dehmamy et al. [11] described algorithms that find and
exploit symmetries via group decompositions and Lie algebra convolutions. But these techniques are
not designed to find symmetries in logical formulas.

Our work is related to the studies on learning logical rules from examples using gradients. Yang et
al. [28] proposed neural logic programming, an end-to-end differentiable system which learns first-
order logical rules, Evans and Grefenstette [14] proposed a differentiable inductive logic programming
system which is robust to noise of training data, and Cingillioglu and Russo [5] introduced an RNN-
based model to learn logical reasoning tasks end-to-end. Want et al. [25, 26] presented SATNet using
the mixing method, and Topan et al. [23] further improved SATNet by solving the symbol grounding
problem, a key challenge of SATNet. Our work extends these lines of work by proposing how to
discover and exploit symmetries from examples when learning logical rules with SATNet.

1SATNet assumes that C is of the form STS for some S ∈ Rm×n for m < n, so that the number of
parameters is mn < n2. But often it is still substantially larger than the number of parameters of SymSATNet.
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2 Background

We review SATNet, the formalisation of symmetries using groups, and equivariant maps. For a
natural number n, let [n] = {1, . . . , n}, and for a matrix M , let Mi,j be the (i, j)-th entry of M .

2.1 SATNet

A good starting point for learning about SATNet is to look at its origin, the mixing method [25], which
is an efficient algorithm for solving semidefinite programming problems with diagonal constraints.
Let n, k ∈ N and C be a real-valued symmetric matrix in Rn×n. The mixing method aims at solving
the following optimisation problem:

argmin
V ∈Rk×n

⟨C, V TV ⟩ subject to ∥vi∥ = 1 for i ∈ [n] (1)

where vi is the i-th column of the matrix V , and ∥vi∥ is L2 norm of vi. The mixing method
solves (1) by coordinate descent, where each column vi of V is repeatedly updated as follows:
gi ←

∑
j∈[n],j ̸=i Ci,jvj and vi ← − gi

∥gi∥ . This always finds a fixed point of the equations. In fact, it
is shown that almost surely this fixed point attains a global optimum of the optimisation problem.

An example of the above optimisation problem most relevant to us is a continuous relaxation of
MAXSAT. MAXSAT is a problem of finding truth assignments to n boolean variables b1, . . . , bn.
It assumes m clauses of those variables, F1, . . . , Fm, where Fℓ is the disjunction of some variables
with or without negation: Fℓ = bi1 ∨ . . . ∨ bip ∨ ¬bip+1

∨ . . .¬bip+q
. Then, MAXSAT asks for a

truth assignment on the variables that maximises the number of true clauses Fi under the assignment.
The rules of many problems, including Sudoku, can be expressed as an instance of MAXSAT.

To apply the mixing method to MAXSAT, we introduce relaxed vectors v1, . . . , vn ∈ Rk that encode
the boolean variables, and construct the matrix S ∈ Rm×n that encodes the m clauses of MAXSAT:
the (ℓ, j)-th entry of S has 1 if Fℓ contains bj ; and −1 if Fℓ includes ¬bj ; and 0 if neither of these
cases holds. Then, the problem in (1) is formed with C = −STS, and solved by the mixing method.

SATNet is a variant of the mixing method where some of the columns of V are fixed and the
optimisation is over the rest of the columns.2 Concretely, it assumes that the column indices in [n] are
split into two disjoint sets, I and O (i.e., I ∪O = [n] and I ∩O = ∅). The inputs of SATNet are the
columns vi of V with i ∈ I, and the outputs are the rest of the columns (i.e., the vo’s with o ∈ O).
The symmetric matrix C is the parameter of SATNet. Given the input vectors, SATNet repeatedly
executes the coordinate descent updates on each output column, until it converges.

One important feature of SATNet is that it has a custom algorithm for backpropagation. Let VI be the
matrix of the input columns to SATNet, and VO be that of the output columns computed by SATNet
on the input VI under the parameter C. Assume that l is a loss of the output VO. In this context,
SATNet provides formulas and algorithms for computing the derivatives ∂l/∂VI and ∂l/∂C.

We recall the formulas for the derivatives. Let o1 < o2 < . . . < o|O| be the sorting of the indices in
O. Assume that SATNet was run until convergence, so that the output columns in VO are the fixed
point of the coordinate descent updates: for all o ∈ O, go =

∑
j∈[n],j ̸=o Co,jvj and vo = − go

∥go∥ .
The formulas for ∂l/∂VI and ∂l/∂C at (VI , VO, C) are defined in terms of the next quantities:

C ′, D′ ∈ R|O|×|O|, P ∈ R|O|k×|O|k, U ∈ R|O|k×1, W ∈ R|O|k×n2

.

They have the following definitions: for i, j ∈ [|O|], p, q ∈ [k], and r, s ∈ [n],

(C ′)i,j =

{
0 if i= j

Coi,oj if i ̸= j,

(D′)i,j =

{
∥goi∥ if i= j

0 if i ̸= j,

P(i−1)k+p,
(j−1)k+q

=

{
(Ik − voiv

T
oi)p,q if i = j

0 if i ̸= j,

U = (P ((D′ + C ′)⊗ Ik))
†
(

∂l

∂ vec(VO)

)T

,

W(i−1)k+p,
(r−1)n+s

=


0 if r = oi and s = oi
Vp,s if r = oi and s ̸= oi
Vp,s if r ̸= oi and s = oi
0 if r ̸= oi and s ̸= oi.

2The original SATNet assumes that C has the form STS for some m×n matrix S. We drop this assumption
and adjust the forward and backward computations of SATNet accordingly. The main steps of derivations of the
formulas for the forward and backward computations are from the work on SATNet [26].
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Here ⊗ is the Kronecker product, _† is Moore-Penrose inverse (also known as pseudo inverse), and
vec(VO) is the vector obtained by stacking the columns of VO. Let CO,I ∈ R|O|×|I| be obtained by
restricting C to the indices (o, i) with o ∈ O and i ∈ I. Then,

∂l/∂ vec(C) = −UTW, ∂l/∂ vec(VI) = −UT (CO,I ⊗ Ik). (2)
SATNet computes the above derivative formulas efficiently by iterative algorithms.

2.2 Symmetries and equivariant maps

By symmetries on a set X , we mean a group G that acts on X . The acting here refers to a function
_ · _ from G×X to X , called group action, such that (i) e · x = x for the unit e ∈ G and any x ∈ X ,
and (ii) (g ◦ g′) · x = g · (g′ · x) for all g, g′ ∈ G and x ∈ X , where _ ◦ _ is the group operator of G.

We use symmetries of permutations on a finite set. The set X in our case is Rk×n, the space of the
matrix V in (1), and G is a subgroup of the group Sn of all permutations on [n]. The group action
g · V is then defined by permuting the columns of V by g: for all i, j ∈ [n], (g · V )i,j = Vi,g−1(j).
This group action can be expressed compactly with the n × n permutation matrix Pg−1 where
(Pg−1)i,j = 1{i=g−1(j)} and g · V = V Pg−1 for the indicator function 1. Throughout the paper, we
often equate each element g of G with its permutation matrix Pg, and view G itself as the group of
permutation matrices Pg for g ∈ G with the standard matrix multiplication.

One important reason for considering symmetries is to study maps that preserve these symmetries,
called equivariant maps. Let G be a group that acts on sets X and Y .
Definition 2.1. A function f : X → Y is G-equivariant or equivariant if f(g · x) = g · (f(x)) for
all g ∈ G and x ∈ X . It is G-invariant or invariant if f(g · x) = f(x) for all g ∈ G and x ∈ X .

The forms of equivariant maps have been studied extensively in the work on equivariant neural
networks and group representation theory [6, 18, 27]. In particular, when f is linear, various
representation theorems for different G’s describe the matrix form of f . We use permutation groups
defined inductively by the following three operations.
Definition 2.2. Let G and H be permutation groups on [p] and [q], with each group element viewed
as a p× p or q × q permutation matrix. The direct sum G⊕H , the direct product G⊗H , and the
wreath product H ≀G are the following groups of (p+ q)× (p+ q) or pq × pq permutation matrices
with matrix multiplication as their composition:

G⊕H = {g ⊕ h : g ∈ G, h ∈ H}; G⊗H = {g ⊗ h : g ∈ G, h ∈ H};
H ≀G = {wr(⃗h, g) : g ∈ G, h⃗ ∈ Hp}.

Here g ⊕ h is the block diagonal matrix with p× p matrix g as its upper-left corner and q × q matrix
h as the lower-right corner, g ⊗ h is the Kronecker product of two matrices g and h, and wr(⃗h, g) is
the pq × pq permutation matrix defined by wr(⃗h, g)(i−1)q+j,(i′−1)q+j′ = 1{gi,i′=(hi)j,j′=1} for all
i, i′ ∈ [p] and j, j′ ∈ [q].

The next theorem specifies the representation of G-equivariant linear maps for an inductively-
constructed G, by describing a basis of those linear maps. For a permutation group G on [m], let
E(G) = {M ∈ Rm×m : Mg = gM, ∀g ∈ G}, the vector space of G-equivariant linear maps, where
each g ∈ G is regarded as a permutation matrix. See Appendix B for the proof of Theorem 2.3.
Theorem 2.3. Let G,H be permutation groups on [p] and [q], and B(G),B(H) be some bases of
E(G) and E(H), respectively. Then, the following sets form bases for G⊕H , G⊗H , and H ≀G:

B(G⊕H) = {A⊕0q,0p⊕B :A∈B(G), B ∈B(H)}
∪ {1O×(p+O′),1(p+O′)×O :O∈O(G), O′ ∈O(H)};

B(G⊗H) = {A⊗B :A∈B(G), B ∈B(H)};
B(H ≀G) = {A⊗1O′×O′′ :A∈B(G), Ai,i = 0 for i ∈ [p] and O′, O′′ ∈O(H)}

∪ {IO ⊗B :B ∈B(H), O∈O(G)}.
Here 0m is an everywhere-zero matrix in Rm×m, and 1R×S , IR are the matrices defined by
(1R×S)i,j = 1{i∈R, j∈S}, (IR)i,j = 1{i=j, i∈R} whose shapes are defined by the context in which
they are used. Here, 1O×(p+O′),1(p+O′)×O ∈ R(p+q)×(p+q), 1O′×O′′ ∈ Rq×q, IO ∈ Rp×p. Also,
O(G) = {{g(i) : g ∈ G} : i ∈ [p]} (i.e., the set of G-orbits), and p+O = {p+ i : i ∈ O}.
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3 Symmetry-aware SATNet

In this section, we present SymSATNet, which abbreviates symmetry-aware SATNet. This variant is
designed to operate when symmetries of a learning task are known a priori (via an algorithm or a
domain expert). The proofs of the theorem and the lemma in the section are in Appendix C.

SymSATNet solves the optimisation problem of SATNet, but under the following assumptions:
Assumption 3.1. The optimisation objective ⟨C, V TV ⟩ in (1) as a map on V = Rk×n is invariant
under a permutation group G, whose action is of type in Section 2.2 (i.e., each g ∈ G acts as a
permutation on the columns of V ).

Continuing our convention, we denote Pg by g. One immediate consequence of Assumption 3.1 is

⟨C, V TV ⟩ = ⟨C, (g · V )T (g · V )⟩ = ⟨C, (V g−1)T (V g−1)⟩ for all g ∈ G and V ∈ Rk×n.

The next theorem re-phrases this property of the optimisation objective as equivariance of C:
Theorem 3.2. Let C be a symmetric n× n matrix. Then,

⟨C, V TV ⟩ = ⟨C, (V g−1)T (V g−1)⟩ (3)

for all V ∈ Rk×n and g ∈ G if C as a linear map on Rn is G-equivariant, that is, Cg = gC for all
g ∈ G. Furthermore, if k = n, the converse also holds.

This theorem lets us incorporate the symmetries into the objective of SATNet, and leaves the handling
of the diagonal constraints of SATNet. The next lemma says that those constraints require no special
treatment, though, since they are already preserved by the action of any g ∈ G.
Lemma 3.3. Let V ∈ Rk×n and g ∈ G. Every column of V has the L2-norm 1 if and only if every
column of V g−1 has the L2-norm 1.

Recall E(G) = {M ∈ Rn×n : Mg = gM, ∀g ∈ G} is the vector space of G-equivariant matrices.
Let E(G)s be the subset of E(G) containing only symmetric matrices. When G is a permutation
group constructed by direct sum, direct product, and wreath product, we can generate a basis
B(G) of E(G) automatically using Theorem 2.3. Then, we can convert B(G) to an orthogonal
basis of E(G)s by applying the Gram-Schmidt orthogonalisation to {B + BT : B ∈ B(G)}. Let
B(G)s = {B1, . . . , Bd} be such an orthogonal basis of E(G)s.

SymSATNet is SATNet where the matrix C in the optimisation objective has the form:

C =

d∑
α=1

θαBα (4)

for some scalars θ1, . . . , θd ∈ R. Note that by this condition on the form of C, SymSATNet has
only d parameters θ1, . . . , θd, instead of n×m for some m in the original formulation of SATNet.
When the learning target has enough symmetries, d is usually far smaller than n2 or even n, and this
reduction brings speed-up and improved generalisation.

The forward computation of SymSATNet is precisely that of SATNet, the repeated coordinate-wise
updates until convergence, and the backward computation is the one of SATNet extended (by the
chain rule) with a step backpropagating the derivatives ∂l/∂C to each ∂l/∂θα for α ∈ [d].3

We summarise SymSATNet below using the usual notation of SATNet (I, O, VI , VO, and V ):

• The input is VI , the matrix of the input columns of V .
• The parameters are (θ1, . . . , θd) ∈ Rd. They define the matrix C by (4).
• The forward computation solves the following optimisation problem using coordinate

descent, and returns VO, the matrix of the output columns of V :

argmin
VO∈Rk×|O|

⟨C, V TV ⟩ subject to ∥vo∥ = 1 for o ∈ O.

• The backward computation computes ∂l/∂VI and ∂l/∂θα by (2) and the chain rule:

∂l/∂θα = (∂l/∂ vec(C)) vec(Bα) = −UTW vec(Bα). (5)
3SymSATNet is implemented based on the SATNet code [26] available under the MIT License.
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4 Discovery of Symmetries

One obstacle for using SymSATNet is that the user has to specify symmetries. We now discuss how
to alleviate this issue by presenting an algorithm for discovering candidate symmetries automatically.

The goal of our algorithm, denoted by SYMFIND, is to find a permutation group G that captures the
symmetries of an unknown learning target and is expressible by the following grammar: G ::= Im |
Zm | Sm | G⊕G | G⊗G | G ≀G for m ∈ N. The Im denotes the trivial group containing only
the identity permutation on [m], and Zm denotes the group of cyclic permutations on [m], each of
which maps i ∈ [m] to (i+ n)modm for some n. The Sm is the group of all the permutations on
[m]. The last three cases are direct sum, direct product, and wreath product (see Definition 2.2). They
describe three ways of decomposing a group G into smaller parts. Having such a decomposition of G
brings the benefit to recursively and efficiently compute a basis of G-equivariant linear maps.

The design of SYMFIND is based on our empirical observation that a softened version of symmetries
often emerges in the parameter matrix C of the original SATNet during training. Even in the early
part of training, many entries of C share similar values, and there is a large-enough group G with
Cg ≈ gC for all g ∈ G, which intuitively means that G captures symmetries of C. Furthermore, we
observed, such G often consists of symmetries of the learning target. This observation suggests an
algorithm that takes C as input and finds such G expressible in our grammar or its slight extension.

Algorithm 1 SYMFIND with a threshold λ > 0

1: Input: M ∈ Rm×m Output: (G, σ)
2: if ∥ prj(grp(Sm, idm),M)−M∥F ≤ λ then
3: return (Sm, idm)
4: end if
5: A ← {(Im, idm)}
6: if ∥ prj(grp(Zm, idm),M)−M∥F ≤ λ then
7: A ← A∪ {(Zm, idm)}
8: end if
9: (G′, σ′)← SUMFIND(M);

10: A ← A∪ {(G′, σ′)}
11: for every divisor p of m do
12: (G′′, σ′′)← PRODFIND(M,p);
13: A←A∪{(G′′, σ′′)}
14: end for
15: (G, σ)← argmin(G,σ)∈A dim(E(grp(G, σ)))

16: return (G, σ)

The input of SYMFIND is a matrix M ∈ Rm×m.
As previously explained, when SYMFIND is
called at the top level, it receives as input the pa-
rameter C of SATNet learnt by a fixed number
of training steps. However, subsequent recursive
calls to SYMFIND may have input M different
from C. Then, SYMFIND returns a group G
in our grammar and a permutation σ on [m],
together defining a permutation group on [m]:

SYMFIND(M) = (G, σ);

grp(G, σ) = {σ ◦ g ◦ σ−1 : g ∈ G},
where ◦ is the composition of permutations.
When G is decomposed into, say G1 ⊕G2, the
σ specifies which indices in [m] get permuted
by G1 and G2. Once top-level SYMFIND re-
turns (G, σ), we construct B(grp(G, σ))s, as in
Section 3 with a minor adjustment with σ.4

Algorithm 1 describes SYMFIND, where idm is the identity permutation on [m], ∥·∥F is the Frobenius
norm, dim(V) is the dimension of a vector space V , and the Reynolds operator prj projects a matrix
M ∈ Rm×m orthogonally to the subspace of G-equivariant m×m matrices:

prj(G,M) =
1

|G|
∑
g∈G

gMgT ,

so that ∥prj(G,M)−M∥F computes the L2 distance between the matrix M and the space E(G).

In the lines 2-4, the algorithm first checks whether Sm models symmetries of the input M accurately.
If so, the algorithm returns (Sm, idm). Otherwise, it assumes that an appropriate group for M ’s
symmetries is one of the remaining cases in the grammar, and constructs a list A of candidates
intially containing the trivial group (Im, idm). In the lines 6-8, the algorithm adds a pair (Zm, idm)
to A if it approximates M ’s symmetries well. In the lines 9-10, the algorithm calls the subroutine
SUMFIND which finds grp(G′, σ′) with G′ =

⊕
i G

′
i that approximates M ’s symmetries well. In

the lines 11-14, the algorithm calls the other subroutine PRODFIND for every divisor p of m. For
each p, PRODFIND finds grp(G′′, σ′′) with G′′ = G′′

1 ⊗ G′′
2 (or G′′

2 ≀ G′′
1 ) that approximates M ’s

symmetries well, where G′′
1 and G′′

2 are permutation groups on [p] and [m/p]. Finally, in the line 15,
our SYMFIND picks a pair (G, σ) from the candidates A with the strongest level of symmetries in
the sense that the basis of grp(G, σ)-equivariant matrices has the fewest elements.

4We construct B(grp(G, σ)) = {σBσT : B ∈ B(G)}, which is an orthogonal basis for E(grp(G, σ)).
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The subroutine SUMFIND clusters entries of M as blocks since block-shaped clusters commonly
arise in matrices equivariant with respect to a direct sum of groups. The other subroutine PRODFIND
uses a technique [24] to exploit a typical pattern of Kronecker product of matrices, and detects the
presence of the pattern in M by applying SVD to a reshaped version of M . Each subroutine may call
SYMFIND recursively. See Appendix D for the details.

5 Experimental Results

We experimentally evaluated SymSATNet and the SYMFIND algorithm on the tasks of learning rules
of two problems, Sudoku and the completion problem of Rubik’s cube. The original SATNet was
used as a baseline, and both ground-truth and automatically-discovered symmetries were used for
SymSATNet. For SYMFIND, we also tested its ability to recover known symmetries given randomly
generated equivariant matrices. We observed significant improvement of SymSATNet over SATNet
in various learning tasks, and also the promising results and limitation of SYMFIND.
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Figure 1: Test accuracies over training epochs.

Sudoku problem In Sudoku, we are asked to fill
in the empty cells of a 9× 9 board such that every
row, every column, and each of nine 3× 3 blocks
have all numbers 1− 9. Let A ∈ {0, 1}9×9×9 be
the encoding of a full number assignment for the
board where the (i, j, k)-th entry of A is 1 if the
(i, j)-th cell of the board contains k. In SATNet,
we flatten A to the assignment on the n = 93

boolean variables, and relax each variable into Rk,
resulting V ∈ Rk×n in the objective of SATNet.

The rules of Sudoku have symmetries formalised
by G = (S3 ≀ S3)⊗ (S3 ≀ S3)⊗ S9. Each of two
S3 ≀ S3 refers to solution-preserving permutations
for rows and columns in Sudoku. The last S9
refers to permutations of the assigned numbers
1− 9 in each cell. See Appendix F for more infor-
mation about the symmetry group for Sudoku.

To learn the rules of Sudoku using SymSATNet,
we constructed a basis B(G)s as explained in Sec-
tion 3. It has 18 elements, which means that Sym-
SATNet has 18 parameters to learn.

Table 1: Best test accuracies during 100 epochs and aver-
age train times (102 sec). Additional times for automatic
symmetry detection are also reported after +.

MODEL SUDOKU CUBE
ACC. TIME ACC. TIME

SATNET-PLAIN 88.1% 48.0 55.7% 1.8
±1.8% ±0.17 ±0.7% ±0.01

SATNET-300AUX 97.9% 90.3 56.5% 14.0
±0.3% ±0.68 ±0.9% ±0.12

SYMSATNET 99.2% 25.6 66.9% 1.1
±0.2% ±0.14 ±1.2% ±0.00

SYMSATNET-AUTO 99.5% 22.7 68.1% 3.4
±0.2% +0.14

±0.35 ±2.8% +0.66
±0.19

We used 9K training and 1K test ex-
amples generated by the Sudoku gen-
erator [21]. Each example is a pair
(VI , VO) where the input VI assigns 31-
42 cells (out of 81 cells) and the output
VO specifies the remaining cells. Sym-
SATNet was compared with SATNet-
Plain without auxiliary variables, and
SATNet-300aux with 300 auxiliary vari-
ables. We used binary cross entropy loss
and Adam optimizer [16], with the learn-
ing rate η = 2× 10−3 for SATNet-Plain
and SATNet-300aux as the original work
and η = 4× 10−2 for SymSATNet. We
measured test accuracy, the rate of the
correctly-solved Sudoku instances by the
forward computations. We reported the average over 10 runs with 95% confidence interval.

The results are in Figure 1 and Table 1. (SymSATNet-Auto refers to a variant of SymSATNet that
uses SYMFIND as a subroutine to find symmetries automatically, and will be described later in this
section.) Our SymSATNet outperformed SATNet-Plain and SATNet-300aux. On average, its 100
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epochs finished 2-4× faster in terms of wall clock than two alternatives. due to the reduced number
of iterations and avoidance of matrix operations. See Appendix G for the efficiency of SymSATNet.
Despite the speed up, the best test accuracy of SymSATNet (99.2%) was significantly better than
SATNet-Plain (88.1%) and slightly better than SATNet-300aux (97.9%).

Completion problem of Rubik’s cube The Rubik’s cube is composed of 6 faces, each of which
has 9 facelets. We considered a constraint satisfaction problem where we are asked to complete the
missing facelets of the Rubik’s cube such that the resulting cube is solvable; by moving the cube, we
can make all facelets in each face have the same colour, and no same colours appear in two faces.
Let A ∈ {0, 1}6×9×6 be a colour assignment of Rubik’s cube where the (i, j, k)-th entry has 1 if
and only if the j-th facelet of the i-th face has colour k. We formulate the optimisation objective of
SATNet for Rubik’s cube using the relaxation of A to V ∈ Rk×n for n = 6× 9× 6.

This problem has symmetries formalised by G = R54⊗R6 on [n]. HereR54 andR6 are permutation
groups on [54] and [6], each of which captures the allowed moves of facelets, and the rotations of the
whole cube. If a colour assignment A is solvable, so is the transformation of A by any permutations
in G. See Appendix F for more information about the symmetries of this problem.

We generated a basis B(G)s in three steps. We first created B(R54) and B(R6) using the generators
of each group [15]. Next, we combined them using Theorem 2.3 to get B(G), which was converted
to a symmetric orthogonal basis B(G)s via Gram-Schmidt. The final result has 48 basis elements.

We used a dataset of 9K training and 1K test examples generated by randomly applying moves to the
solution of the cube. Each example is a pair (VI , VO) where VI assigns colours to facelets except for
two corner facelets, two edge facelets, and one center facelet, and VO specifies the colours of those
five missing facelets. In the test examples, only VI is used. We trained SymSATNet, SATNet-Plain,
and SATNet-300aux for 100 epochs, under the same configuration as in the Sudoku case.

The results appear in Figure 1 and Table 1. On average, the 100-epoch training of SymSATNet
completed faster in the wall-clock time than those of SATNet-Plain and SATNet-300aux. Also, it
achieved better test accuracies (66.9%) than these alternatives (55.7% and 56.5%). Note that unlike
Sudoku, the test accuracy of SATNet-300aux was only marginally better than that of SATNet-Plain,
which indicates that both suffered from the overfitting issue. Note also the sharp increase in the
training time of SATNet-300aux. These two indicate that adding auxiliary variables is not so effective
for the completion problem for Rubik’s cube, while exploiting symmetries is still useful.

Automatic discovery of symmetries To test the effectiveness of SYMFIND, we tested whether
SYMFIND could find proper symmetries in Sudoku and Rubik’s cube. We applied SYMFIND to the
parameter C of SATNet-Plain in T -th training epoch, where T = 10 for Sudoku and T = 20 for
Rubik’s cube. For Sudoku, SYMFIND always recovered the full symmetries with G = (S3 ≀ S3)⊗
(S3 ≀ S3) ⊗ S9 in our 10 trials. For Rubik’s cube, the group of full symmetries is grp(G, σ) for
G = ((S2 ≀S3)⊕ (S3 ≀S8)⊕ (S2 ≀S12))⊗ (S2 ≀S3). SYMFIND recovered all the parts except S2 ≀S12.
Instead of this, the algorithm found S12 ⊗ S2 or S3 ⊗ S8, or S4 ⊗ S6 in our 10 trials. We manually
observed that the entries of C in the corresponding part were difficult to be clustered, violating the
assumption of SYMFIND. This illustrates the fundamental limitation of SYMFIND.

To account for the limitation of SYMFIND, we refined the group G of detected symmetries to a
subgroup in an additional validation step, before training SymSATNet with those symmetries. In the
validation step, we checked the usefulness of each part Gi of the expression of G in our grammar.
Concretely, we rewrote G only with the part Gi in concern, where all the other parts of G were masked
by the trivial groups Ik. After projecting C with the masked groups using Reynolds operator, we
measured the improvement of accuracy of SATNet over validation examples. Finally, we assembled
only the parts Gi that led to sufficient improvement. For example, if G = (Z3⊗S4)⊕S5 is discovered
by SYMFIND, we consider the parts G1 = Z3, G2 = S4, and G3 = S5. Then, we construct three
masked groups G′

1 = (Z3 ⊗ I4) ⊕ I5, G′
2 = (I3 ⊗ S4) ⊕ I5, and G′

3 = (I3 ⊗ I4) ⊕ S5, and
measure the accuracy of SATNet with C projected by each G′

i over validation examples. If G′
1

and G′
3 show accuracy improvements greater than a threshold, we combine G1 and G3 to form

G′ = (Z3 ⊗ I4)⊕ S5, which is then used to train SymSATNet.

We used 8K training, 1K validation, and 1K test examples to train SymSATNet with symmetries
found by SYMFIND and the validation step. We denote these runs by SymSATNet-Auto. We took a
group G discovered by SYMFIND in T -th training epoch (with the same T above) and constructed
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its subgroup G′ via the validation step. SymSATNet was then trained after being initialised by the
projection of C with G′. The other configurations are the same as before.

As shown in Figure 1 and Table 1, SymSATNet-Auto performed the best for Sudoku (99.5%) and
Rubik’s cube (68.1%) better than even SymSATNet. During the 10 trials with Sudoku, SymSATNet-
Auto was always given the full symmetries in Sudoku. For Rubik’s cube, when SymSATNet-Auto
was given correct subgroups (e.g., ((S2 ≀ S3) ⊕ (S3 ≀ S8) ⊕ (I4 ⊗ I6)) ⊗ (S2 ≀ S3), ((S2 ≀ S3) ⊕
(S3 ≀ (S2 ≀ S4))⊕ (I8 ⊗ I3))⊗ (S2 ≀ S3)), then it performed even better than SymSATNet. In two of
the 10 trials, slightly incorrect symmetries were exploited, but it outperformed SATNet-Plain and
SATNet-300aux. These results show the partial symmetries of subgroups derived by the validation
step are still useful, even when they are slightly inaccurate.
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Figure 2: Best test accuracies for noisy Sudoku
and Rubik’s cube datasets.

Robustness to noise We tested robustness of
SymSATNet and SymSATNet-Auto to noise by
noise-corrupted datasets. We generated noisy Su-
doku and Rubik’s cube datasets where each train-
ing example is corrupted with noise; it alters the
value of a random cell or the colour of a random
facelet to a random value other than the origi-
nal. We used noisy datasets with 0-3 corrupted
instances to measure the test accuracy, and tried
10 runs for each dataset to report the average and
95% confidence interval. All the other setups are
the same as before. Figure 2 shows the results.
In both problems, SymSATNet was the most ro-
bust, showing remarkably consistent accuracies.
SymSATNet-Auto showed comparable robustness
to SATNet-300aux in noisy Sudoku, but outper-
formed the two baselines in noisy Rubik’s cube.

Next, to show the robustness of SYMFIND, we
applied it to restore permutation groups G from
noise-corrupted G-equivariant symmetric matrices
M . We picked (Gi, σi) for i ∈ [4] where σ1, σ2,
σ3 are random permutations on [15], [30], [12],
and σ4 is the identity permutation on [8], and

G1 = Z3 ⊕ Z3 ⊕ Z3 ⊕ Z3 ⊕ Z3, G2 = S3 ≀ S10, G3 = (S3 ≀ S3)⊕ Z3, G4 = S2 ⊗ S2 ⊗ S2.
Then, we generated grp(Gi, σi)-equivariant symmetric matrices Mi by projecting random matrices
with standard normal entries into the space E(grp(Gi, σi))s. Then, Gaussian noises from N (0, ω2)
for ω = 5× 10−3 are added to Mi’s entries, and the resulting matrix M ′

i is given to SYMFIND.

Table 2: Full accuracies and partial accuracies
of SYMFIND for given groups over 1K runs.

GROUP FULL ACC. PARTIAL ACC.⊕5
i=1 Z3 76.6% 79.2%

S3 ≀ S10 60.3% 79.9%
(S3 ≀ S3)⊕ Z3 77.5% 87.0%
S2 ⊗ S2 ⊗ S2 93.5% 94.3%

For each (Gi, σi), we repeatedly generated M ′
i and

ran SYMFIND on M ′
i for 1K times, and measured

the portion where SYMFIND recovered (Gi, σi) ex-
actly (full accuracy), and also the portion of cases
where SYMFIND returned a subgroup of (Gi, σi)
which is not the trivial group Im (partial accuracy).
As Table 2 shows, the measured full accuracies
were in the range of 60.3 − 93.5%, and the par-
tial accuracies were in the range of 79.2− 94.3%.
These results show the ability of SYMFIND to recover meaningful and sometimes full symmetries.

Transfer learning To test the transferability of SymSATNet, we generated Sudoku and Rubik’s
cube datasets with varying difficulties, where each dataset consisted of 9K training and 1K test
examples. For SymSATNet-Auto, we split the 9K training examples into 8K training and 1K
validation examples. We used three levels of difficulties for Sudoku and Rubik’s cube (easy, normal,
hard), based on the number of missing cells for Sudoku or missing facelets for Rubik’s cube. The
input part of Sudoku examples was generated with 21 (easy), or 31 (normal), or 41 masked cells
(hard), and the input part of Rubik’s cube examples was generated with 3 (easy), or 4 (normal),
or 5 missing facelets (hard). For both problems, we used the training examples of easy or normal
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(a) Normal Sudoku → Hard Sudoku
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(b) Normal Rubik’s cube → Hard Rubik’s cube0 20 40 60 80 100
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(c) Easy Sudoku → Hard Sudoku
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(d) Easy Rubik’s cube → Hard Rubik’s cube

Figure 3: Transfer learning with various difficulties of training and test examples. For both problems,
normal and easy examples were used to train, and hard examples were used to test each model.

datasets for training, and the test examples of hard datasets for testing. We repeated every task in this
experiment five times. Here we report the average test accuracies and 95% confidence interval.

Figure 3 shows the test accuracies throughout 100 epochs in the four types of transfer learning tasks.
SymSATNet achieved the best result in the whole tasks; it succeeded in solving hard problems after
learning from easier examples. As Figures 3a and 3c indicate, SymSATNet-Auto exploited the full
group symmetries in Sudoku. For Rubik’s cube, Figure 3b shows that SymSATNet-Auto achieved
better performance over the baselines by finding partial symmetries. These results show the promise
of SymSATNet and SymSATNet-Auto for learning transferable rules even from easier examples.

Note that for the easy Rubik’s cube dataset, SymSATNet-Auto showed poor performance (Figure 3d).
The poor performance comes from the violation of the assumption of SYMFIND; the group sym-
metries sometimes did not emerge in SATNet in this case. In three out of five trials with the easy
Rubik’s cube dataset, SATNet learnt nothing while producing the 0% test accuracy, and SYMFIND
returned the trivial group which equated SymSATNet-Auto with SATNet-Plain. In the remaining
two trials, SATNet learnt correct rules, and SYMFIND and the validation step found correct partial
symmetries, which led to the improved performance. These results exhibit the fundamental limitation
of SymSATNet-Auto, whose performance strongly depends on the original SATNet.

6 Conclusion

We presented SymSATNet, that is capable of exploiting symmetries of the rules or constraints to
be learnt by SATNet. We also described the SYMFIND algorithm for automatically discovering
symmetries from the parameter C of the original SATNet at a fixed training epoch, which is based on
our empirical observation that symmetries emerge during training as duplicated or similar entries of
C. Our experimental evaluations with two rule-learning problems related to Sudoku and Rubik’s cube
show the benefit of SymSATNet and the promise and limitation of SYMFIND. Although components
of SYMFIND are motivated by the theoretical analysis of the space of equivariant matrices, such as
Theorem 2.2, SYMFIND lacks a theoretical justification on its overall performance. One interesting
future direction is to fill in this gap by identifying when symmetries emerge during the training of
SATNet and proving probabilistic guarantees on when SYMFIND returns correct group symmetries.
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