

# 000 HARNESSING MODEL UNCERTAINTY FOR ADAPTIVE 001 CAUSAL DEBIASING IN VISUAL QUESTION ANSWER- 002 ING 003

004 **Anonymous authors**  
005  
006

007 Paper under double-blind review  
008

## 009 010 ABSTRACT 011

012 Visual Question Answering (VQA) models often exploit spurious correlations,  
013 hindering true multimodal reasoning. While causal inference offers principled  
014 debiasing methods, current approaches pair complex causal graphs with overly  
015 simplistic, static counterfactual interventions (e.g., feature subtraction). This limits  
016 effectiveness. We challenge this by proposing a novel framework synergistically  
017 integrating uncertainty estimation with causal counterfactual reasoning for robust  
018 VQA debiasing. This is the first work, to our knowledge, to leverage uncer-  
019 tainty within a causal VQA framework. We systematically explore uncertainty  
020 quantification techniques (entropy, prediction margin) to assess model confidence.  
021 This estimated uncertainty dynamically modulates the counterfactual intervention,  
022 allowing adaptive adjustment of biased information sources based on real-time  
023 confidence. This moves beyond rigid interventions. Furthermore, we introduce  
024 a tailored Curriculum Learning strategy that dynamically assesses sample diffi-  
025 culty using uncertainty-aware metrics, enhancing the adaptive mechanism. Our  
026 uncertainty-guided intervention module is architecture-agnostic, enabling integra-  
027 tion into diverse VQA networks. This adaptive, uncertainty-aware approach offers  
028 a more flexible, robust, and theoretically grounded pathway towards mitigating  
029 VQA biases.

## 030 031 1 INTRODUCTION 032

033 Visual Question Answering (VQA) stands as a benchmark task in multimodal artificial intelligence,  
034 challenging models to reason jointly over visual and textual information to answer questions about  
035 images Antol et al. (2015). While significant progress has been made, state-of-the-art VQA models  
036 often exhibit undesirable behaviors, relying heavily on linguistic priors and spurious correlations  
037 present in datasets rather than performing robust, grounded reasoning. This tendency leads to models  
038 that perform well on in-distribution test sets but fail to generalize to real-world scenarios or answer  
039 questions requiring genuine compositional understanding Agrawal et al. (2016); Goyal et al. (2017).

040 Mitigating these biases is crucial for building trustworthy and capable VQA systems. Causal inference  
041 has emerged as a principled and powerful framework for addressing this challenge. By explicitly  
042 modeling the causal relationships between questions, images, answers, and potential confounding  
043 factors (like linguistic priors), researchers aim to identify and neutralize biasing pathways Niu et al.  
044 (2021). Methodologies often involve constructing causal graphs and applying criteria like the back-  
045 door adjustment to guide model training or inference Song et al. (2024); Liu et al. (2024); Pan et al.  
046 (2024); Vosoughi et al. (2024); Nguyen & Okazaki (2023); Patil et al. (2023).

047 However, a critical limitation persists within many current causal VQA debiasing approaches. While  
048 significant effort is invested in formulating sophisticated causal graphs to diagnose the sources of  
049 bias, (a comprehensive summary of contemporary methodologies utilizing such complex causal graph  
050 analyses is deferred to Appendix), the mechanisms used to perform counterfactual interventions  
051 during training or inference often remain surprisingly simplistic and static. Many methods resort  
052 to rudimentary operations like directly subtracting or zeroing-out biased feature representations,  
053 implicitly pushing the biased pathway toward a non-informative state (e.g., a uniform predictive  
distribution). However, this fixed, “one-size-fits-all” correction is not optimal: it fails to account for

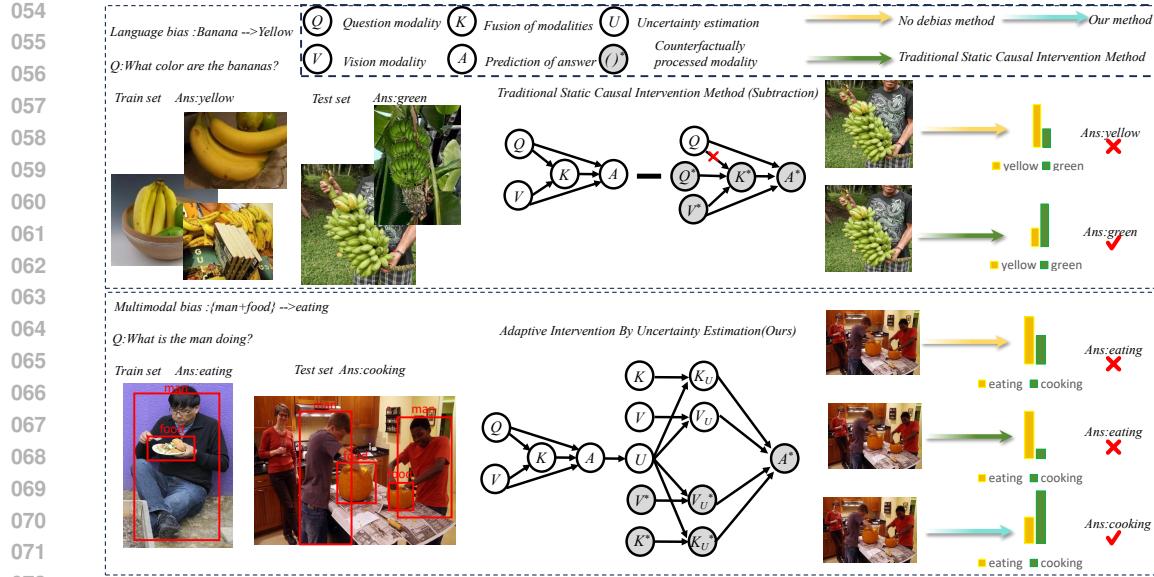


Figure 1: Our uncertainty-guided approach versus traditional static debiasing. **Top:** A static causal intervention, while sometimes effective, applies a fixed correction for a language bias (“Banana → Yellow”). **Bottom:** Our method introduces an adaptive intervention for a multimodal bias (“man+food → eating”). It uses uncertainty ( $U$ ) to dynamically modulate how factual ( $K, V$ ) and counterfactual ( $K^*, V^*$ ) information is integrated, leading to a more robust final prediction.

the varying degrees of bias present across different data instances. They apply a uniform intervention regardless of whether the model is confident or uncertain about its internal representations, potentially over-correcting in some cases and under-correcting in others, limiting the overall effectiveness of the debiasing process.

In this work, we argue for a more nuanced and adaptive approach to causal intervention in VQA (illustrated in Figure 1). We propose to bridge the gap between causal theory and practical intervention mechanisms by leveraging model uncertainty. Our core hypothesis is that a model’s internal uncertainty about its predictions or representations can serve as a valuable, dynamic signal to guide the strength and nature of causal interventions. Intuitively, higher uncertainty might indicate a greater reliance on potentially biased shortcuts, suggesting a stronger intervention is needed, while lower uncertainty might warrant a more subtle adjustment. To the best of our knowledge, this paper presents the first integration of uncertainty estimation techniques within a causal counterfactual reasoning framework specifically for VQA debiasing. We demonstrate that uncertainty estimation is not only compatible with but also highly complementary to causal debiasing goals.

To realize this, we introduce an Adaptive Uncertainty-Guided Intervention module. This module dynamically estimates the model’s uncertainty during processing, employing and systematically exploring various well-established uncertainty quantification techniques such as prediction entropy, confidence margin, or variations from ensemble methods Hendrycks & Gimpel (2017); Lakshminarayanan et al. (2017); Carlini & Wagner (2017). The estimated uncertainty then directly modulates the counterfactual intervention process, allowing the model to adaptively adjust the influence of different information sources (e.g., potentially biased language features vs. visual evidence) on a per-instance basis. This adaptive mechanism replaces the rigid, one-size-fits-all interventions common in prior work.

Furthermore, recognizing that the learning process itself can benefit from adaptivity, we introduce a novel Curriculum Learning (CL) strategy specifically designed to synergize with our uncertainty-aware approach. Distinct from previous CL applications in VQA that often rely on predefined or static difficulty metrics Pan et al. (2022), our strategy dynamically assesses sample difficulty using uncertainty-aware metrics derived directly from the model’s state or preliminary evaluations. This allows for a training progression with strong logical coherence: the model first learns from

108 less ambiguous examples where it is more confident, gradually moving towards more challenging  
 109 instances where its uncertainty (and thus the adaptive intervention mechanism) plays a more critical  
 110 role. This uncertainty-driven curriculum aligns perfectly with our core technical contribution.

111 Crucially, our proposed uncertainty-guided intervention module is designed with modularity in mind,  
 112 making it architecture-agnostic. It can be readily incorporated into various existing VQA network  
 113 backbones without requiring fundamental architectural redesigns, facilitating broader adoption and  
 114 experimentation.

115 In summary, our main contributions are: (1) The first framework to synergistically integrate **uncertainty estimation with causal counterfactual reasoning** for VQA debiasing. (2) An **adaptive intervention mechanism**, which includes the systematic exploration and application of multiple uncertainty estimation techniques, that **dynamically modulates causal adjustments** based on quantified model uncertainty, moving beyond static intervention approaches. (3) A novel, **uncertainty-aware Curriculum Learning strategy** that aligns training difficulty with the model’s adaptive capabilities. (4) A modular, **architecture-agnostic design** ensuring broad applicability across different VQA models.

123 We demonstrate through extensive experiments that our adaptive, uncertainty-guided approach  
 124 significantly improves debiasing performance and robustness compared to baseline methods. The rest  
 125 of the paper is organized as follows: Section 2 discusses related work. Section 3 details our proposed  
 126 methodology. Section 4 presents the experimental setup and results. Finally, Section 5 concludes the  
 127 paper.

## 129 2 RELATED WORK

131 This section reviews prior work in VQA debiasing, causal inference for VQA, uncertainty estimation,  
 132 and curriculum learning, contextualizing our approach.

### 134 2.1 BIAS IN VISUAL QUESTION ANSWERING

136 Dataset bias in VQA, especially strong language priors, is widely recognized. Models often an-  
 137 swer based on question text, ignoring visual cues, leading to poor generalization and lacking true  
 138 multimodal understanding Agrawal et al. (2018); Ma et al. (2024). Early efforts to mitigate these  
 139 included dataset manipulation Chen et al. (2023); Gupta et al. (2022); Chen et al. (2022), specialized  
 140 contrastive learning for modality balancing Si et al. (2022a); Liu et al. (2023b); Hao et al. (2024), and  
 141 ensemble or adversarial training Cadene et al. (2019b); Han et al. (2023); Liang et al. (2021). While  
 142 beneficial, these often lack a principled framework for addressing the causal mechanisms of bias.

### 144 2.2 CAUSAL INFERENCE FOR VQA DEBIASING

145 Causal inference offers a structured approach by modeling cause-and-effect relationships. Sev-  
 146 eral works apply causal principles to VQA debiasing: A prominent line leverages counterfactual  
 147 queries—asking “what if the input differed?” The CF-VQA framework Niu et al. (2021) gen-  
 148 erates counterfactual samples (e.g., by masking inputs) and enforces consistency between fac-  
 149 tual/counterfactual predictions to disentangle spurious correlations. Building on this, subsequent  
 150 research explored more sophisticated counterfactual generation and application, such as for knowl-  
 151 edge distillation targets Pan et al. (2022), dual-debiasing for specific linguistic biases Song et al.  
 152 (2024), or “possible worlds” reasoning for complex confounds Vosoughi et al. (2024).

153 Despite their theoretical appeal, these causal approaches, particularly with counterfactuals, often  
 154 rely on **static, simplistic interventions**. For example, methods like CF-VQA might subtract feature  
 155 vectors or zero-out attention weights. Such fixed interventions lack adaptability to varying model  
 156 confidence or sample characteristics. This rigidity can limit effectiveness against diverse bias  
 157 manifestations, a limitation our work addresses with uncertainty-guided adaptive intervention.

### 159 2.3 UNCERTAINTY ESTIMATION IN DEEP LEARNING

161 Model uncertainty estimation is crucial for reliability, OOD detection, and active learning. Tech-  
 162 niques include: Bayesian Neural Networks (BNNs) that place distributions over weights He (2023)

(computationally expensive); Ensemble Methods using prediction variance from multiple models Lakshminarayanan et al. (2017) (effective but costly); and Deterministic and Other Methods like predictive entropy, prediction margin, or evidential deep learning Hendrycks & Gimpel (2017); Carlini & Wagner (2017).

While widely used in vision and NLP Kahl et al. (2024); Zha et al. (2024), the role of uncertainty in VQA debiasing is evolving. Prior works like LBSD Yuan et al. (2022) have leveraged it to guide knowledge distillation, using uncertainty to shape the training objective. Our work proposes a fundamentally different approach. We are the first, to our knowledge, to use uncertainty to **dynamically guide a causal intervention**.

## 2.4 CURRICULUM LEARNING

Curriculum Learning (CL) trains models on examples in a meaningful, typically easy-to-hard, order, potentially improving convergence and generalization Bengio et al. (2009). In VQA, prior CL often used predefined heuristics (e.g., question length, answer frequency) or initial model loss for difficulty Aissa et al. (2023); Nguyen et al. (2025). Some works used CL for debiasing by gradually introducing harder, more biased examples Pan et al. (2022); Zheng et al. (2024).

However, existing VQA CL often uses static or heuristic difficulty measures. Our work introduces a CL strategy where the curriculum is **dynamically informed by uncertainty-aware metrics**. This couples the training regimen with our uncertainty-guided intervention, ensuring the model progressively learns to handle samples needing its adaptive capabilities, offering a more principled curriculum than prior methods.

## 3 METHODOLOGY: ADAPTIVE UNCERTAINTY-GUIDED COUNTERFACTUAL INTERVENTION

Our methodology refines foundational counterfactual debiasing principles and introduces our core contributions: the Adaptive Uncertainty-Guided Intervention (AUGI) module and an Uncertainty-Aware Curriculum Learning (UACL) strategy. These components work synergistically to achieve robust and adaptive VQA debiasing. Figure 2 provides an overview.

### 3.1 BACKGROUND: BASELINE VQA ARCHITECTURE

Our framework intervenes on a baseline causal model built upon an UpDn-style VQA architecture Anderson et al. (2018); Niu et al. (2021). The backbone first encodes the image as a set of region-level visual features  $V = \{v_i\}$  and the question as a sequence representation summarized by a hidden state  $q$ . Following Niu et al. (2021), these representations are processed through three parallel branches designed to isolate specific causal pathways: (1) a question-only pathway, modeling  $Q \rightarrow A$ , which maps  $q$  to a question feature  $Z_Q$ ; (2) a vision-only pathway, modeling  $V \rightarrow A$ , which maps  $V$  to a visual feature  $Z_V$ ; and (3) a multimodal pathway, modeling  $V, Q \rightarrow K \rightarrow A$ , which uses attention over  $V$  conditioned on  $q$  to produce a joint representation  $Z_{VQ}$ . The three pathway features are then fused by a function  $F$  (e.g., element-wise summation) to produce the Total Effect logit  $z_{TE} = F(Z_{VQ}, Z_Q, Z_V)$ . Auxiliary losses on the  $Z_Q$  and  $Z_V$  branches are used during training to ensure each pathway is meaningful. This baseline causal architecture provides the foundation for the counterfactual interventions we describe next.

### 3.2 FOUNDATIONAL COUNTERFACTUAL DEBIASING IN VQA

Visual Question Answering models ( $\text{Model}(\cdot, \cdot; \theta)$ ) typically map an image  $V$  and question  $Q$  to answer probabilities  $p_{ans} = \sigma(\text{Model}(V, Q; \theta))$ . Counterfactual debiasing methods, like the CF-VQA baseline Niu et al. (2021) our work builds upon, aim to mitigate biases (e.g., linguistic shortcuts) by dissecting the prediction process. Such models often fuse information from joint visual-linguistic ( $Z_{VQ}$ ), question-only ( $Z_Q$ ), and vision-only ( $Z_V$ ) pathways using a fusion function  $F(\cdot, \cdot, \cdot)$ .

The core idea involves comparing a **Total Effect** (TE) logit,  $z_{TE} = F(Z_{VQ}, Z_Q, Z_V)$ , with a counterfactually derived **Natural Direct Effect of the Question** (NDE $_Q$ ). The  $z_{NDE_Q}$  is computed by isolating the question's influence, typically by replacing  $Z_{VQ}$  and  $Z_V$  with a non-informative

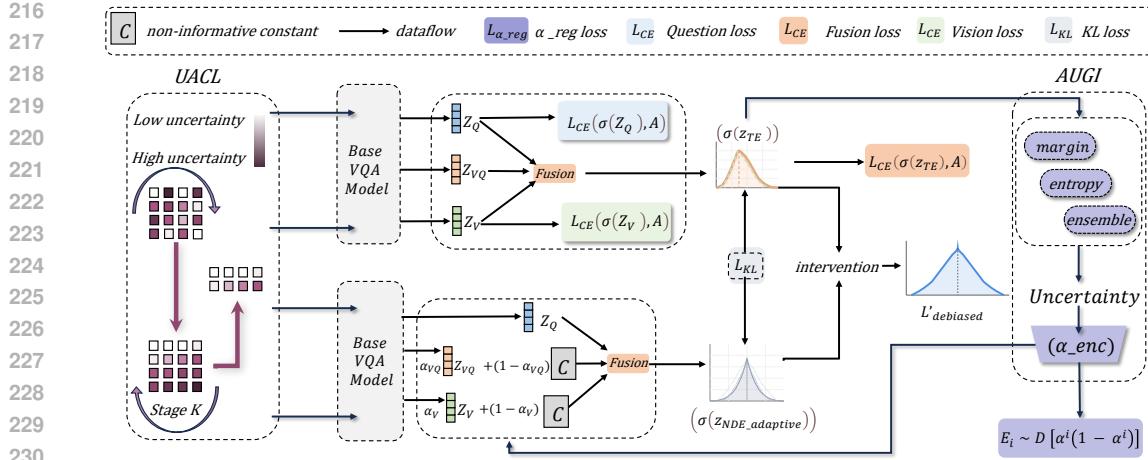


Figure 2: This figure (detailed in Sec. 3) presents our adaptive VQA debiasing architecture, where Uncertainty-Aware Curriculum Learning (UACL) and Adaptive Uncertainty-Guided Intervention (AUGI) operate synergistically. UACL (left) employs initial uncertainty to stage training data (“Stage K”). The core model processes factual inputs (V,Q) to yield  $Z_{TE}$ . AUGI (right) then leverages runtime uncertainty ( $U$ )—derived from “margin”, “entropy”, or “ensemble”—to compute an adaptive factor  $\alpha$ . This  $\alpha$  dynamically modulates the counterfactual pathway:  $Z_{VQ}$  and  $Z_V$  are interpolated with a constant  $C$  to form  $z_{NDE\_adaptive}$ .

constant  $c$  within the fusion:  $z_{NDE_Q} = F(c, Z_Q, c)$ . The debiased prediction  $L_{debiased}$  is then obtained by subtraction:  $L_{debiased} = z_{TE} - z_{NDE_Q}$ .

To ensure the stability and semantic relevance of this subtraction, a Kullback-Leibler (KL) divergence loss,  $L_{KL} = D_{KL}(\sigma(z_{TE}) || \sigma(z'_{NDE_Q}))$ , is often employed. Here,  $z'_{NDE_Q}$  uses detached inputs for stability. This  $L_{KL}$  encourages the question-only pathway (producing  $Z_Q$ ) to generate a distribution similar to the total effect, making  $z_{NDE_Q}$  a more reliable proxy for the question’s (potentially biased) contribution, thereby making its subtraction more effective for debiasing. The primary VQA loss,  $L_{CE\_TE}$ , is typically applied to  $z_{TE}$ .

### 3.3 ADAPTIVE UNCERTAINTY-GUIDED COUNTERFACTUAL INTERVENTION (AUGI)

The static intervention described above applies a uniform correction. AUGI introduces adaptivity by dynamically modulating this intervention based on model uncertainty.

**Uncertainty Quantification:** We first estimate model uncertainty  $U$  for an instance, which can be derived from  $z_{TE}$ , or intermediate outputs  $Z_Q, Z_V$ . Let  $p_{ans} = \sigma(z_{TE})$  be the predictive probability distribution over  $C$  answers. We explore several  $\text{UncertaintyFunc}(p_{ans})$ :

- **Predictive Entropy ( $U_H$ ):** Captures overall predictive dispersion.

$$U_H(p_{ans}) = - \sum_{j=1}^C p_{ans,j} \log p_{ans,j} \quad (1)$$

- **Prediction Margin ( $U_{Margin}$ ):** Highlights confusion between the top choices. Let  $p_{top1}$  and  $p_{top2}$  be the highest and second-highest probabilities in  $p_{ans}$ .

$$U_{Margin}(p_{ans}) = 1 - (p_{top1} - p_{top2}) \quad (2)$$

- **Ensemble Disagreement ( $U_{Ens}$ ):** Utilizes variance among predictions from  $M$  model heads  $\{p_{ans}^{(m)}\}_{m=1}^M$ , e.g.,  $U_{Ens} = \frac{1}{C} \sum_{j=1}^C \text{Var}_m(p_{ans,j}^{(m)})$ , reflecting model stability.

These metrics offer diverse signals. The raw uncertainty score  $U$  (e.g.,  $U_H^{(i)}, U_{Margin}^{(i)}, U_{Ens}^{(i)}$  for a sample  $i$ ) is first normalized to ensure stable input to the transformation function. We use standard

270 score normalization:

271 
$$U_{norm}^{(i)} = \frac{U^{(i)} - \mathbb{E}[U]}{\sqrt{\text{Var}[U] + \epsilon_{norm}}} \quad (3)$$
 272

273 where  $\mathbb{E}[U]$  and  $\text{Var}[U]$  can be batch statistics or running averages, and  $\epsilon_{norm}$  is a small constant for 274 numerical stability. This normalized score  $U_{norm}^{(i)}$  is then mapped to an adaptive modulation factor 275  $\alpha_p^{(i)}$  for each pathway  $p \in \{VQ, V\}$ . This is achieved using a learnable scaled sigmoid function 276 whose parameters  $(\gamma_p, \delta_p)$  are unique to each pathway:

277 
$$\alpha_p^{(i)} = f_{U,p}(U_{norm}^{(i)}) = \frac{1}{1 + \exp\left(-\gamma_p \cdot (U_{norm}^{(i)} - \delta_p)\right)}, \quad p \in \{VQ, V\} \quad (4)$$
 278

279 where the parameters  $\gamma_p$  (steepness) and  $\delta_p$  (center point) are learned independently for each pathway, 280 dynamically shaping the responsiveness of each  $\alpha_p$  to uncertainty. To ensure that higher normalized 281 uncertainty  $U_{norm}$  leads to a larger intervention factor (i.e., a monotonically increasing mapping), 282 we enforce  $\gamma_p > 0$  by parameterizing it as  $\gamma_p = \text{softplus}(\tilde{\gamma}_p)$  with an unconstrained underlying 283 parameter  $\tilde{\gamma}_p$ .284 **Adaptive Intervention Mechanism:** Instead of fully replacing  $Z_{VQ}$  and  $Z_V$  with  $c$ , AUGI uses the 285 respective pathway-specific alpha factors,  $\alpha_{VQ}^{(i)}$  and  $\alpha_V^{(i)}$ , to interpolate, yielding intervened features 286  $Z'_{VQ}$  and  $Z'_V$ :

287 
$$Z'_{VQ} = \alpha_{VQ}^{(i)} \cdot Z_{VQ} + (1 - \alpha_{VQ}^{(i)}) \cdot c \quad (5)$$
 288

289 
$$Z'_V = \alpha_V^{(i)} \cdot Z_V + (1 - \alpha_V^{(i)}) \cdot c \quad (6)$$
 290

291 The question pathway  $Z_Q$  remains unaltered here, as  $z_{NDE,adaptive}$  aims to quantify the adaptively 292 estimated full effect of the question, where adaptation arises from how  $Z_{VQ}$  and  $Z_V$  contextualize it. 293 The adaptively formulated Natural Direct Effect  $z_{NDE,adaptive}$  is then:

294 
$$z_{NDE,adaptive} = F(Z'_{VQ}, Z_Q, Z'_V) \quad (7)$$
 295

296 This allows each  $\alpha$  factor to dynamically control the intervention's severity. Here,  $\alpha_p$  gates the 297 influence of the original feature  $Z_p$ . When uncertainty is high,  $\alpha_p$  approaches 1. This causes the 298 counterfactual term  $z_{NDE,adaptive}$  to become very similar to the total effect  $z_{TE}$ , resulting in a 299 strong intervention where the final debiased logit  $L'_{debiased}$  is pushed towards zero. Conversely, when 300 uncertainty is low,  $\alpha_p$  approaches 0. This makes  $z_{NDE,adaptive}$  rely on the non-informative constant 301  $c$ , resulting in a weaker, baseline intervention. This creates a nuanced spectrum of debiasing strength, 302 directly responsive to instance-specific ambiguity—a significant advance over fixed strategies.303 **AUGI Debiased Prediction and Regularization:** The final debiased prediction is  $L'_{debiased} = 304 z_{TE} - z_{NDE,adaptive}$ . The  $L_{KL}$  (from Sec. 3.2) remains vital for robustly training  $Z_Q$ . To prevent 305 the adaptive mechanism from collapsing to trivial states (i.e.,  $\alpha$  values always being 0 or 1), we 306 introduce a regularization term that encourages them to take values within the (0, 1) range. This 307 regularization is formulated as the sum of expectations of variance-like terms for each  $\alpha$ :

308 
$$L_{\alpha,reg} = -\lambda_{reg} \cdot \mathbb{E}_{i \sim \mathcal{D}}[\alpha_{VQ}^{(i)}(1 - \alpha_{VQ}^{(i)}) + \alpha_V^{(i)}(1 - \alpha_V^{(i)})] \quad (8)$$
 309

310 where  $\lambda_{reg}$  is a hyperparameter controlling the strength of this regularization, and the expectation is 311 taken over the data samples  $i$ .312 

### 3.4 UNCERTAINTY-AWARE CURRICULUM LEARNING (UACL)

 313

314 UACL optimizes training by sequencing samples from easy to hard, with difficulty defined by model 315 uncertainty, creating synergy with AUGI.

316 **Initial Difficulty Assessment:** At the outset of UACL, an initial difficulty score  $U_i^{init}$  is computed 317 for each training sample  $(V_i, Q_i, A_i) \in \mathcal{D}$  based on the model's initial state  $\theta_{init}$  (e.g., after a few 318 warm-up epochs or from a pre-trained model):

319 
$$U_i^{init} = \text{UncertaintyFunc}(\sigma(\text{Model}(V_i, Q_i; \theta_{init}))) \quad \forall i \in \{1, \dots, N\} \quad (9)$$
 320

This initial uncertainty serves as a proxy for sample difficulty, leveraging the model’s early learning dynamics where it typically shows lower uncertainty for inherently simpler instances.

**Curriculum Pacing and Subset Selection:** Training proceeds through  $K$  stages. At each curriculum stage  $k \in \{1, \dots, K\}$ , the model is trained on a progressively larger and more difficult subset of the data,  $\mathcal{D}_k$ . This subset is defined by including all samples whose initial uncertainty  $U_i^{init}$  falls below the current difficulty threshold  $T_k$  (derived from Equation 11):

$$\mathcal{D}_k = \{(V_i, Q_i, A_i) \in \mathcal{D} \mid U_i^{init} \leq T_k(k, K, \mathbb{E}[U^{init}], \text{Var}[U^{init}], p)\} \quad (10)$$

where  $T_k(\cdot)$  is the pacing function that dynamically expands the training set by considering stage  $k$ , total stages  $K$ , overall statistics of initial uncertainties (e.g., mean  $\mathbb{E}[U^{init}]$  and variance  $\text{Var}[U^{init}]$  to set  $T_{min}, T_{max}$  bounds), and the pacing exponent  $p$ . The pacing function itself is defined as:

$$T_k = T_{min} + (T_{max} - T_{min}) \cdot \left(\frac{k}{K}\right)^p \quad (11)$$

where  $T_{min}$  and  $T_{max}$  can be set, for example, based on percentiles of the  $U_i^{init}$  distribution. This gradual exposure to harder samples (higher  $U_i^{init}$ ) prevents overwhelming the model initially and allows it to build a robust foundation. Crucially, as the model sees progressively more challenging instances, the AUGI mechanism, refined on simpler data, is better prepared to apply effective adaptive interventions. This dynamic, uncertainty-driven scheduling distinguishes UACL from prior VQA CL methods relying on static heuristics (e.g., question length), by intrinsically linking the curriculum to the model’s evolving confidence and its adaptive debiasing capacity.

### 3.5 FINAL TRAINING OBJECTIVE AND OPTIMIZATION

The overall objective at curriculum stage  $k$  for parameters  $\theta$  is:

$$L_{Core}^{(k)} = L_{CE\_TE}(\sigma(z_{TE}), A) + \lambda_{KL} L_{KL} \quad (12)$$

$$L_{Total}^{(k)}(\theta) = \mathbb{E}_{(V, Q, A) \in \mathcal{D}_k} [L_{Core}^{(k)} + \sum_{path \in \{Q, V\}} \lambda_{path} L_{CE}(\sigma(Z'_{path}), A) + L_{\alpha\_reg}(\alpha)] \quad (13)$$

where  $\lambda$  terms are hyperparameters, and  $Z'_Q, Z'_V$  are outputs from the question and vision pathways respectively. Optimization uses standard techniques (e.g., Adam), and inference uses  $L'_{debiased}$ . A sensitivity analysis of the key hyperparameters is provided in Appendix B.3 (Table 3).

## 4 EXPERIMENTS

### 4.1 EXPERIMENTAL SETUP

We evaluate our approach primarily on VQA-CP v2 Agrawal et al. (2018), a dataset explicitly designed to measure robustness against language bias, and VQA v2 Goyal et al. (2017) to assess performance on the standard distribution. Evaluation follows standard VQA metrics (overall accuracy; detailed per-type accuracy for VQA-CP v2). We compare against vanilla backbones (UpDnAnderson et al. (2018), SANYang et al. (2016), SMRLCadene et al. (2019a)) and state-of-the-art debiasing techniques, encompassing traditional (e.g., CSS Chen et al. (2023), LSP Liu et al. (2023b)) and causal methods (e.g., CF-VQA Niu et al. (2021), PWVQA Vosoughi et al. (2024)). Implementation specifics, including hyperparameter choices and backbone details, are in Appendix A, and additional experiments on transformer-based backbones (BLIP, LXMERT) further validating the architecture-agnostic nature of our framework are provided in Appendix B.4 (Table 4).

### 4.2 MAIN RESULTS: COMPARISON WITH STATE-OF-THE-ART

Table 1 benchmarks our uncertainty-guided framework against existing methods. On the challenging VQA-CP v2 dataset, our approach (OURS + UpDn) achieves a new state-of-the-art performance of **63.36%**, significantly surpassing prior best methods like LSP (61.95%) and PWVQA (60.26%). Notably, our method demonstrates substantial gains in the notoriously difficult ‘Num’ category, reaching **60.05%** compared to 59.13% (PWVQA + SMRL), indicating improved reasoning capabilities beyond

simple language priors. Crucially, these debiasing gains do not compromise general performance; on VQA v2, our method remains highly competitive, achieving **68.65%** overall and leading in the 'Y/N' category, demonstrating the robustness of our adaptive mechanism. Similar strong performance is observed when using other backbones like SAN and SMRL, albeit with different absolute scores reflecting the baseline capabilities. For a finer-grained diagnostic analysis across diverse shortcut types on the VQA-VS dataset, we refer the reader to Appendix B.7 (Table 7).

Table 1: Comparison with State-of-the-Art methods on VQA-CPv2 and VQAv2 datasets. All scores are reported in percentages (%). Best result in each column is in **bold**, second best is underlined.

| Model                                                                                      | Baseline | VQA-CPv2 (%) |              |              |              | VQAv2 (%)    |              |              |              |
|--------------------------------------------------------------------------------------------|----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                                                                                            |          | Eval         | Y/N          | Num          | Other        | Eval         | Y/N          | Num          | Other        |
| <i>Methods based on traditional debiasing (e.g., ensemble learning, contrast learning)</i> |          |              |              |              |              |              |              |              |              |
| updn                                                                                       | none     | 39.74        | 42.27        | 11.93        | 46.05        | 63.48        | 81.18        | 42.14        | 55.66        |
| SAN                                                                                        | none     | 24.96        | 38.35        | 11.14        | 21.74        | 52.41        | 70.06        | 39.28        | 47.84        |
| SMRL                                                                                       | none     | 38.46        | 42.85        | 12.81        | 43.20        | 37.13        | 41.96        | 12.54        | 41.35        |
| CSS                                                                                        | LMH      | 58.95        | 84.37        | 49.42        | 48.21        | 59.91        | 73.25        | 39.77        | 55.11        |
| MMBS                                                                                       | LMH      | 56.44        | 76.00        | 43.77        | 49.67        | <b>70.85</b> | 88.25        | <b>55.67</b> | <b>61.63</b> |
| RMLVQA                                                                                     | updn     | 60.41        | 89.98        | 45.96        | 48.74        | 59.99        | 76.68        | 37.54        | 53.26        |
| GGD                                                                                        | updn     | 59.37        | 88.23        | 38.11        | 49.82        | 65.79        | 77.26        | 52.71        | 60.52        |
| LSP                                                                                        | updn     | <u>61.95</u> | 89.50        | 52.44        | 50.12        | 65.26        | 82.38        | 44.77        | 57.67        |
| HCCL                                                                                       | updn     | 61.48        | 89.38        | 49.09        | 50.26        | *            | *            | *            | *            |
| HCCL                                                                                       | SAN      | 46.28        | 54.57        | 18.89        | 49.45        | *            | *            | *            | *            |
| <i>Methods based on Causal Inference</i>                                                   |          |              |              |              |              |              |              |              |              |
| CF-VQA                                                                                     | UpDn     | 53.55        | <b>91.15</b> | 13.03        | 44.97        | 63.54        | 82.51        | 43.96        | 54.30        |
| CF-VQA                                                                                     | SMRL     | 55.05        | 90.61        | 21.50        | 45.61        | 60.94        | 81.13        | 43.86        | 50.11        |
| CopVQA                                                                                     | CF-VQA   | 57.80        | <u>91.10</u> | 41.60        | 46.40        | 57.80        | 81.40        | 43.80        | 52.40        |
| CVIV                                                                                       | updn     | 60.08        | 88.85        | 40.77        | <u>50.30</u> | 61.93        | 80.01        | 40.28        | 53.91        |
| CiBi                                                                                       | CSS      | 59.58        | 86.94        | 49.98        | 50.24        | 60.47        | 81.04        | 42.94        | 50.02        |
| CiBi                                                                                       | CF-VQA   | 57.62        | 90.54        | 41.63        | 44.31        | 61.59        | 82.02        | 43.60        | 51.79        |
| CKCL(sub)                                                                                  | updn     | 53.18        | 83.73        | 18.78        | 46.60        | 63.02        | 80.44        | 41.45        | 55.46        |
| CKCL(abs)                                                                                  | updn     | 55.05        | 90.33        | 18.99        | 46.46        | 62.55        | 79.17        | 41.94        | 55.38        |
| PWVQA                                                                                      | updn     | 59.06        | 88.26        | 52.89        | 45.45        | 62.63        | 81.80        | 43.90        | 53.01        |
| PWVQA                                                                                      | SMRL     | 60.26        | 88.09        | <u>59.13</u> | 45.99        | 61.25        | <u>90.32</u> | 43.17        | 51.53        |
| OURS                                                                                       | updn     | <b>63.36</b> | 90.78        | <u>60.05</u> | 50.20        | <u>68.65</u> | <b>90.50</b> | <u>53.54</u> | 51.01        |
| OURS                                                                                       | SMRL     | 56.12        | 90.12        | 23.00        | 46.22        | 61.75        | 88.28        | 23.00        | 46.12        |
| OURS                                                                                       | SAN      | 49.17        | 66.02        | 20.56        | <b>50.51</b> | 59.20        | 56.11        | 20.02        | 50.50        |

### 4.3 ABLATION STUDIES

To provide a detailed investigation of the individual and combined effects of our framework's components, we present a step-by-step ablation on VQA-CP v2 in Table 2. All models in this analysis use the UpDn backbone for a consistent comparison.

The analysis begins with two key baselines drawn from Table 1: the vanilla UpDn backbone (39.74%) and the static causal debiasing method CF-VQA (53.55%). The +13.81% improvement from the vanilla backbone to CF-VQA establishes the significant, albeit limited, benefit of a non-adaptive causal approach.

Our analysis then isolates the contribution of our **Adaptive Uncertainty-Guided Intervention (AUGI)** module. Replacing the static intervention of CF-VQA with AUGI yields substantial gains. Using Ensemble-based uncertainty, AUGI alone achieves 60.50% accuracy, a **+6.95%** improvement over the static method. This demonstrates the power of dynamically modulating the intervention based on model uncertainty, which is the core of our technical contribution.

Next, we evaluate the impact of our **Uncertainty-Aware Curriculum Learning (UACL)** strategy. When UACL is added to the AUGI framework, we see another consistent performance boost. For the best-performing Ensemble configuration, UACL adds another **+2.86%**, bringing the final accuracy to **63.36%**. This confirms that sequencing training samples based on uncertainty synergizes effectively with the adaptive intervention mechanism, allowing the model to build robust representations on simpler examples before tackling more ambiguous ones.

432 Collectively, these results decompose the total **+23.62%** improvement over the vanilla backbone,  
 433 clearly attributing distinct, significant gains to the introduction of causal reasoning (+13.81%), the  
 434 move to our adaptive intervention (+6.95%), and the addition of our uncertainty-aware curriculum  
 435 (+2.86%). This validates that both AUGI and UACL are critical and complementary components of  
 436 our framework.

437  
 438 Table 2: Detailed ablation study on VQA-CPv2, analyzing the contributions of our adaptive inter-  
 439 vention (AUGI) and curriculum learning (UACL) components. All models use the UpDn backbone.  
 440 Baseline scores are from Table 1. The “Gain” column quantifies the improvement of each configura-  
 441 tion over its direct predecessor in the logical hierarchy (e.g., AUGI gain is relative to Static Causal,  
 442 and AUGI+UACL gain is relative to AUGI alone).

| 443 Configuration                                   | 444 Uncertainty Metric | 445 UACL | 446 Accuracy (%) | 447 Gain (%) |
|-----------------------------------------------------|------------------------|----------|------------------|--------------|
| <i>Baselines</i>                                    |                        |          |                  |              |
| 448 1. updn                                         | 449 -                  | 450 -    | 451 39.74        | 452 -        |
| 453 2. Static Causal (CF-VQA)                       | 454 -                  | 455 -    | 456 53.55        | 457 +13.81   |
| <i>Contribution of Adaptive Intervention (AUGI)</i> |                        |          |                  |              |
| 458 3. AUGI (Ours)                                  | 459 Margin             | 460 -    | 461 56.51        | 462 +2.96    |
| 463 4. AUGI (Ours)                                  | 464 Entropy            | 465 -    | 466 59.09        | 467 +5.54    |
| 468 5. AUGI (Ours)                                  | 469 Ensemble           | 470 -    | 471 60.50        | 472 +6.95    |
| <i>Contribution of Curriculum Learning (UACL)</i>   |                        |          |                  |              |
| 473 6. AUGI + UACL (Ours)                           | 474 Margin             | 475 ✓    | 476 59.44        | 477 +2.93    |
| 478 7. AUGI + UACL (Ours)                           | 479 Entropy            | 480 ✓    | 481 61.94        | 482 +2.85    |
| 483 8. AUGI + UACL (Ours)                           | 484 Ensemble           | 485 ✓    | 486 <b>63.36</b> | 487 +2.86    |

#### 455 456 4.4 ANALYSIS: CORRELATING ADAPTIVE INTERVENTION STRENGTH WITH EVOLVING TASK 457 DIFFICULTY

458 To demonstrate that our adaptive intervention strength,  $\alpha$ , dynamically responds to task difficulty, we  
 459 analyze its relationship with model accuracy on different question types from VQA-CP v2 throughout  
 460 training. Our hypothesis is that more challenging question types (lower accuracy) should trigger  
 461 stronger interventions (higher  $\alpha$ ). For each question type  $q$  and training epoch  $e$ , we record its  
 462 accuracy  $A(q, e)$  and the average intervention strength  $\bar{\alpha}(q, e)$ , calculated as:

$$463 \bar{\alpha}(q, e) = \frac{1}{|S_{q,e}|} \sum_{i \in S_{q,e}} \alpha_i(U_i) \quad (14)$$

464 where  $S_{q,e}$  is the set of samples of type  $q$  in epoch  $e$ , and  $\alpha_i(U_i)$  is the intervention for sample  $i$  with  
 465 uncertainty  $U_i$  (from Section 3.2, e.g., Eq. 4). We then compute the Pearson correlation coefficient  
 466  $\rho_q$  between the accuracy trajectory  $\mathbf{A}_q = [A(q, e_1), \dots, A(q, e_M)]$  and the intervention trajectory  
 $\bar{\mathbf{A}}_q = [\bar{\alpha}(q, e_1), \dots, \bar{\alpha}(q, e_M)]$  for  $M$  epochs:

$$467 \rho_q = \frac{\sum_{j=1}^M (A(q, e_j) - \mu_{\mathbf{A}_q})(\bar{\alpha}(q, e_j) - \mu_{\bar{\mathbf{A}}_q})}{\sqrt{\sum_{j=1}^M (A(q, e_j) - \mu_{\mathbf{A}_q})^2 \sum_{j=1}^M (\bar{\alpha}(q, e_j) - \mu_{\bar{\mathbf{A}}_q})^2}} \quad (15)$$

468 Figure 3 visualizes  $-\rho_q$ ; darker shades indicate a stronger tendency for higher intervention to  
 469 correspond with lower accuracy (the desired adaptive behavior). The heatmap compellingly shows  
 470 that for many question types, particularly when using robust uncertainty metrics like Ensemble and  
 471 Entropy (which performed best in Table 2), there is a clear negative correlation. This provides strong  
 472 evidence that our AUGI module intelligently directs greater debiasing effort towards areas where  
 473 the model struggles most, validating the dynamic and targeted nature of our uncertainty-guided  
 474 intervention.

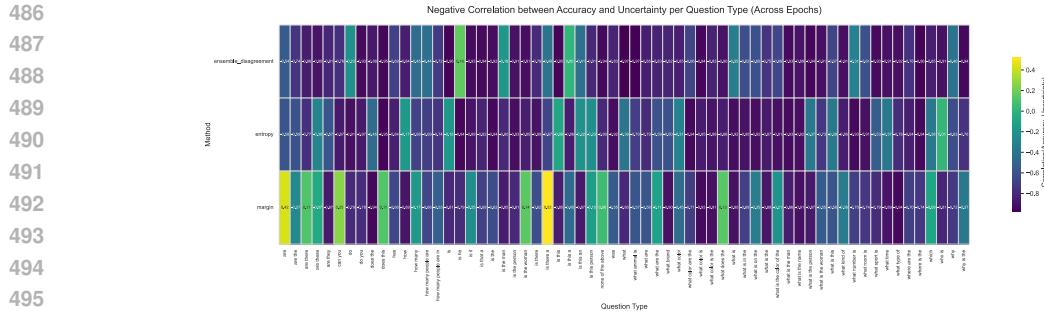


Figure 3: Heatmap visualizing the strength of negative correlation ( $-\rho_q$ ) between accuracy trajectory and average intervention strength trajectory for different question types and uncertainty methods. Higher values (e.g., darker shades) indicate that lower accuracy over time is more strongly associated with higher intervention.

#### 4.5 ANALYSIS OF UNCERTAINTY-AWARE CURRICULUM LEARNING (UACL)

Figure 4 illustrates the impact of our Uncertainty-Aware Curriculum Learning strategy on training dynamics. We plot the validation performance (e.g., VQA-CP v2 accuracy) over training epochs for models trained: (i) without any curriculum learning, (ii) using UACL with an initial sample selection rate of 0.2 ( $p_{init} = 0.2$ ), and (iii) using UACL with  $p_{init} = 0.5$ . For the UACL strategies, we compare learning curves where sample difficulty was evaluated using different uncertainty metrics (Entropy, Margin, Ensemble).

The results clearly demonstrate the benefits of UACL. Compared to training without a curriculum, UACL leads to more stable convergence and faster initial learning. Comparing  $p_{init} = 0.2$  and  $p_{init} = 0.5$ , we observe that starting with a smaller, easier subset (0.2) results in smoother initial learning, while 0.5 converges slightly faster later on. The choice of uncertainty metric used for initial sorting shows minor differences in the curves, suggesting the core benefit comes from the uncertainty-aware scheduling itself rather than the specific sorting metric, provided it reasonably captures difficulty. Overall, these curves validate that UACL effectively leverages uncertainty to create a beneficial learning schedule, complementing the adaptive intervention mechanism.

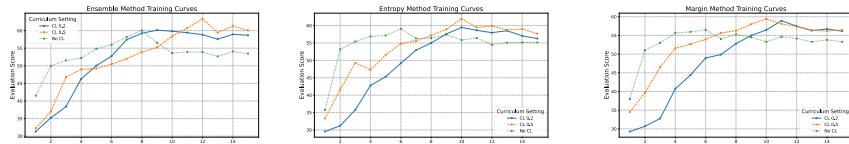


Figure 4: VQA-CP v2 validation accuracy during training. Comparing models trained without curriculum learning, with UACL ( $p_{init} = 0.2$ ), and with UACL ( $p_{init} = 0.5$ ), potentially showing curves for different uncertainty metrics used for sorting.

## 5 CONCLUSION

We introduced a novel VQA debiasing framework that synergistically integrates uncertainty estimation with causal counterfactual reasoning. Our architecture-agnostic approach features an Adaptive Uncertainty-Guided Intervention (AUGI) module that dynamically adjusts intervention strength based on model uncertainty, overcoming the limitations of static methods. This is complemented by an Uncertainty-Aware Curriculum Learning (UACL) strategy that aligns training with the model’s adaptive capabilities. Extensive experiments and ablations on VQA-CP v2 and VQA v2 validate that our method significantly improves debiasing over state-of-the-art approaches while maintaining strong in-distribution performance.

## 540 REFERENCES

542 Aishwarya Agrawal, Dhruv Batra, and Devi Parikh. Analyzing the behavior of visual question  
 543 answering models. In *Proceedings of the 2016 Conference on Empirical Methods in Natural  
 544 Language Processing*, pp. 1955–1960, 2016.

545 Aishwarya Agrawal, Dhruv Batra, Devi Parikh, and Aniruddha Kembhavi. Don't just assume; look  
 546 and answer: Overcoming priors for visual question answering. In *2018 IEEE/CVF Conference on  
 547 Computer Vision and Pattern Recognition*, pp. 4971–4980, 2018. doi: 10.1109/CVPR.2018.00522.

548 Wafa Aissa, Marin Ferecatu, and Michel Crucianu. Curriculum learning for compositional visual  
 549 reasoning. In *Proceedings of the 18th International Joint Conference on Computer Vision, Imaging  
 550 and Computer Graphics Theory and Applications-Volume 5: VISAPP*, pp. 888–897. Scitepress,  
 551 2023.

552 Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen Gould, and Lei  
 553 Zhang. Bottom-up and top-down attention for image captioning and visual question answering. In  
 554 *2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6077–6086, 2018.  
 555 doi: 10.1109/CVPR.2018.00636.

556 Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zitnick,  
 557 and Devi Parikh. Vqa: Visual question answering. In *Proceedings of the IEEE international  
 558 conference on computer vision*, pp. 2425–2433, 2015.

559 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang  
 560 Zhou, and Jing Zhou. Qwen-vl: A versatile vision-language model for understanding, localization,  
 561 text reading, and more. *arXiv preprint arXiv:2308.12966*, 2023.

562 Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In  
 563 *Proceedings of the 26th annual international conference on machine learning*, pp. 41–48, 2009.

564 Remi Cadene, Hedi Ben-younes, Matthieu Cord, and Nicolas Thome. Murel: Multimodal relational  
 565 reasoning for visual question answering. In *2019 IEEE/CVF Conference on Computer Vision and  
 566 Pattern Recognition (CVPR)*, pp. 1989–1998, 2019a. doi: 10.1109/CVPR.2019.00209.

567 Remi Cadene, Corentin Dancette, Matthieu Cord, Devi Parikh, et al. Rubi: Reducing unimodal biases  
 568 for visual question answering. *Advances in neural information processing systems*, 32, 2019b.

569 Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In *2017  
 570 ieee symposium on security and privacy (sp)*, pp. 39–57. Ieee, 2017.

571 Long Chen, Yuhang Zheng, and Jun Xiao. Rethinking data augmentation for robust visual question  
 572 answering. In *European conference on computer vision*, pp. 95–112. Springer, 2022.

573 Long Chen, Yuhang Zheng, Yulei Niu, Hanwang Zhang, and Jun Xiao. Counterfactual samples  
 574 synthesizing and training for robust visual question answering. *IEEE Transactions on Pattern  
 575 Analysis and Machine Intelligence*, 45(11):13218–13234, 2023. doi: 10.1109/TPAMI.2023.  
 576 3290012.

577 Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa  
 578 matter: Elevating the role of image understanding in visual question answering. In *Proceedings of  
 579 the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, July 2017.

580 Vipul Gupta, Zhuowan Li, Adam Kortylewski, Chenyu Zhang, Yingwei Li, and Alan Yuille. Swapmix:  
 581 Diagnosing and regularizing the over-reliance on visual context in visual question answering. In  
 582 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 5078–  
 583 5088, 2022.

584 Xinzhe Han, Shuhui Wang, Chi Su, Qingming Huang, and Qi Tian. General greedy de-bias learning.  
 585 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(8):9789–9805, 2023. doi:  
 586 10.1109/TPAMI.2023.3240337.

587 Dongze Hao, Qunbo Wang, Xinxin Zhu, and Jing Liu. Hccl: Hierarchical counterfactual contrastive  
 588 learning for robust visual question answering. *ACM Transactions on Multimedia Computing,  
 589 Communications and Applications*, 20(10):1–21, 2024.

594 Wenchong He. A survey on uncertainty quantification methods for deep neural networks: An  
 595 uncertainty source perspective. *perspective*, 1:88, 2023.  
 596

597 Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution  
 598 examples in neural networks. In *International Conference on Learning Representations*, 2017.

599 Kim-Celine Kahl, Carsten T Lüth, Maximilian Zenk, Klaus Maier-Hein, and Paul F Jaeger. Values:  
 600 A framework for systematic validation of uncertainty estimation in semantic segmentation. In *The  
 601 Twelfth International Conference on Learning Representations*, 2024.

602

603 Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive  
 604 uncertainty estimation using deep ensembles. *Advances in neural information processing systems*,  
 605 30, 2017.

606

607 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-  
 608 training for unified vision-language understanding and generation. In *International conference on  
 609 machine learning*, pp. 12888–12900. PMLR, 2022.

610 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image  
 611 pre-training with frozen image encoders and large language models. In *International conference  
 612 on machine learning*, pp. 19730–19742. PMLR, 2023.

613

614 Zujie Liang, Haifeng Hu, and Jiaying Zhu. Lpf: A language-prior feedback objective function  
 615 for de-biased visual question answering. In *Proceedings of the 44th international ACM SIGIR  
 616 conference on research and development in information retrieval*, pp. 1955–1959, 2021.

617

618 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in  
 619 neural information processing systems*, 36:34892–34916, 2023a.

620 Jin Liu, ChongFeng Fan, Fengyu Zhou, and Huijuan Xu. Be flexible! learn to debias by sampling  
 621 and prompting for robust visual question answering. *Information Processing & Management*, 60  
 622 (3):103296, 2023b.

623

624 Ying Liu, Ge Bai, Lu Chenji, Shilong Li, Zhang Zhang, Ruifang Liu, and Wenbin Guo. Eliminating  
 625 the language bias for visual question answering with fine-grained causal intervention. In *2024  
 626 IEEE International Conference on Multimedia and Expo (ICME)*, pp. 1–6, 2024. doi: 10.1109/  
 627 ICME57554.2024.10688155.

628

629 Jie Ma, Pinghui Wang, Dechen Kong, Zewei Wang, Jun Liu, Hongbin Pei, and Junzhou Zhao. Robust  
 630 visual question answering: Datasets, methods, and future challenges. *IEEE Transactions on Pattern  
 631 Analysis and Machine Intelligence*, 46(8):5575–5594, 2024. doi: 10.1109/TPAMI.2024.3366154.

632

633 Khoi Anh Nguyen, Linh Yen Vu, Thang Dinh Duong, Thuan Nguyen Duong, Huy Thanh Nguyen, and  
 634 Vinh Quang Dinh. Enhancing vietnamese vqa through curriculum learning on raw and augmented  
 635 text representations. *arXiv preprint arXiv:2503.03285*, 2025.

636

637 Trang Nguyen and Naoaki Okazaki. Causal reasoning through two cognition layers for improving  
 638 generalization in visual question answering. In *Proceedings of the 2023 Conference on Empirical  
 639 Methods in Natural Language Processing*, pp. 9221–9236, 2023.

640

641 Yulei Niu, Kaihua Tang, Hanwang Zhang, Zhiwu Lu, Xian-Sheng Hua, and Ji-Rong Wen. Counter-  
 642 factual vqa: A cause-effect look at language bias. In *Proceedings of the IEEE/CVF conference on  
 643 computer vision and pattern recognition*, pp. 12700–12710, 2021.

644

645 Yonghua Pan, Zechao Li, Liyan Zhang, and Jinhui Tang. Causal inference with knowledge dis-  
 646 tilling and curriculum learning for unbiased vqa. *ACM Transactions on Multimedia Computing,  
 647 Communications, and Applications (TOMM)*, 18(3):1–23, 2022.

648

649 Yonghua Pan, Jing Liu, Lu Jin, and Zechao Li. Unbiased visual question answering by leveraging  
 650 instrumental variable. *IEEE Transactions on Multimedia*, 26:6648–6662, 2024. doi: 10.1109/  
 651 TMM.2024.3355640.

648 Vaidehi Patil, Adyasha Maharana, and Mohit Bansal. Debiasing multimodal models via causal  
 649 information minimization. In *Findings of the Association for Computational Linguistics: EMNLP*  
 650 2023, pp. 4108–4123, 2023.

651

652 Qingyi Si, Yuanxin Liu, Fandong Meng, Zheng Lin, Peng Fu, Yanan Cao, Weiping Wang, and  
 653 Jie Zhou. Towards robust visual question answering: Making the most of biased samples via  
 654 contrastive learning. In *Findings of the Association for Computational Linguistics: EMNLP 2022*,  
 655 pp. 6650–6662, 2022a.

656

657 Qingyi Si, Fandong Meng, Mingyu Zheng, Zheng Lin, Yuanxin Liu, Peng Fu, Yanan Cao, Weiping  
 658 Wang, and Jie Zhou. Language prior is not the only shortcut: A benchmark for shortcut learning in  
 659 vqa. In *Findings of the Association for Computational Linguistics: EMNLP 2022*, pp. 3698–3712,  
 660 2022b.

661

662 Lingyun Song, Chengkun Yang, Xuanyu Li, and Xuequn Shang. A robust dual-debiasing vqa model  
 663 based on counterfactual causal effect. In *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 4242–4252, 2024.

664

665 Hao Tan and Mohit Bansal. Lxmert: Learning cross-modality encoder representations from transform-  
 666 ers. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing*  
 667 and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),  
 668 pp. 5100–5111, 2019.

669

670 Ali Vosoughi, Shijian Deng, Songyang Zhang, Yapeng Tian, Chenliang Xu, and Jiebo Luo. Cross  
 671 modality bias in visual question answering: A causal view with possible worlds VQA. *IEEE*  
 672 *Transactions on Multimedia*, 26:8609–8624, 2024. doi: 10.1109/TMM.2024.3380259.

673

674 Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alex Smola. Stacked attention networks for  
 675 image question answering. In *2016 IEEE Conference on Computer Vision and Pattern Recognition*  
 676 (CVPR), pp. 21–29, 2016. doi: 10.1109/CVPR.2016.10.

677

678 Desen Yuan, Lei Wang, Qingbo Wu, Fanman Meng, King Ngi Ngan, and Linfeng Xu. Language  
 679 bias-driven self-knowledge distillation with generalization uncertainty for reducing language bias  
 680 in visual question answering. *Applied Sciences*, 12(15):7588, 2022.

681

682 Quanxing Zha, Xin Liu, Yiu-ming Cheung, Xing Xu, Nannan Wang, and Jianjia Cao. Ugncl:  
 683 Uncertainty-guided noisy correspondence learning for efficient cross-modal matching. In *Pro-  
 684 ceedings of the 47th International ACM SIGIR Conference on Research and Development in  
 685 Information Retrieval*, pp. 852–861, 2024.

686

687 Yuhang Zheng, Zhen Wang, and Long Chen. Improving data augmentation for robust visual question  
 688 answering with effective curriculum learning. In *Proceedings of the 2024 International Conference  
 689 on Multimedia Retrieval*, pp. 1084–1088, 2024.

690

691 Guanyu Zhou, Yibo Yan, Xin Zou, Kun Wang, Aiwei Liu, and Xuming Hu. Mitigating modality prior-  
 692 induced hallucinations in multimodal large language models via deciphering attention causality. In  
 693 *The Thirteenth International Conference on Learning Representations*, 2025.

694

695

696

697

698

699

700

701

## 702 A IMPLEMENTATION DETAILS

704

- 705 • **Backbones:** Our experiments demonstrate the architecture-agnostic nature of our proposed  
706 framework by integrating it with representative VQA backbones, including the Bottom-Up  
707 Top-Down (UpDn) architecture, as well as SAN and SMRL, as mentioned in the main paper.  
708 The core adaptive and causal mechanisms are built upon these foundational models.
- 709 • **Counterfactual Mechanism:** The counterfactual reasoning in our framework, which builds  
710 on established principles like those in CF-VQA, is implemented by intervening on the  
711 model’s internal representations. Rather than generating entirely new counterfactual input  
712 samples, our approach modifies internal pathways to compute the Natural Direct Effect  
713 of the Question ( $NDE_Q$ ). For the baseline static counterfactual approach, this involves  
714 substituting certain vision-and-language and vision-only features with a non-informative  
715 constant. In our adaptive framework (AUGI), this intervention is dynamically adjusted by  
716 the uncertainty-derived adaptive factor  $\alpha$ , which interpolates between the original features  
717 and the non-informative constant, as described in Section 3.2 of the main paper.
- 718 • **Uncertainty Quantification (for AUGI module):** The Adaptive Uncertainty-Guided Inter-  
719 vention (AUGI) module employs several uncertainty estimation techniques, as detailed in  
720 Section 3.2 of the main paper. These include:
  - 721 – **Predictive Entropy ( $U_H$ ):** Calculated from the softmax probability distribution of the  
722 model’s output logits, normalized by the logarithm of the number of answer classes.
  - 723 – **Prediction Margin ( $U_{Margin}$ ):** Determined by the difference between the probabilities  
724 of the top two predicted answers.
  - 725 – **Ensemble Disagreement ( $U_{Ens}$ ):** Assessed by the variance in predictions from multiple  
726 independent prediction heads within the model. Each head typically consists of a small  
727 multi-layer perceptron (MLP) processing combined logit information. The variance  
728 across these heads’ outputs for the adaptive factor  $\alpha$  is then transformed into the final  $\alpha$   
729 value, often via another small MLP.
- 730 The choice of internal model logits used for these uncertainty calculations can be configured  
731 to draw from various sources, such as the main VQA prediction branch, the question-only  
732 branch, or the vision-only branch.
- 733 • **Adaptive Factor ( $\alpha$ ):**
  - 734 – For entropy and margin-based uncertainty, the quantified uncertainty score (or scores,  
735 if multiple sources are used) is passed through a learnable transformation, typically a  
736 2-layer MLP with a ReLU activation followed by a Sigmoid function, to produce the  
737 adaptive factor  $\alpha \in [0, 1]$ . The hidden dimensionality of this MLP is a configurable  
738 hyperparameter.
  - 739 – For ensemble-based uncertainty,  $\alpha$  is derived from the variance of the ensemble mem-  
740 bers’ outputs, as detailed above.
  - 741 – To encourage meaningful adaptation and prevent  $\alpha$  from collapsing to extreme values  
742 (0 or 1), a regularization term based on  $\mathbb{E}[\alpha(1 - \alpha)]$  (Equation 8 in the main paper) is  
743 incorporated into the loss function, with a tunable weight.
- 744 • **UACL (Uncertainty-Aware Curriculum Learning):** The UACL strategy, as described in  
745 Section 3.3, is enabled through a specific configuration.
  - 746 – **Initial Difficulty Assessment:** The difficulty of each training sample is initially  
747 assessed based on a chosen metric. This can be an uncertainty-based metric, such  
748 as the predictive entropy calculated from an initial pass of the untrained or partially  
749 trained model over the dataset, or a bias-aware metric, such as one inversely related to  
750 pre-calculated answer biases for the samples’ question type. Samples are then sorted  
751 by this difficulty score, typically from easier to harder.
  - 752 – **Curriculum Pacing:** A pacing function (e.g., linear) determines the fraction of the  
753 sorted training data to be used at each training epoch. This fraction typically increases  
754 from a specified start percentage in the initial epochs to include the full dataset by the  
755 final epochs, as outlined in Section 3.3.
- 756 • **Training:**

756           – **Optimizer:** Models are trained using the Adamax optimizer with its default learning  
 757           rate.  
 758           – **Batch Size:** The batch size is set to 512.  
 759           – **Loss Function (for the adaptive model):** The total loss for our adaptive causal model  
 760           is a weighted sum of several components, as detailed in Section 3.4 (Equation 13) of  
 761           the main paper. This includes:  
 762            \* A primary cross-entropy loss on the model’s final (total effect) prediction.  
 763            \* Cross-entropy losses for the question-only and vision-only branches, with config-  
 764           urable weights.  
 765            \* The KL divergence loss  $L_{KL}$  (Equation 12) to encourage consistency between the  
 766           total effect and the (adaptively formulated) natural direct effect of the question.  
 767            \* The  $\alpha$ -regularization term  $L_{\alpha, reg}$  (Equation 8) to promote effective adaptation.  
 768           Models are trained for 15 epochs, with evaluation performed on a validation set after  
 769           each epoch. A fixed random seed of 1111 is used for reproducibility.  
 770

## 771           B ADDITIONAL RESULTS AND ANALYSIS

772           In this appendix, we provide additional experimental results and analyses that complement the main  
 773           findings presented in the paper.

### 774           B.1 QUALITATIVE ANALYSIS OF THE ADAPTIVE INTERVENTION MECHANISM

775           To provide a more intuitive understanding of our framework, we present a qualitative analysis of  
 776           its behavior on examples with different types of bias, as illustrated in Figure 5. We first show a  
 777           case where the foundational causal framework effectively handles language bias. We then use a  
 778           “qualitative ablation”—manually setting adaptive factors ( $\alpha_V$  or  $\alpha_{VQ}$ ) to 0—to demonstrate how  
 779           our adaptive intervention is crucial for overcoming more complex visual and multimodal biases  
 780           where static approaches fail. This analysis provides a theoretical grounding for our observations by  
 781           connecting them to the core equations presented in Section 3.

782           **Case 1: Handling Language Bias.** The top row of Figure 5 shows an example with a strong language  
 783           prior (“banana” → “yellow”). The ground truth is “green”. Our model correctly answers “green”  
 784           even with its adaptive pathways ablated (i.e., when  $\alpha_V = 0$  and  $\alpha_{VQ} = 0$ ). This is because in this  
 785           ablated state, the debiased logit defaults to the static baseline intervention:

$$786 \quad L'_{\text{debiased}} = z_{TE} - F(c, Z_Q, c) \quad (16)$$

787           This result is consistent with prior work (e.g., CF-VQA) and demonstrates that for certain straight-  
 788           forward language biases, the baseline counterfactual mechanism provides a sufficient and robust  
 789           foundation for debiasing.

790           **Case 2: Overcoming Vision Bias.** The middle row presents a more challenging case of visual bias.  
 791           The question is “Do you see a beach?”, where the image contains a wide water interface that creates  
 792           a strong visual shortcut to “yes”. The full AUGI model, using its adaptive debiasing logit, correctly  
 793           answers “no”. However, when we manually set  $\alpha_V = 0$ , we disable the adaptive intervention on the  
 794           vision pathway. The debiased logit becomes:

$$795 \quad L'_{\text{debiased}} = z_{TE} - F(Z'_{VQ}, Z_Q, c) \quad (17)$$

796           By forcing the vision feature  $Z_V$  to be replaced by a non-informative constant  $c$ , this static intervention  
 797           fails to account for the strong visual bias encoded in  $Z_{VQ}$ , leading to an incorrect answer (“yes”). In  
 798           contrast, the full AUGI model learns a high  $\alpha_V$ , ensuring that the veridical visual evidence from  $Z_V$   
 799           is preserved in the counterfactual calculation ( $Z'_V \approx Z_V$ ), which is essential to override the bias.

800           **Case 3: Overcoming Multimodal Bias.** The bottom row shows a case of multimodal bias where  
 801           the combination “man” + “wave” + “surfboard” creates a shortcut to “surfing”. The man is actually  
 802           “holding” the board. The full AUGI model correctly identifies this nuanced action. When we set  
 803            $\alpha_{VQ} = 0$ , we disable adaptivity for the joint vision-question pathway. The debiased logit is then  
 804           calculated as:

$$805 \quad L'_{\text{debiased}} = z_{TE} - F(c, Z_Q, Z'_V) \quad (18)$$

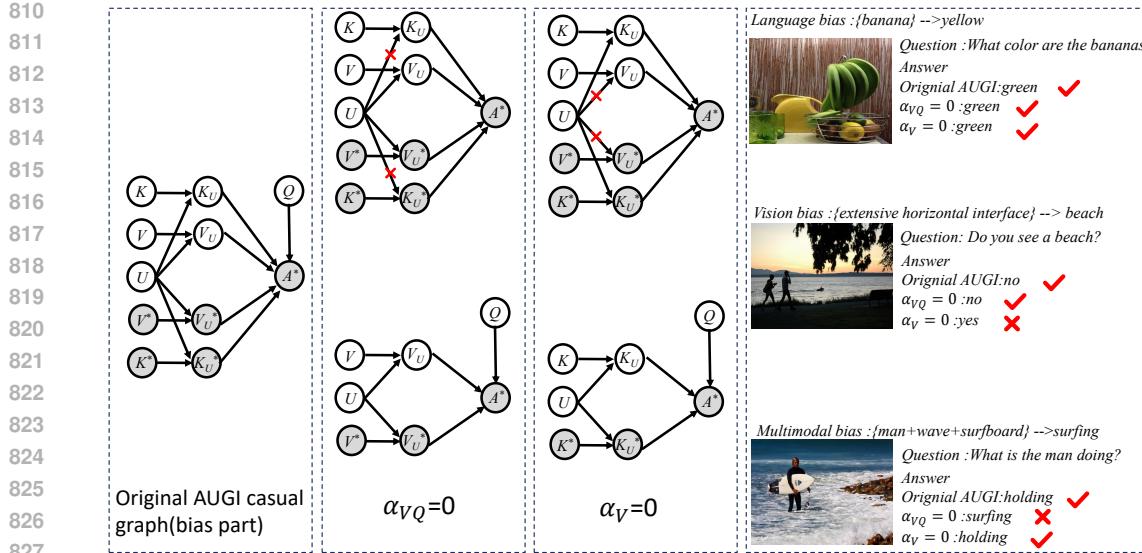


Figure 5: Qualitative analysis of the Adaptive Uncertainty-Guided Intervention (AUGI) mechanism. We demonstrate how our framework handles different types of bias and conduct a qualitative ablation study by manually setting pathway-specific adaptive factors to zero. This reveals where baseline causal methods suffice and where our adaptive interventions are critical. **(Top)** A *language bias* example, where the underlying causal framework is sufficient to overcome the “banana  $\rightarrow$  yellow” shortcut. **(Middle)** A *vision bias* example, where the full model succeeds in overcoming the visual shortcut associating a wide water interface with a “beach”, but disabling vision adaptivity ( $\alpha_V = 0$ ) causes it to fail. **(Bottom)** A *multimodal bias* example, where the full model correctly identifies the nuanced action “holding”, but disabling multimodal adaptivity ( $\alpha_{VQ} = 0$ ) causes it to fail, proving the necessity of the adaptive component for complex shortcuts.

This intervention, by replacing the rich, contextual multimodal feature  $Z_{VQ}$  with the constant  $c$ , discards the crucial information that the man is only \*holding\* the surfboard. The model then succumbs to the simplistic bias and predicts “surfing”. The full AUGI model, by learning an appropriate  $\alpha_{VQ}$ , preserves this essential joint information in the counterfactual term, allowing it to correctly disambiguate the scene.

Together, these cases illustrate that while baseline causal methods can handle simple language priors, our adaptive, pathway-specific interventions are critical for robustly overcoming the more challenging visual and multimodal biases prevalent in VQA.

## B.2 QUALITATIVE CASE STUDIES

Traditional VQA models, while sometimes achieving high scores on benchmark datasets, often do so by exploiting strong language priors rather than engaging in robust multimodal reasoning. This means they can appear to perform well when answers align with these linguistic shortcuts (effectively handling some forms of language bias by memorization) but falter significantly when faced with visual biases (where the image contradicts the prior) or scenarios requiring genuine compositional understanding of both visual and textual modalities. This reliance on superficial correlations, as discussed in the main paper (Sections 1 and 2.1), is a key challenge our work addresses.

This section presents qualitative case studies to visually demonstrate how our proposed Adaptive Uncertainty-Guided Intervention (AUGI) framework, particularly when combined with Uncertainty-Aware Curriculum Learning (UACL), overcomes these limitations. Figure 6 showcases several examples from the VQA-CP v2 dataset, comparing the predictions of our full model (referred to as “Ours”) against a standard VQA backbone (e.g., UpDn, labeled “Baseline”) and a representative static causal debiasing method like CF-VQA. In these visualizations, it is crucial to note that red bars or

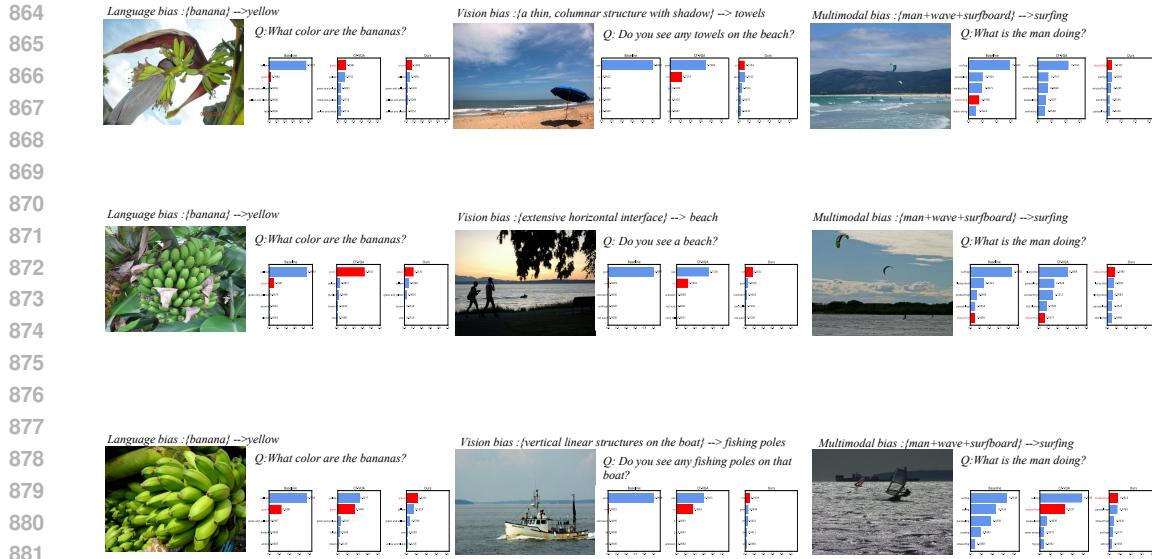


Figure 6: Qualitative examples from VQA-CP v2 comparing our method (“Ours”) against a Baseline VQA model and a static counterfactual method (CF-VQA). Red bars/elements in the visualizations indicate the ground truth answers. Predicted answer distributions or top answers are shown for each model, illustrating differences in visual grounding and bias robustness.

highlighted elements consistently represent the ground truth answer, providing a clear reference for correctness.

The examples are chosen to highlight scenarios where common linguistic biases can lead non-adaptive models astray. For instance, consider cases where a question might trigger a strong but incorrect linguistic prior (e.g., asking about the color of an atypically colored object, like a non-yellow banana, if such an example is present in the figure). A traditional baseline model, heavily reliant on the learned Q-A correlation, might default to the high-frequency prior, thus failing to align with the red ground truth indicator. Static counterfactual methods like CF-VQA might offer partial improvement by attempting to negate the direct linguistic influence, but their fixed intervention strategy can be insufficient if the bias is particularly strong or visual cues are ambiguous, still leading to errors.

In contrast, our AUGI module, by dynamically assessing instance-specific uncertainty, modulates the counterfactual intervention more effectively. As seen in Figure 6, “Ours” more frequently aligns its prediction with the red ground truth. When the model detects high uncertainty (e.g., a conflict between visual evidence and a strong prior), it can apply a stronger, more targeted intervention. If it is confident in its visually grounded assessment, the intervention is more subtle. This adaptability is key to correctly identifying attributes even when they deviate from strong priors, leading to answers that are better grounded in the visual evidence.

### B.3 HYPERPARAMETER SENSITIVITY ANALYSIS

Our framework builds upon the causal baseline, inheriting hyperparameters like  $\lambda_{KL}$  and  $\lambda_{path}$ , which we keep consistent with the original work for fair comparison. We introduce several new hyperparameters: the regularization weight  $\lambda_{reg}$  (Eq. 8), the curriculum pacing exponent  $p$  (Eq. 11), and the learnable parameters  $\gamma$  and  $\delta$  of the uncertainty mapping function (Eq. 4). To ensure rigor and reproducibility, this section details their management and analyzes the model’s sensitivity to their values.

**Management of  $\gamma$  and  $\delta$ :** The parameters  $\gamma$  (steepness) and  $\delta$  (center point) in the scaled sigmoid function are crucial for mapping the normalized uncertainty score  $U_{norm}$  to the adaptive factor  $\alpha$ . To guarantee that higher uncertainty corresponds to a stronger intervention (i.e., a monotonically increasing relationship), we do not learn  $\gamma$  directly. Instead, we learn an unconstrained underlying

918 parameter  $\tilde{\gamma}$  and set  $\gamma = \text{softplus}(\tilde{\gamma}) > 0$ . The resulting  $\gamma$  and  $\delta$  are updated via backpropagation  
 919 along with other network weights. We initialize  $\tilde{\gamma}$  such that  $\gamma \approx 1.0$  and set  $\delta = 0.0$ , which yields a  
 920 standard sigmoid mapping at the start of training and is then fine-tuned by the model to best suit the  
 921 specific data distribution and uncertainty characteristics.

922 **Role of  $\lambda_{reg}$ :** The regularization term  $L_{\alpha,reg}$  prevents  $\alpha$  from collapsing to the trivial states of 0 or 1,  
 923 encouraging the model to make genuine, nuanced adaptations. A very small  $\lambda_{reg}$  might not provide a  
 924 strong enough signal to prevent collapse, while a very large value could overly penalize confident  
 925 predictions (where  $\alpha$  should be close to 0), hindering learning.

926 **Sensitivity Analysis:** We conducted a sensitivity analysis on the VQA-CP v2 dataset using the UpDn  
 927 backbone with Ensemble-based uncertainty to evaluate the impact of our key new hyperparameters:  
 928 the regularization weight  $\lambda_{reg}$ , the curriculum pacing exponent  $p$ , and the number of heads  $M$   
 929 for the ensemble uncertainty metric. The results, summarized in Table 3, show that our model's  
 930 performance is stable across a reasonable range of values. For instance, performance remains high  
 931 for  $\lambda_{reg}$  between 0.01 and 0.1, and for pacing exponent  $p$  between 1.0 (linear pacing) and 3.0. The  
 932 number of ensemble heads  $M$  shows optimal performance at  $M = 5$ , with diminishing returns or  
 933 slight degradation for higher values, confirming it as a suitable trade-off between performance and  
 934 complexity. This demonstrates the robustness of our approach. Our final model uses  $\lambda_{reg} = 0.05$ ,  
 935  $p = 2.0$ , and  $M = 5$ , which were selected based on validation performance during this analysis.

936  
 937  
 938 Table 3: Sensitivity analysis for key hyperparameters on VQA-CPv2 using the UpDn backbone with  
 939 Ensemble uncertainty. The default values used in our final model are marked with an asterisk (\*).  
 940 Performance is reported as overall accuracy (%).

| Sensitivity to $\lambda_{reg}$ |              | Sensitivity to Exp. $p$ |              | Sensitivity to Heads $M$ |              |
|--------------------------------|--------------|-------------------------|--------------|--------------------------|--------------|
| Value                          | Acc. (%)     | Value                   | Acc. (%)     | Value                    | Acc. (%)     |
| 0.005                          | 62.89        | 0.5                     | 62.55        | 3                        | 62.91        |
| 0.01                           | 63.15        | 1.0 (Linear)            | 63.02        | 5*                       | <b>63.36</b> |
| 0.05*                          | <b>63.36</b> | 2.0*                    | <b>63.36</b> | 8                        | 63.28        |
| 0.1                            | 63.21        | 3.0                     | 63.18        | 10                       | 63.25        |
| 0.5                            | 61.98        | 4.0                     | 62.75        | -                        | -            |

#### 948 949 950 951 B.4 PERFORMANCE ON TRANSFORMER-BASED BACKBONES 952

953 To demonstrate the architecture-agnostic nature of our framework, we also conducted experiments  
 954 integrating our method with large pre-trained transformer-based backbones, specifically BLIPLi et al.  
 955 (2022; 2023) and LXMERTTan & Bansal (2019). For experiments involving BLIP, we follow the  
 956 methodology of PW-VQA for fair comparison. For both BLIP-1 and BLIP-2 models, we use their  
 957 pre-trained modules to extract image and text features. An attention layer is then used to obtain  
 958 multimodal features, which are concatenated with the separate question and image features from the  
 959 BLIP encoders. This final joint feature representation is fed to the classification layer. The results are  
 960 presented in Table 4.

961 As shown in the table, our method consistently improves performance over the baseline backbones  
 962 and other methods. When integrated with LXMERT, our approach achieves 75.16% on VQA-CPv2,  
 963 significantly outperforming the base LXMERT model (44.56%) and achieving competitive results  
 964 against other state-of-the-art methods like TPCL (77.23%). Similarly, with BLIP backbones, our  
 965 method demonstrates substantial gains over the baselines. These results confirm that our uncertainty-  
 966 guided adaptive intervention is not limited to traditional VQA architectures but is also effective when  
 967 applied to powerful transformer-based models.

968 The control data in this table for other methods (e.g., PW-VQA, D-VQA, LSP) is drawn from either  
 969 our own reproduction of the corresponding research or the data provided in the original papers.  
 970 An asterisk (\*) in the table indicates that the corresponding data was not provided in the original  
 971 publication, and the code was not open-sourced, making it difficult for our team to reproduce the  
 972 result.

972  
 973 Table 4: Performance comparison on VQA-CPv2 and VQAv2 using Transformer-based backbones  
 974 (BLIP, LXMERT). Scores are reported in percentages (%).

| 975                     | 976    | Model  | Backbone | VQA-CPv2 (%) |       |       |       | VQAv2 (%) |       |       |       |
|-------------------------|--------|--------|----------|--------------|-------|-------|-------|-----------|-------|-------|-------|
|                         |        |        |          | All          | Y/N   | Num   | Other | All       | Y/N   | Num   | Other |
| <i>Backbone: BLIP</i>   |        |        |          |              |       |       |       |           |       |       |       |
| 978                     | BLIP-1 | -      |          | 34.42        | 54.97 | 14.48 | 35.10 | 54.59     | 70.70 | 40.00 | 46.21 |
| 979                     | BLIP-2 | -      |          | 34.93        | 52.21 | 15.15 | 36.10 | 61.25     | 79.12 | 48.77 | 49.00 |
| 980                     | PW-VQA | BLIP-1 |          | 49.53        | 84.36 | 45.38 | 33.24 | 45.56     | 61.48 | 27.39 | 38.42 |
| 981                     | PW-VQA | BLIP-2 |          | 45.84        | 85.17 | 19.16 | 32.73 | *         | *     | *     | *     |
| 982                     | OURS   | BLIP-1 |          | 52.66        | 83.77 | 47.58 | 34.76 | 50.21     | 66.92 | 30.12 | 41.10 |
| 983                     | OURS   | BLIP-2 |          | 50.27        | 86.59 | 40.66 | 35.00 | 59.31     | 78.91 | 42.00 | 46.25 |
| <i>Backbone: LXMERT</i> |        |        |          |              |       |       |       |           |       |       |       |
| 984                     | LXMERT | -      |          | 44.56        | 57.62 | 23.34 | 49.88 | 51.77     | 55.69 | 21.66 | 60.12 |
| 985                     | D-VQA  | LXMERT |          | 69.75        | 80.43 | 58.57 | 69.75 | 64.96     | 82.18 | 44.05 | 57.54 |
| 986                     | LSP    | LXMERT |          | 71.06        | 86.56 | 59.01 | 66.24 | *         | *     | *     | *     |
| 987                     | HCCL   | LXMERT |          | 69.69        | 80.36 | 59.17 | 66.99 | *         | *     | *     | *     |
| 988                     | TPCL   | LXMERT |          | 77.23        | 93.10 | 72.00 | 70.34 | 78.03     | 93.34 | 65.11 | 69.81 |
| 989                     | OURS   | LXMERT |          | 75.16        | 91.23 | 69.73 | 72.01 | 73.28     | 89.61 | 62.33 | 70.00 |

## 991 B.5 COMPUTATIONAL RESOURCE CONSUMPTION ANALYSIS

993 To discuss the practical trade-offs of our proposed methods, we conducted an analysis of their  
 994 computational overhead. We trained the model 10 times and took the average to get the total training  
 995 time; each time, the epoch was set to 15. For the Ensemble method, the number of lightweight  
 996 prediction heads was set to five. Inference time was benchmarked by averaging over 10,000 validation  
 997 samples. All experiments were based on the UpDn backbone on VQA-CPv2 with UACL enabled.

998 The analysis in Table 5 demonstrates that all proposed uncertainty metrics are computationally  
 999 efficient. The performance gains from the Ensemble method, which achieves the highest accuracy,  
 1000 come at a very modest additional cost in training time, inference time, and GPU memory. This makes  
 1001 it a practical and effective choice for real-world applications.

1003 Table 5: Computational Cost vs. Performance Analysis for Different Uncertainty Metrics. The time  
 1004 and memory usage results for margin and entropy closely approximate the tabulated data, though  
 1005 some discrepancies are observed. We attribute these variations to the experimental environment, as  
 1006 indicated by the  $\sim$  symbol in the table.

| 1008 | Uncertainty Method   | Accuracy (%) | Total Training Time            | Inference Time (per sample) | Added GPU Memory |
|------|----------------------|--------------|--------------------------------|-----------------------------|------------------|
| 1009 | Margin               | 59.44        | 2 hrs (1.0x)                   | 20 ms (1.0x)                | $\sim$ 10 MB     |
|      | Entropy              | 61.94        | 2 hrs (1.0x)                   | 20 ms (1.0x)                | $\sim$ 10 MB     |
| 1010 | Ensemble ( $M = 5$ ) | <b>63.36</b> | $\sim$ 2.1 hrs ( $\sim$ 1.06x) | $\sim$ 22 ms ( $\sim$ 1.1x) | $\sim$ 25 MB     |

## 1012 B.6 EXTENDING THE FRAMEWORK TO LARGE VISION-LANGUAGE MODELS

1014 To further test the scalability and generality of our framework, we extend it to modern large vision-  
 1015 language models (VLMs). In particular, we consider two representative 7B-parameter generative  
 1016 VLMs: LLaVA-v1.5 Liu et al. (2023a) and Qwen-VL-Chat (7B) Bai et al. (2023). These models  
 1017 differ from our standard UpDn-style backbones in that they are autoregressive generative decoders  
 1018 rather than classification heads.

1019 Given this generative nature, we adapt the AUGI mechanism from a feature-level interpolation  
 1020 to an *adaptive loss* formulation. Instead of interpolating internal representations with a constant  
 1021 counterfactual vector, we introduce a counterfactual debiasing regularizer,  $L_{debias, reg}$ , that penalizes  
 1022 reliance on the question-only pathway. A scalar uncertainty score is mapped to an adaptive factor  
 1023  $\alpha \in [0, 1]$ , and this factor dynamically gates the strength of  $L_{debias, reg}$  during fine-tuning. Intuitively,  
 1024 higher uncertainty leads to a larger effective debiasing weight, preserving the core principle of our  
 1025 framework: when the model is less certain, it should rely less on shortcut pathways and more on  
 robust visual grounding.

1026 All VLM experiments are conducted with LoRA-based fine-tuning (rank  $r = 16$ ) using  $2 \times$  A6000  
 1027 (48GB) GPUs. We report both OOD performance on VQA-CP v2 (test split) and ID performance on  
 1028 VQA v2 (validation split), together with training time, training VRAM usage, and inference latency.  
 1029 The results are summarized in Table 6.

1030

1031

1032 Table 6: Performance and resource consumption when extending our framework to large vision-  
 1033 language models (VLMs). “SFT” denotes standard supervised fine-tuning. OOD performance is  
 1034 measured on VQA-CP v2 (test), ID performance on VQA v2 (val). All fine-tuning uses LoRA with  
 1035 rank  $r = 16$  on  $2 \times$  A6000 (48GB) GPUs. Inference latency is measured on a single A6000 GPU.  
 1036 **Bold** indicates the best OOD (VQA-CP v2 overall) performance for each backbone.

| Model                    | Method               | VQA-CP v2 Overall<br>(OOD, %) | VQA-CP v2 Y/N<br>(OOD, %) | VQA-CP v2 Num<br>(OOD, %) | VQA-CP v2 Other<br>(OOD, %) | VQA v2 Overall<br>(ID, %) | Train Time<br>(hrs) | Train VRAM<br>(GB) | Infer Latency<br>(ms) |
|--------------------------|----------------------|-------------------------------|---------------------------|---------------------------|-----------------------------|---------------------------|---------------------|--------------------|-----------------------|
| <i>LLaVA-v1.5-7B</i>     |                      |                               |                           |                           |                             |                           |                     |                    |                       |
| LLaVA-v1.5-7B            | Baseline (Zero-Shot) | 31.52                         | 40.11                     | 12.89                     | 34.05                       | 70.33                     | —                   | —                  | ~170                  |
|                          | Baseline (SFT)       | 40.21                         | 51.20                     | 14.55                     | 43.10                       | 65.12                     | ~8.5                | ~30                | ~170                  |
|                          | UACL-VLM (Ours)      | 45.33                         | 55.02                     | 16.80                     | 48.15                       | 67.22                     | ~8.0                | ~30                | ~170                  |
|                          | AUGI-VLM (Ours)      | 52.89                         | 63.40                     | 20.15                     | 55.04                       | 68.05                     | ~16.0               | ~32                | ~170                  |
|                          | UACL + AUGI (Ours)   | <b>55.10</b>                  | <b>65.22</b>              | <b>21.03</b>              | <b>57.34</b>                | <b>68.31</b>              | ~15.5               | ~32                | ~170                  |
| <i>Qwen-VL-Chat (7B)</i> |                      |                               |                           |                           |                             |                           |                     |                    |                       |
| Qwen-VL-Chat (7B)        | Baseline (Zero-Shot) | 35.80                         | 42.50                     | 14.10                     | 38.66                       | 75.14                     | —                   | —                  | ~185                  |
|                          | Baseline (SFT)       | 45.15                         | 54.02                     | 16.20                     | 48.71                       | 70.02                     | ~9.5                | ~32                | ~185                  |
|                          | UACL-VLM (Ours)      | 50.82                         | 58.11                     | 18.90                     | 54.40                       | 72.15                     | ~9.0                | ~32                | ~185                  |
|                          | AUGI-VLM (Ours)      | 58.44                         | 66.20                     | 23.51                     | 61.30                       | 73.01                     | ~17.5               | ~34                | ~185                  |
|                          | UACL + AUGI (Ours)   | <b>61.05</b>                  | <b>68.33</b>              | <b>25.14</b>              | <b>63.88</b>                | <b>73.25</b>              | ~17.0               | ~34                | ~185                  |

1044

1045

1046 These results highlight several key observations. First, the relatively low zero-shot OOD accuracies  
 1047 (31.52% for LLaVA and 35.80% for Qwen-VL) confirm that even strong VLMs remain highly  
 1048 vulnerable to language priors on VQA-CP v2. Second, standard fine-tuning on the biased training set  
 1049 yields only modest OOD gains while substantially degrading ID performance on VQA v2, reflecting a  
 1050 form of catastrophic forgetting. By contrast, our full UACL + AUGI configuration delivers large OOD  
 1051 improvements over SFT (+14.9 and +16.0 absolute points for LLaVA and Qwen-VL respectively)  
 1052 while largely preserving ID performance. For Qwen-VL, the final ID accuracy (73.25%) even slightly  
 1053 exceeds the SFT baseline (70.02%) and approaches the original zero-shot score (75.14%). Finally,  
 1054 although the adaptive debiasing loss increases training time due to additional counterfactual passes,  
 1055 the LoRA-finetuned models do not incur extra inference latency compared to SFT, indicating that our  
 1056 framework is practical for real-world VLM deployment.

1057

## 1058 B.7 DIAGNOSTIC EVALUATION ON THE VQA-VS DATASET

1059

1060 To further validate our framework and provide a more fine-grained analysis of its debiasing capabilities,  
 1061 we conduct additional experiments on the VQA-VSSi et al. (2022b) dataset. While VQA-CPv2  
 1062 is an effective OOD benchmark for evaluating robustness against various biases, its distribution shift  
 1063 is primarily dominated by language priors (Although this dataset also contains multimodal bias and  
 1064 vision bias, these biases constitute a relatively small proportion and lack explicit definition—they  
 1065 were discovered through our experimental investigation). The VQA-VS dataset offers a more diag-  
 1066 nostic evaluation by defining nine specific shortcut types spanning language-based (e.g., Question  
 1067 Type, Keyword), visual-based (e.g., Key Object, Key Object Pair), and multimodal domains (e.g.,  
 1068 combinations of language and visual elements). This allows for a more surgical analysis of a model’s  
 1069 robustness. For this dataset, we report performance on the standard In-Distribution (ID) test set and,  
 1070 more importantly, the mean accuracy across all nine Out-of-Distribution (OOD) shortcut-specific test  
 1071 sets, which we denote as OOD-mean. A high OOD-mean score indicates that a model is robust not  
 1072 just to a single type of bias, but to a diverse array of spurious correlations.

1073

1074

1075 The results, presented in Table 7, show that our approach significantly outperforms existing methods.  
 1076 On both the UpDn and LXMERT backbones, our full framework (AUGI+UACL) achieves the highest  
 1077 performance on the critical OOD-mean metric, with scores of **60.75%** and **65.22%** respectively. This  
 1078 represents a substantial improvement over the vanilla backbones and even strong causal baselines  
 1079 like CFVQA. Notably, while some methods see a large drop in performance from ID to OOD,  
 our method maintains a much smaller gap, demonstrating its effectiveness in mitigating shortcut  
 learning and improving out-of-distribution generalization. These results confirm that our adaptive,  
 uncertainty-guided interventions are effective not just against general language priors, but also against  
 a wide array of specific visual and multimodal shortcuts.

1080

1081 Table 7: Performance comparison on the VQA-VS dataset. Our method demonstrates significant  
1082 improvements over all baselines, particularly on the challenging OOD-mean metric, indicating  
1083 superior debiasing and generalization capabilities across various shortcut types.

| Method           | Backbone | ID (%) | OOD-mean (%) |
|------------------|----------|--------|--------------|
| updn             | updn     | 65.20  | 46.80        |
| LMH              | updn     | 56.89  | 45.85        |
| CF-VQA           | updn     | 59.12  | 49.33        |
| LPF              | updn     | 54.72  | 43.31        |
| OURS (AUGI)      | updn     | 62.59  | 57.89        |
| OURS (AUGI+UACL) | updn     | 63.21  | <b>60.75</b> |
| LXMERT           | LXMERT   | 72.24  | 53.92        |
| LMH              | LXMERT   | 70.22  | 54.41        |
| CF-VQA           | LXMERT   | 67.22  | 56.30        |
| LPF              | LXMERT   | 68.48  | 50.83        |
| OURS (AUGI)      | LXMERT   | 71.35  | 64.20        |
| OURS (AUGI+UACL) | LXMERT   | 71.50  | <b>65.22</b> |

1096

1097

## C LIMITATIONS AND FUTURE DIRECTIONS

1099

1100 This paper pioneers dynamically adjusted causal interventions, a significant step beyond traditional  
1101 methods that often rely on simplistic feature subtractions. However, a limitation is that our current  
1102 dynamic fusion of counterfactual information, while adaptive via uncertainty, still operates within  
1103 a framework of explicit mathematical operations. Furthermore, our framework introduces new  
1104 hyperparameters related to the adaptive mechanism ( $\lambda_{reg}$ ,  $\gamma$ ,  $\delta$ ) and curriculum strategy ( $p$ ). While  
1105 we demonstrate robustness to these in our sensitivity analysis (Appendix B.3), their optimal selection  
1106 adds a layer of complexity compared to static methods.

1107

1108 Another limitation and avenue for future work relates to the static nature of our Uncertainty-Aware  
1109 Curriculum Learning (UACL). The curriculum is fixed after an initial warm-up phase—a deliberate  
1110 design choice for stability, as our preliminary explorations suggested that a dynamic curriculum  
1111 that re-evaluates difficulty can be unstable. We hypothesize this is because the uncertainty signal  
1112 evolves: early in training, it can be a noisy proxy for true, bias-related difficulty, while late in training,  
1113 the model may become “confidently wrong” on biased samples, mislabeling them as easy. A static  
1114 curriculum provides a stable, regularizing training signal, but this highlights the warm-up duration  
1115 as a critical hyperparameter. Exploring this stability-adaptivity trade-off and developing hybrid  
1116 static-dynamic curricula is a promising direction.

1117

1118 The intricate nature of multimodal debiasing, particularly in VQA, often mirrors challenges in under-  
1119 standing algorithmic “hallucinations” stemming from complex interactions between data distributions  
1120 and modalities—a domain where fundamental principles are still evolving. Therefore, a crucial future  
1121 direction involves exploring more heuristic and data-driven counterfactual generation schemes. For  
1122 instance, recent explorations in Large Language Models, such as representing counterfactual branches  
1123 by substituting different attention mechanisms Zhou et al. (2025), exemplify promising paths towards  
1124 more intuitively grounded and flexible interventions that could further enhance robustness against  
1125 subtle biases.

1126

1127 Finally, our uncertainty-based techniques have strong conceptual ties to other areas of machine  
1128 learning. The uncertainty scores used in our AUGI module could be adapted for data-pruning  
1129 strategies, helping to identify and remove noisy or uninformative samples from the training set.  
1130 Similarly, our UACL strategy, which sequences data based on uncertainty, is closely related to coresnet  
1131 selection, where the goal is to find a small, representative subset of the data for efficient training.  
1132 Exploring these connections and formally adapting our methods for data-efficient learning presents a  
1133 valuable direction for future research.

1134

1135

1136

1137