

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MOALIGN: MOTION-CENTRIC REPRESENTATION ALIGNMENT FOR VIDEO DIFFUSION MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Text-to-video diffusion models have enabled high-quality video synthesis, yet often fail to generate temporally coherent and physically plausible motion. A key reason is the models' insufficient understanding of complex motions that natural videos often entail. Recent works tackle this problem by aligning diffusion model features with those from pretrained video encoders. However, these encoders mix video appearance and dynamics into entangled features, limiting the benefit of such alignment. In this paper, we propose a motion-centric alignment framework that learns a disentangled motion subspace from a pretrained video encoder. This subspace is optimized to predict ground-truth optical flow, ensuring it captures true motion dynamics. We then align the latent features of a text-to-video diffusion model to this new subspace, enabling the generative model to internalize motion knowledge and generate more plausible videos. Our method improves the physical commonsense in a state-of-the-art video diffusion model, while preserving adherence to textual prompts, as evidenced by empirical evaluations on VideoPhy, VideoPhy2, VBench, and VBench-2.0, along with a user study.

1 INTRODUCTION

Text-to-video diffusion models have enabled high-fidelity video synthesis across domains from entertainment to simulation. Recent systems like *Wan2.1* (Wan et al., 2025), *CogVideoX* (Yang et al., 2025b), *HunyuanVideo* (Lab, 2025), *PyramidalFlow* (Jin et al., 2025), and *Open-Sora Plan* (Lin et al., 2024a) leverage Diffusion Transformers (DiTs) and large-scale training to achieve impressive visual quality and scalability. Despite high visual quality, these models often generate videos with unnatural motion and physics violations, such as unsupported floating objects, implausible collisions, or inconsistent trajectories. These artifacts reveal a key limitation: while current models excel at generating photorealistic frames, they lack a deep understanding of motion dynamics, which is crucial for producing videos that are both visually and physically plausible.

Efforts to improve the physical plausibility of video generation generally fall into three broad categories: (i) *Simulation-based methods* incorporate physics engines or differentiable simulators in the generation process to model rigid-body dynamics, fluid interactions, or thermodynamic effects (Lin et al., 2024b;c; Liu et al., 2024; Xie et al., 2025; 2024; Zhang et al., 2024; Lin et al., 2025). While effective, these approaches are computationally intensive, domain-specific, and hard to scale to diverse open-world content. (ii) *Non-simulation-based methods* aim to enhance realism without explicit simulation, often by scaling model capacity, leveraging LLM-guided self-refinement, or introducing auxiliary objectives such as 3D point regularization and representation alignment to encourage physically coherent motion (Chen et al., 2025; Wang et al., 2025; Xue et al., 2025; Zhang et al., 2025b; Hwang et al., 2025). These strategies improve appearance and sometimes temporal consistency, but often prioritize visual semantics over true motion dynamics. (iii) *Conditioning-based approaches* use motion cues like trajectories, optical flow, or pose sequences to guide generation via control mechanisms (Shi et al., 2025; Geng et al., 2025; Zhang et al., 2025c). While effective for temporal coherence, they rely on these extra inputs and preprocessing at inference time, making them impractical for text-only generation.

More broadly, existing methods either rely on external guidance (e.g., physics engines or inference-time controls) or influence motion only indirectly through capacity scaling or appearance-centric alignment, leaving the core issue unresolved: embedding motion understanding directly into the

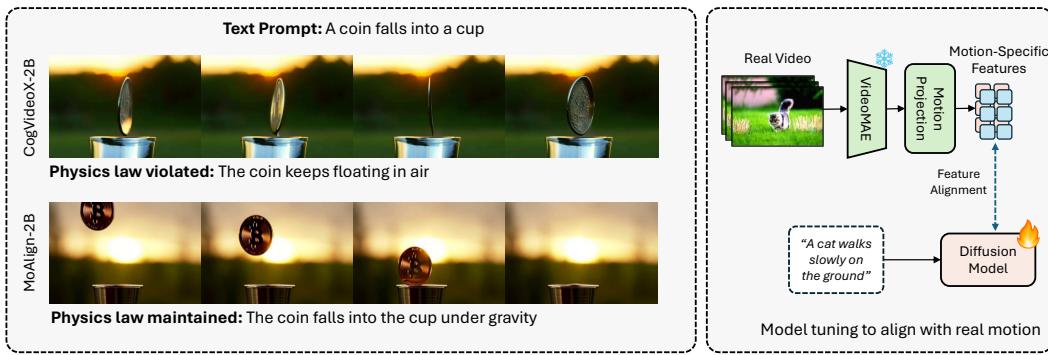


Figure 1: **Problem (Left):** Physics laws are often violated in outputs of video diffusion models. Base CogVideoX model (top) cannot generate a coin falling into a cup: the coin floats in the air instead. Our MoAlign method (bottom) improves this. **Proposed solution (Right):** Our finetuning pipeline aligns internal representations of the diffusion model with motion-specific features extracted from VideoMAEv2.

model’s latent space. Recent benchmarks reveal that current video diffusion models under-encode motion dynamics in their latent space, leading to identity inconsistency, unstable trajectories, and physics violations, even when individual frames appear realistic (Huang et al., 2024; Zheng et al., 2025; Bansal et al., 2025a). We aim to bridge this gap by aligning the diffusion model’s latent features with representations from video encoders trained on real videos, which inherently encode motion observed in the physical world (Zhang et al., 2025b; Hwang et al., 2025). This, however, creates two challenges: (i) alignment may default to matching static appearance features instead of capturing true motion dynamics (Zhang et al., 2025b), and (ii) hard feature matching risks destabilizing pretrained representations during fine-tuning (Hwang et al., 2025). As a result, current alignment-based methods enhance visual fidelity but fall short in enforcing coherent motion. This raises a key question: *how can we design a fine-tuning strategy that explicitly targets motion dynamics, without introducing extra inference-time requirements or compromising model stability?*

To tackle these challenges, we propose a motion-centric fine-tuning framework that disentangles dynamic structure from static appearance. We leverage features from a pretrained video encoder, e.g. VideoMAEv2 (Wang et al., 2023), and learn a projection into a low-dimensional subspace, supervised to predict optical flow, encouraging the subspace to isolate motion-relevant information from entangled semantics. We then align the diffusion model’s latent features to these motion representations via a soft relational alignment mechanism. **In contrast to prior representation-alignment approaches, e.g. REPA (Leng et al., 2025) or VideoREPA (Zhang et al., 2025b) that relied on joint appearance–motion representations, we make use of motion-only feature space.** And unlike VideoJAM (Chefer et al., 2025) which also used optical flows to improve motion coherence, our method does not expand the output space of the diffusion model and does not increase the cost of the inference procedure. We summarize our contributions as follows:

- We suggest a method to learn a motion-specific subspace from a pretrained video encoder by optimizing its projected features to predict ground-truth optical flow, enabling a disentangled motion representation.
- We propose to align diffusion model features to this learned motion subspace using soft relational alignment, internalizing motion dynamics without external conditioning or simulation.
- We demonstrate improved temporal coherence and physical plausibility on CogVideoX (Yang et al., 2025b), a state-of-the-art diffusion model, through a user study and evaluations on physics benchmarks VideoPhy (Bansal et al., 2025a), VideoPhy2 (Bansal et al., 2025b)) while maintaining high visual fidelity in VBench (Huang et al., 2024), and VBench-2.0 (Zheng et al., 2025).

108

2 RELATED WORKS

109
110 We group prior efforts to improve physical and temporal realism in text-to-video generation into four
111 areas: architectural advancements, simulation-based methods, conditioning-based motion control,
112 and representation alignment. Each addresses part of the problem, yet none fully internalizes motion
113 dynamics within the generative model as our framework does.114
115 **Text-to-video diffusion models.** Early T2V models adapted image pipelines with U-Nets and
116 frame-wise synthesis, but struggled with temporal consistency and realistic motion (Ho et al., 2022;
117 Hong et al., 2023). Transformer-based designs soon improved spatiotemporal modeling via token
118 compression and attention (Villegas et al., 2023; Yan et al., 2021). Recent systems like CogVideoX,
119 Wan2.1, PyramidalFlow, or Sora push fidelity and scale with 3D-aware representations, pyramidal
120 flow, and spacetime patches, yet videos still show identity drift and physically implausible dynamics
121 (Yang et al., 2025b; Wan et al., 2025; Jin et al., 2025; OpenAI, 2024). We address this gap
122 by internalizing motion through a fine-tuning strategy that disentangles appearance from motion
123 without external conditioning or simulation.124
125 **Simulation-based approaches.** Methods that integrate physics engines or differentiable simulators
126 capture rigid-body, fluid/elastic, or material-aware interactions (Liu et al., 2024; Zhang et al., 2024;
127 Xie et al., 2024; Liu et al., 2025). Some combine simulation with LLM-guided reasoning or hand-
128 crafted priors (Xue et al., 2025; Zhang et al., 2025a), and others employ physics-guided generation
129 (Xie et al., 2025; Montanaro et al., 2024). While realism improves, these approaches are domain-
130 specific, compute-heavy, and hard to scale to open-world content. Our method avoids simulation
131 and instead embeds motion understanding directly into the model.132
133 **Condition-based motion control.** Another line conditions generation on motion cues such as optical
134 flow, trajectories, or poses, injected via encoders/adapters (Koroglu et al., 2025; Geng et al.,
135 2025; Terauchi & Yanai, 2021). Plug-and-play customization and temporal in-context fine-tuning
136 further enhance control (Bian et al., 2025; Kim et al., 2025). These methods achieve strong coherence
137 when accurate conditions exist, but require extra inputs or preprocessing at inference, limiting
138 practicality for text-only generation. We instead internalize motion priors within the latent space.139
140 **Representation alignment.** Alignment methods match internal features of generators to pretrained
141 encoders to improve semantics and training efficiency, but are largely spatial and image-centric (Yu
142 et al., 2025; Leng et al., 2025). Video extensions, e.g. VideoREPA, distill spatiotemporal relations
143 via token-level relational matching (Zhang et al., 2025b). However, hard alignment can destabilize
144 pretrained representations and entangled features can mix appearance with motion (Zhang et al.,
145 2025b; Hwang et al., 2025). We build on this direction with *soft relational alignment* to a motion-
146 specific subspace, disentangling dynamics from appearance to internalize motion without sacrificing
147 stability. Besides VideoREPA, closest works to ours are Track4Gen (Jeong et al., 2025) and
148 VideoJAM (Chefer et al., 2025), which introduce motion supervision. Track4Gen operates in an
149 image-to-video setting, using optical-flow-based point trajectories to enforce local correspondence
150 at a single UNet block, but it does not address global motion dynamics or physical plausibility.
151 VideoJAM jointly predicts RGB optical flow, and appearance, injecting motion via inference-time
152 inner-guidance through a learned auxiliary output. In contrast, our method neither predicts flow
153 nor requires inference-time changes: we learn a motion-only subspace from a frozen VideoMAE
154 and align the diffusion transformer to its spatio-temporal geometry, enabling motion priors without
155 altering the generation interface.156

3 METHOD

157 Our method builds upon recent advances in video diffusion modeling and representation alignment.
158 We first review the fundamentals of video diffusion models and the REPA framework, which form
159 the basis of our motion-centric fine-tuning strategy. Then, we introduce our proposed approach for
160 internalizing motion dynamics via soft relational alignment.161

3.1 PRELIMINARIES

162 **Video diffusion models.** Modern text-to-video diffusion models, such as CogVideoX (Yang et al.,
163 2025b), generate videos by learning to reverse a forward noising process applied to latent repre-

162 sentations of video frames. These models operate in the latent space of a pretrained 3D Variational
 163 Autoencoder (VAE), which compresses the input video both spatially and temporally. Let
 164 $x_0 \in \mathbb{R}^{F \times H \times W \times C}$ denote a clean video with F frames. The VAE encoder maps x_0 to a latent
 165 representation $z_0 \in \mathbb{R}^{F' \times H' \times W' \times C'}$, where $F' < F$ due to temporal downsampling. The forward
 166 diffusion process perturbs z_0 by adding Gaussian noise over T timesteps. The goal of the model is to
 167 learn a denoising function $\epsilon_\theta(z_t, t, c)$ that predicts the added noise ϵ , conditioned on the text prompt
 168 c and timestep t . The training objective minimizes the mean squared error $\mathcal{L}_{\text{diff}}$ between the true and
 169 the predicted noise. During inference, the model samples $z_T \sim \mathcal{N}(0, I)$ and iteratively denoises it
 170 to obtain z_0 , which is then decoded by the VAE to produce the final video. CogVideoX employs
 171 a transformer-based architecture (MM-DiT) as a denoiser ϵ_θ . It uses bidirectional spatio-temporal
 172 attention to model dependencies across frames.

173 **Representation alignment.** Diffusion Transformers (DiTs), including those used in CogVideoX,
 174 learn internal representations during the denoising process. However, these representations often
 175 lag behind those learned by self-supervised visual encoders in terms of semantic richness and dis-
 176 criminative power. REPresentation Alignment (REPA) addresses this gap by introducing a simple
 177 yet effective regularization that aligns the hidden states of the diffusion model with pretrained visual
 178 features (Yu et al., 2025). Originally, REPA was proposed for image models: Let x^* be a clean
 179 input frame and \mathcal{E} a pretrained visual encoder (e.g., DINOv2). The encoder produces a patch-wise
 180 representation $\mathbf{Y}^* = \mathcal{E}(x^*) \in \mathbb{R}^{N \times D_e}$, where N is the number of patches and D_e the embedding
 181 dimension. During training, the image diffusion model \mathcal{D}_ξ processes a noisy latent input z_s along
 182 with condition c and timestep s and produces hidden states $\mathbf{H}_s = \mathcal{D}_\xi(z_s, s, c)$. These are projected
 183 via a small trainable network \mathcal{P}_ϕ to match the dimensionality of \mathbf{Y}^* . REPA encourages alignment
 184 by maximizing the similarity between corresponding patches:

$$\mathcal{L}_{\text{REPA}}(\xi, \phi) = -\mathbb{E}_{x^*, \epsilon, s} \left[\frac{1}{N} \sum_{n=1}^N \text{sim}(\mathbf{Y}_n^*, \mathcal{P}_\phi(\mathbf{H}_{s,n})) \right], \quad (1)$$

185 where $\text{sim}(\cdot, \cdot)$ denotes cosine similarity. This loss is added to the standard diffusion objective:

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{diff}} + \lambda \mathcal{L}_{\text{REPA}}, \quad (2)$$

186 with λ controlling the strength of alignment. Empirically, REPA improves convergence speed and
 187 generation quality, especially when applied to early transformer layers. However, in case of video
 188 models aligning each latent frame independently may lead to temporal inconsistencies, motivating
 189 extensions such as cross-frame alignment (Hwang et al., 2025).

190 3.2 MOTION-CENTRIC FINE-TUNING

191 Our goal is to internalize motion understanding within the diffusion model by aligning its latent
 192 features to a *motion-specific subspace*. We achieve this through a two-stage fine-tuning framework:
 193 (i) learning motion-centric features from a pretrained video encoder, and (ii) aligning the diffusion
 194 model’s hidden states to this motion subspace via soft relational alignment. This approach avoids
 195 reliance on external simulators or conditioning inputs, and instead distills dynamic structure directly
 196 into the generative model.

197 **Stage 1: Learning motion-centric features.** The objective of this stage is to extract features
 198 that encode motion dynamics, disentangled from static appearance and context. This is a challeng-
 199 ing task: motion is inherently relational, emerging from temporal changes across frames, whereas
 200 appearance is directly observable in individual frames. Consequently, features extracted from pre-
 201 trained video encoders often entangle motion with appearance, object identity, and scene seman-
 202 tics (Assran et al., 2023; Wang et al., 2021; Zhu et al., 2020). Without explicit supervision, there is
 203 no guarantee that learned representations isolate motion-specific information.

204 To address this, we *construct a motion-specific subspace* by supervising a projection of pretrained
 205 video features to predict optical flow. Given a video clip $x_0 \in \mathbb{R}^{F \times H \times W \times C}$, we extract spatiotem-
 206 poral features $\mathbf{S} = \mathcal{V}(x_0) \in \mathbb{R}^{F'' \times H'' \times W'' \times D_v}$ using a frozen video encoder \mathcal{V} , e.g. VideoMAEv2.
 207 These features are projected into a lower-dimensional space via a learnable head \mathcal{M}_ψ :

$$\mathbf{M} = \mathcal{M}_\psi(\mathbf{S}) \in \mathbb{R}^{F'' \times H'' \times W'' \times D_m}, \quad D_m \ll D_v. \quad (3)$$

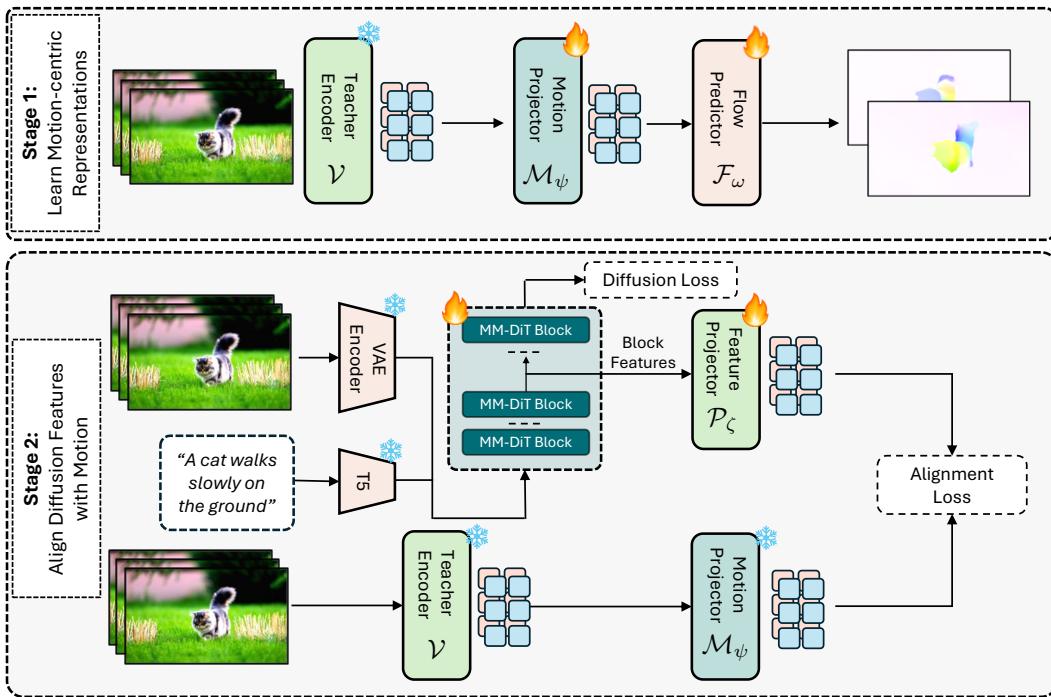


Figure 2: **Overview of our motion-centric fine-tuning framework.** *Stage 1* trains a motion-aware teacher by extracting features from a pretrained video encoder and supervising them with ground-truth optical flow. *Stage 2* aligns the latent features of the video diffusion model (MM-DiT) to the motion-specific subspace via a soft relational alignment loss. This two-stage process internalizes motion understanding without requiring external conditioning or simulation at inference time.

This dimensionality bottleneck is critical. By compressing the feature space, we constrain the model to retain only the most salient information relevant to the downstream task. Prior work has shown that such compression promotes abstraction and suppresses irrelevant appearance cues (Yang et al., 2025a; 2024; Lew et al., 2025). In our case, it biases the representation toward motion by limiting capacity for encoding static content.

To enforce motion specificity, we supervise \mathbf{M} using ground-truth optical flow \mathcal{O} computed between consecutive frames of x_0 . A lightweight decoder \mathcal{F}_ω maps \mathbf{M} to predicted flow $\hat{\mathcal{O}} = \mathcal{F}_\omega(\mathbf{M})$, and the training objective is:

$$\mathcal{L}_{\text{flow}}(\psi, \omega) = \left\| \hat{\mathcal{O}} - \mathcal{O} \right\|_1. \quad (4)$$

Optical flow provides dense, low-level supervision that directly encodes pixel-wise motion. By forcing the compressed features to predict flow, we constrain the subspace to encode dynamic structure rather than static semantics. This approach is supported by recent work in motion-aware video modeling, which demonstrates that flow-based supervision improves temporal coherence and physical plausibility (Koroglu et al., 2025; Yang et al., 2024; Lew et al., 2025).

In summary, this stage constructs a motion-specific subspace by (i) compressing high-dimensional video features to suppress appearance, and (ii) enforcing motion supervision via optical flow prediction. The resulting features serve as a distilled representation of dynamics, which we use as a target for aligning the diffusion model in Stage 2.

Stage 2: Aligning diffusion features to motion. To internalize motion dynamics within the generative model, we align the latent features of the video diffusion model to the motion-specific subspace learned in Stage 1. We adopt a *soft relational alignment strategy* based on the Token Relation Distillation loss introduced in VideoREPA paper (Zhang et al., 2025b), which matches the pairwise similarity structure of token-level features across space and time.

270 Consider latent features of the diffusion model $\mathbf{Y}_t \in \mathbb{R}^{\tilde{F} \times \tilde{H} \times \tilde{W} \times \tilde{D}}$ extracted from a noisy input z_t .
 271 We apply a small projection network \mathcal{P}_ζ to obtain the tensor $\mathbf{Z} \in \mathbb{R}^{F'' \times H'' \times W'' \times D_m}$ of the same
 272 size as \mathbf{M} , output of \mathcal{M}_ψ . We denote the corresponding spatial features of f -th latent frame as \mathbf{Z}_f
 273 and \mathbf{M}_f , respectively, $1 \leq f \leq F''$. We reshape them to token matrices $\mathbf{Z}_f^b, \mathbf{M}_f^b \in \mathbb{R}^{H'' \cdot W'' \times D_m}$.
 274 The spatial similarity matrix for frame f is defined as:
 275

$$S_Z^{\text{spatial}}(f)[i, j] = \text{sim}(\mathbf{Z}_{f,i}, \mathbf{Z}_{f,j}), \quad S_M^{\text{spatial}}(f)[i, j] = \text{sim}(\mathbf{M}_{f,i}, \mathbf{M}_{f,j}), \quad (5)$$

276 where $\mathbf{Z}_{f,i}, \mathbf{M}_{f,i} \in \mathbb{R}^{D_m}$ denote the i -th token of \mathbf{Z}_f^b and \mathbf{M}_f^b , $1 \leq i, j \leq H'' \cdot W''$. For temporal
 277 similarity, we flatten all frames into a sequence of $F'' \cdot H'' \cdot W''$ tokens and compute cross-frame
 278 similarities. Let $\mathbf{Z}^{(i)}$ and $\mathbf{M}^{(i)}$ denote the i -th token in the full sequence. The temporal similarity
 279 matrices are:
 280

$$S_Z^{\text{temporal}}[i, j] = \text{sim}(\mathbf{Z}^{(i)}, \mathbf{Z}^{(j)}), \quad S_M^{\text{temporal}}[i, j] = \text{sim}(\mathbf{M}^{(i)}, \mathbf{M}^{(j)}). \quad (6)$$

281 As in Sec. 3.1, we employ cosine similarity as the $\text{sim}(\cdot, \cdot)$ function. To emphasize inter-frame
 282 dynamics, we exclude intra-frame pairs and apply a temporal weighting scheme. Namely, let Δ_{ij}
 283 denote the distance between frames that tokens with indices i and j belong to, and define the tem-
 284 poral weight matrix W :
 285

$$W_{ij} = \begin{cases} \exp\left(-\frac{\Delta_{ij}}{\tau}\right), & \text{if } \Delta_{ij} \neq 0 \\ 0, & \text{otherwise} \end{cases} \quad (7)$$

286 where τ is a temperature hyperparameter. The final alignment loss combines spatial and weighted
 287 temporal components:
 288

$$\mathcal{L}_{\text{align}}(\theta, \zeta) = \frac{1}{F''} \sum_{f=1}^{F''} \left\| S_Z^{\text{spatial}}(f) - S_M^{\text{spatial}}(f) \right\|_1 + \left\| W \odot S_Z^{\text{temporal}} - W \odot S_M^{\text{temporal}} \right\|_1, \quad (8)$$

289 where \odot denotes element-wise multiplication and $\|\cdot\|_1$ is the mean absolute error. This formulation
 290 extends the original Token Relation Distillation loss by introducing temporal weighting W which
 291 prioritizes temporal consistency in the local vicinity of frame. The final training objective equals
 292

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{diff}} + \lambda \mathcal{L}_{\text{align}}, \quad (9)$$

293 where λ controls the strength of motion supervision. This strategy enables the diffusion model to
 294 internalize motion dynamics without requiring external conditioning or compromising the stability.
 295

304 4 EXPERIMENTAL SETUP

305 We detail the implementation of our motion-centric fine-tuning framework, including model archi-
 306 tecture, training configurations, and optimization strategies.
 307

308 4.1 MODEL AND TRAINING CONFIGURATION.

309 We build upon CogVideoX-2B (Yang et al., 2025b), a transformer-based latent video diffusion
 310 model composed of MM-DiT blocks with joint spatio-temporal attention. CogVideoX operates
 311 in the latent space of a 3D VAE compressing input videos by a factor of 4 along the temporal axis.
 312

313 **Stage 1: Learning motion-centric features.** For motion supervision, we use Video-
 314 MAEv2 (Wang et al., 2023) as a frozen video encoder to extract spatiotemporal features. In Stage 1,
 315 these features are compressed using a 3D convolutional network that reduces the channel dimension
 316 from 768 to 64 while preserving temporal structure, encouraging the retention of motion-relevant
 317 information. The compressed features are then decoded into dense optical flow using a lightweight
 318 transposed convolutional network that progressively upsamples spatial resolution in a UNet-like
 319 fashion. This setup ensures that the compressed features capture dynamic structure, as they are
 320 explicitly trained to regress RAFT-computed ground-truth flow using L1 loss. All VideoMAEv2
 321 weights remain frozen during this stage. We train this stage using the AdamW optimizer with a
 322 learning rate of 1×10^{-4} , $\beta_1=0.9$, $\beta_2=0.95$, and weight decay of 1×10^{-3} . Training is conducted
 323 for 50,000 iterations using four NVIDIA H100 GPUs (80GB VRAM each) with a batch size of 128.
 324

324
 325 **Table 1: VideoPhy2 results.** We report
 326 semantic adherence (SA) and physical
 327 correctness (PC). Our model achieves
 328 highest joint score and demonstrates
 329 better trade-off than alternatives.

Method	SA	PC	Joint
CogVideoX-2B	27.1	64.5	22.3
Static baseline	15.6	91.0	15.1
CogVideoX-2B (FT)	26.4	73.1	22.8
VideoREPA-2B (paper)	21.0	72.5	—
VideoREPA-2B (reimpl.)	26.1	73.3	23.0
MoAlign-2B (ours)	28.8	75.0	24.9

330
 331 **Table 2: VideoPhy results.** While fine-tuning on our data
 332 lowers SA across models, our method maintains a compet-
 333 itive SA and achieves the highest PC scores across all four
 334 interaction types, demonstrating robust physical modeling
 335 through motion-centric alignment.

Method	Solid-Solid		Solid-Fluid		Fluid-Fluid		Overall	
	SA	PC	SA	PC	SA	PC	SA	PC
CogVideoX-2B	24.7	16.9	67.5	24.8	69.0	40.0	49.8	23.9
CogVideoX-2B (FT)	22.5	29.6	62.1	34.5	58.2	45.5	44.9	34.1
VideoREPA-2B (reimpl.)	23.2	31.0	66.9	39.3	54.6	52.7	46.7	37.9
MoAlign-2B (ours)	24.7	31.7	66.9	40.7	67.3	56.4	49.3	39.4

336 **Stage 2: Aligning diffusion features to motion.** In Stage 2, we align the latent features of
 337 CogVideoX to the motion-specific subspace learned in Stage 1. We use a lightweight MLP pro-
 338 projector that maps high-dimensional MM-DiT features (1920 channels) to a compact 64-dimensional
 339 space via a 4-layer MLP with SiLU activations. The projected features are temporally upsampled
 340 and spatially downsampled using a convolutional head. This transformation ensures compatibil-
 341 ity with the motion subspace dimensions while preserving relational structure. The alignment is
 342 applied to the 18th MM-DiT layer, and optimized using our soft relational alignment loss with tem-
 343 poral weighting. We set $\lambda=0.5$ and $\tau=10.0$, and train using AdamW with a learning rate of 2×10^{-6}
 344 and batch size 32. Training is conducted for 4000 iterations using four NVIDIA H100 GPUs (80GB
 345 VRAM each). We use the AdamW optimizer with a learning rate of 2×10^{-6} , a batch size of 32,
 346 and enable mixed precision training via PyTorch AMP.

347 **Dataset.** For fine-tuning our models we used a 350K subset of the video dataset used by Open-
 348 Sora Plan (Lin et al., 2024a), along with a set of 16K synthetic video samples generated by the
 349 Wan2.1 14B model, with prompts sourced from the same set as for the Open-Sora Plan dataset.

350 5 RESULTS

351 5.1 COMPARISON WITH BASELINES

352 We evaluate our method across three complementary axes of video generation: (i) physical plausi-
 353 bility, using the VideoPhy (Bansal et al., 2025a) and VideoPhy2 (Bansal et al., 2025b) benchmarks;
 354 (ii) general generation quality, using VBench (Huang et al., 2024) and VBench-2.0 (Zheng et al.,
 355 2025); and (iii) perceptual realism, via a blind user study. Each evaluation targets a distinct aspect
 356 of generative fidelity, from adherence to physical laws to semantic alignment and human preference.

357 **VideoPhy2.** This recent benchmark evaluates physical plausibility while focusing on action-
 358 centric scenarios involving human-object interactions. Videos are generated from 591 extended
 359 prompts, and scored using the VideoPhy2-AutoEval model. This model predicts two metrics on a
 360 5-point scale: *Semantic Adherence (SA)* which measures how well the video matches the prompt
 361 and *Physical Commonsense (PC)* which assesses whether the motion and interactions are physically
 362 plausible. The primary metric is the *Joint score*, defined as the fraction of videos rated ≥ 4 on both
 363 SA and PC dimensions. Tab. 1 highlights the importance of holistic evaluation: a degenerate static
 364 baseline, which simply repeats the first frame, achieves a deceptively high PC score by avoiding
 365 motion violations, but fails on SA, resulting in a low Joint score.

366 We compare our MoAlign method against the base model CogVideoX-2B and recent VideoREPA
 367 approach that aimed to improve physical plausibility. To decouple the effect of training data and
 368 different alignment methods, we also finetuned the base model on the same dataset and with the
 369 same training budget, this checkpoint is referred to as *FT*. As shown in Tab. 1, our training data has
 370 marginal effect on Joint score.

371 Compared to the base model, MoAlign-2B achieves improvement both for individual dimensions
 372 and Joint score. Since Zhang et al. (2025b) have not reported the Joint score for their VideoREPA
 373 method, we reimplemented it and evaluated independently in the same setup. While VideoREPA-2B
 374 improves PC, it suffers from a noticeable drop in SA, resulting in a lower gain in Joint score than
 375 our method. This suggests that alignment to entangled features may improve physical realism at the

378
 379 **Table 3: General video quality.** All methods maintain the original technical quality, as indicated
 380 by VBench. On VBench-2.0 MoAlign demonstrates improvement in Total score, mainly driven by
 381 improved instance preservation, dynamic spatial relationship and human anatomy.

Model	VBench			VBench-2.0					
	Total	Quality	Semantic	Total	Creativity	Commonsense	Controllability	Human Fidelity	Physics
CogVideoX-2B	80.6	81.6	76.6	54.9	52.8	60.2	26.6	81.1	53.9
CogVideoX-2B (FT)	80.3	81.1	77.1	54.7	58.7	60.8	25.6	83.4	44.9
VideoREPA-2B	80.5	81.3	77.2	55.0	56.9	61.4	25.9	85.4	45.1
MoAlign-2B (ours)	81.3	82.0	78.2	55.9	52.8	65.5	25.7	86.7	48.8

382
 383 cost of prompt fidelity. In contrast, our method aligns to disentangled motion features, improving
 384 both motion realism and semantic alignment. This indicates that internalizing dynamic structure
 385 via motion-specific supervision leads to more coherent and faithful video generation. [We have
 386 further investigated the effectiveness of MoAlign on Wan2.1 \(1.3B\); the results are available on
 387 Appendix A.5](#)

388
 389 **VideoPhy.** The second benchmark focuses on material-centric interactions across three categories:
 390 solid–solid, solid–fluid, and fluid–fluid. Videos are generated from 343 prompts. Scoring is per-
 391 formed using the VideoConPhysics auto-rater, which evaluates SA and PC dimensions. In contrast
 392 with VideoPhy2, extended prompts were not standardized in this benchmark. Therefore we opted
 393 for sampling videos from all models with the short prompts provided by Bansal et al. (2025a).

394 As shown in Tab. 2, we observe a consistent trend across all method: finetuning on our data tends to
 395 reduce SA scores compared to the base model ([note that FT model without any alignment performs
 396 the worst](#)). We attribute this to the shortage of relevant examples in the dataset. At the same time, PC
 397 reflects the plausibility of generated physics irrespective of the fact if it follows the textual prompt.
 398 Notably, our method [most effectively mitigates the drop in SA among all finetuned variants while
 399 achieving the highest PC scores across all interaction types](#). This proves that the proposed MoAlign
 400 training strategy overcomes the limitations of training data better than other considered methods.

401
 402 **VBench and VBench-2.0.** To ensure that improvements in physical plausibility do not come at
 403 the cost of overall video quality, we evaluate all methods with two other commonly used toolkits.
 404 VBench focuses more on perceptual characteristics such as aesthetics, temporal smoothness, object-
 405 scene consistency, etc., while its second version targets intrinsic faithfulness of generated videos.

406 We report the aggregated metrics for both benchmarks in Tab. 3. Please refer to the Supplementary
 407 for more fine-grained results. First of all, we note that all methods keep the VBench Total score
 408 approximately constant which suggests that none of them worsens the technical quality of genera-
 409 tions. For VBench-2.0, VideoREPA is on par with the base model in terms of Total score, while our
 410 method brings noticeable improvement. This gain is achieved mainly by means of Commonsense
 411 and Human Fidelity metrics which cover, among others, such dimensions as instance preservation,
 412 dynamic spatial relationship, and human anatomy – highly important aspects for physical plausibil-
 413 ity. The significant drop of Physics score for all finetuned models has the same explanation as in
 414 VideoPhy case: our training data lacks samples related to thermotics and materials which are pivotal
 415 for this category.

416
 417 **User study.** To complement automated metrics, we conduct a blind user study to assess temporal
 418 coherence and physical plausibility from a human perspective. We compare three models: the base
 419 CogVideoX-2B, VideoREPA-2B, and our MoAlign-2B. For each model, we generate 50 videos us-
 420 ing extended prompts sampled from a mix of VBench-2.0 and VideoPhy2, and collect 672 pairwise
 421 preferences in side-by-side comparisons.

422 As shown in Tab. 6, our method is preferred significantly more often in both comparisons, indicating
 423 that motion-centric alignment not only improves physical plausibility and automated scores, but also
 424 enhances perceived realism and prompt fidelity. These results confirm that our framework leads to
 425 more coherent and visually compelling video generation, as validated by human judgment.

426
 427 We provide examples of videos used for the user study in the Supplementary.

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2269
2270
2271
2272
2273
2274
2275
227

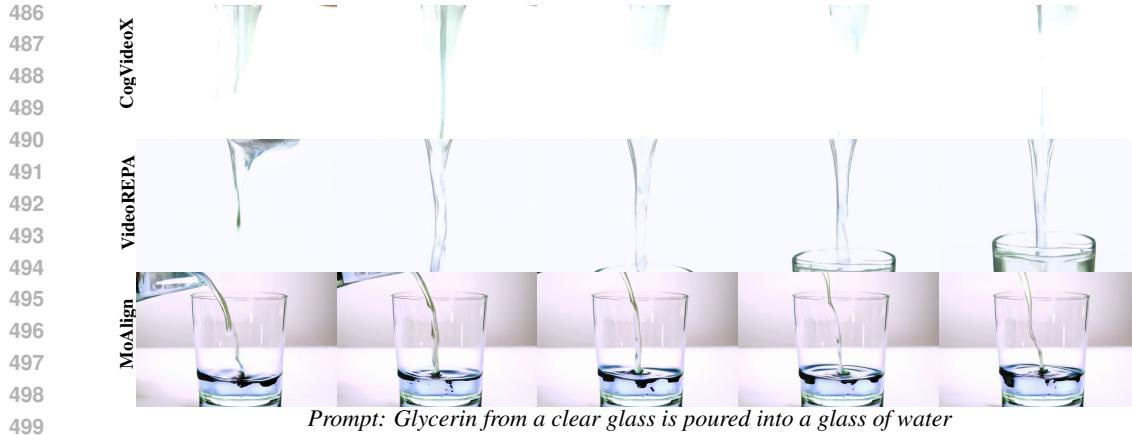


Figure 3: **Qualitative results.** MoAlign shows both glasses and a coherent pouring motion, while baselines miss key elements or exhibit inconsistent fluid behavior.

material deformation, liquids, and granular media, none of which appears in the datasets used for our Stage-1 motion-teacher training, or Stage-2 diffusion finetuning. Second, MoAlign provides implicit physics through motion statistics learned from real videos, but does not explicitly model forces, material properties, or long-horizon causal reasoning, and may therefore struggle with scenarios requiring reasoning beyond motion alone, a limitation also discussed in prior works like VideoJAM (Chefer et al., 2025). While addressing these limitations primarily requires video data containing such phenomena, incorporating them would only require retraining the lightweight Stage-1 module followed by standard Stage-2 alignment, without re-training VideoMAE or CogVideoX from scratch. We view extending MoAlign toward richer physics domains as an exciting direction for future work.

7 CONCLUSION AND FUTURE WORK

In this work we presented a method for improving temporal coherence and physical plausibility in pretrained video diffusion models. Our pipeline called MoAlign is based on the trainable alignment of internal diffusion features to motion-specific representations extracted from original videos. We demonstrated that such representations result in better quality than general features extracted from a pretrained self-supervised video encoder. Also, we showed that such alignment works better if it prioritizes local vicinity of each frame over long-range temporal dependencies. We evaluated our approach with four recent and commonly used benchmarks, as well as a user preference study.

In our experiments we found that several quality metrics were hurt for all finetuning-based methods that we tried. We attribute that to the limitations of our training dataset, and suggest that MoAlign may further benefit from better data curation. Nevertheless, our method demonstrated stronger resilience to shortcomings of the collected dataset than the baselines.

As a downside of our method, we noted that sometimes it improves the physical commonsense at the expense of reduced motion in the generated videos. We consider this limitation as a viable direction for future work.

REFERENCES

Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat, Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-embedding predictive architecture. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 15619–15629, 2023. 4

Hritik Bansal, Zongyu Lin, Tianyi Xie, Zeshun Zong, Michal Yarom, Yonatan Bitton, Chenfanfu Jiang, Yizhou Sun, Kai-Wei Chang, and Aditya Grover. Videophy: Evaluating physical commonsense for video generation. In *The Thirteenth International Conference on Learning Representations*, 2025a. URL <https://openreview.net/forum?id=9D2Qv01uWj>. 2, 7, 8

540 Hritik Bansal, Clark Peng, Yonatan Bitton, Roman Goldenberg, Aditya Grover, and Kai-Wei Chang.
 541 Videophy-2: A challenging action-centric physical commonsense evaluation in video generation.
 542 *arXiv preprint arXiv:2503.06800*, 2025b. 2, 7
 543

544 Yuxuan Bian, Ailing Zeng, Xuan Ju, Xian Liu, Zhaoyang Zhang, Wei Liu, and Qiang Xu. Motion-
 545 craft: Crafting whole-body motion with plug-and-play multimodal controls. In *Proceedings of*
 546 *the AAAI Conference on Artificial Intelligence*, volume 39, pp. 1880–1888, 2025. 3
 547

548 Hila Chefer, Uriel Singer, Amit Zohar, Yuval Kirstain, Adam Polyak, Yaniv Taigman, Lior Wolf,
 549 and Shelly Sheynin. VideoJAM: Joint appearance-motion representations for enhanced motion
 550 generation in video models. In *Forty-second International Conference on Machine Learning*,
 551 2025. URL <https://openreview.net/forum?id=yMJcHWcb2Z>. 2, 3, 10, 18
 552

553 Yunuo Chen, Junli Cao, Anil Kag, Vudit Goel, Sergei Korolev, Chenfanfu Jiang, Sergey Tulyakov,
 554 and Jian Ren. Towards physical understanding in video generation: A 3d point regularization
 555 approach. *arXiv preprint arXiv:2502.03639*, 2025. 1
 556

557 Daniel Geng, Charles Herrmann, Junhwa Hur, Forrester Cole, Serena Zhang, Tobias Pfaff, Tatiana
 558 Lopez-Guevara, Yusuf Aytar, Michael Rubinstein, Chen Sun, et al. Motion prompting: Controlling
 559 video generation with motion trajectories. In *Proceedings of the Computer Vision and Pattern
 560 Recognition Conference*, pp. 1–12, 2025. 1, 3
 561

562 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
 563 Fleet. Video diffusion models. *Advances in neural information processing systems*, 35:8633–
 564 8646, 2022. 3
 565

566 Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. Cogvideo: Large-scale pre-
 567 training for text-to-video generation via transformers. In *The Eleventh International Conference
 568 on Learning Representations*, 2023. URL <https://openreview.net/forum?id=rB6TpjAuSRy>. 3
 569

570 Ziqi Huang, Yinan He, Jiahuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianx-
 571 ing Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for
 572 video generative models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 573 Pattern Recognition*, pp. 21807–21818, 2024. 2, 7
 574

575 Sungwon Hwang, Hyojin Jang, Kinam Kim, Minho Park, and Jaegul Choo. Cross-frame represen-
 576 tation alignment for fine-tuning video diffusion models. *arXiv preprint arXiv:2506.09229*, 2025.
 577 1, 2, 3, 4
 578

579 Hyeonho Jeong, Chun-Hao P Huang, Jong Chul Ye, Niloy J Mitra, and Duygu Ceylan. Track4gen:
 580 Teaching video diffusion models to track points improves video generation. In *Proceedings of the
 581 Computer Vision and Pattern Recognition Conference*, pp. 7276–7287, 2025. 3
 582

583 Yang Jin, Zhicheng Sun, Ningyuan Li, Kun Xu, Kun Xu, Hao Jiang, Nan Zhuang, Quzhe Huang,
 584 Yang Song, Yadong MU, and Zhouchen Lin. Pyramidal flow matching for efficient video gener-
 585 ative modeling. In *The Thirteenth International Conference on Learning Representations*, 2025.
 586 URL <https://openreview.net/forum?id=66NzcRQu0q>. 1, 3
 587

588 Kinam Kim, Junha Hyung, and Jaegul Choo. Temporal in-context fine-tuning for versatile control
 589 of video diffusion models. *arXiv preprint arXiv:2506.00996*, 2025. 3
 590

591 Mathis Koroglu, Hugo Caselles-Dupré, Guillaume Jeanneret, and Matthieu Cord. Onlyflow: Optical
 592 flow based motion conditioning for video diffusion models. In *Proceedings of the Computer
 593 Vision and Pattern Recognition Conference*, pp. 6226–6236, 2025. 3, 5
 594

595 Tencent AI Lab. Hunyuuanvideo: A systematic framework for large video generation model. *arXiv
 596 preprint arXiv:2412.03603*, 2025. URL <https://arxiv.org/abs/2412.03603>. 1
 597

598 Xingjian Leng, Jaskirat Singh, Yunzhong Hou, Zhenchang Xing, Saining Xie, and Liang Zheng.
 599 Repa-e: Unlocking vae for end-to-end tuning with latent diffusion transformers. In *ICCV*, 2025.
 600 2, 3, 9

594 Jaihyun Lew, Jooyoung Choi, Chaehun Shin, Dahuin Jung, and Sungroh Yoon. Disentangled motion
 595 modeling for video frame interpolation. In *Proceedings of the AAAI Conference on Artificial*
 596 *Intelligence*, volume 39, pp. 4607–4615, 2025. 5

597

598 Bin Lin, Yunyang Ge, Xinhua Cheng, et al. Open-sora plan: Open-source large video generation
 599 model. *arXiv preprint arXiv:2412.00131*, 2024a. URL <https://arxiv.org/abs/2412.00131>. 1, 7

600

601 Jiajing Lin, Zhenzhong Wang, Yongjie Hou, Yuzhou Tang, and Min Jiang. Phy124: Fast physics-
 602 driven 4d content generation from a single image. *arXiv preprint arXiv:2409.07179*, 2024b. 1

603

604 Jiajing Lin, Zhenzhong Wang, Shu Jiang, Yongjie Hou, and Min Jiang. Phys4dgen: A physics-
 605 driven framework for controllable and efficient 4d content generation from a single image. *arXiv*
 606 *e-prints*, pp. arXiv-2411, 2024c. 1

607

608 Wang Lin, Liyu Jia, Wentao Hu, Kaihang Pan, Zhongqi Yue, Wei Zhao, Jingyuan Chen, Fei Wu,
 609 and Hanwang Zhang. Reasoning physical video generation with diffusion timestep tokens via
 610 reinforcement learning. *arXiv preprint arXiv:2504.15932*, 2025. 1

611

612 Shaowei Liu, Zhongzheng Ren, Saurabh Gupta, and Shenlong Wang. Physgen: Rigid-body physics-
 613 grounded image-to-video generation. In *European Conference on Computer Vision*, pp. 360–378.
 614 Springer, 2024. 1, 3

615

616 Zhuoman Liu, Weicai Ye, Yan Luximon, Pengfei Wan, and Di Zhang. Unleashing the potential of
 617 multi-modal foundation models and video diffusion for 4d dynamic physical scene simulation. In
 618 *Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR)*, 2025. 3

619

620 Antonio Montanaro, Luca Savant Aira, Emanuele Aiello, Diego Valsesia, and Enrico Magli. Mo-
 621 tioncraft: Physics-based zero-shot video generation. *Advances in Neural Information Processing*
 622 *Systems*, 37:123155–123181, 2024. 3

623

624 OpenAI. Video generation models as world simulators, 2024. 3

625

626 Qingyu Shi, Jianzong Wu, Jinbin Bai, Jiangning Zhang, Lu Qi, Yunhai Tong, and Xiangtai Li. De-
 627 couple and track: Benchmarking and improving video diffusion transformers for motion transfer.
 628 In *ICCV*, 2025. 1

629

630 Kento Terauchi and Keiji Yanai. Pose sequence generation with a gcn and an initial pose generator.
 631 In *Asian Conference on Pattern Recognition*, pp. 417–430. Springer, 2021. 3

632

633 Ruben Villegas, Mohammad Babaeizadeh, Pieter-Jan Kindermans, Hernan Moraldo, Han Zhang,
 634 Mohammad Taghi Saffar, Santiago Castro, Julius Kunze, and Dumitru Erhan. Phenaki: Vari-
 635 able length video generation from open domain textual descriptions. In *International Confer-
 636 ence on Learning Representations*, 2023. URL <https://openreview.net/forum?id=vOEXS39nOF>. 3

637

638 Team Wan et al. Wan: Open and advanced large-scale video generative models. *arXiv preprint*
 639 *arXiv:2503.20314*, 2025. URL <https://arxiv.org/abs/2503.20314>. 1, 3

640

641 Jing Wang, Ao Ma, Ke Cao, Jun Zheng, Zhanjie Zhang, Jiasong Feng, Shanyuan Liu, Yuhang Ma,
 642 Bo Cheng, Dawei Leng, et al. Wisa: World simulator assistant for physics-aware text-to-video
 643 generation. *arXiv preprint arXiv:2503.08153*, 2025. 1

644

645 Limin Wang, Bingkun Huang, Zhiyu Zhao, Zhan Tong, Yinan He, Yi Wang, Yali Wang, and
 646 Yu Qiao. Videomae v2: Scaling video masked autoencoders with dual masking. In *Proceed-
 647 ings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 14549–14560,
 648 2023. 2, 6

649

650 Tan Wang, Zhongqi Yue, Jianqiang Huang, Qianru Sun, and Hanwang Zhang. Self-supervised
 651 learning disentangled group representation as feature. *Advances in Neural Information Processing*
 652 *Systems*, 34:18225–18240, 2021. 4

648 Tianyi Xie, Zeshun Zong, Yuxing Qiu, Xuan Li, Yutao Feng, Yin Yang, and Chenfanfu Jiang.
 649 Physgaussian: Physics-integrated 3d gaussians for generative dynamics. In *Proceedings of the*
 650 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 4389–4398, 2024. 1, 3
 651

652 Tianyi Xie, Yiwei Zhao, Ying Jiang, and Chenfanfu Jiang. Physanimator: Physics-guided generative
 653 cartoon animation. In *Proceedings of the Computer Vision and Pattern Recognition Conference*,
 654 pp. 10793–10804, 2025. 1, 3

655 Qiyao Xue, Xiangyu Yin, Boyuan Yang, and Wei Gao. Phy2v: Llm-guided iterative self-refinement
 656 for physics-grounded text-to-video generation. In *Proceedings of the Computer Vision and Pattern*
 657 *Recognition Conference*, pp. 18826–18836, 2025. 1, 3

658 Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind Srinivas. Videogpt: Video generation using
 659 vq-vae and transformers. *arXiv preprint arXiv:2104.10157*, 2021. 3
 660

661 Haosen Yang, Deng Huang, Bin Wen, Jiannan Wu, Hongxun Yao, Yi Jiang, Xiatian Zhu, and Zehuan
 662 Yuan. Motionmae: Self-supervised video representation learning with motion-aware masked
 663 autoencoders. In *BMVC*, 2024. 5

664 Jiange Yang, Yansong Shi, Haoyi Zhu, Mingyu Liu, Kaijing Ma, Yating Wang, Gangshan Wu, Tong
 665 He, and Limin Wang. Como: Learning continuous latent motion from internet videos for scalable
 666 robot learning. *arXiv preprint arXiv:2505.17006*, 2025a. 5
 667

668 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
 669 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, Da Yin, Yuxuan.Zhang, Weihan Wang, Yean Cheng,
 670 Bin Xu, Xiaotao Gu, Yuxiao Dong, and Jie Tang. Cogvideox: Text-to-video diffusion models with
 671 an expert transformer. In *The Thirteenth International Conference on Learning Representations*,
 672 2025b. URL <https://openreview.net/forum?id=LQzN6TRFg9>. 1, 2, 3, 6
 673

674 Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and
 675 Saining Xie. Representation alignment for generation: Training diffusion transformers is easier
 676 than you think. In *The Thirteenth International Conference on Learning Representations*, 2025.
 677 URL <https://openreview.net/forum?id=DJSZGGZYVi>. 3, 4

678 Lingyun Zhang, Yu Xie, Yanwei Fu, and Ping Chen. Concept replacer: Replacing sensitive concepts
 679 in diffusion models via precision localization. In *Proceedings of the Computer Vision and Pattern*
 680 *Recognition Conference*, pp. 8172–8181, 2025a. 3
 681

682 Tianyuan Zhang, Hong-Xing Yu, Rundi Wu, Brandon Y Feng, Changxi Zheng, Noah Snavely, Jiajun
 683 Wu, and William T Freeman. Physdreamer: Physics-based interaction with 3d objects via video
 684 generation. In *European Conference on Computer Vision*, pp. 388–406. Springer, 2024. 1, 3
 685

686 Xiangdong Zhang, Jiaqi Liao, Shaofeng Zhang, Fanqing Meng, Xiangpeng Wan, Junchi Yan, and
 687 Yu Cheng. Videorepa: Learning physics for video generation through relational alignment with
 688 foundation models. In *NeurIPS*, 2025b. 1, 2, 3, 5, 7, 9
 689

690 Zhenghao Zhang, Junchao Liao, Menghao Li, Zuozhuo Dai, Bingxue Qiu, Siyu Zhu, Long Qin,
 691 and Weizhi Wang. Tora: Trajectory-oriented diffusion transformer for video generation. In *Proceedings of the*
 692 *Computer Vision and Pattern Recognition Conference*, pp. 2063–2073, 2025c. 1
 693

694 Dian Zheng, Ziqi Huang, Hongbo Liu, Kai Zou, Yinan He, Fan Zhang, Yuanhan Zhang, Jingwen
 695 He, Wei-Shi Zheng, Yu Qiao, et al. Vbench-2.0: Advancing video generation benchmark suite
 696 for intrinsic faithfulness. *arXiv preprint arXiv:2503.21755*, 2025. 2, 7
 697

698 Yizhe Zhu, Martin Renqiang Min, Asim Kadav, and Hans Peter Graf. S3vae: Self-supervised
 699 sequential vae for representation disentanglement and data generation. In *Proceedings of the*
 700 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6538–6547, 2020. 4
 701



Figure A.1: Qualitative comparison across methods for three prompts. In the first video, our method (MoAlign) preserves realistic human motion without deformation. In the second, it captures accurate hand-mouth interaction while baselines fail to represent the subject. In the third, it models physically plausible ketchup flow, unlike the erratic behavior seen in baselines. See supplementary videos for full comparisons.

A APPENDIX

The Appendix consists of the following sections: Qualitative results (Sec. A.1), VBench and VBench-2.0 full results (Sec. A.2), Stage 1 training details (Sec. A.3), and Stage 2 training details (Sec. A.4). Sec. A.7 provides details about usage of LLMs in this project.

756 A.1 QUALITATIVE RESULTS
757758 We present qualitative comparisons in Figure A.1 across three scenarios involving human motion,
759 object manipulation, and fluid dynamics. In each case, our method demonstrates superior temporal
760 coherence and physical plausibility compared to existing baselines.761 In the **first video**, depicting a man jumping, our method produces smooth and anatomically consistent
762 motion. The subject maintains realistic posture and limb articulation throughout the sequence.
763 In contrast, both CogVideoX and VideoREPA exhibit noticeable distortions, including unnatural
764 body twisting and implausible joint movements. In the **second video**, where a person is eating pud-
765 ding with a spoon, our model accurately captures the interaction: the spoon visibly scoops pudding,
766 and the subject’s mouth moves in coordination. The baselines fail to preserve this interaction —
767 the person is either missing or the spoon disappears mid-sequence, breaking temporal and semantic
768 consistency. In the **third video**, showing a man squeezing ketchup onto a plate, our method
769 correctly models the accumulation of ketchup over time. The quantity on the plate increases as ex-
770 pected. Conversely, the baselines display erratic behavior: ketchup appears, disappears, and even
771 flows back into the bottle, violating intuitive physical dynamics.772 To facilitate further comparison, we include **eight video files** in the supplementary material. Each
773 file contains a grid of six videos arranged in two rows and three columns. Each row corresponds to
774 a different prompt, and each column shows the output from one of the three methods: CogVideoX,
775 VideoREPA, and our MoAlign. This layout allows viewers to easily compare the outputs across
776 methods for the same prompt and observe differences in motion consistency, semantic fidelity, and
777 physical realism.778 A.2 V BENCH AND V BENCH-2.0 RESULTS
779

780 We present fine-grained results on the benchmarks in Tabs. A.1, A.2, A.3, A.4, and A.5.

781 **Notable decrease in dynamic degree and side-effect.** We observe that by applying MoAlign, dy-
782 namic degree drops most notably among all the other VBench metrics. The Dynamic Degree metric
783 in VBench primarily measures the *magnitude* of pixel-space motion (e.g., optical-flow amplitude)
784 rather than the physical plausibility of that motion. Upon closer inspection, we find that the higher
785 dynamic degree scores achieved by the baseline CogVideoX largely stem from exaggerated or un-
786 stable motions — such as abrupt limb jumps, temporal jitter, or transient body parts — which inflate
787 flow magnitude without corresponding to realistic dynamics.788 On the other hand, MoAlign tends to reduce these unstable high-amplitude artifacts, leading to
789 smoother and more physically grounded trajectories, which as expected lowers amplitude-based
790 motion metrics. Importantly, note that this does not indicate a degenerate “low-motion” solution:
791 physics-centric metrics such as VideoPhy and VideoPhy2 improve (e.g., +3.1 Joint), and the Joint
792 metric is explicitly designed to penalize low-motion outputs. As shown in the Table 1, the Static
793 Baseline, containing no motion, achieves a very high PC score but suffers a dramatic collapse in
794 Joint, whereas MoAlign improves Joint over both the base model and the static case. This hints
795 that MoAlign preserves meaningful motion while reducing mostly the nonphysical components.
796 Qualitatively, the model continues to produce clear global motion (e.g., in dancing/running prompts),
797 but with more realistic velocities and fewer nonphysical transitions.798 A.3 STAGE 1 TRAINING DETAILS
799800 To learn a motion-centric representation disentangled from static appearance, we have a two-stage
801 network to predict ground-truth optical flow from features extracted by a frozen VideoMAEv2 en-
802 coder. The encoder outputs token-level features of dimension 768, which are passed through a
803 3D convolutional compressor that reduces them to a 64-dimensional subspace. This compression
804 network consists of two convolutional layers: the first is a temporal convolution with kernel size
805 (3, 1, 1) and padding (1, 0, 0), which captures motion patterns across frames and maps the input to
806 256 channels. The second is a pointwise (1 × 1 × 1) convolution that compresses the channel di-
807 mension to 64. Both layers are followed by SiLU activations. The input to this network is of shape
808 [B, 768, 24, H, W], and the output is [B, 64, 24, H, W], representing our learned motion subspace
809 optimized to retain dynamic structure while suppressing static semantics.

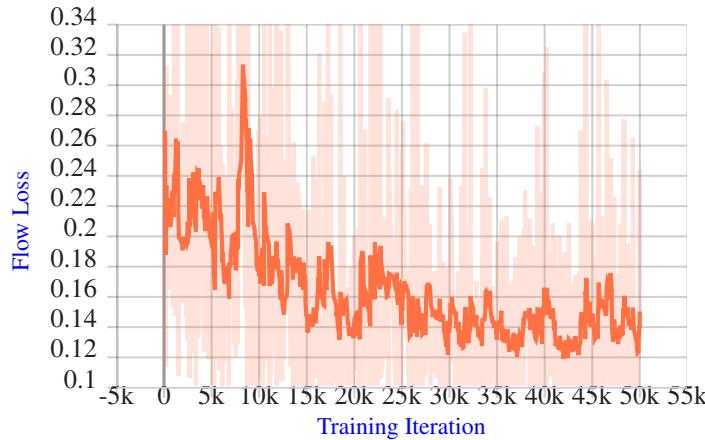


Figure A.2: Stage-1 motion projector head training convergence. The training converges at ~ 30 k iterations. The full 50k training takes ~ 22 hours.

The compressed features are then fed into a flow prediction network designed to regress dense optical flow maps. This network begins with a 3D convolution that refines the temporal resolution from 24 to 23 using a kernel of $(2, 3, 3)$ and padding $(0, 1, 1)$, followed by a ReLU activation. It then applies two stages of spatial upsampling using transposed convolutions: the first upsamples by $2 \times$ with a kernel of $(1, 4, 4)$ and stride $(1, 2, 2)$, mapping to 32 channels; the second upsamples again by $2 \times$ to 16 channels. Each transposed convolution is followed by a ReLU. A final 3D convolution with kernel size 3 and padding 1 produces the flow vectors with 2 output channels. The resulting tensor is interpolated to a fixed shape of $[B, 2, 23, 128, 192]$ using trilinear interpolation, and then permuted to $[B, 23, 2, 128, 192]$ for compatibility with the ground-truth flow format.

The model is trained using L1 loss against RAFT-computed ground-truth flow, with all Video-MAEv2 weights kept frozen. We use the AdamW optimizer with a learning rate of 1×10^{-4} , $\beta_1 = 0.9$, $\beta_2 = 0.95$, and weight decay of 1×10^{-3} . Training is conducted for 50,000 iterations on four NVIDIA H100 GPUs (80GB VRAM each), with a batch size of 128 and mixed precision enabled via PyTorch AMP. Input videos are resized to 160×240 and truncated to 49 frames, with center cropping applied to ensure consistent input dimensions. Validation is performed every 1000 steps using a held-out set.

Stage-1 training saturation. Figure A.2 shows the training curve for learning the motion subspace from VideoMAE representations. We observe that the training saturates in around 30k iterations. The full training of 50k iterations for the first stage takes ~ 22 hours. Note that the learned motion subspace projector is independent of the stage-2 training, the intrinsics of the diffusion model and its fine-tuning; thus the same motion sub-space projector once trained can be reused for various diffusion representation alignment episodes.

Table A.1: **VBench** results (part 1/2): consistency, motion, object-level metrics.

Method	Subject Consistency	Background Consistency	Temporal Flickering	Motion Smoothness	Dynamic Degree	Aesthetic Quality	Imaging Quality	Object Class	Multiple Objects	Human Action
CogVideoX-2B	92.9	94.7	97.1	97.6	70.3	62.9	63.2	86.8	66.8	97.2
CogVideoX (FT)	95.2	96.0	98.8	98.2	48.1	62.5	60.1	88.8	66.2	96.2
VideoREPA	95.7	96.3	98.9	98.2	44.4	63.2	61.1	88.2	71.1	96.2
MoAlign (ours)	95.8	96.4	99.0	98.4	42.2	64.5	64.5	89.6	75.2	98.4

Table A.2: **VBench** results (part 2/2): appearance, style, and overall scores.

Method	Color	Spatial Relationship	Scene	Appearance Style	Temporal Style	Overall Consistency	Quality Score	Semantic Score	Total Score
CogVideoX-2B	78.6	71.8	50.8	24.5	24.4	26.7	81.6	76.6	80.6
CogVideoX (FT)	84.4	69.6	52.4	24.4	24.4	26.3	81.1	77.1	80.3
VideoREPA	83.8	69.1	50.2	24.6	24.4	26.4	81.3	77.2	80.5
MoAlign (ours)	80.4	75.4	49.9	24.2	24.3	26.4	82.0	78.2	81.3

Table A.3: **VBench-2.0 results** (part 1/3).

Method	Human Identity	Dynamic Spatial Relationship	Complex Landscape	Instance Preservation	Multi-View Consistency	Human Clothes	Dynamic Attribute	Complex Plot
CogVideoX-2B	75.1	19.8	14.0	84.8	20.3	85.6	23.8	8.1
CogVideoX (FT)	79.7	18.8	13.3	91.8	8.7	88.1	17.6	9.2
VideoREPA	81.9	22.2	15.1	92.4	6.3	90.4	16.5	8.5
MoAlign	80.6	26.1	16.2	95.3	10.0	94.2	16.5	8.6

Table A.4: **VBench-2.0 results** (part 2/3).

Method	Mechanics	Human Anatomy	Composition	Human Interaction	Motion Rationality	Material	Diversity	Motion Order Understanding
CogVideoX-2B	64.2	82.6	55.6	60.3	35.6	68.1	50.0	10.1
CogVideoX (FT)	57.5	82.3	54.9	64.7	29.9	58.5	62.6	9.9
VideoREPA	55.6	84.0	55.6	66.3	30.5	61.5	58.2	10.6
MoAlign	57.9	85.3	53.3	64.7	35.6	64.6	52.3	8.9

Table A.5: **VBench-2.0 results** (part 3/3).

Method	Camera Motion	Thermotics	Creativity Score	Commonsense Score	Controllability Score	Human Fidelity Score	Physics Score	Total Score
CogVideoX-2B	49.7	63.0	52.8	60.2	26.6	81.1	53.9	54.9
CogVideoX (FT)	45.7	54.7	58.7	60.8	25.6	83.4	44.9	54.7
VideoREPA	42.3	57.1	56.9	61.4	25.9	85.4	45.1	55.0
MoAlign	38.9	62.8	52.8	65.5	25.7	86.7	48.8	55.9

A.4 STAGE 2 TRAINING DETAILS

In the second stage, we align the latent features of the CogVideoX diffusion model to the motion-centric subspace learned in Stage 1. This is achieved by introducing a lightweight projection network that maps internal representations from CogVideoX to the same 64-dimensional space used for motion supervision. Specifically, we extract hidden states from the 18th MM-DiT block of CogVideoX and pass them through a temporal-spatial projection head. This head first applies a temporal convolution stack consisting of a $(3, 1, 1)$ 3D convolution followed by a SiLU activation, and then a pointwise $(1 \times 1 \times 1)$ convolution with another SiLU activation. These layers reduce the input channel dimension from 1920 to 256 and then to 64, preserving temporal structure while compressing appearance information.

After temporal processing, the features are interpolated along the time axis by a factor of 2 using trilinear interpolation. The resulting tensor is then passed through a spatial downsampling layer to match with the spatial dimension of the videomae compressed features. This layer is a single 3×3 convolution with stride 3. This operation reduces the spatial resolution by approximately $3 \times$, yielding a final output of shape that is compatible with the motion subspace.

During training, we freeze the VideoMAEv2 encoder and the motion compressor from Stage 1, and optimize only the CogVideoX transformer and the projection head. The training objective combines the standard denoising loss from the diffusion model with a soft relational alignment loss that matches the pairwise similarity structure of the projected features to those from the motion subspace. We use a temporal weighting scheme with $\tau = 10$ to emphasize long-range inter-frame consistency. The alignment loss is weighted by a factor of 0.5 and added to the diffusion loss. Training is performed using AdamW with a learning rate of 2×10^{-6} , batch size 32, and mixed precision enabled. The model is trained for 4000 steps on four NVIDIA H100 GPUs (80GB VRAM each), with validation conducted every 500 steps using a held-out set of prompts.

Stage-2 alignment depth. As noted in Section 5.2, the choice of which CogVideoX block to align is a key factor for effective motion transfer. Prior alignment-based works (e.g., REPA, VideoREPA) similarly report that applying the alignment loss at a single, well-chosen mid-level layer yields the best performance, whereas spreading supervision across multiple blocks can overly constrain the denoising trajectory. In our case, we evaluated several transformer blocks of CogVideoX and found that aligning at the 18th transformer block provides the strongest improvement in VideoPhy2 scores (see Tab. 5 in the main paper). We attribute the better performance of layers from the middle of the network to the internal dynamic of the denoising transformer. Namely, earlier layers primarily

918 encode low-level appearance features, while later blocks mainly refine high-frequency details and
 919 translate the representation to the output domain (since CogVideoX is not x_0 -parametrized). While
 920 finding the theoretically justified algorithm for layer selection is an appealing research direction, in
 921 this work we opted for empirical comparison of several inner blocks.
 922
 923

924 A.5 EXPERIMENTS ON WAN2.1 1.3B

926 To evaluate the effectiveness of our motion representation alignment method, we applied a similar
 927 alignment strategy to fine-tune WAN2.1 (1.3B), a widely used state-of-the-art efficient video diffu-
 928 sion model. Table A.6 presents the results. As shown, incorporating MoAlign fine-tuning improves
 929 all relevant metrics (SA, PC, and Joint score), though the gains are more moderate compared to
 930 those observed with CogVideoX.
 931

932 Table A.6: Quantitative assessment of effectiveness of incorporating MoAlign on Wan2.1 (1.3B), as
 933 measured on VideoPhy2.
 934

935 Method	936 SA	937 PC	938 Joint
936 Wan-1.3B	937 28.7	64.1	23.7
937 Wan-1.3B + MoALign	938 29.8	939 64.6	940 25.1

941 A.6 COMPARISON WITH VIDEOJAM

943 To compare our MoAlign method with other approaches, we attempted to train the recently proposed
 944 VideoJAM (Chefer et al., 2025) modification of the video model. The training setup, base diffusion
 945 model, and dataset were identical to those used for Stage 2 of MoAlign (see Sec. 4.1). In our
 946 experiments, we found that under this training budget, VideoJAM remained far from convergence
 947 and produced unsatisfactory video outputs.
 948

949 VideoJAM extends the original video generation model by simultaneously predicting the RGB vi-
 950 sualization of the video’s optical flow. This design introduces capabilities that were absent in the
 951 base model. The dynamics of training losses support this claim: at the start of training, the ‘flow’
 952 component of the diffusion MSE loss is very high but gradually decreases, while the ‘video’ compo-
 953 nent is initially low — reflecting the model’s prior video-generation pretraining — then rises, peaks,
 954 and slowly declines. This indicates that during the early phase of VideoJAM training, the video and
 955 flow objectives conflict, and the model requires substantial adaptation to align with the new joint
 956 objective. However, this adaptation is resource-intensive.
 957

958 In the original work by Chefer et al. (2025), VideoJAM was trained on 3 million video clips (50K
 959 iterations on 32 GPUs) at a spatial resolution of 256×256 . This far exceeds the requirements
 960 for MoAlign’s Stage 2, which uses only 4K steps on 4 GPUs. We consider these findings strong
 961 evidence that our method offers better training efficiency for practitioners.
 962

963 A.7 USE OF LARGE LANGUAGE MODELS

964 We used Microsoft Copilot (a large language model) to aid in polishing the writing of this sub-
 965 mission. The model was employed solely for improving clarity and readability; all ideas, technical
 966 content, and conclusions are our own.
 967
 968
 969
 970
 971