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ABSTRACT

Text-to-video diffusion models have enabled high-quality video synthesis, yet of-
ten fail to generate temporally coherent and physically plausible motion. A key
reason is the models’ insufficient understanding of complex motions that natural
videos often entail. Recent works tackle this problem by aligning diffusion model
features with those from pretrained video encoders. However, these encoders mix
video appearance and dynamics into entangled features, limiting the benefit of
such alignment. In this paper, we propose a motion-centric alignment framework
that learns a disentangled motion subspace from a pretrained video encoder. This
subspace is optimized to predict ground-truth optical flow, ensuring it captures
true motion dynamics. We then align the latent features of a text-to-video dif-
fusion model to this new subspace, enabling the generative model to internalize
motion knowledge and generate more plausible videos. Our method improves
the physical commonsense in a state-of-the-art video diffusion model, while pre-
serving adherence to textual prompts, as evidenced by empirical evaluations on
VideoPhy, VideoPhy2, VBench, and VBench-2.0, along with a user study.

1 INTRODUCTION

Text-to-video diffusion models have enabled high-fidelity video synthesis across domains from en-
tertainment to simulation. Recent systems like Wan2.1 (Wan et al., 2025), CogVideoX (Yang et al.,
2025b), HunyuanVideo (Lab, 2025), PyramidalFlow (Jin et al., 2025), and Open-Sora Plan (Lin
et al., 2024a) leverage Diffusion Transformers (DiTs) and large-scale training to achieve impressive
visual quality and scalability. Despite high visual quality, these models often generate videos with
unnatural motion and physics violations, such as unsupported floating objects, implausible colli-
sions, or inconsistent trajectories. These artifacts reveal a key limitation: while current models excel
at generating photorealistic frames, they lack a deep understanding of motion dynamics, which is
crucial for producing videos that are both visually and physically plausible.

Efforts to improve the physical plausibility of video generation generally fall into three broad cate-
gories: (i) Simulation-based methods incorporate physics engines or differentiable simulators in the
generation process to model rigid-body dynamics, fluid interactions, or thermodynamic effects (Lin
et al., 2024b;c; Liu et al., 2024; Xie et al., 2025; 2024; Zhang et al., 2024; Lin et al., 2025). While ef-
fective, these approaches are computationally intensive, domain-specific, and hard to scale to diverse
open-world content. (ii) Non-simulation-based methods aim to enhance realism without explicit
simulation, often by scaling model capacity, leveraging LLM-guided self-refinement, or introduc-
ing auxiliary objectives such as 3D point regularization and representation alignment to encourage
physically coherent motion (Chen et al., 2025; Wang et al., 2025; Xue et al., 2025; Zhang et al.,
2025b; Hwang et al., 2025). These strategies improve appearance and sometimes temporal con-
sistency, but often prioritize visual semantics over true motion dynamics. (iii) Conditioning-based
approaches use motion cues like trajectories, optical flow, or pose sequences to guide generation
via control mechanisms (Shi et al., 2025; Geng et al., 2025; Zhang et al., 2025c). While effective
for temporal coherence, they rely on these extra inputs and preprocessing at inference time, making
them impractical for text-only generation.

More broadly, existing methods either rely on external guidance (e.g., physics engines or inference-
time controls) or influence motion only indirectly through capacity scaling or appearance-centric
alignment, leaving the core issue unresolved: embedding motion understanding directly into the
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Figure 1: Problem (Left): Physics laws are often violated in outputs of video diffusion models. Base
CogVideoX model (top) cannot generate a coin falling into a cup: the coin floats in the air instead.
Our MoAlign method (bottom) improves this. Proposed solution (Right): Our finetuning pipeline
aligns internal representations of the diffusion model with motion-specific features extracted from
VideoMAEv2.

model’s latent space. Recent benchmarks reveal that current video diffusion models under-encode
motion dynamics in their latent space, leading to identity inconsistency, unstable trajectories, and
physics violations, even when individual frames appear realistic (Huang et al., 2024; Zheng et al.,
2025; Bansal et al., 2025a). We aim to bridge this gap by aligning the diffusion model’s latent fea-
tures with representations from video encoders trained on real videos, which inherently encode mo-
tion observed in the physical world (Zhang et al., 2025b; Hwang et al., 2025). This, however, creates
two challenges: (i) alignment may default to matching static appearance features instead of captur-
ing true motion dynamics (Zhang et al., 2025b), and (ii) hard feature matching risks destabilizing
pretrained representations during fine-tuning (Hwang et al., 2025). As a result, current alignment-
based methods enhance visual fidelity but fall short in enforcing coherent motion. This raises a key
question: how can we design a fine-tuning strategy that explicitly targets motion dynamics, without
introducing extra inference-time requirements or compromising model stability?

To tackle these challenges, we propose a motion-centric fine-tuning framework that disentangles
dynamic structure from static appearance. We leverage features from a pretrained video encoder,
e.g. VideoMAEv2 (Wang et al., 2023), and learn a projection into a low-dimensional subspace,
supervised to predict optical flow, encouraging the subspace to isolate motion-relevant information
from entangled semantics. We then align the diffusion model’s latent features to these motion repre-
sentations via a soft relational alignment mechanism. In contrast to prior representation-alignment
approaches, e.g. REPA (Leng et al., 2025) or VideoREPA (Zhang et al., 2025b) that relied on joint
appearance–motion representations, we make use of motion-only feature space. And unlike Video-
JAM (Chefer et al., 2025) which also used optical flows to improve motion coherence, our method
does not expand the output space of the diffusion model and does not increase the cost of the infer-
ence procedure. We summarize our contributions as follows:

• We suggest a method to learn a motion-specific subspace from a pretrained video encoder
by optimizing its projected features to predict ground-true optical flow, enabling a disen-
tangled motion representation.

• We propose to align diffusion model features to this learned motion subspace using soft
relational alignment, internalizing motion dynamics without external conditioning or sim-
ulation.

• We demonstrate improved temporal coherence and physical plausibility on
CogVideoX (Yang et al., 2025b), a state-of-the-art diffusion model, through a user
study and evaluations on physics benchmarks VideoPhy (Bansal et al., 2025a), VideoPhy2
(Bansal et al., 2025b)) while maintaining high visual fidelity in VBench (Huang et al.,
2024), and VBench-2.0 (Zheng et al., 2025).
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2 RELATED WORKS

We group prior efforts to improve physical and temporal realism in text-to-video generation into four
areas: architectural advancements, simulation-based methods, conditioning-based motion control,
and representation alignment. Each addresses part of the problem, yet none fully internalizes motion
dynamics within the generative model as our framework does.

Text-to-video diffusion models. Early T2V models adapted image pipelines with U-Nets and
frame-wise synthesis, but struggled with temporal consistency and realistic motion (Ho et al., 2022;
Hong et al., 2023). Transformer-based designs soon improved spatiotemporal modeling via token
compression and attention (Villegas et al., 2023; Yan et al., 2021). Recent systems like CogVideoX,
Wan2.1, PyramidalFlow, or Sora push fidelity and scale with 3D-aware representations, pyramidal
flow, and spacetime patches, yet videos still show identity drift and physically implausible dynam-
ics (Yang et al., 2025b; Wan et al., 2025; Jin et al., 2025; OpenAI, 2024). We address this gap
by internalizing motion through a fine-tuning strategy that disentangles appearance from motion
without external conditioning or simulation.

Simulation-based approaches. Methods that integrate physics engines or differentiable simulators
capture rigid-body, fluid/elastic, or material-aware interactions (Liu et al., 2024; Zhang et al., 2024;
Xie et al., 2024; Liu et al., 2025). Some combine simulation with LLM-guided reasoning or hand-
crafted priors (Xue et al., 2025; Zhang et al., 2025a), and others employ physics-guided generation
(Xie et al., 2025; Montanaro et al., 2024). While realism improves, these approaches are domain-
specific, compute-heavy, and hard to scale to open-world content. Our method avoids simulation
and instead embeds motion understanding directly into the model.

Condition-based motion control. Another line conditions generation on motion cues such as op-
tical flow, trajectories, or poses, injected via encoders/adapters (Koroglu et al., 2025; Geng et al.,
2025; Terauchi & Yanai, 2021). Plug-and-play customization and temporal in-context fine-tuning
further enhance control (Bian et al., 2025; Kim et al., 2025). These methods achieve strong coher-
ence when accurate conditions exist, but require extra inputs or preprocessing at inference, limiting
practicality for text-only generation. We instead internalize motion priors within the latent space.

Representation alignment. Alignment methods match internal features of generators to pretrained
encoders to improve semantics and training efficiency, but are largely spatial and image-centric (Yu
et al., 2025; Leng et al., 2025). Video extensions, e.g. VideoREPA, distill spatiotemporal relations
via token-level relational matching (Zhang et al., 2025b). However, hard alignment can destabilize
pretrained representations and entangled features can mix appearance with motion (Zhang et al.,
2025b; Hwang et al., 2025). We build on this direction with soft relational alignment to a motion-
specific subspace, disentangling dynamics from appearance to internalize motion without sacrific-
ing stability. Besides VideoREPA, closest works to ours are Track4Gen (Jeong et al., 2025) and
VideoJAM (Chefer et al., 2025), which introduce motion supervision. Track4Gen operates in an
image-to-video setting, using optical-flow-based point trajectories to enforce local correspondence
at a single UNet block, but it does not address global motion dynamics or physical plausibility.
VideoJAM jointly predicts RGB optical flow, and appearance, injecting motion via inference-time
inner-guidance through a learned auxiliary output. In contrast, our method neither predicts flow
nor requires inference-time changes: we learn a motion-only subspace from a frozen VideoMAE
and align the diffusion transformer to its spatio-temporal geometry, enabling motion priors without
altering the generation interface.

3 METHOD

Our method builds upon recent advances in video diffusion modeling and representation alignment.
We first review the fundamentals of video diffusion models and the REPA framework, which form
the basis of our motion-centric fine-tuning strategy. Then, we introduce our proposed approach for
internalizing motion dynamics via soft relational alignment.

3.1 PRELIMINARIES

Video diffusion models. Modern text-to-video diffusion models, such as CogVideoX (Yang et al.,
2025b), generate videos by learning to reverse a forward noising process applied to latent repre-
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sentations of video frames. These models operate in the latent space of a pretrained 3D Varia-
tional Autoencoder (VAE), which compresses the input video both spatially and temporally. Let
x0 ∈ RF×H×W×C denote a clean video with F frames. The VAE encoder maps x0 to a latent
representation z0 ∈ RF ′×H′×W ′×C′

, where F ′ < F due to temporal downsampling. The forward
diffusion process perturbs z0 by adding Gaussian noise over T timesteps. The goal of the model is to
learn a denoising function ϵθ(zt, t, c) that predicts the added noise ϵ, conditioned on the text prompt
c and timestep t. The training objective minimizes the mean squared error Ldiff between the true and
the predicted noise. During inference, the model samples zT ∼ N (0, I) and iteratively denoises it
to obtain z0, which is then decoded by the VAE to produce the final video. CogVideoX employs
a transformer-based architecture (MM-DiT) as a denoiser ϵθ. It uses bidirectional spatio-temporal
attention to model dependencies across frames.

Representation alignment. Diffusion Transformers (DiTs), including those used in CogVideoX,
learn internal representations during the denoising process. However, these representations often
lag behind those learned by self-supervised visual encoders in terms of semantic richness and dis-
criminative power. REPresentation Alignment (REPA) addresses this gap by introducing a simple
yet effective regularization that aligns the hidden states of the diffusion model with pretrained visual
features (Yu et al., 2025). Originally, REPA was proposed for image models: Let x∗ be a clean
input frame and E a pretrained visual encoder (e.g., DINOv2). The encoder produces a patch-wise
representation Y∗ = E(x∗) ∈ RN×De , where N is the number of patches and De the embedding
dimension. During training, the image diffusion model Dξ processes a noisy latent input zs along
with condition c and timestep s and produces hidden states Hs = Dξ(zs, s, c). These are projected
via a small trainable network Pϕ to match the dimensionality of Y∗. REPA encourages alignment
by maximizing the similarity between corresponding patches:

LREPA(ξ, ϕ) = −Ex∗,ϵ,s

[
1

N

N∑
n=1

sim (Y∗
n,Pϕ(Hs,n))

]
, (1)

where sim(·, ·) denotes cosine similarity. This loss is added to the standard diffusion objective:

Ltotal = Ldiff + λLREPA, (2)

with λ controlling the strength of alignment. Empirically, REPA improves convergence speed and
generation quality, especially when applied to early transformer layers. However, in case of video
models aligning each latent frame independently may lead to temporal inconsistencies, motivating
extensions such as cross-frame alignment (Hwang et al., 2025).

3.2 MOTION-CENTRIC FINE-TUNING

Our goal is to internalize motion understanding within the diffusion model by aligning its latent
features to a motion-specific subspace. We achieve this through a two-stage fine-tuning framework:
(i) learning motion-centric features from a pretrained video encoder, and (ii) aligning the diffusion
model’s hidden states to this motion subspace via soft relational alignment. This approach avoids
reliance on external simulators or conditioning inputs, and instead distills dynamic structure directly
into the generative model.

Stage 1: Learning motion-centric features. The objective of this stage is to extract features
that encode motion dynamics, disentangled from static appearance and context. This is a challeng-
ing task: motion is inherently relational, emerging from temporal changes across frames, whereas
appearance is directly observable in individual frames. Consequently, features extracted from pre-
trained video encoders often entangle motion with appearance, object identity, and scene seman-
tics (Assran et al., 2023; Wang et al., 2021; Zhu et al., 2020). Without explicit supervision, there is
no guarantee that learned representations isolate motion-specific information.

To address this, we construct a motion-specific subspace by supervising a projection of pretrained
video features to predict optical flow. Given a video clip x0 ∈ RF×H×W×C , we extract spatiotem-
poral features S = V(x0) ∈ RF ′′×H′′×W ′′×Dv using a frozen video encoder V , e.g. VideoMAEv2.
These features are projected into a lower-dimensional space via a learnable head Mψ:

M = Mψ(S) ∈ RF
′′×H′′×W ′′×Dm , Dm ≪ Dv. (3)

4
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Figure 2: Overview of our motion-centric fine-tuning framework. Stage 1 trains a motion-aware
teacher by extracting features from a pretrained video encoder and supervising them with ground-
truth optical flow. Stage 2 aligns the latent features of the video diffusion model (MM-DiT) to the
motion-specific subspace via a soft relational alignment loss. This two-stage process internalizes
motion understanding without requiring external conditioning or simulation at inference time.

This dimensionality bottleneck is critical. By compressing the feature space, we constrain the model
to retain only the most salient information relevant to the downstream task. Prior work has shown
that such compression promotes abstraction and suppresses irrelevant appearance cues (Yang et al.,
2025a; 2024; Lew et al., 2025). In our case, it biases the representation toward motion by limiting
capacity for encoding static content.

To enforce motion specificity, we supervise M using ground-truth optical flow O computed between
consecutive frames of x0. A lightweight decoder Fω maps M to predicted flow Ô = Fω(M), and
the training objective is:

Lflow(ψ, ω) =
∥∥∥Ô − O

∥∥∥
1
. (4)

Optical flow provides dense, low-level supervision that directly encodes pixel-wise motion. By forc-
ing the compressed features to predict flow, we constrain the subspace to encode dynamic structure
rather than static semantics. This approach is supported by recent work in motion-aware video mod-
eling, which demonstrates that flow-based supervision improves temporal coherence and physical
plausibility (Koroglu et al., 2025; Yang et al., 2024; Lew et al., 2025).

In summary, this stage constructs a motion-specific subspace by (i) compressing high-dimensional
video features to suppress appearance, and (ii) enforcing motion supervision via optical flow predic-
tion. The resulting features serve as a distilled representation of dynamics, which we use as a target
for aligning the diffusion model in Stage 2.

Stage 2: Aligning diffusion features to motion. To internalize motion dynamics within the gen-
erative model, we align the latent features of the video diffusion model to the motion-specific sub-
space learned in Stage 1. We adopt a soft relational alignment strategy based on the Token Relation
Distillation loss introduced in VideoREPA paper (Zhang et al., 2025b), which matches the pairwise
similarity structure of token-level features across space and time.
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Consider latent features of the diffusion model Yt ∈ RF̃×H̃×W̃×D̃ extracted from a noisy input zt.
We apply a small projection network Pζ to obtain the tensor Z ∈ RF ′′×H′′×W ′′×Dm of the same
size as M, output of Mψ . We denote the corresponding spatial features of f -th latent frame as Zf
and Mf , respectively, 1 ≤ f ≤ F ′′. We reshape them to token matrices Z♭f ,M

♭
f ∈ RH′′·W ′′×Dm .

The spatial similarity matrix for frame f is defined as:

Sspatial
Z (f)[i, j] = sim(Zf,i,Zf,j), Sspatial

M (f)[i, j] = sim(Mf,i,Mf,j), (5)

where Zf,i,Mf,i ∈ RDm denote the i-th token of Z♭f and M♭
f , 1 ≤ i, j ≤ H ′′ ·W ′′. For temporal

similarity, we flatten all frames into a sequence of F ′′ · H ′′ ·W ′′ tokens and compute cross-frame
similarities. Let Z(i) and M(i) denote the i-th token in the full sequence. The temporal similarity
matrices are:

Stemporal
Z [i, j] = sim(Z(i),Z(j)), Stemporal

M [i, j] = sim(M(i),M(j)). (6)

As in Sec. 3.1, we employ cosine similarity as the sim(·, ·) function. To emphasize inter-frame
dynamics, we exclude intra-frame pairs and apply a temporal weighting scheme. Namely, let ∆ij

denote the distance between frames that tokens with indices i and j belong to, and define the tem-
poral weight matrix W :

Wij =

{
exp

(
−∆ij

τ

)
, if ∆ij ̸= 0

0, otherwise
(7)

where τ is a temperature hyperparameter. The final alignment loss combines spatial and weighted
temporal components:

Lalign(θ, ζ) =
1

F ′′

F ′′∑
f=1

∥∥∥Sspatial
Z (f)− Sspatial

M (f)
∥∥∥
1
+
∥∥∥W ⊙ Stemporal

Z −W ⊙ Stemporal
M

∥∥∥
1
, (8)

where ⊙ denotes element-wise multiplication and ∥ · ∥1 is the mean absolute error. This formulation
extends the original Token Relation Distillation loss by introducing temporal weighting W which
prioritizes temporal consistency in the local vicinity of frame. The final training objective equals

Ltotal = Ldiff + λLalign, (9)

where λ controls the strength of motion supervision. This strategy enables the diffusion model to
internalize motion dynamics without requiring external conditioning or compromising the stability.

4 EXPERIMENTAL SETUP

We detail the implementation of our motion-centric fine-tuning framework, including model archi-
tecture, training configurations, and optimization strategies.

4.1 MODEL AND TRAINING CONFIGURATION.

We build upon CogVideoX-2B (Yang et al., 2025b), a transformer-based latent video diffusion
model composed of MM-DiT blocks with joint spatio-temporal attention. CogVideoX operates
in the latent space of a 3D VAE compressing input videos by a factor of 4 along the temporal axis.

Stage 1: Learning motion-centric features. For motion supervision, we use Video-
MAEv2 (Wang et al., 2023) as a frozen video encoder to extract spatiotemporal features. In Stage 1,
these features are compressed using a 3D convolutional network that reduces the channel dimension
from 768 to 64 while preserving temporal structure, encouraging the retention of motion-relevant
information. The compressed features are then decoded into dense optical flow using a lightweight
transposed convolutional network that progressively upsamples spatial resolution in a UNet-like
fashion. This setup ensures that the compressed features capture dynamic structure, as they are
explicitly trained to regress RAFT-computed ground-truth flow using L1 loss. All VideoMAEv2
weights remain frozen during this stage. We train this stage using the AdamW optimizer with a
learning rate of 1× 10−4, β1=0.9, β2=0.95, and weight decay of 1× 10−3. Training is conducted
for 50,000 iterations using four NVIDIA H100 GPUs (80GB VRAM each) with a batch size of 128.
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Table 1: VideoPhy2 results. We report
semantic adherence (SA) and physical
correctness (PC). Our model achieves
highest joint score and demonstrates
better trade-off than alternatives.

Method SA PC Joint

CogVideoX-2B 27.1 64.5 22.3
Static baseline 15.6 91.0 15.1
CogVideoX-2B (FT) 26.4 73.1 22.8
VideoREPA-2B (paper) 21.0 72.5 –
VideoREPA-2B (reimpl.) 26.1 73.3 23.0
MoAlign-2B (ours) 28.8 75.0 24.9

Table 2: VideoPhy results. While fine-tuning on our data
lowers SA across models, our method maintains a compet-
itive SA and achieves the highest PC scores across all four
interaction types, demonstrating robust physical modeling
through motion-centric alignment.

Method Solid–Solid Solid–Fluid Fluid–Fluid Overall

SA PC SA PC SA PC SA PC

CogVideoX-2B 24.7 16.9 67.5 24.8 69.0 40.0 49.8 23.9
CogVideoX-2B (FT) 22.5 29.6 62.1 34.5 58.2 45.5 44.9 34.1
VideoREPA-2B (reimpl.) 23.2 31.0 66.9 39.3 54.6 52.7 46.7 37.9
MoAlign-2B (ours) 24.7 31.7 66.9 40.7 67.3 56.4 49.3 39.4

Stage 2: Aligning diffusion features to motion. In Stage 2, we align the latent features of
CogVideoX to the motion-specific subspace learned in Stage 1. We use a lightweight MLP pro-
jector that maps high-dimensional MM-DiT features (1920 channels) to a compact 64-dimensional
space via a 4-layer MLP with SiLU activations. The projected features are temporally upsampled
and spatially downsampled using a convolutional head. This transformation ensures compatibil-
ity with the motion subspace dimensions while preserving relational structure. The alignment is
applied to the 18th MM-DiT layer, and optimized using our soft relational alignment loss with tem-
poral weighting. We set λ=0.5 and τ=10.0, and train using AdamW with a learning rate of 2×10−6

and batch size 32. Training is conducted for 4000 iterations using four NVIDIA H100 GPUs (80GB
VRAM each). We use the AdamW optimizer with a learning rate of 2 × 10−6, a batch size of 32,
and enable mixed precision training via PyTorch AMP.

Dataset. For fine-tuning our models we used a 350K subset of the video dataset used by Open-
Sora Plan (Lin et al., 2024a), along with a set of 16K synthetic video samples generated by the
Wan2.1 14B model, with prompts sourced from the same set as for the Open-Sora Plan dataset.

5 RESULTS

5.1 COMPARISON WITH BASELINES

We evaluate our method across three complementary axes of video generation: (i) physical plausi-
bility, using the VideoPhy (Bansal et al., 2025a) and VideoPhy2 (Bansal et al., 2025b) benchmarks;
(ii) general generation quality, using VBench (Huang et al., 2024) and VBench-2.0 (Zheng et al.,
2025); and (iii) perceptual realism, via a blind user study. Each evaluation targets a distinct aspect
of generative fidelity, from adherence to physical laws to semantic alignment and human preference.

VideoPhy2. This recent benchmark evaluates physical plausibility while focusing on action-
centric scenarios involving human–object interactions. Videos are generated from 591 extended
prompts, and scored using the VideoPhy2-AutoEval model. This model predicts two metrics on a
5-point scale: Semantic Adherence (SA) which measures how well the video matches the prompt
and Physical Commonsense (PC) which assesses whether the motion and interactions are physically
plausible. The primary metric is the Joint score, defined as the fraction of videos rated ≥ 4 on both
SA and PC dimensions. Tab. 1 highlights the importance of holistic evaluation: a degenerate static
baseline, which simply repeats the first frame, achieves a deceptively high PC score by avoiding
motion violations, but fails on SA, resulting in a low Joint score.

We compare our MoAlign method against the base model CogVideoX-2B and recent VideoREPA
approach that aimed to improve physical plausibility. To decouple the effect of training data and
different alignment methods, we also finetuned the base model on the same dataset and with the
same training budget, this checkpoint is referred to as FT. As shown in Tab. 1, our training data has
marginal effect on Joint score.

Compared to the base model, MoAlign-2B achieves improvement both for individual dimensions
and Joint score. Since Zhang et al. (2025b) have not reported the Joint score for their VideoREPA
method, we reimplemented it and evaluated independently in the same setup. While VideoREPA-2B
improves PC, it suffers from a noticeable drop in SA, resulting in a lower gain in Joint score than
our method. This suggests that alignment to entangled features may improve physical realism at the

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: General video quality. All methods maintain the original technical quality, as indicated
by VBench. On VBench-2.0 MoAlign demonstrates improvement in Total score, mainly driven by
improved instance preservation, dynamic spatial relationship and human anatomy.

Model VBench VBench-2.0
Total Quality Semantic Total Creativity Commonsense Controllability Human Fidelity Physics

CogVideoX-2B 80.6 81.6 76.6 54.9 52.8 60.2 26.6 81.1 53.9
CogVideoX-2B (FT) 80.3 81.1 77.1 54.7 58.7 60.8 25.6 83.4 44.9
VideoREPA-2B 80.5 81.3 77.2 55.0 56.9 61.4 25.9 85.4 45.1
MoAlign-2B (ours) 81.3 82.0 78.2 55.9 52.8 65.5 25.7 86.7 48.8

cost of prompt fidelity. In contrast, our method aligns to disentangled motion features, improving
both motion realism and semantic alignment. This indicates that internalizing dynamic structure
via motion-specific supervision leads to more coherent and faithful video generation. We have
further investigated the effectiveness of MoAlign on Wan2.1 (1.3B); the results are available on
Appendix A.5

VideoPhy. The second benchmark focuses on material-centric interactions across three categories:
solid–solid, solid–fluid, and fluid–fluid. Videos are generated from 343 prompts. Scoring is per-
formed using the VideoConPhysics auto-rater, which evaluates SA and PC dimensions. In contrast
with VideoPhy2, extended prompts were not standardized in this benchmark. Therefore we opted
for sampling videos from all models with the short prompts provided by Bansal et al. (2025a).

As shown in Tab. 2, we observe a consistent trend across all method: finetuning on our data tends to
reduce SA scores compared to the base model (note that FT model without any alignment performs
the worst). We attribute this to the shortage of relevant examples in the dataset. At the same time, PC
reflects the plausibility of generated physics irrespective of the fact if it follows the textual prompt.
Notably, our method most effectively mitigates the drop in SA among all finetuned variants while
achieving the highest PC scores across all interaction types. This proves that the proposed MoAlign
training strategy overcomes the limitations of training data better than other considered methods.

VBench and VBench-2.0. To ensure that improvements in physical plausibility do not come at
the cost of overall video quality, we evaluate all methods with two other commonly used toolkits.
VBench focuses more on perceptual characteristics such as aesthetics, temporal smoothness, object-
scene consistency, etc., while its second version targets intrinsic faithfulness of generated videos.

We report the aggregated metrics for both benchmarks in Tab. 3. Please refer to the Supplementary
for more fine-grained results. First of all, we note that all methods keep the VBench Total score
approximately constant which suggests that none of them worsens the technical quality of genera-
tions. For VBench-2.0, VideoREPA is on par with the base model in terms of Total score, while our
method brings noticeable improvement. This gain is achieved mainly by means of Commonsense
and Human Fidelity metrics which cover, among others, such dimensions as instance preservation,
dynamic spatial relationship, and human anatomy – highly important aspects for physical plausibil-
ity. The significant drop of Physics score for all funetuned models has the same explanation as in
VideoPhy case: our training data lacks samples related to thermotics and materials which are pivotal
for this category.

User study. To complement automated metrics, we conduct a blind user study to assess temporal
coherence and physical plausibility from a human perspective. We compare three models: the base
CogVideoX-2B, VideoREPA-2B, and our MoAlign-2B. For each model, we generate 50 videos us-
ing extended prompts sampled from a mix of VBench-2.0 and VideoPhy2, and collect 672 pairwise
preferences in side-by-side comparisons.

As shown in Tab. 6, our method is preferred significantly more often in both comparisons, indicating
that motion-centric alignment not only improves physical plausibility and automated scores, but also
enhances perceived realism and prompt fidelity. These results confirm that our framework leads to
more coherent and visually compelling video generation, as validated by human judgment.

We provide examples of videos used for the user study in the Supplementary.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Ablation study. Both proposed components are
important for the performance of our method, as measured
by VideoPhy2.

Method SA PC Joint

REPA loss 25.7 71.9 22.3
CogVideoX (FT) 26.4 73.1 22.8
VideoREPA 26.1 73.3 23.0
MoAlign w/o motion features 27.8 73.8 23.5
MoAlign w/o soft-TRD loss 28.2 74.4 24.1
MoAlign (ours) 28.8 75.0 24.9

Table 5: Layer for alignment. Impact
of the feature alignment layer on model
quality based on VidePhy2 scores.

Layer SA PC Joint

10 27.3 71.9 23.2
12 27.6 71.7 22.9
14 27.1 71.6 23.1
16 28.2 73.9 24.2
18 28.8 75.0 24.9
20 27.1 73.2 23.8
22 27.6 72.8 23.4

Table 6: User study. Our results are preferred over those from the baselines.

Comparison MoAlign Baseline
vs. CogVideoX-2B 68% 32%
vs. VideoREPA-2B 78% 22%

5.2 ABLATION STUDY

We also conducted experiments to isolate the contributions of our method. First, we considered a
modification of MoAlign that employs untouched feature extractor from VideoMAEv2 for super-
vision. Second, we try vanilla TRD loss without weighting based on distance between frames, i.e.
τ → ∞ in Eq. 7. Note that these two ablations done simultaneously result in the VideoREPA
method. Additionally, we report the performance of classical REPA alignment, which pushes in-
ternal diffusion features towards those from VideoMAEv2 instead of distilling their self-relational
structure. Following Zhang et al. (2025b), we use VideoPhy2 for the evaluation of ablated mod-
els. Results are reported in Tab. 5. As shown, both our proposed components are important for the
performance, and both of them individually improve the VideoREPA baseline. Notably, REPA loss
provides the worst results and cannot even surpass simple finetuning of the diffusion model on our
data.

Prior works noted the sensitivity of alignment results to the selection of the layer from denoising
network ϵθ for extraction of latent features (Leng et al., 2025; Zhang et al., 2025b). Therefore, we
also examined several layers and chose the 18-th transformer block of CogVideoX for our MoAlign
method, see Tab. 5. This choice is consistent with REPA-style approaches, which typically align at a
single mid-level layer rather than across the entire network. Empirically, we observe that aligning at
layer 18 yields the best VideoPhy2 performance, while both earlier and deeper layers lead to lower
physical commonsense scores. We also found that distributing the loss across multiple layers slightly
degrades results, suggesting that overly broad regularization disrupts the denoising trajectory. These
findings indicate that motion-related relational structure is naturally concentrated around mid-depth
blocks, motivating our focus on a single alignment layer. More details provided in Appendix A.4.

We also conducted additional analysis on the Stage-1 training dynamics, including convergence
behavior and training cost. The full details of this study are provided in Appendix A.3..

5.3 QUALITATIVE RESULTS

We show a qualitative comparison in Figure 3. Our MoAlign accurately depicts both the source
and target glasses throughout the video, with a clear and coherent pouring motion. In contrast,
CogVideoX fails to represent the scene structure, omitting key elements like the second glass and
the liquid flow. VideoREPA partially captures the target glass but lacks temporal consistency in the
pouring dynamics. This example highlights our model’s ability to preserve scene semantics and
physical realism. Additional qualitative comparisons are provided in appendix A.1

6 LIMITATIONS

While MoALign consistently improves motion plausibility and physics-centric behavior, it inherits
two important limitations. First, its performance is bounded by the coverage of available training
data: as noted in Tab. 3, the VBench-2.0 Physics category includes domains such as thermotics,
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Prompt: Glycerin from a clear glass is poured into a glass of water

Figure 3: Qualitative results. MoAlign shows both glasses and a coherent pouring motion, while
baselines miss key elements or exhibit inconsistent fluid behavior.

material deformation, liquids, and granular media, none of which appears in the datasets used for
our Stage-1 motion-teacher training, or Stage-2 diffusion finetuning. Second, MoAlign provides
implicit physics through motion statistics learned from real videos, but does not explicitly model
forces, material properties, or long-horizon causal reasoning, and may therefore struggle with sce-
narios requiring reasoning beyond motion alone, a limitation also discussed in prior works like
VideoJAM (Chefer et al., 2025). While addressing these limitations primarily requires video data
containing such phenomena, incorporating them would only require retraining the lightweight Stage-
1 module followed by standard Stage-2 alignment, without re-training VideoMAE or CogVideoX
from scratch. We view extending MoAlign toward richer physics domains as an exciting direction
for future work.

7 CONCLUSION AND FUTURE WORK

In this work we presented a method for improving temporal coherence and physical plausibility in
pretrained video diffusion models. Our pipeline called MoAlign is based on the trainable alignment
of internal diffusion features to motion-specific representations extracted from original videos. We
demonstrated that such representations result in better quality than general features extracted from
a pretrained self-supervised video encoder. Also, we showed that such alignment works better if it
prioritizes local vicinity of each frame over long-range temporal dependencies. We evaluated our
approach with four recent and commonly used benchmarks, as well as a user preference study.

In our experiments we found that several quality metrics were hurt for all finetuning-based methods
that we tried. We attribute that to the limitations of our training dataset, and suggest that MoAlign
may further benefit from better data curation. Nevertheless, our method demonstrated stronger
resilience to shortcomings of the collected dataset than the baselines.

As a downside of our method, we noted that sometimes it improves the physical commonsense at the
expense of reduced motion in the generated videos. We consider this limitation as a viable direction
for future work.
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Prompt: A person is eating pudding with a spoon

C
og

V
id

eo
X

V
id

eo
R

E
PA

M
oA

lig
n

Prompt: A person is squeezing ketchup onto a plate

Figure A.1: Qualitative comparison across methods for three prompts. In the first video, our method
(MoAlign) preserves realistic human motion without deformation. In the second, it captures accurate
hand-mouth interaction while baselines fail to represent the subject. In the third, it models physically
plausible ketchup flow, unlike the erratic behavior seen in baselines. See supplementary videos for
full comparisons.

A APPENDIX

The Appendix consists of the following sections: Qualitative results (Sec. A.1), VBench and
VBench-2.0 full results (Sec. A.2), Stage 1 training details (Sec. A.3), and Stage 2 training details
(Sec. A.4). Sec. A.7 provides details about usage of LLMs in this project.
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A.1 QUALITATIVE RESULTS

We present qualitative comparisons in Figure A.1 across three scenarios involving human motion,
object manipulation, and fluid dynamics. In each case, our method demonstrates superior temporal
coherence and physical plausibility compared to existing baselines.

In the first video, depicting a man jumping, our method produces smooth and anatomically consis-
tent motion. The subject maintains realistic posture and limb articulation throughout the sequence.
In contrast, both CogVideoX and VideoREPA exhibit noticeable distortions, including unnatural
body twisting and implausible joint movements. In the second video, where a person is eating pud-
ding with a spoon, our model accurately captures the interaction: the spoon visibly scoops pudding,
and the subject’s mouth moves in coordination. The baselines fail to preserve this interaction —
the person is either missing or the spoon disappears mid-sequence, breaking temporal and seman-
tic consistency. In the third video, showing a man squeezing ketchup onto a plate, our method
correctly models the accumulation of ketchup over time. The quantity on the plate increases as ex-
pected. Conversely, the baselines display erratic behavior: ketchup appears, disappears, and even
flows back into the bottle, violating intuitive physical dynamics.

To facilitate further comparison, we include eight video files in the supplementary material. Each
file contains a grid of six videos arranged in two rows and three columns. Each row corresponds to
a different prompt, and each column shows the output from one of the three methods: CogVideoX,
VideoREPA, and our MoAlign. This layout allows viewers to easily compare the outputs across
methods for the same prompt and observe differences in motion consistency, semantic fidelity, and
physical realism.

A.2 VBENCH AND VBENCH-2.0 RESULTS

We present fine-grained results on the benchmarks in Tabs. A.1, A.2, A.3, A.4, and A.5.

Notable decrease in dynamic degree and side-effect. We observe that by applying MoAlign, dy-
namic degree drops most notably among all the other VBench metrics. The Dynamic Degree metric
in VBench primarily measures the magnitude of pixel-space motion (e.g., optical-flow amplitude)
rather than the physical plausibility of that motion. Upon closer inspection, we find that the higher
dynamic degree scores achieved by the baseline CogVideoX largely stem from exaggerated or un-
stable motions — such as abrupt limb jumps, temporal jitter, or transient body parts — which inflate
flow magnitude without corresponding to realistic dynamics.

On the other hand, MoAlign tends to reduce these unstable high-amplitude artifacts, leading to
smoother and more physically grounded trajectories, which as expected lowers amplitude-based
motion metrics. Importantly, note that this does not indicate a degenerate “low-motion” solution:
physics-centric metrics such as VideoPhy and VideoPhy2 improve (e.g., +3.1 Joint), and the Joint
metric is explicitly designed to penalize low-motion outputs. As shown in the Table 1, the Static
Baseline, containing no motion, achieves a very high PC score but suffers a dramatic collapse in
Joint, whereas MoAlign improves Joint over both the base model and the static case. This hints
that MoAlign preserves meaningful motion while reducing mostly the nonphysical components.
Qualitatively, the model continues to produce clear global motion (e.g., in dancing/running prompts),
but with more realistic velocities and fewer nonphysical transitions.

A.3 STAGE 1 TRAINING DETAILS

To learn a motion-centric representation disentangled from static appearance, we have a two-stage
network to predict ground-truth optical flow from features extracted by a frozen VideoMAEv2 en-
coder. The encoder outputs token-level features of dimension 768, which are passed through a
3D convolutional compressor that reduces them to a 64-dimensional subspace. This compression
network consists of two convolutional layers: the first is a temporal convolution with kernel size
(3, 1, 1) and padding (1, 0, 0), which captures motion patterns across frames and maps the input to
256 channels. The second is a pointwise (1 × 1 × 1) convolution that compresses the channel di-
mension to 64. Both layers are followed by SiLU activations. The input to this network is of shape
[B, 768, 24, H,W ], and the output is [B, 64, 24, H,W ], representing our learned motion subspace
optimized to retain dynamic structure while suppressing static semantics.
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Figure A.2: Stage-1 motion projector head training convergence. The training converges at ∼30k
iterations. The full 50k training takes ∼22 hours.

The compressed features are then fed into a flow prediction network designed to regress dense optical
flow maps. This network begins with a 3D convolution that refines the temporal resolution from 24
to 23 using a kernel of (2, 3, 3) and padding (0, 1, 1), followed by a ReLU activation. It then applies
two stages of spatial upsampling using transposed convolutions: the first upsamples by 2× with a
kernel of (1, 4, 4) and stride (1, 2, 2), mapping to 32 channels; the second upsamples again by 2×
to 16 channels. Each transposed convolution is followed by a ReLU. A final 3D convolution with
kernel size 3 and padding 1 produces the flow vectors with 2 output channels. The resulting tensor is
interpolated to a fixed shape of [B, 2, 23, 128, 192] using trilinear interpolation, and then permuted
to [B, 23, 2, 128, 192] for compatibility with the ground-truth flow format.

The model is trained using L1 loss against RAFT-computed ground-truth flow, with all Video-
MAEv2 weights kept frozen. We use the AdamW optimizer with a learning rate of 1 × 10−4,
β1 = 0.9, β2 = 0.95, and weight decay of 1 × 10−3. Training is conducted for 50,000 iterations
on four NVIDIA H100 GPUs (80GB VRAM each), with a batch size of 128 and mixed precision
enabled via PyTorch AMP. Input videos are resized to 160 × 240 and truncated to 49 frames, with
center cropping applied to ensure consistent input dimensions. Validation is performed every 1000
steps using a held-out set.

Stage-1 training saturation. Figure A.2 shows the training curve for learning the motion subspace
from VideoMAE representations. We observe that the training saturates in around 30k iterations.
The full training of 50k iterations for the first stage takes ∼22 hours. Note that the learned motion
subspace projector is independent of the stage-2 training, the intrinsics of the diffusion model and
its fine-tuning; thus the same motion sub-space projector once trained can be reused for various
diffusion representation alignment episodes.

Table A.1: VBench results (part 1/2): consistency, motion, object-level metrics.

Method Subject
Consistency

Background
Consistency

Temporal
Flickering

Motion
Smoothness

Dynamic
Degree

Aesthetic
Quality

Imaging
Quality

Object
Class

Multiple
Objects

Human
Action

CogVideoX-2B 92.9 94.7 97.1 97.6 70.3 62.9 63.2 86.8 66.8 97.2
CogVideoX (FT) 95.2 96.0 98.8 98.2 48.1 62.5 60.1 88.8 66.2 96.2
VideoREPA 95.7 96.3 98.9 98.2 44.4 63.2 61.1 88.2 71.1 96.2
MoAlign (ours) 95.8 96.4 99.0 98.4 42.2 64.5 64.5 89.6 75.2 98.4

Table A.2: VBench results (part 2/2): appearance, style, and overall scores.

Method Color Spatial
Relationship Scene Appearance

Style
Temporal

Style
Overall

Consistency
Quality
Score

Semantic
Score

Total
Score

CogVideoX-2B 78.6 71.8 50.8 24.5 24.4 26.7 81.6 76.6 80.6
CogVideoX (FT) 84.4 69.6 52.4 24.4 24.4 26.3 81.1 77.1 80.3
VideoREPA 83.8 69.1 50.2 24.6 24.4 26.4 81.3 77.2 80.5
MoAlign (ours) 80.4 75.4 49.9 24.2 24.3 26.4 82.0 78.2 81.3
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Table A.3: VBench-2.0 results (part 1/3).

Method Human
Identity

Dynamic Spatial
Relationship

Complex
Landscape

Instance
Preservation

Multi-View
Consistency

Human
Clothes

Dynamic
Attribute

Complex
Plot

CogVideoX-2B 75.1 19.8 14.0 84.8 20.3 85.6 23.8 8.1
CogVideoX (FT) 79.7 18.8 13.3 91.8 8.7 88.1 17.6 9.2
VideoREPA 81.9 22.2 15.1 92.4 6.3 90.4 16.5 8.5
MoAlign 80.6 26.1 16.2 95.3 10.0 94.2 16.5 8.6

Table A.4: VBench-2.0 results (part 2/3).

Method Mechanics Human
Anatomy Composition Human

Interaction
Motion

Rationality Material Diversity Motion Order
Understanding

CogVideoX-2B 64.2 82.6 55.6 60.3 35.6 68.1 50.0 10.1
CogVideoX (FT) 57.5 82.3 54.9 64.7 29.9 58.5 62.6 9.9
VideoREPA 55.6 84.0 55.6 66.3 30.5 61.5 58.2 10.6
MoAlign 57.9 85.3 53.3 64.7 35.6 64.6 52.3 8.9

Table A.5: VBench-2.0 results (part 3/3).

Method Camera
Motion Thermotics Creativity

Score
Commonsense

Score
Controllability

Score
Human Fidelity

Score
Physics
Score

Total
Score

CogVideoX-2B 49.7 63.0 52.8 60.2 26.6 81.1 53.9 54.9
CogVideoX (FT) 45.7 54.7 58.7 60.8 25.6 83.4 44.9 54.7
VideoREPA 42.3 57.1 56.9 61.4 25.9 85.4 45.1 55.0
MoAlign 38.9 62.8 52.8 65.5 25.7 86.7 48.8 55.9

A.4 STAGE 2 TRAINING DETAILS

In the second stage, we align the latent features of the CogVideoX diffusion model to the motion-
centric subspace learned in Stage 1. This is achieved by introducing a lightweight projection network
that maps internal representations from CogVideoX to the same 64-dimensional space used for mo-
tion supervision. Specifically, we extract hidden states from the 18th MM-DiT block of CogVideoX
and pass them through a temporal-spatial projection head. This head first applies a temporal con-
volution stack consisting of a (3, 1, 1) 3D convolution followed by a SiLU activation, and then a
pointwise (1×1×1) convolution with another SiLU activation. These layers reduce the input chan-
nel dimension from 1920 to 256 and then to 64, preserving temporal structure while compressing
appearance information.

After temporal processing, the features are interpolated along the time axis by a factor of 2 using
trilinear interpolation. The resulting tensor is then passed through a spatial downsampling layer
to match with the spatial dimension of the videomae compressed features. This layer is a single
3× 3 convolution with stride 3. This operation reduces the spatial resolution by approximately 3×,
yielding a final output of shape that is compatible with the motion subspace.

During training, we freeze the VideoMAEv2 encoder and the motion compressor from Stage 1, and
optimize only the CogVideoX transformer and the projection head. The training objective com-
bines the standard denoising loss from the diffusion model with a soft relational alignment loss that
matches the pairwise similarity structure of the projected features to those from the motion sub-
space. We use a temporal weighting scheme with τ = 10 to emphasize long-range inter-frame
consistency. The alignment loss is weighted by a factor of 0.5 and added to the diffusion loss. Train-
ing is performed using AdamW with a learning rate of 2× 10−6, batch size 32, and mixed precision
enabled. The model is trained for 4000 steps on four NVIDIA H100 GPUs (80GB VRAM each),
with validation conducted every 500 steps using a held-out set of prompts.

Stage-2 alignment depth. As noted in Section 5.2, the choice of which CogVideoX block to align
is a key factor for effective motion transfer. Prior alignment-based works (e.g., REPA, VideoREPA)
similarly report that applying the alignment loss at a single, well-chosen mid-level layer yields the
best performance, whereas spreading supervision across multiple blocks can overly constrain the
denoising trajectory. In our case, we evaluated several transformer blocks of CogVideoX and found
that aligning at the 18th transformer block provides the strongest improvement in VideoPhy2 scores
(see Tab. 5 in the main paper). We attribute the better performance of layers from the middle of
the network to the internal dynamic of the denoising transformer. Namely, earlier layers primarily
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encode low-level appearance features, while later blocks mainly refine high-frequency details and
translate the representation to the output domain (since CogVideoX is not x0-parametrized). While
finding the theoretically justified algorithm for layer selection is an appealing research direction, in
this work we opted for empirical comparison of several inner blocks.

A.5 EXPERIMENTS ON WAN2.1 1.3B

To evaluate the effectiveness of our motion representation alignment method, we applied a similar
alignment strategy to fine-tune WAN2.1 (1.3B), a widely used state-of-the-art efficient video diffu-
sion model. Table A.6 presents the results. As shown, incorporating MoAlign fine-tuning improves
all relevant metrics (SA, PC, and Joint score), though the gains are more moderate compared to
those observed with CogVideoX.

Table A.6: Quantitative assessment of effectiveness of incorporating MoAlign on Wan2.1 (1.3B), as
measured on VideoPhy2.

Method SA PC Joint
Wan-1.3B 28.7 64.1 23.7
Wan-1.3B + MoALign 29.8 64.6 25.1

A.6 COMPARISON WITH VIDEOJAM

To compare our MoAlign method with other approaches, we attempted to train the recently proposed
VideoJAM (Chefer et al., 2025) modification of the video model. The training setup, base diffusion
model, and dataset were identical to those used for Stage 2 of MoAlign (see Sec. 4.1). In our
experiments, we found that under this training budget, VideoJAM remained far from convergence
and produced unsatisfactory video outputs.

VideoJAM extends the original video generation model by simultaneously predicting the RGB vi-
sualization of the video’s optical flow. This design introduces capabilities that were absent in the
base model. The dynamics of training losses support this claim: at the start of training, the ‘flow’
component of the diffusion MSE loss is very high but gradually decreases, while the ‘video’ compo-
nent is initially low — reflecting the model’s prior video-generation pretraining — then rises, peaks,
and slowly declines. This indicates that during the early phase of VideoJAM training, the video and
flow objectives conflict, and the model requires substantial adaptation to align with the new joint
objective. However, this adaptation is resource-intensive.

In the original work by Chefer et al. (2025), VideoJAM was trained on 3 million video clips (50K
iterations on 32 GPUs) at a spatial resolution of 256 × 256. This far exceeds the requirements
for MoAlign’s Stage 2, which uses only 4K steps on 4 GPUs. We consider these findings strong
evidence that our method offers better training efficiency for practitioners.

A.7 USE OF LARGE LANGUAGE MODELS

We used Microsoft Copilot (a large language model) to aid in polishing the writing of this sub-
mission. The model was employed solely for improving clarity and readability; all ideas, technical
content, and conclusions are our own.
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