
Under review as a conference paper at ICLR 2024

SYNTHESIZING PROGRAMMATIC POLICY FOR DO-
MAIN GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep reinforcement learning has effectively addressed numerous complex control
tasks. However, when the environment undergoes changes, such as increasing the
number of discs from three to four in the ‘Tower of Hanoi’, learned policies often
struggle with generalization. We propose an algorithm for learning programmatic
policies capable of capturing environment variations. In doing so, these policies
gain the capability to generalize to instances where certain aspects of the domain
exhibit variations—a property we term domain generalization. We design a Do-
main Specific Language to construct the structure of the policy. Through sampling
tasks from a task distribution, we can train the policy with a meta-learning algo-
rithm. Furthermore, our approach incorporates Recurrent Neural Network (RNN)
into the structure of the programmatic policy to enhance agent-environment in-
teractions. Experiment results demonstrate the efficiency of our approach across
three environments with domain generalization. In addition, the learned policy
shows its ability to generalize to tasks under different variations of environments.

1 INTRODUCTION

Deep reinforcement learning has achieved significant breakthroughs across many tasks. Nonethe-
less, the capacity to generalize across diverse environments remains a challenge, even for state-of-
the-art deep reinforcement learning algorithms (Packer et al., 2018). Agents often become exces-
sively specialized in the training environments, which hinders their ability to generalize to variations
within the same environment. More specifically, consider a ‘Tower of Hanoi’ task, characterized by
three pillars and a collection of discs of varying sizes. The primary objective is to transfer all the
discs from the source pillar to the target pillar while adhering to specific constraints. The variations
of the task occur where the number of the discs changes, such as a control policy learned from the
game of ‘Tower of Hanoi’ with three discs. In case where the policy is evaluated in the ‘Tower of
Hanoi’ with four discs, it struggles to attain satisfactory performance. Building on the concept of
domain randomization proposed by Tobin et al. (2017), we term this property as domain generaliza-
tion. Our aim is to train a policy capable of generalizing to some variations of the environments.

However, the neural networks based policies frequently encounter difficulties when confronting
these challenges. Our approach involves synthesizing a programmatic policy as a means to address
this challenge. Such a policy consists of a set of conditional statements and controllers acts like
a vanilla control policy, producing an action while input an observation. In contrast to a neural
network-based policy, a programmatic policy, such as a recursive program used to solve tasks like
the ‘Tower of Hanoi’, can capture tasks of interest, e.g., different patterns could be learned to tackle
the domain generalization. Cai et al. (2017); Liu et al. (2018) introduced neural architectures for pro-
gram semantics learning, however, not considering control problems. Imitation learning is employed
to learn programmatic policies (Verma et al., 2018; 2019), which necessitates user demonstrations.
Qiu & Zhu (2021) introduced a program architecture search method for generating programmatic
policies without the need for a pre-trained oracle. Nevertheless, the existing approach exhibits lim-
ited domain generalization when evaluated.

To tackle the challenge, we propose a method to synthesize a programmatic policy for generalizing
across different variations of a environment. Building upon the foundation laid by Qiu & Zhu
(2021), the programmatic policy adheres to a domain-specific language structure, and the search
space for program architecture can be continuously relaxed, allowing the utilization of gradient-

1

Under review as a conference paper at ICLR 2024

based reinforcement learning algorithms. Our method leverages domain randomization (Tobin et al.,
2017; Peng et al., 2018), which samples tasks from a task distribution by randomizing specific
domain aspects for each instance. Consequently, we update the programmatic policy’s parameters
using a meta-learning approach. Furthermore, we incorporate RNN blocks into the structure of
the programmatic policy drawing inspiration from the algorithm presented by Duan et al. (2016).
The hidden states of the RNN cells are retained across different episodes throughout the agent-
environment interactions. The benefit of the mechanism lies in enabling the agent to remember past
knowledge and apply it to new tasks.

We benchmark our method against the state-of-art reinforcement learning methods in three environ-
ments respectively. The results demonstrate that the programmatic policy trained via our method
exhibits domain generalization across different environment variations. It also performs well in the
more complex variations that have not been encountered before. Additionally, utilization of RNN in
programmatic policy significantly improves the performance.

Our method draws inspiration from a real-world scenario involving real robot tasks. We operate
under the assumption that the values of the aspects within an environment are unlikely to exhibit
large variability. For instance, consider the ‘Tower of Hanoi’ environment, where complexity es-
calates exponentially as the number of plates increases. Completing such a task with thousands
of operations becomes nearly impossible, resulting from the risk of operational failure due to real-
world environmental influences. More specifically, in the practical scenario, a range of 3 to 8 discs
suffices. Therefore, within this paper, the the values of the aspects we consider are all adhere to
reasonable range. In other words, the number of actions necessary for task completion will remain
relatively stable.

2 METHOD OVERVIEW

2.1 PROBLEM FORMALIZATION

We consider a task distribution denoted as p(TH), representing an environment encompassing H
variations. An agent with programmatic policy PE,θ is trained to generalize across variations of
the environment, where the θ presents the parameter of the policy. The parameter E denotes the
program architecture which can be defined by Domain Specific Language (DSL). Formally, we can
model each task τi ∈ TH for i ∈ H as a Markov Decision Process defined by a tuple {Si, Ai, Ti, Ri}
where Si and Ai denote the environmental observation and action spaces, respectively. Furthermore,
Ti : Si × Ai × Si → [0, 1] represents state transition probabilities, and Ri : Si × Ai → R
quantifies the corresponding rewards when transitioning between states. The objective is to train a
policy PE,θ(at | st), receiving state st ∈ S and produces an action at ∈ S, that can generalize to
TH . The parameter of the policy θ̂i is estimated by maximizing the cumulative discounted reward
Es0,a0,s1···∼PE,θ

[
∑∞

0 γt ·Ri(st, at)] where γ ∈ (0, 1]. Subsequently, we update the policy PE,θ.

2.2 PROGRAM STRUCTURE

A programmatic policy processes an environmental state as input and computes an action to be
executed by the agent. Drawing inspiration from the program architecture search framework (Qiu &
Zhu, 2021), we can infer the structure of a programmatic policy denoted as PE,θ by DSL.

Figure 1: DSL for meta programmatic policy

The DSL is represented in Backus-Naur form (Winskel, 1993). A context-free grammar, de-
picted in Figure 1, is crafted to define the programs to be learned. The non-terminals E and
B are non-terminals and evaluated as action values and boolean. X ∈ Rm, with X repre-

2

Under review as a conference paper at ICLR 2024

senting the input variable of the policy and m denoting its dimension. This DSL allows the
derivation of programs. As an example, we can deduce a program as if B1 then C1 else E1

to if B1 then C1 else (if B2 then C2 else E2). The semantics of the program, such as
if B1 then C1 else E1, are computed by a function denoted as Jif B1 then C1 else E1K(x),
where the variable x serves as input to the if-else-then program. yielding a real-valued vector as
output. C ::= θc + θ · X , yielding a real-valued vector as output, is an affine transformation, where
θ ∈ Rn·|X | and n represents the dimension of the action spaces.

To ensure differentiability, the program derived from the DSL can be interpreted as a numerical
approximation:

Jif B then C else EK(s) = σ(JBK(s)) · JCK(s) + (1− σ(JBK(s))) · JEK(s)

where σ represents the sigmoid function. By utilizing the sigmoid function, the if-else-then pro-
gram is transformed into a differentiable expression with binary branch selection. The output of the
sigmoid function represents the probability of selecting a particular branch.

2.3 TRAINING OF PROGRAMMATIC POLICY

Figure 2: Illustration of training programmatic policy

The left part of Figure 2 illustrates a program derivation tree with a depth of three. According to
the DSL expression, we can systematically expand a program into a program derivation tree. The
program derivation tree represents all possible program derivations within a specified depth limit for
program abstract syntax trees. From the Figure 2, W is a vector containing the knowledge of the
selection of each layer’s structure. Each digit inW models a binary selection. For instance, probC1

represents the probability of expanding E1 into C1 and 1 − probC1 signifies the probability of ex-
panding it into if B1 then C2 else E2. The value of probC1 is calculated using a Softmax function.
Thus, the parameter θ in the programmatic policy PE,θ is derived from both the program structure
parameterW and the numerical approximation parameter for if-else-then φ. The parameters θ can
be viewed as a combination ofW and φ. As E is a constant, we focus on optimizing the θ parameter
for policy Pθ(W,φ).

In this paper, we consider Proximal Policy Optimization (Schulman et al., 2017) as the foundational
reinforcement learning algorithm to train the policy as depicted in the right part of Figure 2. The
actor P i represents the programmatic policy we defined, while the critic Qi is actually a neural
network. We utilize a ReplayBuffer Bi for storing trajectories during training.

We adopt Reptile (Nichol & Schulman, 2018) as the learning algorithm for gradient update, which is
shown in the bottom part of the Figure 2. It operates by performing a stochastic gradient descent on

3

Under review as a conference paper at ICLR 2024

Algorithm 1: Algorithm for learning programmatic policy within domain randomization
Input: Distribution over tasks p(TH), Learning rate α, Meta Learning rate β, DSL E, Depth d
Output: Trained policy Pθ

1 Derive Programmatic Policy Pθ(W,φ) via (E, d)
2 Initialize θ(W, φ) randomly
3 while not done do
4 Sample batch of tasks Ti ∼ p(TH)
5 foreach task in Ti do
6 Sample Trajectories Di by Pθ(W,φ)

7 Store in ReplayBuffer Bi

8 Estimate θ̂i with learning rate α
9 end

10 Update θi+1(Wi+1, φi+1)← θi(Wi, φi) + β[θi(Wi, φi)− θ̂i(Ŵi, φ̂i)]
11 end
12 Extract Pθ(φ) by fixing an optimalW
13 while not done do
14 Sample batch of tasks Tj ∼ p(TH)
15 foreach task in Tj do
16 Sample Trajectories Dj by Pθ(φ)

17 Store in ReplayBuffer Bj

18 Estimate θ̂j with learning rate α
19 end
20 Update θj+1 ← θj(φj) + β[θi(φj)− θ̂j(φ̂j)]
21 end

the sampled tasks and updating the initial parameters toward achieving the final learned parameters
specific to the given task. The algorithm solely needs a black-box optimizer such as SGD or Adam
and offers good computational efficiency and performance.

In Algorithm 1, our algorithm takes as input training hyperparameters, a DSL description, the max-
imum depth of the program derivation tree denoted as d, and a task distribution. In line 1, we
automatically deduce a programmatic policy Pθ(W,φ) in the form of a program derivation tree with
depths ranging from 1 to d based on the input DSL. In line 2, we initialize the parameters θ to be
learned. Specifically, we initialize W with a 50% probability for each branch selection. In line 4,
we sample batch of tasks, following the domain randomization. In lines 5 to 9, the θ̂i is estimated.
The trajectories are obtained by the interactions between the agent and the environment, in which
we design a mechanism to help the agent utilize the RNN structure, will be elaborated upon in the
following section. Subsequently, the trajectories derived from these interactions are stored in a Re-
playBuffer for training. We employ PPO for optimizing the parameters, and we update both (W, φ)
sequentially using a bilevel optimization technique. Following an update of the parameters in the
inner loop, we obtain a ‘fast’ gradient update denoted as θ̂i(Ŵi, φ̂i). This result is subsequently
utilized to update the ‘slow’ gradient θi(Wi, φi) in the outer loop, as indicated in line 10. Following
the principles of Reptile, the expression θi(Wi, φi) − θ̂i(Ŵi, φ̂i) can be considered as a gradient
and subsequently utilized in a more advanced optimizer, such as Adam. Following iterative opti-
mization ofW and φ, they will stabilize after a certain number of iterations. At this point, we can
fix theW parameters to determine the specific structure of the programmatic policy, as detailed in
line 12, wherein we select the structure with the maximum likelihood. From line 13 to 20, we use
the similar process to optimize the Pθ.

2.4 USING RNN TO IMPROVE AGENT-ENVIRONMENT INTERACTIONS

The process of the agent interacting with the environment, as described in both line 6 and line
16 of Algorithm 1, is visualized in Figure 3. We sample each task from the task distribution and
generate multiple episodes through the agent’s exploration. During each episode, the agent engages

4

Under review as a conference paper at ICLR 2024

Figure 3: Procedure of agent-environment interaction

with the task environment. Once the agent generates an action at, the environment provides the
corresponding reward rt, advances to the next state st+1, and determines if the episode terminates.
This termination status is recorded using the flag dt, which is set to 1 if the episode ends or left at
a default value of 0 otherwise. The input is constructed by combining the following elements: the
next state st+1, action at, reward rt, and termination flag dt.

As the task changes and different policies are required for different MDPs, the agent must adjust its
actions according to the MDP in which it believes it is currently located. Thus, the agent aggregates
all available information on past rewards, actions, and termination flags and continually adapts its
policy. To facilitate the agent in learning from prior experiences, the programmatic policy incorpo-
rates an RNN structure. It utilizes actions and rewards from preceding time steps as training inputs.
According to the DSL 1, certain blocks of the policy comprise recurrent neural network cells. The
hidden state ht is a vector summarized from the programmatic policy. Using the hidden state ht+1

and input state st+1 as inputs, the policy generates the subsequent action at+1 and updates the sub-
sequent hidden state ht+2. The policy’s hidden state is retained across episodes but is not carried
over between distinct tasks.

3 EXPERIMENTS AND EVALUATION

We design experiments to answer the following questions:

• Can our learned programmatic policy outperform existing algorithms in benchmark tests?
Several variations can be derived from these benchmarks. How does our method generalize
across them?

• Our approach utilizes meta-learning to train the programmatic policy and integrates RNN
blocks into the policy structure. What is the impact of these two ideas on improving gener-
alization?

Benchmarks We assess the effectiveness of our approach using three challenging benchmarks,
depicted in Figure 4. These benchmarks—Hanoi, Stacking, and Hiking—are adapted from PDDL-
Gym Silver & Chitnis (2020), where both action and state spaces in the simulated environments are
discrete. Agents must execute a series of actions to achieve their task objectives.

• Hanoi: In this scenario, three adjacent pillars are denoted as A, B, and C, and they hold
various-sized disks stacked in a pyramid formation on pillar A. The goal is to methodically
transfer all the disks, one at a time, to pillar B. It’s crucial to ensure that a larger disk never
rests on top of a smaller one within the same pillar. Each action involves relocating a disk

5

Under review as a conference paper at ICLR 2024

Figure 4: Benchmarks for experiments

from the current pillar to another. The primary variation in this environment is determined
by the number of disks involved.

• Stacking: On the tabletop, multiple plates of varying sizes are scattered. The task is to
systematically pick up these plates one by one using a gripper and assemble them in de-
scending order of size. For simplification, the tabletop is depicted as a grid. The gripper
has the capability to move incrementally across the grid or seize a plate. Variations in this
environment arise from differing quantities of plates and their respective positions.

• Hiking: In the context of this environment, a character embodies the role of the agent
within a map, with a star symbolizing the target destination. The agent can traverse path-
ways, while blue areas denote impassable water obstacles. The overarching goal here is for
the character to progress incrementally, collecting all the stars dispersed across the map.
Variations in this environment pertain to the quantity and positioning of these stars.

Figure 5: The Performance of PPO, Reptile and our method in Hiking environments with the number
of stars ranging from 1 to 5.

Performance For the first question, we employ reinforcement learning algorithms: PPO, Rep-
tilePPO, Our method across the three environments. To facilitate the character in collecting all the
stars on the map within the hiking environment, we utilize these three methods. The performance
in alternative environments is detailed in the supplementary materials. During the training of the
ReptilePPO algorithm and our approach, we account for the varying aspects within the hiking envi-

6

Under review as a conference paper at ICLR 2024

ronment, encompassing the number of stars present (ranging from 1 to 5) as well as their respective
locations. Additionally, we train five PPO policies, each tailored to scenarios with a distinct number
of stars, ranging from 1 to 5. For instance, PPO-Hiking1 corresponds to an agent trained using
PPO in an environment containing one star. As depicted in Figure 5, each policy is also evaluated
in the these environments respectively. The vertical axis signifies the number of steps necessary for
the agent to attain its objective, while the horizontal axis denotes the number of iterations involving
agent-environment interaction episodes. Performance evaluation of policies is based on the number
of steps needed to accomplish a task; a lower step count indicates superior policy performance.

Examination of the figure reveals that policies trained with PPO generally yield commendable per-
formances. Notably, when the map features a modest number of stars, the majority of policies
exhibit strong performance. Particularly for tasks involving one star, they almost attain stable con-
vergence. Nonetheless, collecting all the stars within these environments presents a formidable
challenge. Policies trained in one-star environments exhibit poor performance when transitioning to
environments with two stars. Similarly, in more intricate environments, they struggle to achieve the
goal of collecting all the stars. Policies trained in multi-star environments can generally complete
tasks across a spectrum of star counts, ranging from 1 to 5. However, the task necessitates hundreds
of steps, a condition that is evidently suboptimal.

Policies trained with ReptilePPO and our method exhibit strong performance across environments
featuring star counts from 1 to 5. This can be attributed to both policies being trained within a
meta learning framework with domain randomization. The agents engage with multiple variations
throughout the training process, prompting the agent capture the task of interest.

Figure 6: The Performance of PPO, Reptile and our method in Hiking environments with the number
of stars ranging from 6 to 10.

Figure 6 illustrates the performance of these policies in environments characterized by greater com-
plexity. In more intricate environments, the performance of the five policies trained with the PPO
algorithm deteriorates. The threshold for the number of agent-environment interactions is set at 500.
For instance, the ppo-hiking1 policy engages with the environment approximately 500 times, sig-
nifying the agent’s inability to complete the task within these environments. Similarly, other PPO
policies trained in environments featuring a greater number of stars also demand approximately 400
interactions to achieve task completion.

Evidently, policies trained with ReptilePPO outperform those trained with PPO. When confronted
with previously unseen scenarios encountered during training, the agent demonstrates a degree of

7

Under review as a conference paper at ICLR 2024

generalization by completing the task in roughly 200 to 300 steps. Nonetheless, it exhibits sub-
par performance in intricate scenarios necessitating the collection of all 10 stars, with an average
completion time exceeding 400 steps.

Policies trained through our method consistently exhibit commendable performance, achieving con-
vergence across a broad spectrum of environments variations. Remarkably, even within the most
challenging scenario, which involves collecting all 10 stars, agents trained via our method accom-
plish the task in approximately 100 steps. The performance in these environments with previously
unseen variations during training indicates that our method has good generalization when facing
unseen scenarios.

Figure 7: The Performance of ReptilePPO, ReptilePRL and our method in Hiking environments

Ablation Study We investigate the impact of two ideas: the combination of a meta-learning frame-
work with programmatic policy and the utilization of RNN blocks in policy structure construction.
We implement ReptilePRL, which trains a programmatic policy without RNN blocks through meta-
learning, while the agent-environment interactions adhere to conventional methods.

From Figure 7, the programmatic policy combined with meta-learning can yield relatively better per-
formance than the policy trained by ReptilePPO. In straightforward scenarios, their performances
are comparable and have reached an optimal level. However, in more intricate scenarios, particularly
those that are unseen, programmatic policies tend to outperform other alternatives. This confirms our
initial hypothesis that programmatic policies may be more effective in handling domain generaliza-
tion. In the comparison between our method and ReptilePRL, both approaches attain commendable
performance in simple scenarios. However, as scenario complexity escalates, ReptilePRL struggles
to sustain an optimal solution in complex scenarios, whereas our method consistently converges to
a satisfactory solution. This is likely due to the fact that when the agent interacts with environ-
ments and preserves the RNN’s hidden state between each episode, the agent trained by our method
effectively leverages prior knowledge and transfers it to new tasks. These results signify that the
incorporation of RNN blocks into programmatic policies effectively enhances policy generalization
across different variations.

8

Under review as a conference paper at ICLR 2024

4 RELATED WORK

The interaction of an agent and an environment generates data for reinforcement learning. Thus,
it is believed that generalization in reinforcement learning is weak, and the model is more prone
to overfitting to the current training environment. The two most commonly ways to improve the
generalization of reinforcement learning models are regularization and randomization.

Liu et al. (2019); Farebrother et al. (2018) claim that L2 regularization can produce better results
than entropy regularization, and L2 regularization can find a good balance point for model’s abil-
ity and generalization. In robotics, models that perform well in simulators tend to exhibit reduced
performance in the real world. Cobbe et al. (2019) introduces CoinRun, an open-source game envi-
ronment designed to test the generalization performance of deep reinforcement learning algorithms.
A regularization parameter is proposed as a positive role to improve the model’s generalization. Lu
et al. (2020) considers deep reinforcement learning models as two parts: the perception layer and the
decision-making layer. An information Bottleneck approach is proposed to constrain the informa-
tion transmitting, due to the perception layer being more prone to overfitting to the current training
environment.

On the other hand, Peng et al. (2018) adds randomization to the simulator during the training phase.
Dynamic randomization is adopted to disturb the simulated training environment and to random-
ize the dynamic parameters of the environment. Akkaya et al. (2019) introduces the Automatic
Domain Randomization (ADR) algorithm to address the issue of models trained in simulated en-
vironments performing poorly in real environments. Furthermore, Mehta et al. (2020) use Active
Domain Randomization to make randomization more efficient by learning the adjustment environ-
ment parameters. Tzeng et al. (2020) treats the transition from simulator to reality as a transfer
learning problem. The real world robotic controller is learned by the ideas of domain adaptation
and paired image alignment. These method use environment randomization for sim2real problem.
Packer et al. (2018) claims that environment randomization is the most effective method so far to
improve generalization ability based on experiments on several sets of MuJoCo. However, there are
potential issues with increasing environment randomization, including: increased complexity of the
environment, increased complexity of training and dramatically increased variance.

Most of these methods are not suitable for the domain generalization within the environment with
different variations. In our method, we consider employ meta-learning to train a policy. The meta-
learning Duan et al. (2016); Finn et al. (2017); Nichol et al. (2018) is employed to allow the agent
to quickly learn new tasks based on existing knowledge. Espeholt et al. (2018) proposes a large-
scale reinforcement learning training framework, with high performance for multi tasks. Besides,
our preference is to use a combination of programmatic policy and meta-learning frameworks for
domain generalization. The programmatic policy is mainly inspired by (Qiu & Zhu (2021); Liu et al.
(2018)).

5 CONCLUSION AND FUTURE WORK

We introduce a framework aimed at learning programmatic policies utilizing a meta-learning algo-
rithm designed to address domain generalization. The policy exhibits a degree of generalization to
variations within an environment. To enhance programmatic policy training, we incorporate domain
randomization. Additionally, we harness RNN blocks for constructing the programmatic policy,
enabling the utilization of previously acquired knowledge from diverse tasks. Experimental results
validate the efficacy of our method in acquiring a programmatic policy capable of generalizing across
various environmental variations, even extending to previously unseen tasks during training.

Building upon our current method, two avenues for future research emerge. The first involves ex-
panding the applicability of our method to more intricate scenarios, thereby enabling the learned
policy to generalize across a broader spectrum of variations. The second direction entails exploring
the inclusion of additional grammars into the DSL, resulting in a programmatic policy endowed with
a more intricate structure capable of addressing more complex tasks.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a
robot hand. arXiv preprint arXiv:1910.07113, 2019.

Jonathon Cai, Richard Shin, and Dawn Song. Making neural programming architectures generalize
via recursion. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=BkbY4psgg.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying generaliza-
tion in reinforcement learning. In International Conference on Machine Learning, pp. 1282–1289.
PMLR, 2019.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl ˆ2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IM-
PALA: scalable distributed deep-rl with importance weighted actor-learner architectures. CoRR,
abs/1802.01561, 2018. URL http://arxiv.org/abs/1802.01561.

Jesse Farebrother, Marlos C Machado, and Michael Bowling. Generalization and regularization in
dqn. arXiv preprint arXiv:1810.00123, 2018.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. CoRR, abs/1703.03400, 2017. URL http://arxiv.org/abs/1703.
03400.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Zhuang Liu, Xuanlin Li, Bingyi Kang, and Trevor Darrell. Regularization matters in policy
optimization–an empirical study on continuous control. arXiv preprint arXiv:1910.09191, 2019.

Xingyu Lu, Kimin Lee, Pieter Abbeel, and Stas Tiomkin. Dynamics generalization via information
bottleneck in deep reinforcement learning. arXiv preprint arXiv:2008.00614, 2020.

Bhairav Mehta, Manfred Diaz, Florian Golemo, Christopher J Pal, and Liam Paull. Active domain
randomization. In Conference on Robot Learning, pp. 1162–1176. PMLR, 2020.

Alex Nichol and John Schulman. Reptile: a scalable metalearning algorithm. arXiv preprint
arXiv:1803.02999, 2(3):4, 2018.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. CoRR,
abs/1803.02999, 2018. URL http://arxiv.org/abs/1803.02999.

Charles Packer, Katelyn Gao, Jernej Kos, Philipp Krähenbühl, Vladlen Koltun, and Dawn Song.
Assessing generalization in deep reinforcement learning. arXiv preprint arXiv:1810.12282, 2018.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer of
robotic control with dynamics randomization. In 2018 IEEE international conference on robotics
and automation (ICRA), pp. 3803–3810. IEEE, 2018.

Wenjie Qiu and He Zhu. Programmatic reinforcement learning without oracles. In International
Conference on Learning Representations, 2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Tom Silver and Rohan Chitnis. Pddlgym: Gym environments from pddl problems. In Interna-
tional Conference on Automated Planning and Scheduling (ICAPS) PRL Workshop, 2020. URL
https://github.com/tomsilver/pddlgym.

10

https://openreview.net/forum?id=BkbY4psgg
https://openreview.net/forum?id=BkbY4psgg
http://arxiv.org/abs/1802.01561
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1803.02999
https://github.com/tomsilver/pddlgym

Under review as a conference paper at ICLR 2024

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Do-
main randomization for transferring deep neural networks from simulation to the real world. In
2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 23–30.
IEEE, 2017.

Eric Tzeng, Coline Devin, Judy Hoffman, Chelsea Finn, Pieter Abbeel, Sergey Levine, Kate Saenko,
and Trevor Darrell. Adapting deep visuomotor representations with weak pairwise constraints. In
Algorithmic Foundations of Robotics XII: Proceedings of the Twelfth Workshop on the Algorithmic
Foundations of Robotics, pp. 688–703. Springer, 2020.

Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri.
Programmatically interpretable reinforcement learning. In Jennifer G. Dy and Andreas Krause
(eds.), Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Ma-
chine Learning Research, pp. 5052–5061. PMLR, 2018. URL http://proceedings.mlr.
press/v80/verma18a.html.

Abhinav Verma, Hoang Minh Le, Yisong Yue, and Swarat Chaudhuri. Imitation-projected pro-
grammatic reinforcement learning. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelz-
imer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neu-
ral Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pp. 15726–15737, 2019. URL https://proceedings.neurips.cc/paper/2019/
hash/5a44a53b7d26bb1e54c05222f186dcfb-Abstract.html.

Glynn Winskel. The formal semantics of programming languages: an introduction. MIT press,
1993.

11

http://proceedings.mlr.press/v80/verma18a.html
http://proceedings.mlr.press/v80/verma18a.html
https://proceedings.neurips.cc/paper/2019/hash/5a44a53b7d26bb1e54c05222f186dcfb-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/5a44a53b7d26bb1e54c05222f186dcfb-Abstract.html

	Introduction
	Method Overview
	Problem Formalization
	Program Structure
	Training of Programmatic Policy
	Using RNN to Improve Agent-environment Interactions

	Experiments and Evaluation
	Related Work
	Conclusion and Future Work

