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ABSTRACT

Vision-language models (VLMs), exemplified by CLIP, have achieved remark-
able zero-shot generalization but remain highly vulnerable to imperceptible ad-
versarial perturbations, posing significant safety threats, particularly in medical
scenarios. In this paper, we first prove that VLMs are much more robust than
adversarial attacks when faced with weak transformations. Building upon this
insight, we propose the The Attack Means Nothing (TAME), a simple yet effec-
tive test-time defense paradigm for improving the zero-shot adversarial robust-
ness of medical VLMs. We conduct comprehensive experiments on 11 medical
datasets across 9 imaging modalities against three representative white-box at-
tacks (PGD, C&W, and AutoAttack). The BiomedCLIP with a backbone of ViT-
B/16 is utilized as the victim model. Extensive experiment results demonstrate
that our TAME consistently outperforms other defense methods across all attack
types, boosting the vanilla BiomedCLIP by 447.47% under PGD, +46.73% un-
der C&W, and +47.79% under AutoAttack, while maintaining competitive clean
accuracy. These significant improvements also suggest a potential risk of label
leakage during attacks. Furthermore, our TAME is plug-and-play and can be inte-
grated with other adversarially fine-tuned VLMs to enhance their defense capabil-
ities. These findings support a practical and generalizable approach to deploying
medical VLMs in clinical scenarios with the presence of adversaries. Codes will
be available on GitHub.

1 INTRODUCTION

Recent advancements in vision-language models (VLMs) Zhao et al.[ (2025); [Lai et al.[(2024) have
demonstrated significant success and potential for medical image analysis [Koleilat et al.| (2025);
Stevens et al.|(2024). Unlike traditional supervised learning focused on closed-set tasks, VLMs, such
as Contrastive Language-Image Pre-training (CLIP)Radford et al.|(2021al), enable the exploration of
open-set visual concepts, yielding strong zero-shot generalization capabilities. Unfortunately, some
studies|Zhang et al.|(2022));|Zhao et al.|(2023);|Yin et al.|(2023) reveal that adding even imperceptible
adversarial perturbations to input images can severely degrade VLM’s inference ability. This poses
critical safety risks, especially in medical scenarios |Dong et al.| (2024), which may lead to serious
misdiagnosis and hinder models from being deployed in real-world applications (see Figure|[T).

Extensive research has explored adversarial training|Chen et al.|(2020) as an effective defense strat-
egy, which can be broadly categorized into two categories: adversarial fine-tuning (AFT) Mao et al.
(2023); Wang et al.| (2024a)); Schlarmann et al.| (2024)); Wang et al.|(2024c)) and adversarial prompt
tuning (APT) |Li et al.[(2024); Zhang et al.| (2024); Zhou et al.| (2024)); Wang et al.| (2024b); [Zhou
et al.| (2024). AFT methods aim to establish a min-max game between the VLM and an adversary,
fine-tuning the pre-trained VLM on generated adversarial examples to achieve transferable robust-
ness across downstream tasks. However, most of these methods require substantial computational
resources and inevitably degrade the model’s generalization to testing data from unseen distribu-
tions. APT methods attempt to train learnable textual or visual prompts by aligning adversarial
image embeddings with corresponding text prompts while keeping the model backbone frozen. Al-
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Figure 1: Adversarial attacks disturb model inference by adding imperceptible perturbations to the
input image, leading to serious misdiagnosis. Our TAME enables the medical VLM to remain robust
against adversarial attacks during inference without extra training on predefined adversarial data.
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Figure 2: The medical imaging modalities used in this study. CFP: Color fundus photography. OCT:
Optical coherence tomography. CT: Computed tomography. MRI: Magnetic resonance imaging.

though they reduce training costs, their effectiveness is constrained by predefined data distributions,
limiting the adaptability to out-of-distribution environments. Consequently, achieving low-cost and
effective adversarial robustness remains an open challenge.

Test-time adversarial defense (TAD) (2022); |Pérez et al.| (2021); |Wu et al.| (2021));\Guo
et al| (2018)); Xing et al.| (2025)); [Wang et al.| (2025); [Mao et al.| (2021) has emerged as a promising

paradigm to boost zero-shot adversarial robustness in a low-cost manner, as TAD requires only test
data during the inference phase. Training-free TAD methods |Pérez et al.| (2021)); |Guo et al.| (2018)
assemble several image transformations to make it difficult for adversaries to circumvent the defense
strategy. Training-based approaches|Alfarra et al.| (2022); Xing et al.|(2025); Wu et al.| (2021));|Sheng]|
et all (2025)); Mao et al] (2021) mainly focus on modifying the input image or training a prompt to
counteract attacks. Despite their efforts, almost all existing TAD methods are designed for conven-
tional networks like convolutional neural networks, with insufficient exploration of VLM. Further-
more, medical VLMs are typically utilized to process a wide range of modalities, as illustrated in
Figure 2] posing a challenge to the defense method’s generalizability across various modalities.

The key to addressing these issues is to identify commonalities of adversarial images to establish a
general test-time defense paradigm for VLMs. In this paper, we first conduct a toy experiment on
multiple datasets by applying several transformations to both clean and adversarial images. We ob-
serve that although transformations with large magnitude significantly disturb model predictions on
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both images, this abnormal effect still appears on the adversarial images even under transformations
of minor magnitude. We term this phenomenon ‘semantic fragility’ of adversarial perturbations,
which can be interpreted as these perturbations being highly specific to the corresponding input
images. The VLM, trained on extensive and diverse data, exhibits inherent robustness to such mi-
nor transformations on clean images. In contrast, adversarial perturbations are over-fitted to both the
specific input and the current model parameters, rendering the semantic content within the perturbed
image embeddings highly susceptible to even slight alteration. Based on this observation, we pro-
pose The Attack Means Nothing (TAME), a test-time defense paradigm for medical VLMs. TAME
counteracts adversarial attacks by training an adversarial restoration map for each adversarial im-
age in a single iteration. Specifically, we first introduce the adversarial restoration map to the input
image to produce the restored image and then minimize the KL divergence between the predicted
probability distributions of each restored image and its transformed version. Through this training
process, the trained adversarial restoration map learns to restore the model’s invariance to minor
transformations, thereby reinstating the inference capability of VLMs. Furthermore, the adversarial
restoration map should also minimize its effect on clean images, thereby avoiding significant per-
formance degradation induced by excessive image modification. To address this issue, we design a
dynamic weighting mechanism that adaptively allocates weights according to the degree of semantic
fragility exhibited by the input image. Comprehensive experiments are conducted across 11 medical
classification datasets, including 9 modalities (see Figure @]), to evaluate TAME and other state-of-
the-art methods against three typical adversaries (i.e., Projected Gradient Descent PGD Madry et al.
(2018), C&W |Carlini & Wagner| (2017), and AutoAttack Croce & Hein|(2020)) that aim to max-
imize the classification loss in a white-box setting. Extensive experiment results demonstrate the
effectiveness and superiority of our TAME across diverse scenarios.

The three key distributions of this paper are summarized as follows.

* We propose a simple yet effective method to enhance the zero-shot adversarial robustness
of medical Vision-Language Models (VLMs), which can be utilized as a plug-and-play
module without additional training.

* Based on observed commonalities in adversarial images, we propose TAME to protect
VLMs against multiple attack types alongside a dynamic weighting mechanism maintain-
ing performance on clean images.

» Extensive experiments on 11 medical classification datasets across 9 modalities demon-
strate the superiority of our TAME over other existing defense methods.

2 RELATED WORK

2.1 ADVERSARIAL TRAINING

Adversarial training enhances the adversarial robustness of the model by training on the predefined
adversarial samples, which can be broadly classified into adversarial fine-tuning [Mao et al.[(2023));
‘Wang et al.| (2024a)); [Schlarmann et al.|(2024); Wang et al.|(2024c) and adversarial prompt tuning [Li
et al.| (2024)); Zhang et al.[(2024);|Zhou et al.| (2024); [Wang et al.| (2024b).

Adversarial Fine-Tuning (AFT) AFT improves the adversarial robustness by fine-tuning the VLM
on adversarial samples generated by an adversary. Mao et al. Mao et al.| (2023) fine-tuned the
vision encoder of CLIP using adversarial contrastive learning with text-guided supervision on a
small set of adversarial samples. Wang et al. Wang et al.| (2024a) proposed a pre-trained model
guided adversarial fine-tuning method, which distills the general knowledge from the original pre-
trained model to the target model to mitigate the over-fitting. Schlarmann et al. Schlarmann et al.
(2024) attempted to minimize the distance between the original and fine-tuned image embeddings
during adversarial training to preserve the performance of the fine-tuned model on clean data.

Adversarial Prompt Tuning (APT) APT learns trainable prompts to maintain alignment under
attack by exposing the model to adversarial samples while freezing the model parameters. Zhou et
al. {Zhou et al.| (2024)) presented to learn adversarially correlated text supervision by enhancing the
consistency of multi-modal features and encouraging distinguishability between features of clean
and adversarial data. Zhang et al.[Zhang et al.|(2024) aligned learnable text prompts with adversarial
image embeddings to improve resistance against white-box and black-box adversarial attacks. Li et
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al. |Li et al.| (2024) demonstrated the high sensitivity of both adversarial attacks and defenses to the
specific text prompts used in VLMs and proposed to improve adversarial robustness by learning
robust text prompts. Unlike these adversarial training methods, our TAME aims to achieve zero-
shot adversarial robustness using only test data in a low-cost and general manner, improving the
performance across various medical scenarios.

2.2 TEST-TIME ADVERSARIAL DEFENSE (TAD)

TAD aims to protect the pre-trained model from adversarial attacks in a low-cost manner during
inference, including two branches: training-free and training-based methods. Training-free meth-
ods [Pérez et al.| (2021); |Guo et al.| (2018) typically refer to designing the image transformation
strategy. Pérez et al. Pérez et al.| (2021) proposed a transformation ensemble method achieving
consistent improvements in adversarial robustness across datasets and adversaries while preserving
clean data performance. Guo et al. |Guo et al.|(2018) found that total variance minimization and
image quilting are effective against several attacks, particularly on the model trained on such trans-
formation strategies. Training-based methods |Alfarra et al.| (2022); | Xing et al.| (2025); [Wu et al.
(2021)); Wang et al.| (2025); Mao et al.| (2021)) primarily prevent the model from adversarial attacks
by modifying the input image or training a prompt. Alfarra et al. |Alfarra et al.| (2022) presented the
anti-adversary layer to generate a perturbed input image in the opposite direction of the adversarial
one to counter the attacks. Xing et al. |Xing et al.| (2025)) maximized the classification loss on the
test image to counterattack adversaries and prevented further counterattacking on clean data using a
threshold. Sheng et al. [Sheng et al.| (2025) reformulated the marginal entropy objective to train the
textual prompts and proposed a reliability-weighted ensembling strategy that aggregates information
from trustworthy augmented views to enhance defense. Although TTC and R-TPT are designed for
VLMs, they still exhibit limitations: 1) TTC requires a hyperparameter to distinguish clean and
adversarial images during inference, leading to suboptimal performance in adversarial robustness
when misclassifications occur. 2) R-TPT relies on low-entropy predictions for pointwise entropy
minimization, however, adversarial images typically yield high-confidence but incorrect predictions,
potentially reinforcing wrong decisions. In contrast, our TAME explores the inherent defect of ad-
versarial attacks in VLMs and requires only one gradient backpropagation step. It employs a general
training objective for both clean and adversarial images to achieve zero-shot adversarial robustness.

3 METHODOLOGY

3.1 PRELIMINARIES

Zero-shot inference of CLIP. Let fy, and fp, denote the CLIP’s vision encoder and text encoder,
respectively, where 6, and 6, are their corresponding parameters. Given an input image [ and a set
of k possible classes C' = {¢1, ca, ..., ¢k }, I can be classified in a zero-shot manner by computing the
cosine similarity between the produced image embedding and the text embeddings of C' wrapped in
a template(e.g., “a photo of [CLASS]”). Specifically, the cosine similarity score between the image
embedding and the text embedding of i-th class ¢; can be formulated as:

o Jo (D) fa ()T
Cosi(D) = 1o, (DI - [ fo. (ci)l .

The probability that I belongs to class c¢; is then calculated by the Softmax function:

eCos,;(I)/T
pi(I) = Softmaz(Cos;(I)) = W’ 2

where 7 refers to the temperature. The predicted class corresponds to the highest probability:
arg max, p;(I). For clarity, we will utilize P () to indicate the probability predictions of all classes.
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Figure 3: (a) Pipeline of training an adversarial perturbation map ¢, for a specific image I with its
corresponding label. (b) Pipeline of inference with an adversarial input image I + 6,,. The black and
red arrows indicate the data flow and gradient flow, respectively.
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Figure 4: The KL divergence between BiomedCLIP’s Figure 5: Averaged robustness ratio
predictions before and after applying transformations of 12 transformation strategies cal-
across three datasets with various modalities. culated on 11 datasets.

Adversarial attack. We focus on three typical adversarial attack methods under a white-box set-
ting: PGD Madry et al| (2018)), C&W [Carlini & Wagner] (2017), and AutoAttack
(2020). This setting assumes that adversaries have complete access to the architecture and parame-
ters of the victim model, enabling direct gradient-based attacks. The pipeline is shown in Figure[3]
The adversary learns an adversarial perturbation to increase the divergence between text and image
embeddings by maximizing an adversarial perturbation loss £, (e.g., cross-entropy) as follows:

dp = argmax L,(P(I +6),¢cy) 3)

ll8]lcc <ep

where ¢, and ¢, denote the perturbation budget and the class label, respectively. The adversary then
employs the victim VLM on the adversarial image I=T1+ dp to obtain an incorrect prediction.

3.2 SEMANTIC FRAGILITY OF ADVERSARIAL PERTURBATIONS

In this study, we found that VLM is more robust than adversarial perturbations, and the perturbed
image embeddings are semantically fragile and highly sensitive to minor alterations. To demonstrate
this, we first performed toy experiments on three representative datasets from three modalities (MRI,
dermoscopy, and X-ray) using three types of transformations: random cropping, random rotation,
and random masking. Specifically, we measured the robustness by calculating the symmetrical KL
divergence between predictions before and after applying transformations as follows:

T(Ialt) = ‘Ckl(P(I)7P(It)) +£kl(P(It)7P(I))a 4)

where Ly; indicates the KL divergence loss, and I; denotes the transformed image. PGD and
BiomedCLIP Zhang et al| (2023)) are utilized as the adversarial attack method and the victim model,
respectively. As illustrated in Figure 4 weak transformations (e.g., ==10° random rotation and 90%
random cropping) produce low KL divergence for clean images but high divergence for adversarial
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ones, with this gap decreasing under stronger transformations. This phenomenon can be attributed
to that adversarial perturbations are highly over-fitted to the specific image. However, this effect
is dependent on the transformation type. In contrast, random masking has a minimal effect at low
intensities, as it only alters a small portion of the adversarial perturbations.

To discuss the efficacy of various transformation strategies, we further defined a ratio R =
r(I,1;)/r(I, I) to quantify the robustness discrepancy induced by a transformation ¢ between clean
and adversarial images. A larger value of R indicates a stronger discriminative capacity of ¢ in dis-
tinguishing adversarial images from clean ones. We calculated R on 13 common transformation
strategies and displayed the results in Figure 3} It shows that an effective transformation strategy
yielding a high R should satisfy two criteria: (1) it should modify the values and/or spatial posi-
tions of a majority of pixels, thereby amplifying its impact on adversarial images; and (2) it should
apply minimal distortion to preserve high robustness on clean images. Therefore, we selected ran-
dom cropping and random rotation, which exhibit high R values, to construct our defense strategy.
Comprehensive experiment results are provided in the Appendix.
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Figure 6: (a) Pipeline of our TAME training the adversarial restoration map J, for an adversarial

image I. (b) Pipeline of inference with the weighted restored image I. The black and red arrows
indicate the data flow and gradient flow, respectively. ‘Tran.’: Abbreviation of ‘Transformation’.

3.3 THE ATTACK MEANS NOTHING (TAME)
3.3.1 ADVERSARIAL RESTORATION

In this paper, we specifically target the preservation of VLM’s zero-shot inference robustness, where
the defender has neither access to task-specific training data nor annotations for test samples. Based
on the above observations (see Section [3.2), we proposed TAME, a simple yet effective method, as
illustrated in Figure @ For each input adversarial image I, we introduced a learnable adversarial
restoration map J,, yielding the restored image I = I — 6,, which is intended to approx1mate the
original clean image /. Due to the inability to directly obtain I, we adopted a compromise approach
that restores the model’s strong robustness on weak transformations by posing the consistency con-
straint to train J, as follows:

min Ly (P(I), P(I,)), (5)

H da H oo S€q
where ¢, and I,, indicate the defense budget and the weakly transformed I, respectively. Note that

the Ly (P(I,,), P(I)) term is removed since P(I) approximates P(I), which may provide limited
supervision. This process to update §, can be approximated by PGD Madry et al.|(2018):

5; = H(52 - asgn(véaﬁkl(P(IN)v P(Lﬂ))))? (6)
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where « denotes the step-size, and the update step is fixed at 1 in this study. The initial perturbation
map &0 is randomly sampled from a uniform distribution U (—¢, €, ).

3.3.2 WEIGHTING MECHANISM

In this section, we attempt to address the risk that directly applying J, to produce the restored
image may degrade the performance on clean images, thereby hindering model deployments. An
intuitive strategy is to leverage the divergent responses of clean and adversarial images to minor
transformations to distinguish them. However, it is hard to determine a universal threshold due to
the discrepancies among datasets. Recall the observation shown in Figure [f] that strong transforma-
tions with large magnitude induce high KL divergence values on both clean and adversarial images.
Derived from this, such a high KL divergence value can be treated as an anchor to take the effect of
normalization across datasets. We then devised a dynamic weight coefficient w formulated by:

w = Ekl(P(i)?P(fw))
Ekl(P(j)’P(js))

)

where I, indicates the strongly transformed I. Due to the discrepancy between clean and adversarial
images, this ensures allocating larger weights to adversarial ones while avoiding excessive modifi-
cation of clean ones. To further amplify the effect of w on adversarial images and mitigate potential
instability from excessively large weights, we also truncated w using an empirically determined
threshold value of 0.5, where values exceeding this threshold were clipped to 1. Then the model can
perform inference on the weighted restored image as illustrated in Figure[6] (b). We summarize the
algorithm of our TAME in Algorithm|[T}

Algorithm 1: TAME Algorithm.

Inpulé): Current test image I, pre-trained VLM (including fs, and fs, ), defense budget €., and step-size a.
1: 6, ~ U(—€a,€a).
2: 62 =T1(62 — asgn(Vs, Lri(P(I), P(I)))).
3: 6, = clamp(dl, —€q, €q).
4: w = Le(P),P(Iw))
Ly (P(I),P(Is))
S5:w=w-lu<os +1-Lusos

Output: P(I — w - dq)

4 EXPERIMENTS AND RESULTS

4.1 DATASETS AND METRIC

We conducted all experiments on the test sets of 11 diverse medical datasets spanning 9 imaging
modalities: Computerized Tomography (CTKidney [slam et al.[|(2022)), Dermatoscopy (DermaM-
NIST |Codella et al.| (2019); [Tschandl et al.| (2018))), Endoscopy (Kvasir [Pogorelov et al.| (2017)),
Color Fundus Photography (RETINA |[Kohler et al.| (2013); [Porwal et al.| (2018))), Histopathology
(LC25000 Borkowski et al.|(2019) and CHMNIST [Kather et al.|(2016))), Magnetic Resonance Imag-
ing (BTMRI |Nickparvar| (2021))), Optical Coherence Tomography (OCTMNIST [Kermany et al.
(2018))), Ultrasound (BUSI |Al-Dhabyani et al.| (2020)), and X-Ray (COVID-QU-Ex [Tahir et al.
(2021)) and KneeXray (Chen| (2018))). The details are listed in TableE} We utilized the classification
accuracy as the metric to evaluate our TAME and other competing methods.

4.2 IMPLEMENTATION DETAILS

We employed the pre-trained BiomedCLIP [Zhang et al. (2023) with a ViT-B/16 backbone as the
victim model and reported the averaged results calculated across three trials (i.e., setting the random
seed to 0, 1, and 2). The attack budget ¢, was set to 1/255 to guarantee imperceptible perturbations,
and the update step for each attack method was set to 10. All experiments are conducted under the
white-box setting, where the adversary has full access to the victim model. In our TAME, the weak
transformation strategy is empirically defined as the combination of £10° random rotation and 90%
random cropping. The strong transformation strategy applies a more intensive combination of +30°
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random rotation and 50% random cropping. Since the defense is operated by the user at test time,
there is no need for the adversarial restoration map to be undetectable, allowing a large defense
budget. Therefore, we set both the defense budget ¢, and the step-size « to 8/255.

4.3 EXPERIMENTAL RESULTS

Table 1: Zero-shot adversarial robustness (%) of our TAME, the BiomedCLIP baseline, and other
competing TAD methods on 11 medical datasets. We report the mean and standard deviation cal-
culated across three trials. For each dataset, the highest performance under the Clean, PGD, C&W,
and AutoAttack (AA) settings is highlighted in red, blue, green, and purple, respectively.

Dataset Attack | BiomedCLIP | Anti-Adv | HedgeDefense TTC R-TPT TAME
Clean 56.79 11622010 | 58772008 | 42072043 | 54305031 | 54.1351.09

BTMRI PGD 0.6810.07 9.8810.20 6.37+0.10 53.4140.08 | 48.670.47 | 61.210.33
C&W 0.6840.03 7.9610.35 7.5510.07 53.3710.67 | 48.8410.20 | 61.50L0.43

AA 0.06+0.00 8.1540.22 7.6510.15 56.9240.87 | 50.4610.26 | 61.2540.19

Clean 59.75 27.5410,00 49.7210_72 40.9611_21 45‘4811_11 62.71:&2_07

BUSI PGD 0.00+0.00 8.3310.20 2.8310.53 51.84+160 | 34.8841.44 | 68.081245
C&W | 0.004000 | 14412055 | 5372100 | 49154183 | 34324009 | 70.9010.53

AA 0.000.00 8.47+0.00 4.38.40.53 55.09+1.51 | 37.711.51 | 65.5440.20

Clean 43.82 43.80+0.01 48.67 +0.21 31.5010.37 | 37.5140.15 | 36.38+0.26

PGD 0.00+0.00 0.1540.05 0.6210.01 48.9310.28 | 25.9910.09 | 54411022
COVID-QU-Ex C&W 0.00+0.00 0.1710.05 0.6610.08 49.3010.31 | 26.2310.13 | 53.7010.42
AA 0.00+0.00 0.2040.03 10.0310.06 40.5140.40 | 31.7610.29 | 54.00L0 45

Clean 42.43 40-25i0.01 42.56i0.04 29.7340.14 48.33i0,03 40-36i0.38

PGD 0.8710_03 1.31:&0_04 2-36;&0.12 26.3210_29 40981013 53'0110.60

CTKIDNEY | oW | 0881002 | 275000 | 2895001 | 26352030 | 41104015 | 52025000
AA 0.0540.00 0.68+0.04 4.9110.12 32.5840.25 | 45.23+0.31 | 50.4240.61

Clean 38.80 38652000 | 37442014 | 15.695055 | 330920, | 27.9510.63

PGD 0.00+0.00 0.07+0.06 0.88+0.02 40.5710.24 | 21.0010.27 | 40.28+0.509
DermaMNIST | cow | 0.005000 | 0135002 | 1025015 | 39985140 | 20.0350.2 | 413050060
AA | 0002000 | 0300001 | 6.23w001 | 334Ts04s | 33440041 | 41.9940.05

Clean 54.58 2422000 | 56092015 | 26645125 | 56284061 | 48.3611 00

Kvasir PGD 0.00+0.00 2.19+0.40 0.4219.07 46.1610.50 | 41.891+0.45 | 59-61+0.08
C&W 0.000.00 2.7540.20 0.3140.14 43111052 | 41421065 | 58.1110.22

AA 0.00+0.00 3.2840.04 4.0610.28 48.1940.31 | 47.86+0.34 | 63.7240.67

Clean 30.65 20394006 | 25532014 | 25424033 | 29994055 | 21771011

CHMNIST PGD 0.00+0.00 5.5710.30 0.1840.07 20.1540.00 | 16.5110.37 | 25.971+0.17
C&W | 0024005 | 5305096 | 0405005 | 198841024 | 16585061 | 24.9810 75

AA | 0.00:000 | 332p001 | 337005 | 24-961002 | 22.5240.58 | 30-8340.50

Clean 50.01 48.10:&0,04 54.1410_07 32.7710_10 50.1210_]4 44.0410_23

LC25000 PGD 0.0110.00 1.2140.03 0.2110.02 32214008 | 38.87+0.05 | 55.75+0.56
C&W 0.0240.01 1.4840.04 0.36+0.03 30.89+0.11 | 38.4310.14 | 52.4710.41

AA 0.0110.00 5.7410.01 8.7610.03 41.1940.33 | 43.1410.05 | 54.6210.20

Clean 26.26 26.37i0.04 26~10i0,51 29-15i0.02 32-89i0,81 26.18i0430

RETINA PGD 0.00+0.00 9.7510.55 2.60+0.45 35.5440.82 | 20.2740.79 | 26.1310.53
C&W | 0.00:000 | 889%025 | 1.61so1q | 33622070 | 21692081 | 26.2140.45

AA 0.00+0.00 9.5940.41 8.6510.50 32.6841.11 | 29.9440.06 | 26.6810.21

Clean 29.47 8.86:&0,03 23.85i0.05 24.88i0,47 40-84i0.31 38.38i0,44

KneeXray PGD 0.00+0.00 0.2410.13 0.2240.11 47.7540.12 | 27.70+0.64 | 46.1510.33
C&W 0.000.00 1.0710.11 1.6140.27 46941039 | 28.9210.84 | 41.08+0.06

AA 0.00+0.00 3.7210.06 18.7410.44 1747107 | 35.65+0.35 | 39-6140.26

Clean 29.90 28.80+0.00 26.2340.05 29.3710.79 | 25.40+0.08 | 34.10+0.36

PGD 6.2710.68 8.1340.33 24.8310.05 33.7310.38 | 25.1710.05 | 39.409.29

OCIMNIST | cow | 6370017 | 7.335055 | 25175007 | 32572041 | 25172005 | 39.6310.38
AA 0.00+0.00 0.3310.05 18.30+0.14 20.4040.59 | 25.2040.14 | 37.1040.57

Clean 12.04 33351001 | 40832015 | 29844014 | 42202010 | 39.4910 01

Average PGD 0.7110.06 4.26+0.03 3.77+0.04 ?)9-6:9i().29 ?105%10.08 43-1§i<].18
C&W 0.7210.01 4.75410.07 4.2710.07 38.6510.24 | 31.1640.21 | 47.4510.14

AA 0.01+0.00 3.98+0.06 8.6410.05 36.68+0.13 | 36.63+0.11 | 47.8040.11

4.3.1 COMPARISON WITH OTHER TAD METHODS

We compared our TAME with the BiomedCLIP baseline, two TAD methods designed for the tradi-
tional models (Anti-Adv |Alfarra et al.|(2022) and HedgeDefense Wu et al.| (2021)), and two TAD
methods tailored for VLMs (TTC [Xing et al.[(2025)) and R-TPT [Sheng et al.| (2025)). Specifically,
we re-implemented all the competing methods using the same baseline and reproduced the results by
utilizing their open-source codes. As detailed in Table[I] the results reveal that (1) BiomedCLIP is
highly susceptible to adversarial attacks, which devastate its inference capabilities; (2) Anti-Adv and
HedgeDefense provide only marginal improvements, underscoring their limited defense ability for
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Table 2: Zero-shot adversarial robustness (%) of our TAME, TTC, and R-TPT integrated with three
distinct AFT methods: FARE, PMG, and TeCoA. We report the mean and standard deviation cal-
culated across three trials. For each AFT method, the highest performance under the Clean, PGD,
C&W, and AutoAttack (AA) settings is highlighted in red, blue, green, and purple, respectively.

Method Clean PGD C&W AA
CLIP (ViT-B/32) 24.33 0.0740.02  0.1340.01 0.1340.00
FARE 22.51 6.09+0.01 6.0240.01 5.7140.00
FARE + TTC 23.091022 16971008 16401003 22.8210.03
FARE + R-TPT 22.7040.02 16.7740.03 17.0540.05 19.4640.07
FARE + TAME (Ours) 23-43i0410 32-32:{:026 3085i0'§6 28.98i0‘11
PMG 22.95 1227002 11711001 11.6510.02
PMG + TTC 22485005 16291007 15.961007 20.1210.13
PMG + R-TPT 20.534+0.05 17.70+0.01 17.5140.04 19.0740.04
PMG + TAME (Ours) | 21.021017 21401014 2L.09:022 20.8040.01
TeCoA 22.56 11.96i0.01 11~42i0.01 11~49i0.01
TeCoA + TTC 2224007 16143011 16.023013 20.00410.23
TeCoA + R-TPT 22.841005 19.1610_07 1907:&0.08 21.34:&0_10
TeCoA + TAME (Ours) 22.68i0‘07 23.52:{:(]‘05 23'43i007 23'40i0A10

VLMs; and (3) our TAME consistently demonstrates strong adversarial robustness, delivering supe-
rior performance in most scenarios and achieving the best overall accuracy across all attack types,
while maintaining accuracy on clean images with minor and acceptable degradation. If higher clean
accuracy is required, the defense budget can be reduced, as explored in Appendix Addition-
ally, an intriguing observation is that TAME’s overall accuracy under adversarial attacks (48.18%
for PGD, 47.45% for C&W, and 47.8% for AutoAttack) surpasses that of BiomedCLIP on clean
images (42.04%). This phenomenon indicates a potential risk of label leakage during the attack
process. We will discuss it in the Appendix [B]

4.3.2 EXTENSIBILITY ANALYSIS

To evaluate the extensibility of TAME, TTC, and R-TPT, we integrated each one with various adver-
sarially fine-tuned models. In this experimental setup, we utilized a pre-trained CLIP model with a
ViT-B/32 backbone as the base victim model. Due to the challenge of obtaining a fine-tuning dataset
that covers all downstream modalities, we implemented three AFT methods (i.e., FARE|Schlarmann
et al.| (2024), PMG Wang et al.| (2024a), and TeCoA [Mao et al.| (2023)) by fine-tuning the CLIP
vision encoder on adversarial images from the TinyImageNet dataset. The presence of a significant
discrepancy between the adversarial training data and testing data can serve to assess the adaptabil-
ity of AFT methods in generalizing to unseen testing adversarial images. For conciseness, we only
display the average accuracy across 11 datasets in Table[2] and the complete results can be found in
Table |8} The results indicate that (1) AFT methods provide only a partial defense against attacks,
which can be attributed to their limited adaptation capability when generalized to diverse test data;
(2) all TAD methods consistently boost the adversarial robustness of adversarially fine-tuned mod-
els, demonstrating the effectiveness of test-time adversarial defense; and (3) our TAME achieves
significantly superior robustness enhancements across all adversarial attack types compared to TTC
and R-TPT, regardless of the deployed victim model, underscoring its exceptional extensibility.

5 CONCLUSION

In this paper, we propose TAME, a novel test-time adversarial defense method designed to improve
the zero-shot adversarial robustness of medical vision-language models. By leveraging the semantic
fragility of adversarial perturbations, TAME effectively restores model predictions through an ad-
versarial restoration map trained specifically for each test image, requiring only a single update step.
To mitigate adverse effects on clean inputs, we further introduce an adaptive weighting mechanism
that balances the trade-off between adversarial robustness and clean accuracy, eliminating the need
for manual hyperparameter tuning. Extensive experiments across multiple adversarial attacks and
11 medical datasets spanning 9 imaging modalities demonstrate the superiority of our approach, in-
dicating that TAME not only outperforms existing defense strategies but also generalizes effectively
to adversarially fine-tuned models. Future work will investigate the extension of this paradigm to a
wider range of medical modalities and a more extensive suite of adversarial attacks.
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REPRODUCIBILITY STATEMENT

As recommended, we state the reproducibility of this study here. All 11 medical datasets utilized in
this paper are public, and the download links are shown as follows:

BTMRI: https://drive.google.com/file/d/1_1JLZRUmczgZgoN—dNg
kAzGzmi140NoU5/view?usp=sharing

BUSI: https://drive.google.com/file/d/1hB5M7wcAUTVIEtiYrijAC
0Q36R6VmMQaa/view?usp=sharing

COVID-QU-Ex: https://drive.google.com/file/d/1zMLN5g5e_tmH-d
eSZQ1Y4Xg0OM1EgCrML/view?usp=sharing

CTKidney: |https://drive.google.com/file/d/1PBZ299k--mzZL8JU7nh
ClWy8yEmlgmVDh/view?usp=sharing

DermaMNIST: https://drive.google.com/file/d/1Jxd1-DW1junRDZ8f
Y80d15zUMefriQXt/view?usp=sharing

Kvasir: https://drive.google.com/file/d/1T_cqgnNIjmGazNegb6gziar
vCNWGsFEkRi/view?usp=sharing

CHMNIST: https://drive.google.com/file/d/1tyQiYOmgAGNaY4SCK
__8U5vEbbaalAD-g/view?usp=sharing

LC25000: https://drive.google.com/file/d/1YIu5fgMXgyemisiL1L1
HCvES2nVpCtun/view?usp=sharing

RETINA: https://drive.google.com/file/d/18U-Gc22h5QryomNNzY
4r4Qfrg52yf5EQ/view?usp=sharing

KneeXray: https://drive.google.com/file/d/1DBVraYJdmxy2UcQ_nGLY
vIB2reITOm453/view?usp=sharing

OCTMNIST: https://drive.google.com/file/d/1mYZNWxbPxnnVvcwHQ
YybA8gdMzQAoOem/view?usp=sharing

We followed the data processing pipeline detailed in [Koleilat et al.| (2025)), which is also open-
source (https://github.com/HealthX-Lab/BiomedCoOp/tree/main). The results
of the competing methods are reproduced by using their publicly available source codes, and the
corresponding GitHub links are listed below:

Anti-Adv: https://github.com/MotasemAlfarra/Combating-Adversa
ries-with-Anti-Adversaries

HedgeDefense: https://github.com/burcywu/hedge_defense

TTC: https://github.com/Sxing2/CLIP-Test-time-Counterattack
s/tree/main

R-TPT: https://github.com/TomSheng2l/R-TPT/tree/main
FARE: https://github.com/chs20/RobustVLM

PMG: https://github.com/serendipityl122/Pre-trained-Model-G
uided-Fine-Tuning-for—-Zero-Shot-Adversarial-Robustness

TeCoA: https://github.com/cvlab-columbia/ZSRobust4FoundationM
odel

The hyper-parameter configurations of our TAME can be found in Section and the code and the
computational environment will be available on GitHub.
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APPENDIX

A  DATASET DETAILS

Table [3| presents a summary of the 11 medical datasets used for evaluation in this study, encompass-
ing 9 typical biomedical imaging modalities: MRI, ultrasound, X-ray, CT, dermatoscopy, endoscopy,
histopathology, CFP, and OCT.

Table 3: Details of 11 datasets across 9 biomedical imaging modalities used in this study.

Modality Dataset Case Number
Magnetic Resonance Imaging (MRI) BTMRI 1717
Ultrasound BUSI 236
COVID-QU-Ex 1656
X-Ray KneeXray 6351
Computerized Tomography (CT) CTKidney 3738
Dermatoscopy DermaMNIST 2005
Endoscopy Kvasir 1200
Histopathology CHMNIST 1504
LC25000 7500
Color Fundus Photography (CFP) RETINA 1268
Optical Coherence Tomography (OCT) OCTMNIST 1000

B LABEL LEAKAGE BY ATTACKS

To validate the phenomenon of “label leakage”, we attacked BiomedCLIP using the PGD method
with an attack budget of 1/255 and a step size of 10. Specifically, we evaluated three settings: (1)
“Chance-level”: a chance-level baseline with random guessing; (2) “Random Noise”: classification
using perturbations initialized from random noise; and (3) “Label As Target”: classification using
adversarial perturbations generated by the PGD method. For the latter two, We employed a mini-
ResNet He et al.| (2016) (about 0.3M parameters) as a simple classifier, utilized to predict the class
labels from the input perturbations. This classifier is trained by an Adam |Kingma & Ba| (2014)
optimizer using a learning rate of 0.001 for 10 epochs, with an 8:2 train—validation data split. As
shown in Figure the “Chance-level” achieves an accuracy of approximately 1/k, where k denotes
the number of categories. The accuracy of “Random Noise” is comparable to this baseline across
most datasets, while “Label As Target” exhibits a significantly higher overall accuracy. This finding
highlights the potential risk of label leakage via adversarial attacks. We argue that this leakage occurs
since adversarial perturbations are optimized along gradient directions that are inherently label-
aligned, thereby embedding class-related information at the pixel or feature level. Consequently, a
defense approach that learns to recognize and reverse such information could transform adversarial
perturbations into signals that are beneficial to the model’s performance. This insight suggests that
future research should reconsider the supervision strategy of attack methods to mitigate the risk of
label leakage.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 ABLATION STUDY

In this section, we will discuss the effect of the proposed weighting mechanism and analyze the
sensitivity of our TAME to the defense budget §, and the step-size a. We repeated the experiments
on 11 medical datasets using BiomedCLIP as the victim model, and the results are summarized in
Table ] It reveals that (1) the dynamic weight w preserves performance on clean images by sacri-
ficing robustness to adversarial images, where the extremely high adversarial robustness intensifies
the suspicion of label leakage during adversarial attacks; (2) our TAME is robust to the variation
of §, and «; and (3) the performance on clean and adversarial images generally exhibits opposite
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Figure 7: Classification accuracy across 11 datasets under various situations, where the error bars
represent standard deviation calculated across 3 trials. Chance-level: the expected performance of
making predictions by random guessing. Random Noise: using the perturbations initialized by ran-
dom noise to train a simple classifier. Label As Target: using the adversarial perturbations produced
by PGD to train a simple classifier.

trends as d, and « decrease. The trade-off issue between clean and adversarial robustness will be
considered in our future work.

C.2 LARGER ATTACK BUDGET

We enlarged the attack budget from 1/255 to 4/255 to evaluate the effectiveness of our TAME and
other compared TAD methods in a more challenging environment. All the experiment configurations
of all methods are frozen to avoid additional tuning. Since amplifying the attack budget will not
affect the performance on clean images, the results under the clean setting are omitted. We reported
the results in Table[f] The results demonstrate that our TAME still remains robust against all attack
types even with such a larger attack budget and surpasses other compared methods across most
datasets, achieving the best overall accuracy.

C.3 DEPLOY TO OTHER MEDICAL VLMS

We further discussed the generalizability of the defense methods when deployed to other medical
VLMs. The PubMedCLIP Eslami et al.| (2023)) with a ViT-B/32 backbone is introduced as the victim
model, and other experimental configurations remain consistent with those in Table[I} The results
displayed in Table [5 reveal that our TAME consistently achieves the strongest overall adversarial
robustness against all attack types with an acceptable accuracy on clean images. The label leakage
phenomenon can also be clearly observed that the overall accuracies of our TAME against PGD
(41.41%), C&W (40.42%), and AutoAttack (36.19%) are much higher than the accuracy of the
PubMedCLIP baseline on clean images (27.24%).

C.4 ADVERSARIAL ROBUSTNESS ON NATURAL IMAGE TASKS

To evaluate the generalizability of our TAME in natural scenes, we followed previous adversarial
defense works Xing et al.| (2025); [Wang et al.| (2024a) and conducted experiments on 16 diverse
natural image datasets, including four distinct tasks:

* General Object Recognition: CIFAR10 Krizhevsky et al.| (2009), CIFAR100 Krizhevsky
et al.|(2009), STL10|Coates et al.|(2011), ImageNet | Deng et al.|(2009), Caltech101 |Fei-Fei
et al.| (2006), and Caltech256 |Griffin et al.|(2007).
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Table 4: Zero-shot adversarial robustness (%) of various variants of our TAME on 11 medical
datasets. We report the mean and standard deviation calculated across three trials.

Ablation study for TAME

Dataset Attack | BiomedCLIP WO w o =a=4/25 [ 6, —=a = 2/255 Ours
Clean 56.79 38.36+1.62 54.07+1.09 55.44 10,98 54.13 41,09
BTMRI PGD 0.68+0.07 76.84+0.22 58.71+0.00 54.38.+0.06 61.2110.33
C&W 0.68+0.03 76.3240.29 58.40+0.40 54.4940.48 61.5040.43
AA 0.06+0.00 71.27+0.62 60.8410.32 57.3910.24 61.2510.19
Clean 59.75 35~17i3.51 61.72i2_77 62~57i2.69 62.71i2>07
BUSI PGD 0.00-0.00 74.4440.87 62.9945.09 49.0149.30 68.0849.45
AA 0.00+0.00 70.48+1.00 66.67+1.78 58.6142.94 65.5410.20
Clean 43.82 31'72i0.30 43.39;{:0,30 44-38j:(].28 36.38:{:0‘26
PGD 0.00+0.00 66.4710.18 47.5410.09 38.6710.38 54.411¢.22
COVID-QU-EX | cow | 0.004000 | 64992001 |  47.14z0.s 3846103 | 53.7020.43
AA 0.00+0.00 60.3310.36 54.6640.69 46.1240.45 54.0040.48
Clean 42.43 30.4840.47 43.39+0.51 45.1541.15 40.3640.38
PGD 0.87+0.03 56.08+0.09 48.664+0.32 43.03+0.36 53.01+10.60
CTKIDNEY C&W 0.88i0_02 55.803:(]‘05 48.21;{:0,73 42-86i036 5202;{:0,60
AA 0.0540.00 53.1440.23 50.16+0.36 47.6810.28 50.4240.61
Clean 38.80 25.06;{:0.20 31.60;{:0.42 34-20:(:0.83 27-95:(:0,63
PGD 0.00+0.00 43.6710.06 38.6310.44 28.9140.14 40.28_19.59
DermaMNIST | cow | 0.000000 | 45.504072 38.1410.98 28.5040.47 | 41.300.60
AA 0.00+0.00 42.37+0.21 45.2249.30 38.5740.31 41.994¢.25
Clean 54.58 27-64i1.46 48.94i1_29 50.61i1_09 48.36i1_00
Kvasir PGD 0.00io_gg 65-72i0./15 53~72i0.1/1 46-47i0./1/1 59~61i0.08
C&W 0.0oio_on 63.83i0,54 52»30;{:0,34 46.45i0.17 58.11:{:0‘22
AA 0.00+0.00 66.9210.71 61.8040.32 56.0340.49 63.7210.67
Clean 30.65 18.151[],79 29.771(),42 30‘651(],3() 21.771[),71
crvnist | POD | 000:000 | 2881011 | 30524050 26.024055 | 25.97+0.17
C&W 0.0210.03 28.57+0.32 30.9610.36 25.7340.74 24.9840.73
AA 0.00-0.00 31.6110.26 37.66+1.00 34.3540.28 30.834+0.32
Clean 50.01 36.87i0_38 46~71i0.27 48-94i0.02 44-04i0.23
LC25000 PGD 0.01+0.00 59.96+0.33 51.2210.45 42.6640.18 55.7510.56
C&W 0.02:&0.01 56.3610,06 48.99:&0,95 41.11;{:0.14 52.4710‘41
AA 0.01+0.00 54.8110.23 53.4810.22 48.1710.22 54.6210.20
Clean 26.26 2755:&0.58 26.1010.17 25‘9410.82 26.1810,30
RETINA PGD 0.00-+0.00 35.0410.15 20.2240.73 15.1240.38 26.1310.53
C&W 0.00+0.00 35.8910.78 20.2410.60 14.8540.30 26.2140.48
AA 0.00-0.00 34.3340.38 27.5040.67 21.8510.51 26.6810.21
Clean 29.47 37.80i0_00 38.33i0_30 37-92i0.54 38438i0_44
KneeXray PGD 0.00io_gg 50-14j:0,22 34.66;{:0,54 25.083:034 46.15:{:0‘33
C&W 0.00+0.00 44.6710.34 29.09+0.45 20.27+0.95 41.08+0.06
AA 0.00+0.00 40.1840.16 39.774+0.32 36.4940.95 39.6140.26
Clean 29.90 34‘9310,25 33.9010,24 33‘4710,95 34~10:EU.36
PGD 6.27+0.68 41.674+0.68 39.2340.57 33.3040.08 39.404.0.29
OCTMNIST C&W 6.37i0_17 41.47i0.42 39.53i0_82 33-90i0.08 39-63i0.38
AA U.OOio_gg 38-30i0A57 36~30i0_92 34.87i0Ag7 37~10i0.57
Clean 42.04 31-25i0.25 41.63i0_34 42-66i0.12 39~49i0.21
Average PGD O.?lio_gﬁ 54-44j:0‘06 44»19;{:0,20 36.60i(]‘19 48.18:{:0‘18
C&W 0.7210.01 53.53+0.14 43.5240.25 35.97+0.20 47.4540.14
AA 0.014+0.00 51.2540.12 48.5540.29 43.6540.32 47.8040.11

* Domain-specific Classification: FGVCAircraft|Maji et al.| (2013), EuroSAT Helber et al.
(2019), DTD [Cimpoi et al.| (2014}, and PCAM Bejnordi et al.| (2017)).

* Fine-grained Recognition: OxfordPets Parkhi et al.|(2012), Flowers102 [Nilsback & Zis-
serman| (2008)), Food101 [Bossard et al. (2014]), and StanfordCars Krause et al.| (2013).

* Scene Understanding: SUN397 Xiao et al.|(2010) and Country211|Radford et al.|(2021b).

The pre-trained CLIP served as the victim model, and the PGD method was utilized as the adversary.
Following [Xing et al.| (2025), we set the attack budget ¢, and the number of update steps for PGD
to 1/255 and 10, respectively. It should be noted that our TAME was deployed directly without
any manual tuning. We compared our TAME with four AFT methods (CLIP-FT [Xing et al.| (2025)),
TeCoA Mao et al.|(2023), PMG |Wang et al.|(2024a), and FARE Schlarmann et al.| (2024)) and four
TAD methods (TTE [Pérez et al.| (2021)), Anti-Adv |Alfarra et al.| (2022), HD Wu et al.| (2021}, and
TTCXing et al.|(2025))). The results shown in Tabledemonstrate that our TAME achieves superior
performance on 9 downstream datasets and the best overall accuracy.
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Table 5: Zero-shot adversarial robustness (%) of our TAME, the PubMedCLIP baseline, and other
competing TAD methods on 11 medical datasets. We report the mean and standard deviation cal-
culated across three trials. For each dataset, the highest performance under the Clean, PGD, C&W,
and AutoAttack (AA) settings is highlighted in red, blue, green, and purple, respectively.

Dataset Attack | PubMedCLIP | Anti-Adv | HedgeDefense TTC R-TPT TAME
Clean 40.59 40.48i0.00 48.13i0,11 40.26i0_34 37-47i0,21 34-75i0.46
BTMRI PGD 0.3710.03 3.4410.30 8.1710.12 51.66+0.34 | 27.08+0.21 | 62.9010.46
C&W 0.4110.00 4.3910.19 8.5810.15 50.7340.22 | 26.9140.17 | 58.8010.74
AA 0.0610.00 3.9410.06 18.3710.10 40.4610.56 | 30.7710.12 | 48.6710.38
Clean 54.66 54.66+0.00 55.79+0.40 50.5740.20 | 94.80+0.20 | 43.79+3.32
BUSI PGD 0.0040.00 0.0040.00 4.1040.20 53.2540.53 | 53.5340.20 | 72.3240.72
C&W 0.00-£0.00 0.00-+0.00 10.3141.11 54.3842.30 | 52.8240.40 | 74441111
AA 0.00+0.00 3.8111.04 3.2510.20 24.7241.06 | 54.9440.20 | 75.2840.72
Clean 6.61 Td32000 | 692002 | 15785095 | 6.632002 | 1113207
PGD 0.00+0.00 5.83+0.16 0.0410.02 11414015 | 5.6710.01 | 17.1710.30
COVID-QU-E -
QU-Ex C&W 0.00+0.00 6.3810.04 0.0940.01 11.2140.10 | 5.6910.05 | 16.3510.20
Clean 22.82 22.82i0,00 18.98i0.07 21.62i0.19 23~46i0.10 21.85i0,20
CTKIDNEY PGD 0.44+0.03 0.44+0.03 1.7540.05 25.6240.27 | 19.73+0.16 | 37.69+0.27
C&W 0.9510.02 0.9410.02 4114015 28.83+0.07 | 19.1540.11 | 39.4140.39
AA 0.0540.00 0.0510.00 4.0040.10 20.3540.51 | 21.4140.01 | 29.0540.38
Clean 16.36 16.0610.00 27.4810.12 20424061 | 18.2940.0s | 16.2310.39
PGD 0.0040.00 0.1340.05 3.1940.15 15.7940.02 | 14.5140.07 | 29.3140.09
DermaMNIST C&W 0.00-£0.00 0.23+0.06 4.66-+0.22 15.3510.27 | 14.0010.16 | 26.6310.27
AA 0.00+0.00 0.37+0.02 15.1610.12 17.9240.41 | 16.6810.17 | 24.8240.27
Clean 13.00 12.8310_00 12‘92;&0.12 13.5810_54 13.03:&0_03 9.81:&0_32
Kvasir PGD 0.00+0.00 0.0310.04 0.3310.07 14.9710.42 | 12.1740.07 | 19.0310.08
C&W 0.00+0.00 0.19+0.04 0.64+0.04 15.0310.28 | 12.1740.07 | 18.5310.21
AA 0.00+0.00 0.00+0.00 0.36+0.10 16.08 4030 | 12.86+0.17 | 16.7540.12
Clean 20.48 19.61i0,00 17.60i0.40 14~23i0.14 22-78i0,13 27.68i0.37
CHMNIST PGD 0.00+0.00 0.00+0.00 0.16+0.03 18.5740.42 | 18.4840.42 | 34.6210.27
C&W 0.000.00 0.07+0.00 0.2440.14 18.5340.13 | 18.2840.30 | 33.4240.27
AA 0.0040.00 0.00+0.00 1.6440.21 17.4240.00 | 21.2340.31 | 33.5640.36
Clean 20.71 20.71+0.00 20.59+0.05 20.26+0.05 | 19.9210.01 | 22.6310.37
LC25000 PGD 1.0710.03 1.09+0.04 4.17+0.09 16.37+0.08 | 19.4310.02 | 38.4010.23
C&W | 1624005 | L65r0.0s | 4492008 | 16092005 | 19375003 | 38091020
AA 0.2040.00 0.2430.01 2.39+0.04 19.7140.05 | 19.6210.03 | 39-8510.07
Clean 28.31 28.3910,00 28.8610_17 24.53:&0_23 29.1510,10 28.7910_74
RETINA PGD 0.00-£0.00 0.39+0.06 1.5240.10 39.0441.01 | 20.4840.42 | 50.5010.16
C&W 0.00-£0.00 1.1610.15 1.8110.17 38.83+0.83 | 20.4540.13 | 50.3440.26
AA 0.00+0.00 2.6840.17 5.2310.16 24.1640.48 | 25.4740.19 | 33.41 4001
Clean 38.65 38.89i0.00 38.51i0,03 34.56i0,22 38.65i0,00 35-41i0.45
KneeXra PGD 0.00+0.00 0.18-+0.09 0.56+0.17 44.441035 | 28.8410.16 | 52.1710.44
¥ C&W 0.00+0.00 0.4810.05 0.7210.17 43.8410.75 | 28.9510.17 | 51171056
AA 0.00£0.00 0.30£0.00 1.8740.18 11.3540.45 | 36.1140.03 | 43.3240.38
Clean 37.50 30.002000 | 39102065 | 29732057 | 38475000 | 27.9711 43
OCTMNIST PGD 0.00+0.00 20.60+0.711 4.4340.33 43.6310.00 | 24.8010.75 | 41.4010.54
C&W 0.00+0.00 21.9040.42 4.63i0.31 43.80i0,14 24-47i0,31 37-40i0.04
AA 0.1040.00 19.80+0.00 10.50+0.86 48.304163 | 28.7340.39 | 39.1340.41
Clean 27.24 26.54;&0,00 28.6110_05 25.9610_06 27.15:&0_03 25.4610_43
Average PGD 0.17+0.00 2.924+0.03 2.58+003 | 30431010 | 22.2510.12 | 41414011
& C&W 0.2710.00 3.4010.04 3.6610.12 30.60+0.34 | 22.0210.03 | 40421014
AA 0.0440.00 3.00+0.10 5.7410.07 22.9840.26 | 24.9140.05 | 36.19410.10

D COMPLETE RESULTS

Here, we display the complete results for Figure@ Figure[5] and Table[2)in Figure[8] Figure[9] and
Table[8] respectively. As demonstrated in Figure[8] the semantic fragility of adversarial perturbations
is observable universally across all 11 datasets, as evidenced by high KL divergence under weak
transformations, particularly random cropping and random rotation. Additionally, it can be found
that the KL divergence of clean images increases at a markedly higher rate with magnitude than that
of their adversarial counterparts on most datasets. This provides powerful evidence for the design
of our dynamic weighting mechanism. Figure [J] reveals that both random rotation and random
cropping yield a higher robustness ratio across all datasets. This can be attributed to that these two
transformations alter the values and/or positions of most pixels in the image and are common in
the model training process, thereby leading to low/high robustness on adversarial/clean images. The
results in Table [§]indicate that our TAME method boosts the performance of three adversarially fine-
tuned models obtained by distinct AFT methods, achieving superior results on most datasets and the
highest overall accuracy against all attack types. Additionally, an important finding is the absence
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Table 6: Zero-shot adversarial robustness (%) of our TAME, the BiomedCLIP baseline, and other
competing TAD methods on 11 medical datasets with a larger attack budget of 4/255. We report the
mean and standard deviation calculated across three trials. For each dataset, the highest performance
under the PGD, C&W, and AutoAttack (AA) settings is highlighted in blue, green, and purple,
respectively.

Dataset Attack | BiomedCLIP | Anti-Adv | HedgeDefense TTC R-TPT TAME (Ours)
PGD 0.0210.03 4.3340.24 0.0410.03 16.024050 | 41.37 4027 | 38.3810.41
BTMRI C&W 0.0240.03 3.6540.10 0.0440.03 16.9340.47 | 42.3010.34 38.73+0.16

AA 0.0249.03 7.20+0.29 4.8510.29 19.9210.69 | 48.7110.43 | 43.37+0.34
PGD 0.00+0.00 0.1449.20 0.00+0.00 12.1540.40 | 26.9841 06 25.1441 63
BUSI C&W O-OOj:0.00 0.85j:0,69 O-OOi[)‘()() 14.12i(]‘40 25-57i1411 26-41j:1431
AA 0.00+0.00 3.81+0.00 2.9740.35 22741156 | 39.8341.05 | 41.3843.14
PGD 0.00+0.00 0.0140.01 0.00+0.00 17.05+0.38 | 12.03+0.03 27.6610.41
COVID-QU-Ex | C&W 0.00+0.00 0.00+0.00 0.00+0.00 17171067 | 13.0340.13 27.8410.17
AA 0.00+0.00 0.18+0.02 9.77+0.07 18.0440.07 | 19.9410.14 34.06.+0.11
PGD 0.00+0.00 0.14+0.07 0.00+0.00 6.69+0.23 | 29.2310.13 | 39421059
CTKIDNEY C&W 0.00+0.00 0.60+0.07 0.00+9.00 6.20+0.09 29.2840.08 39.1840.01
AA 0.00+0.00 0.3510.08 3.9810.00 7.3110.68 | 38.2910.56 39.5910.25
PGD 0.00+0.00 0.10+0.07 0.00+0.00 3.76+0.15 | 5.60+0.24 12.6710.43

DermaMNIST C&W O-OOiO.OO 0'15i0.07 0.02i0_02 4-22i0.20 5-50i0.22 13.40:&]_20
AA 0.00+0.00 0.2540.04 5.8410.23 8.2140.22 | 25.0910.40 | 21.4540.99

PGD 0.00£0.00 | 1.2240.26 0.00+0.00 T7.0810.72 | 25.2240.21 | 28.3140.40

Kvasir C&W 0.00;&0‘00 1.61:&[)_17 000:&[}00 6‘2510‘20 25.421(]‘30 27.001047

PGD 0.000.00 4.1410.17 0.00+0.00 1914013 | 8.5340.22 6.7840.73
CHMNIST | C&W | 0.00:000 | 4195000 | 0.04100s | 2.0850s0 | 8221058 | 7-58:0.20
AA 0.000.00 2.4440.19 3.7540.10 11.9540.49 | 19-4440.58 17.95+0.30
PGD 0.00+0.00 0.01+0.00 0.00+0.00 2114013 | 27.4040.20 33.7140.27
LC25000 | C&W | 0.001000 | 0.032005 | 0.001000 | 2165014 | 26972016 | 33752058
AA 0.000.00 4.8440.02 8.7310.04 12454011 | 39.7610.a7 | 43.2040.01
PGD 0.00+0.00 4.60+0.50 0.08+0.06 11.86+0.29 | 3.68+0.39 10.3319.29
RETINA C&W 0.00+0.00 4.57+0.23 0.08+0.06 11.04+0.39 | 8.91+0.06 9.9410.17
AA 0.00+0.00 8.44+0.06 6.97+0.23 20.1140.87 | 28.7110.46 17.6410.84
PGD 0.00-0.00 0.00+0.00 0.00-0.00 16.20£0.76 | 6.08+0.25 34.8810.25
KneeXray C&W 0.0oio_oo 0.08i0_05 0.00iU_OO 16.06i0_64 32-45i0.47 33-3()i0.82
AA 0.00+0.00 3.7040.03 18.78+0.65 19974084 | 34.1010.30 | 38451016
PGD 0.00-0.00 0.6040.28 0.43+0.29 15.67+1.01 | 25.2010.00 | 30.2010.22
OCTMNIST | C&W | 0.071005 | 0.60100s | 0431001 | 14734045 | 25204008 | 30.5050.75

AA 0.002000 | 0401000 | 0.204022 | 23.132089 | 25.1340.05 | 33.034037
PGD 0.000.00 1.3910.03 0.05+0.02 10.0440.13 | 19.2110.18 26.1410.16
Average C&W 0‘01:&0‘01 1.48:{:0,07 OAOG:(:[)‘()Q 10.0910(20 22.08:&000 2().1():&032
AA 0.00+0.00 3.1240.02 6.38+0.10 16.2710.98 | 32.9010.04 | 33.9540.29

Table 7: Zero-shot adversarial robustness (%) of our TAME, the CLIP baseline, and other competing
AFT and TAD methods under the PGD attack on 16 datasets. We report the mean and standard
deviation calculated across three trials. The results marked by I are inherited from Xing et al.[(2025).
The best and second-best results in each row are highlighted in bold and underline, respectively.

Dataset CLIP Adversarial Fine-tuning (AFT) Test-time Adversarial Defense (TAD)
CLIP-FT¥ TeCoA* PMG* FARE? TTE* Anti-Adv* HD? TTC? TAME (Ours)

CIFARIO 0.74 3.34 33.61 40.66 19.65 | 41354614 12394007 17.224045 28.7540.18 63.20,10.15
CIFAR100 0.26 0.90 18.95 2252 1140 | 20.061403 5.7310.04 3.86+0.10 14.3140.25 27.64.10.43
STL10 11.0 12.73 70.08 73.08  59.06 | 78.484:383 37.424040 39.024030 76.7040.23 89.23,0.24
ImageNet 1.15 0.93 18.89 21.43 14.00 | 31.014+440 8.6740.05 6.6310.05 38.41.0.07 4.7140.05
Caltech101 14.67 14.21 55.51 61.08 50.74 | 67.561355 34.811016 31.531022 65.78410.07 66.831 .32
Caltech256 8.47 6.76 43.19 4591 3879 | 60.09+4.03 25.36+0.17 23.48+010 600.1140.04 48.99+0.06
OxfordPets 1.04 2.10 38.35 41.18  31.07 | 50334730 204240020 12.044016 57.8740.15 83.5710.40
Flowers102 1.14 0.54 21.94 2343 17.14 | 35881472 7.1640.41 7291006 39.1410.28 5148011
FGVCAircraft | 0.00 0.00 2.49 2.22 1.35 6.2341.37 1.2710.07 1264007 137741038 13.96.10 23
StanfordCars 0.02 0.06 8.76 11.65 6.75 22361417 4.4040.30 2714000 33.01.0.07 30.4640.14
SUN397 1.14 0.94 19.39 22.58 1491 | 30794443 8.0540.04 6401006 41.5240.04 12.74 10,08
Country211 0.04 0.03 1.78 2.12 0.85 3.0540.89 0.67+0.05 0.47+0.02 7.0910.04 5.8040.03
Food101 0.70 0.42 13.90 1857  11.65 | 43.9446.97 13124016 8.03+0.11 57.8440.15 67.221 .23
EuroSAT 0.03 0.04 11.96 12.60  10.67 6.914913 2.1540.04 4571000 12.1940.24 28.40 .24
DTD 2.98 2.39 17.61 14.95 1564 | 23.904234 5.624007 11.631017 27.324025 24.8419.26
PCAM 0.08 1.11 48.24 46.18  16.23 | 10.624392 4.971012 44.744017 52.8510.20 80.31..32
Average 2.70 2.91 26.54 28.76  20.00 | 33284393 12.01:10.04 13.814006 39.1740.02 43.71.0.13

19



Under review as a conference paper at ICLR 2026

o 400 mClean ® Adversarial o 400 mClean m Adversarial o 300 mClean m Adversarial o 300 mClean ® Adversarial
e e e e
200 200
ol e aadlh - |
5]
2 2 2 I 2 I I I I
R | R | 2 o N R
90% 75% 50% 25% 90% 75% 50% 25% 90% 75% 50% 25% 90% 75% 50% 25%
Random Cropping Random Cropping Random Cropping Random Cropping
300 = Clean m Adversarial o 400 ® Clean m Adversarial 0 200 ® Clean m Adversarial o 150 = Clean m Adversarial
S S S S
c 2 < c < 1
v 3 v 3
= 2 2 2
o ldddl 2, 1l G, 2
2 0 2 0 2 0 2 0
+10° #30° +60° +120° +10° #30° #60° +120° +10° #30° +60° +120° +10° #30° +60° +120°
Random Rotation Random Rotation Random Rotation Random Rotation
o 400 mClean m Adversarial o 400 mClean ® Adversarial o 300 mClean m Adversarial o 200 mClean ® Adversarial
c c c c
200
2 2 2 2
& , mm II I & , mm n & ) a= ull lI I & , ull II
~ ~ ~ ~
10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%
Random Masking Random Masking Random Masking Random Masking
(a) BTMRI (b) BUSI (c) COVID-QU-Ex (d) CTKIDNEY
o 600 W Clean m Adversarial o 600 mClean m Adversarial o 400 mClean M Adversarial o 400 mClean m Adversarial
S S S S
$ 400 & 400 S g
2 2 2 2
opadm = addl 2 aadd 2 g
2 0 2 0 2 0 2 0
90% 75% 50% 25% 90% 75% 50% 25% 90% 75% 50% 25% 90% 75% 50% 25%
Random Cropping Random Cropping Random Cropping Random Cropping
400 mClean m Adversarial 400 ™ Clean m Adversarial 400 M Clean m Adversarial 400 ™ Clean m Adversarial
20 200 2200 20 200 20200
£ L . L.
E 5 ufl mfl ol = & , 0 B i . 5 , =i NN HN 0N & , =i NN NN N
~ +10° #30° +60° +120° ~ +10° #30° %60° +120° * +10° #30° +60° +120° ~ +10° #30° +60° +120°
Random Rotation Random Rotation Random Rotation Random Rotation
o 600 mClean m Adversarial o 1000m Clean ® Adversarial o 600 W Clean m Adversarial o 300 ®mClean ® Adversarial
S S S S
£ 4 c S 400 5 2
1 . I I - I 1 I I % . I II
2 200 [ 2 200 2 100
2 2 2 2
& o =n ull HN N 8§ o= =N il I & o, ull ol ol s, m Il I
~ ~ ~ ~
10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%
Random Masking Random Masking Random Masking Random Masking
() DermaMNIST (f) Kvasir (g) CHMNIST (h) LC25000
o 600 W Clean M Adversarial o 400 mClean m Adversarial o 150 M Clean o 400 ® Clean
% 400 é 5 100 ™ Adversarial é W Adversarial
1]
2 2 2 2
5, = _m II I s, _0 -I al » 5 _I _I al 1 g, i | -I [ I
b4 x b b3
90% 75% 50% 25% 90% 75% 50% 25% 90% 75% 50% 25% 90% 75% 50% 25%
Random Cropping Random Cropping Random Cropping Random Cropping
L 150 = Clean m Adversarial o 400 = Clean m Adversarial L 150 = Clean m Adversarial 300 ® Clean m Adversarial
S S S S
S 1 S $ 100 S 2
1 . I I I o I I 1 I I I % . I I I
2 50 [ 2 50 2 100
2 2 2 2
e _I - u | a o | -I - [ ] e _I - ] u a -I | | [ | | |
2 0 2 0 2 0 2 0
+10° #30° +60° +120° +10° #30° +60° +120° +10° #30° +60° +120° +10° #30° +60° +120°
Random Rotation Random Rotation Random Rotation Random Rotation
o 600 M Clean ® Adversarial o 400 mClean ® Adversarial o 300 mClean m Adversarial o 400 mClean ® Adversarial
S S S S
c < c 2 =
2 ;22 I I & 200 I I & 122 I & 200 I I
Q Qo v 3
2 2 = 2
& § == ull | I 5 () m- =i mil H & 5 -n &l lI | 5 o mm ol | I
x ~ ~ ~
10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%
Random Masking Random Masking Random Masking Random Masking
(i) RETINA (j) KneeXray (k) OCTMNIST (1) Average

Figure 8: The KL divergence between BiomedCLIP’s predictions before and after applying trans-
formations across all 11 datasets with various modalities.

of label leakage when PMG is employed as the AFT method, which suggests that the occurrence of
this phenomenon depends on the specific victim model. Note that TeCoA fails on the BUSI dataset,
classifying all samples into the same category with high confidence. Consequently, applying other
attack or defense strategies yields identical results.
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Figure 9: The robustness ratio of 12 transformation strategies across all 11 datasets.

E THE USE OF LARGE LANGUAGE MODELS

In this paper, we employed DeepSeek-V3 and GPT-5 as assist tools to polish writing and identify
potential grammar or spelling errors.
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Table 8: Zero-shot adversarial robustness (%) of our TAME, TTC, and R-TPT integrated with three
distinct AFT methods: FARE, PMG, and TeCoA. We report the mean and standard deviation cal-
culated across three trials. For each AFT method, the best results under Clean, PGD, C&W, and

AutoAttack (AA) settings are highlighted in red, blue, green, and purple, respectively.

n <
& N & & & s & & & 4 &
Nl & e © > & & o & & &
) ® &° & ¥ & N & Xt ¥
Method | Attack N
Clean 24.64 38.56 6.36 30.71 28.83 17.08 24.87 29.76 26.50 25.80 2433
CLIP PGD 0.02+0.03 0.00+0.00 0.19+0.00 0.01+0.01 0.00=0.00 0.00+0.00 0.07+0.05 0.01+0.01 0.4510.20 0.00+0.00 0.07+0.02
(ViT-B/32) | C&W | 0.00-0.00 0.00+0.00 0.2840.02 0.030.00 0.00+0.00 0.00+0.00 0.07+0.05 0.0120.00 1.0540.21 0.00-0.00 0.1310.01
AA | 0001000  0.42:0.00 0.0040.00 0214000 0.05:000  0.00:+0.00  0.07:0.00  0.32:0.00  0.0040.00 0.20+0.00 | 0.1310.00
Clean 29.76 17.37 9.35 28.06 22.19 15.08 23.34 2343 26.10 19.50 2251
FARE PGD | 19.74x008 16.95+10.00 0.84.40.01 6.200002  3.16x002  017x000 12592003  4.60z001 2444000 0.20+0.00 6.0940.01
C&W | 19.02:011 16955000 0790001 5695002  31lsome 0234000 12652005 48diom 2374000 0372005 | 602100
AA 18.3310.05  16.9510.00 0.8040.01 +0.02 2.6610.02 0.1740.00  12.571000  3.8210.02 1.8640.04 0.1740.05 5.7140.00
Clean | 30401046 17.37+0.00 15.5610.52 25.284028 19301031 15144060 24491054 28951050 25.8940.21 19375042 | 23.0940.22
+TTC PGD | 27.841026 17.37+0.00 28514005 10474076 7171053 15382021 18474040  23.731033 17134020 11.50x0.43 | 16974008
C&W | 27471000 17.372000 2880205 1011104s  T7.31i0ms  1498:011 15551020 22931007 16471040  10.532054 | 16404005
AA | 31164006  17.2340.00 28461006 17494050 12.784060 22.19:035 28294016 29.164030 28464033 18834100 | 22.8240.03
Clean | 30815010 17-3710.00 28082015 20955011 16395025 22385000 1821017 26005006 32902008 21172041 | 227040.00
4+ R-TPT PGD | 27.02:+000 17.37x0.00 10.17+0.10 23.34:012  12.601024 1081040 17.89:011 12901005 22.53+037 18144007  11.67x031 | 16.77+0.03
C&W | 27284012 17.3710.00 10.1110.12 23.154005 13121007  11.69+0.10 672003 12.631013 22.031021  21.01i026 11.471040 | 17.0540.05
AA 28.96+0.20 17371000  13.3310.05 15.9610.20  13.5310.04 1262008 14.3810.06  23.5810.23  25.221038  16.0710.05 | 19.4610.07
Clean | 36481007 17801035 12.5540.27 17.0940.14 16284017 25564033 27.524054 21954048 30.255047 27.2740.47 | 23431010
+TAME PGD | 45.081100 21194138 11.97 4018 24.0610.12  20.3940.20 +0.08 43441062 31.8lioge  57.05:043 33834068 | 32.32:0.26
(Ours) | C&W | 44735002 20481140 11905020  33.631126 22461020 18531032 31875061 42381045 31.041gse 52465012 29904100 | 30851036
AA | 41041095 1780i045 13285004  298ls0gs 22465002 200dspge 29075035 Md9:i04s 29061064 50.6910.40 29701110 | 28981011
Clean 27.84 17.80 26.97 24.88 16.91 15.08 22.54 19.72 21.06 36.35 23.30 22.95
PMG PGD | 23.124005 17374000 15114001 14.544007 7431004 6.1940.08 000 14.391003  8.6540.07 4.37+0.06 8.3010.00 | 12274002
C&W | 22974003  17.370.00 14.1210.05 13.71x003  5.37x0.05 5171000 15162000 12711001 7-4920.00 6.1 03 8.60+0.00 11.71+0.01
AA | 23040002 17372000 14371005 5671008 5581007 14582003 12931005 7781000  4.91i00s  T.901000 | 11.651002
Clean | 29142050 18645000 24451000 6865050 4831005 22032025 20705015 21583050 32835141 23002005 | 2285005
+TTC PGD | 24.85:036 17.3T+0.00 18.9040.04 7.93+0.16 9.0040.12 17444033 15974007 13854032  17.71i0s1 12474042 | 16.2940.07
C&W | 24.T1+030 17.2310.20 18.8910.31 7.08+0.19 8.9710.31 16.9320.45 15221008  13.72+051  16.85:030 12.87+053 | 15.9610.07
AA | 28171046 18782000 22811046 11742005 11361048 20.372013 1847:003 17.591040  28.021001 19332052 | 20.124015
Clean | 27532005 17375000 27384001 3022001 12955017 22390021 17604000 BS5x045 31205000 1850202 | 20534005
+R-TPT PGD | 25924017 17371000  25.081012  22.3liga0 1049006 12.034022  20.6610.03 16134008 11.0710.04 21144030 12571005 | 17.7010.01
C&W | 26.154005 17.37+0.00 24.8310.10 21.974016  9-66+0.00 12.0310.00 19884020 15484003 10494040 21351053  13.3720.10 | 17.5140.04
AA 26.98+0.14  17.37+0.00 25.8140.01 23475008 11144000  12.611004 21034001 16.5840.04  12.091018 26691043  16.00+0.37 | 19.070.04
Clean | 30102041 17372000 23 23000041 12285040 15332020 2L16r06s 17801033 21061026 26552001 21802005 | 21021047
+TAME | PGD | 35741103 17511020 23261024  21.98:027 9901012 14281060 20.81s05s 1680015 17.615000 3891i003 18.631017 | 21404014
(Ours) C&W lio76  17.6640.20 23.4740.20 21.754040  8.1540.12 14314035 19154014 17444027 17804046 392940814 17.674087 | 21.0940.22
AA 30.07+0.31  17.37+0.00 23.5840.27 22.37T4038  9.8310.14 14.67 4007 20171047 16.094010 18174045 3641i970 20134026 | 20.8040.04
Clean 27.78 17.37 15.98 21.91 15.46 15.33 22.74 18.80 25.39 37.68 29.70 22.56
TeCoA PGD | 27.2610.00 17-37+0.00 4.2540.01 13.7940.03  7.5010.06 3754007 13.834000 12.954003 10884007  9.621003 10401000 | 11.9640.01
C&W | 27.261000 17.37+0.00 1.7940.02 13.3310.05  6.03+0.00 3304004  13.761000 12.6940.04 10541004  9.6410.07 9.8710.05 11.4240.01
AA 27264000 17374000 1.9440.05 13481000  5.8lioa0 3254007 1347i006  12.791002 10884007  9.761003 10331042 | 11.4940.01
Clean | 27841005 17372000 18511020 22005007 14561030 10.612057 2227:0.05 18962017 25055000 34201010 27202045 | 22.2810.07
+TTC PGD | 27.7010.03 17.3710.00  11.131018  18.671028 7461045  8.691014 16131037  15.09:014 17143036 22.71i030 15431063 | 16141011
C&W | 27645007 17371000 11224019 18581018  6.661027 8584018 15.65:051  15.07400s 17304023  23.01i0.5  15.132020 | 16024013
AA 27.7240.08  17.37+0.00 16.9640.21 20884023 10504013  13.7841.04  19.771030  16.5740.03 22161007 32.31i1.02  21.97:0.45 | 20.0040.23
Clean | 27.70+0.03 17-37=0.00 22.6310.03 21.7040.08 12743006 16444014 21.12:031 18834000 28.1640.40 31.861030 32.67+046 | 22.84:0.05
RapT | POD | 27450006 1737000 1840009 1759000 10.325001 11975011 1833u0m  1767s002 22160007 2210s022  273Tsom | 19161007
C&W | 27474005 17375000 18314000 17842015 9482001  126lu00s 17862017 17700001 2185p017 22324015  26.97-0.40 | 19-0710.08
AA 27.5140.06  17.37+0.00 21.3840.01 20.445006  11.2940.46  14.6440.04  19.75:0.00 18124003  25.454020  29.014041 29774048 | 21.3440.10
Clean | 28.56:0.49 17.370.00 17.70+0.23 21.284071 13454035 16974055 22761035 18541024 32.05:055 32414040 28372042 | 22.6840.07
+TAME | PGD | 30131020 17.372000 15.921015 19881105 1345105 2095045 17961023 32814040 28371024 | 23524005
Ours) | C&W | 30.091043 17375000 15985013  2020a114 11325033 20864040 18744037 32781045 28931085 | 23435007
AA | 29001070 17371000 1694102 20841070 1299010 21524041 17575005 30761113 28.632061 | 23404010

22



	Introduction
	Related Work
	Adversarial Training
	Test-time Adversarial Defense (TAD)

	Methodology
	Preliminaries
	Semantic Fragility of Adversarial Perturbations
	The Attack Means Nothing (TAME)
	Adversarial Restoration
	Weighting Mechanism


	Experiments and Results
	Datasets and Metric
	Implementation Details
	Experimental Results
	Comparison with other TAD methods
	Extensibility Analysis


	Conclusion
	Dataset Details
	Label Leakage by Attacks
	Additional Experimental Results
	Ablation Study
	Larger Attack Budget
	Deploy to Other Medical VLMs
	Adversarial Robustness on Natural Image Tasks

	Complete Results
	The Use of Large Language Models

