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ABSTRACT

Vision-language models (VLMs), exemplified by CLIP, have achieved remark-
able zero-shot generalization but remain highly vulnerable to imperceptible ad-
versarial perturbations, posing significant safety threats, particularly in medical
scenarios. In this paper, we first prove that VLMs are much more robust than
adversarial attacks when faced with weak transformations. Building upon this
insight, we propose the The Attack Means Nothing (TAME), a simple yet effec-
tive test-time defense paradigm for improving the zero-shot adversarial robust-
ness of medical VLMs. We conduct comprehensive experiments on 11 medical
datasets across 9 imaging modalities against three representative white-box at-
tacks (PGD, C&W, and AutoAttack). The BiomedCLIP with a backbone of ViT-
B/16 is utilized as the victim model. Extensive experiment results demonstrate
that our TAME consistently outperforms other defense methods across all attack
types, boosting the vanilla BiomedCLIP by +47.47% under PGD, +46.73% un-
der C&W, and +47.79% under AutoAttack, while maintaining competitive clean
accuracy. These significant improvements also suggest a potential risk of label
leakage during attacks. Furthermore, our TAME is plug-and-play and can be inte-
grated with other adversarially fine-tuned VLMs to enhance their defense capabil-
ities. These findings support a practical and generalizable approach to deploying
medical VLMs in clinical scenarios with the presence of adversaries. Codes will
be available on GitHub.

1 INTRODUCTION

Recent advancements in vision-language models (VLMs) Zhao et al. (2025); Lai et al. (2024) have
demonstrated significant success and potential for medical image analysis Koleilat et al. (2025);
Stevens et al. (2024). Unlike traditional supervised learning focused on closed-set tasks, VLMs, such
as Contrastive Language-Image Pre-training (CLIP) Radford et al. (2021a), enable the exploration of
open-set visual concepts, yielding strong zero-shot generalization capabilities. Unfortunately, some
studies Zhang et al. (2022); Zhao et al. (2023); Yin et al. (2023) reveal that adding even imperceptible
adversarial perturbations to input images can severely degrade VLM’s inference ability. This poses
critical safety risks, especially in medical scenarios Dong et al. (2024), which may lead to serious
misdiagnosis and hinder models from being deployed in real-world applications (see Figure 1).

Extensive research has explored adversarial training Chen et al. (2020) as an effective defense strat-
egy, which can be broadly categorized into two categories: adversarial fine-tuning (AFT) Mao et al.
(2023); Wang et al. (2024a); Schlarmann et al. (2024); Wang et al. (2024c) and adversarial prompt
tuning (APT) Li et al. (2024); Zhang et al. (2024); Zhou et al. (2024); Wang et al. (2024b); Zhou
et al. (2024). AFT methods aim to establish a min-max game between the VLM and an adversary,
fine-tuning the pre-trained VLM on generated adversarial examples to achieve transferable robust-
ness across downstream tasks. However, most of these methods require substantial computational
resources and inevitably degrade the model’s generalization to testing data from unseen distribu-
tions. APT methods attempt to train learnable textual or visual prompts by aligning adversarial
image embeddings with corresponding text prompts while keeping the model backbone frozen. Al-
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Medical VLMClean Image Restored Image

a photo of a [Glioma Tumor]Diagnosis: a photo of a [Pituitary Tumor]

Attack TAME

MRI

a photo of a [Covid Lungs]Diagnosis: a photo of a [Lung Opacity Lungs]

Attack TAME

X-ray

a photo of a [Dyed Lifted Polyps]Diagnosis: a photo of a [Normal Cecum]

Attack TAME

Endoscopy

a photo of a [Benign Tumor]Diagnosis: a photo of a [Normal Scan]

Attack TAME

Ultrasound

Adversarial
Perturbation

Figure 1: Adversarial attacks disturb model inference by adding imperceptible perturbations to the
input image, leading to serious misdiagnosis. Our TAME enables the medical VLM to remain robust
against adversarial attacks during inference without extra training on predefined adversarial data.

MRIEndoscopy Ultrasound

CFP

Histopathology

X-Ray CT

Dermatoscopy

OCT

Figure 2: The medical imaging modalities used in this study. CFP: Color fundus photography. OCT:
Optical coherence tomography. CT: Computed tomography. MRI: Magnetic resonance imaging.

though they reduce training costs, their effectiveness is constrained by predefined data distributions,
limiting the adaptability to out-of-distribution environments. Consequently, achieving low-cost and
effective adversarial robustness remains an open challenge.

Test-time adversarial defense (TAD) Alfarra et al. (2022); Pérez et al. (2021); Wu et al. (2021); Guo
et al. (2018); Xing et al. (2025); Wang et al. (2025); Mao et al. (2021) has emerged as a promising
paradigm to boost zero-shot adversarial robustness in a low-cost manner, as TAD requires only test
data during the inference phase. Training-free TAD methods Pérez et al. (2021); Guo et al. (2018)
assemble several image transformations to make it difficult for adversaries to circumvent the defense
strategy. Training-based approaches Alfarra et al. (2022); Xing et al. (2025); Wu et al. (2021); Sheng
et al. (2025); Mao et al. (2021) mainly focus on modifying the input image or training a prompt to
counteract attacks. Despite their efforts, almost all existing TAD methods are designed for conven-
tional networks like convolutional neural networks, with insufficient exploration of VLM. Further-
more, medical VLMs are typically utilized to process a wide range of modalities, as illustrated in
Figure 2, posing a challenge to the defense method’s generalizability across various modalities.

The key to addressing these issues is to identify commonalities of adversarial images to establish a
general test-time defense paradigm for VLMs. In this paper, we first conduct a toy experiment on
multiple datasets by applying several transformations to both clean and adversarial images. We ob-
serve that although transformations with large magnitude significantly disturb model predictions on
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both images, this abnormal effect still appears on the adversarial images even under transformations
of minor magnitude. We term this phenomenon ‘semantic fragility’ of adversarial perturbations,
which can be interpreted as these perturbations being highly specific to the corresponding input
images. The VLM, trained on extensive and diverse data, exhibits inherent robustness to such mi-
nor transformations on clean images. In contrast, adversarial perturbations are over-fitted to both the
specific input and the current model parameters, rendering the semantic content within the perturbed
image embeddings highly susceptible to even slight alteration. Based on this observation, we pro-
pose The Attack Means Nothing (TAME), a test-time defense paradigm for medical VLMs. TAME
counteracts adversarial attacks by training an adversarial restoration map for each adversarial im-
age in a single iteration. Specifically, we first introduce the adversarial restoration map to the input
image to produce the restored image and then minimize the KL divergence between the predicted
probability distributions of each restored image and its transformed version. Through this training
process, the trained adversarial restoration map learns to restore the model’s invariance to minor
transformations, thereby reinstating the inference capability of VLMs. Furthermore, the adversarial
restoration map should also minimize its effect on clean images, thereby avoiding significant per-
formance degradation induced by excessive image modification. To address this issue, we design a
dynamic weighting mechanism that adaptively allocates weights according to the degree of semantic
fragility exhibited by the input image. Comprehensive experiments are conducted across 11 medical
classification datasets, including 9 modalities (see Figure 2), to evaluate TAME and other state-of-
the-art methods against three typical adversaries (i.e., Projected Gradient Descent PGD Madry et al.
(2018), C&W Carlini & Wagner (2017), and AutoAttack Croce & Hein (2020)) that aim to max-
imize the classification loss in a white-box setting. Extensive experiment results demonstrate the
effectiveness and superiority of our TAME across diverse scenarios.

The three key distributions of this paper are summarized as follows.

• We propose a simple yet effective method to enhance the zero-shot adversarial robustness
of medical Vision-Language Models (VLMs), which can be utilized as a plug-and-play
module without additional training.

• Based on observed commonalities in adversarial images, we propose TAME to protect
VLMs against multiple attack types alongside a dynamic weighting mechanism maintain-
ing performance on clean images.

• Extensive experiments on 11 medical classification datasets across 9 modalities demon-
strate the superiority of our TAME over other existing defense methods.

2 RELATED WORK

2.1 ADVERSARIAL TRAINING

Adversarial training enhances the adversarial robustness of the model by training on the predefined
adversarial samples, which can be broadly classified into adversarial fine-tuning Mao et al. (2023);
Wang et al. (2024a); Schlarmann et al. (2024); Wang et al. (2024c) and adversarial prompt tuning Li
et al. (2024); Zhang et al. (2024); Zhou et al. (2024); Wang et al. (2024b).

Adversarial Fine-Tuning (AFT) AFT improves the adversarial robustness by fine-tuning the VLM
on adversarial samples generated by an adversary. Mao et al. Mao et al. (2023) fine-tuned the
vision encoder of CLIP using adversarial contrastive learning with text-guided supervision on a
small set of adversarial samples. Wang et al. Wang et al. (2024a) proposed a pre-trained model
guided adversarial fine-tuning method, which distills the general knowledge from the original pre-
trained model to the target model to mitigate the over-fitting. Schlarmann et al. Schlarmann et al.
(2024) attempted to minimize the distance between the original and fine-tuned image embeddings
during adversarial training to preserve the performance of the fine-tuned model on clean data.

Adversarial Prompt Tuning (APT) APT learns trainable prompts to maintain alignment under
attack by exposing the model to adversarial samples while freezing the model parameters. Zhou et
al. Zhou et al. (2024) presented to learn adversarially correlated text supervision by enhancing the
consistency of multi-modal features and encouraging distinguishability between features of clean
and adversarial data. Zhang et al. Zhang et al. (2024) aligned learnable text prompts with adversarial
image embeddings to improve resistance against white-box and black-box adversarial attacks. Li et
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al. Li et al. (2024) demonstrated the high sensitivity of both adversarial attacks and defenses to the
specific text prompts used in VLMs and proposed to improve adversarial robustness by learning
robust text prompts. Unlike these adversarial training methods, our TAME aims to achieve zero-
shot adversarial robustness using only test data in a low-cost and general manner, improving the
performance across various medical scenarios.

2.2 TEST-TIME ADVERSARIAL DEFENSE (TAD)

TAD aims to protect the pre-trained model from adversarial attacks in a low-cost manner during
inference, including two branches: training-free and training-based methods. Training-free meth-
ods Pérez et al. (2021); Guo et al. (2018) typically refer to designing the image transformation
strategy. Pérez et al. Pérez et al. (2021) proposed a transformation ensemble method achieving
consistent improvements in adversarial robustness across datasets and adversaries while preserving
clean data performance. Guo et al. Guo et al. (2018) found that total variance minimization and
image quilting are effective against several attacks, particularly on the model trained on such trans-
formation strategies. Training-based methods Alfarra et al. (2022); Xing et al. (2025); Wu et al.
(2021); Wang et al. (2025); Mao et al. (2021) primarily prevent the model from adversarial attacks
by modifying the input image or training a prompt. Alfarra et al. Alfarra et al. (2022) presented the
anti-adversary layer to generate a perturbed input image in the opposite direction of the adversarial
one to counter the attacks. Xing et al. Xing et al. (2025) maximized the classification loss on the
test image to counterattack adversaries and prevented further counterattacking on clean data using a
threshold. Sheng et al. Sheng et al. (2025) reformulated the marginal entropy objective to train the
textual prompts and proposed a reliability-weighted ensembling strategy that aggregates information
from trustworthy augmented views to enhance defense. Although TTC and R-TPT are designed for
VLMs, they still exhibit limitations: 1) TTC requires a hyperparameter to distinguish clean and
adversarial images during inference, leading to suboptimal performance in adversarial robustness
when misclassifications occur. 2) R-TPT relies on low-entropy predictions for pointwise entropy
minimization, however, adversarial images typically yield high-confidence but incorrect predictions,
potentially reinforcing wrong decisions. In contrast, our TAME explores the inherent defect of ad-
versarial attacks in VLMs and requires only one gradient backpropagation step. It employs a general
training objective for both clean and adversarial images to achieve zero-shot adversarial robustness.

3 METHODOLOGY

3.1 PRELIMINARIES

Zero-shot inference of CLIP. Let fθv and fθt denote the CLIP’s vision encoder and text encoder,
respectively, where θv and θt are their corresponding parameters. Given an input image I and a set
of k possible classes C = {c1, c2, ..., ck}, I can be classified in a zero-shot manner by computing the
cosine similarity between the produced image embedding and the text embeddings of C wrapped in
a template(e.g., “a photo of [CLASS]”). Specifically, the cosine similarity score between the image
embedding and the text embedding of i-th class ci can be formulated as:

Cosi(I) =
fθv (I)fθt(ci)

⊤

∥fθv (I)∥ · ∥fθt(ci)∥
(1)

The probability that I belongs to class ci is then calculated by the Softmax function:

pi(I) = Softmax(Cosi(I)) =
eCosi(I)/τ∑k

n=1 e
Cosn(I)/τ

, (2)

where τ refers to the temperature. The predicted class corresponds to the highest probability:
argmaxi pi(I). For clarity, we will utilize P (I) to indicate the probability predictions of all classes.
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𝐼𝐼𝛿𝛿𝑝𝑝

Image Encoder

a photo of a [Benign Tumor]

Text Encoder

ℒ𝑝𝑝

Learnable

Frozen

Medical
VLM

𝐼𝐼 + 𝛿𝛿𝑝𝑝

a photo of a 
[Normal Scan]

(a) Training (b) Inference

Figure 3: (a) Pipeline of training an adversarial perturbation map δp for a specific image I with its
corresponding label. (b) Pipeline of inference with an adversarial input image I+ δp. The black and
red arrows indicate the data flow and gradient flow, respectively.
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Figure 4: The KL divergence between BiomedCLIP’s
predictions before and after applying transformations
across three datasets with various modalities.
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Figure 5: Averaged robustness ratio
of 12 transformation strategies cal-
culated on 11 datasets.

Adversarial attack. We focus on three typical adversarial attack methods under a white-box set-
ting: PGD Madry et al. (2018), C&W Carlini & Wagner (2017), and AutoAttack Croce & Hein
(2020). This setting assumes that adversaries have complete access to the architecture and parame-
ters of the victim model, enabling direct gradient-based attacks. The pipeline is shown in Figure 3.
The adversary learns an adversarial perturbation to increase the divergence between text and image
embeddings by maximizing an adversarial perturbation loss Lp (e.g., cross-entropy) as follows:

δp = argmax
∥δ∥∞≤ϵp

Lp(P (I + δ), cy) (3)

where ϵp and cy denote the perturbation budget and the class label, respectively. The adversary then
employs the victim VLM on the adversarial image Î = I + δp to obtain an incorrect prediction.

3.2 SEMANTIC FRAGILITY OF ADVERSARIAL PERTURBATIONS

In this study, we found that VLM is more robust than adversarial perturbations, and the perturbed
image embeddings are semantically fragile and highly sensitive to minor alterations. To demonstrate
this, we first performed toy experiments on three representative datasets from three modalities (MRI,
dermoscopy, and X-ray) using three types of transformations: random cropping, random rotation,
and random masking. Specifically, we measured the robustness by calculating the symmetrical KL
divergence between predictions before and after applying transformations as follows:

r(I, It) = Lkl(P (I), P (It)) + Lkl(P (It), P (I)), (4)

where Lkl indicates the KL divergence loss, and It denotes the transformed image. PGD and
BiomedCLIP Zhang et al. (2023) are utilized as the adversarial attack method and the victim model,
respectively. As illustrated in Figure 4, weak transformations (e.g., ±10◦ random rotation and 90%
random cropping) produce low KL divergence for clean images but high divergence for adversarial
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ones, with this gap decreasing under stronger transformations. This phenomenon can be attributed
to that adversarial perturbations are highly over-fitted to the specific image. However, this effect
is dependent on the transformation type. In contrast, random masking has a minimal effect at low
intensities, as it only alters a small portion of the adversarial perturbations.

To discuss the efficacy of various transformation strategies, we further defined a ratio R =

r(Î , Ît)/r(I, It) to quantify the robustness discrepancy induced by a transformation t between clean
and adversarial images. A larger value of R indicates a stronger discriminative capacity of t in dis-
tinguishing adversarial images from clean ones. We calculated R on 13 common transformation
strategies and displayed the results in Figure 5. It shows that an effective transformation strategy
yielding a high R should satisfy two criteria: (1) it should modify the values and/or spatial posi-
tions of a majority of pixels, thereby amplifying its impact on adversarial images; and (2) it should
apply minimal distortion to preserve high robustness on clean images. Therefore, we selected ran-
dom cropping and random rotation, which exhibit high R values, to construct our defense strategy.
Comprehensive experiment results are provided in the Appendix.

(a) Defense Phase

a photo of a [Benign Tumor]

Text Encoder𝐼𝐼 𝛿𝛿𝑎𝑎 𝐼𝐼

Image Encoder

𝐼𝐼𝑠𝑠

𝐼𝐼𝑤𝑤

Learnable Frozen
a photo of a [Normal Scan]

…

𝜔𝜔

𝑃𝑃(𝐼𝐼𝑤𝑤)

𝑃𝑃(𝐼𝐼)

𝑃𝑃(𝐼𝐼𝑠𝑠)

Prediction

ℒ𝑘𝑘𝑘𝑘

(b) Inference Phase

𝐼𝐼 𝛿𝛿𝑎𝑎 𝐼𝐼 Medical VLM

a photo of a [Benign Tumor]𝜔𝜔 ∗

Figure 6: (a) Pipeline of our TAME training the adversarial restoration map δa for an adversarial
image Î . (b) Pipeline of inference with the weighted restored image Ĩ . The black and red arrows
indicate the data flow and gradient flow, respectively. ‘Tran.’: Abbreviation of ‘Transformation’.

3.3 THE ATTACK MEANS NOTHING (TAME)

3.3.1 ADVERSARIAL RESTORATION

In this paper, we specifically target the preservation of VLM’s zero-shot inference robustness, where
the defender has neither access to task-specific training data nor annotations for test samples. Based
on the above observations (see Section 3.2), we proposed TAME, a simple yet effective method, as
illustrated in Figure 6. For each input adversarial image Î , we introduced a learnable adversarial
restoration map δa, yielding the restored image Ĩ = Î − δa, which is intended to approximate the
original clean image I . Due to the inability to directly obtain I , we adopted a compromise approach
that restores the model’s strong robustness on weak transformations by posing the consistency con-
straint to train δa as follows:

min
∥δa∥∞≤ϵa

Lkl(P (Ĩ), P (Ĩw)), (5)

where ϵa and Ĩw indicate the defense budget and the weakly transformed Ĩ , respectively. Note that
the Lkl(P (Ĩw), P (Ĩ)) term is removed since P (Ĩ) approximates P (Î), which may provide limited
supervision. This process to update δa can be approximated by PGD Madry et al. (2018):

δ1a =
∏

(δ0a − αsgn(∇δaLkl(P (Ĩ), P (Ĩw)))), (6)
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where α denotes the step-size, and the update step is fixed at 1 in this study. The initial perturbation
map δ0a is randomly sampled from a uniform distribution U(−ϵa, ϵa).

3.3.2 WEIGHTING MECHANISM

In this section, we attempt to address the risk that directly applying δa to produce the restored
image may degrade the performance on clean images, thereby hindering model deployments. An
intuitive strategy is to leverage the divergent responses of clean and adversarial images to minor
transformations to distinguish them. However, it is hard to determine a universal threshold due to
the discrepancies among datasets. Recall the observation shown in Figure 4 that strong transforma-
tions with large magnitude induce high KL divergence values on both clean and adversarial images.
Derived from this, such a high KL divergence value can be treated as an anchor to take the effect of
normalization across datasets. We then devised a dynamic weight coefficient ω formulated by:

ω =
Lkl(P (Ĩ), P (Ĩw))

Lkl(P (Ĩ), P (Ĩs))
(7)

where Ĩs indicates the strongly transformed Ĩ . Due to the discrepancy between clean and adversarial
images, this ensures allocating larger weights to adversarial ones while avoiding excessive modifi-
cation of clean ones. To further amplify the effect of ω on adversarial images and mitigate potential
instability from excessively large weights, we also truncated ω using an empirically determined
threshold value of 0.5, where values exceeding this threshold were clipped to 1. Then the model can
perform inference on the weighted restored image as illustrated in Figure 6 (b). We summarize the
algorithm of our TAME in Algorithm 1.

Algorithm 1: TAME Algorithm.
Input: Current test image I , pre-trained VLM (including fθv and fθt ), defense budget ϵa, and step-size α.
1: δ0a ∼ U(−ϵa, ϵa).
2: δ1a =

∏
(δ0a − αsgn(∇δaLkl(P (I), P (Iw)))).

3: δa = clamp(δ1a,−ϵa, ϵa).
4: ω = Lkl(P (I),P (Iw))

Lkl(P (I),P (Is))
.

5: ω = ω · 1ω≤0.5 + 1 · 1ω>0.5

Output: P (I − ω · δa)

4 EXPERIMENTS AND RESULTS

4.1 DATASETS AND METRIC

We conducted all experiments on the test sets of 11 diverse medical datasets spanning 9 imaging
modalities: Computerized Tomography (CTKidney Islam et al. (2022)), Dermatoscopy (DermaM-
NIST Codella et al. (2019); Tschandl et al. (2018)), Endoscopy (Kvasir Pogorelov et al. (2017)),
Color Fundus Photography (RETINA Köhler et al. (2013); Porwal et al. (2018)), Histopathology
(LC25000 Borkowski et al. (2019) and CHMNIST Kather et al. (2016)), Magnetic Resonance Imag-
ing (BTMRI Nickparvar (2021)), Optical Coherence Tomography (OCTMNIST Kermany et al.
(2018)), Ultrasound (BUSI Al-Dhabyani et al. (2020)), and X-Ray (COVID-QU-Ex Tahir et al.
(2021) and KneeXray Chen (2018)). The details are listed in Table 3. We utilized the classification
accuracy as the metric to evaluate our TAME and other competing methods.

4.2 IMPLEMENTATION DETAILS

We employed the pre-trained BiomedCLIP Zhang et al. (2023) with a ViT-B/16 backbone as the
victim model and reported the averaged results calculated across three trials (i.e., setting the random
seed to 0, 1, and 2). The attack budget ϵp was set to 1/255 to guarantee imperceptible perturbations,
and the update step for each attack method was set to 10. All experiments are conducted under the
white-box setting, where the adversary has full access to the victim model. In our TAME, the weak
transformation strategy is empirically defined as the combination of ±10◦ random rotation and 90%
random cropping. The strong transformation strategy applies a more intensive combination of ±30◦
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random rotation and 50% random cropping. Since the defense is operated by the user at test time,
there is no need for the adversarial restoration map to be undetectable, allowing a large defense
budget. Therefore, we set both the defense budget ϵa and the step-size α to 8/255.

4.3 EXPERIMENTAL RESULTS

Table 1: Zero-shot adversarial robustness (%) of our TAME, the BiomedCLIP baseline, and other
competing TAD methods on 11 medical datasets. We report the mean and standard deviation cal-
culated across three trials. For each dataset, the highest performance under the Clean, PGD, C&W,
and AutoAttack (AA) settings is highlighted in red, blue, green, and purple, respectively.

Dataset Attack BiomedCLIP Anti-Adv HedgeDefense TTC R-TPT TAME

BTMRI

Clean 56.79 41.62±0.10 58.77±0.08 42.07±0.43 54.30±0.34 54.13±1.09

PGD 0.68±0.07 9.88±0.29 6.37±0.10 53.41±0.08 48.67±0.47 61.21±0.33

C&W 0.68±0.03 7.96±0.35 7.55±0.07 53.37±0.67 48.84±0.22 61.50±0.43

AA 0.06±0.00 8.15±0.22 7.65±0.15 56.92±0.87 50.46±0.26 61.25±0.19

BUSI

Clean 59.75 27.54±0.00 49.72±0.72 40.96±1.21 45.48±1.11 62.71±2.07

PGD 0.00±0.00 8.33±0.20 2.83±0.53 51.84±1.60 34.88±1.44 68.08±2.45

C&W 0.00±0.00 14.41±0.35 5.37±1.00 49.15±1.83 34.32±0.92 70.90±0.53

AA 0.00±0.00 8.47±0.00 4.38±0.53 55.09±1.51 37.71±1.51 65.54±0.20

COVID-QU-Ex

Clean 43.82 43.80±0.01 48.67±0.21 31.50±0.37 37.51±0.15 36.38±0.26

PGD 0.00±0.00 0.15±0.05 0.62±0.01 48.93±0.28 25.99±0.09 54.41±0.22

C&W 0.00±0.00 0.17±0.05 0.66±0.08 49.30±0.31 26.23±0.13 53.70±0.42

AA 0.00±0.00 0.20±0.03 10.03±0.06 40.51±0.40 31.76±0.29 54.00±0.48

CTKIDNEY

Clean 42.43 40.25±0.01 42.56±0.04 29.73±0.14 48.33±0.03 40.36±0.38

PGD 0.87±0.03 1.31±0.04 2.36±0.12 26.32±0.29 40.98±0.13 53.01±0.60

C&W 0.88±0.02 2.75±0.09 2.89±0.04 26.35±0.39 41.10±0.12 52.02±0.60

AA 0.05±0.00 0.68±0.04 4.91±0.12 32.58±0.25 45.23±0.31 50.42±0.61

DermaMNIST

Clean 38.80 38.65±0.00 37.44±0.14 15.69±0.33 43.09±0.39 27.95±0.63

PGD 0.00±0.00 0.07±0.06 0.88±0.02 40.57±0.24 21.00±0.27 40.28±0.59

C&W 0.00±0.00 0.13±0.02 1.02±0.18 39.98±1.40 20.03±0.12 41.30±0.60

AA 0.00±0.00 0.30±0.04 6.23±0.04 33.47±0.48 33.44±0.41 41.99±0.25

Kvasir

Clean 54.58 42.42±0.00 56.09±0.12 26.64±1.22 56.28±0.61 48.36±1.00

PGD 0.00±0.00 2.19±0.40 0.42±0.07 46.16±0.59 41.89±0.45 59.61±0.08

C&W 0.00±0.00 2.75±0.20 0.31±0.14 43.11±0.52 41.42±0.65 58.11±0.22

AA 0.00±0.00 3.28±0.04 4.06±0.28 48.19±0.31 47.86±0.34 63.72±0.67

CHMNIST

Clean 30.65 20.39±0.06 25.53±0.14 25.42±0.33 29.94±0.55 21.77±0.71

PGD 0.00±0.00 5.57±0.30 0.18±0.07 20.15±0.09 16.51±0.37 25.97±0.17

C&W 0.02±0.03 5.30±0.36 0.40±0.06 19.88±0.24 16.58±0.64 24.98±0.73

AA 0.00±0.00 3.32±0.11 3.37±0.03 24.96±0.22 22.52±0.38 30.83±0.32

LC25000

Clean 50.01 48.10±0.04 54.14±0.07 32.77±0.10 50.12±0.14 44.04±0.23

PGD 0.01±0.00 1.21±0.03 0.21±0.02 32.21±0.08 38.87±0.05 55.75±0.56

C&W 0.02±0.01 1.48±0.04 0.36±0.03 30.89±0.11 38.43±0.14 52.47±0.41

AA 0.01±0.00 5.74±0.01 8.76±0.03 41.19±0.33 43.14±0.05 54.62±0.20

RETINA

Clean 26.26 26.37±0.04 26.10±0.51 29.15±0.62 32.89±0.81 26.18±0.30

PGD 0.00±0.00 9.75±0.55 2.60±0.45 35.54±0.82 20.27±0.79 26.13±0.53

C&W 0.00±0.00 8.89±0.23 1.61±0.10 33.62±0.70 21.69±0.84 26.21±0.48

AA 0.00±0.00 9.59±0.41 8.65±0.50 32.68±1.11 29.94±0.26 26.68±0.21

KneeXray

Clean 29.47 8.86±0.03 23.85±0.05 24.88±0.47 40.84±0.31 38.38±0.44

PGD 0.00±0.00 0.24±0.13 0.22±0.11 47.75±0.12 27.70±0.64 46.15±0.33

C&W 0.00±0.00 1.07±0.11 1.61±0.27 46.94±0.39 28.92±0.84 41.08±0.06

AA 0.00±0.00 3.72±0.06 18.74±0.44 17.47±1.07 35.65±0.35 39.61±0.26

OCTMNIST

Clean 29.90 28.80±0.00 26.23±0.05 29.37±0.79 25.40±0.08 34.10±0.36

PGD 6.27±0.68 8.13±0.33 24.83±0.05 33.73±0.38 25.17±0.05 39.40±0.29

C&W 6.37±0.17 7.33±0.33 25.17±0.17 32.57±0.41 25.17±0.05 39.63±0.38

AA 0.00±0.00 0.33±0.05 18.30±0.14 20.40±0.59 25.20±0.14 37.10±0.57

Average

Clean 42.04 33.35±0.01 40.83±0.13 29.84±0.14 42.20±0.10 39.49±0.21

PGD 0.71±0.06 4.26±0.03 3.77±0.04 39.69±0.29 31.08±0.08 48.18±0.18

C&W 0.72±0.01 4.75±0.07 4.27±0.07 38.65±0.24 31.16±0.21 47.45±0.14

AA 0.01±0.00 3.98±0.06 8.64±0.05 36.68±0.13 36.63±0.11 47.80±0.11

4.3.1 COMPARISON WITH OTHER TAD METHODS

We compared our TAME with the BiomedCLIP baseline, two TAD methods designed for the tradi-
tional models (Anti-Adv Alfarra et al. (2022) and HedgeDefense Wu et al. (2021)), and two TAD
methods tailored for VLMs (TTC Xing et al. (2025) and R-TPT Sheng et al. (2025)). Specifically,
we re-implemented all the competing methods using the same baseline and reproduced the results by
utilizing their open-source codes. As detailed in Table 1, the results reveal that (1) BiomedCLIP is
highly susceptible to adversarial attacks, which devastate its inference capabilities; (2) Anti-Adv and
HedgeDefense provide only marginal improvements, underscoring their limited defense ability for
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Table 2: Zero-shot adversarial robustness (%) of our TAME, TTC, and R-TPT integrated with three
distinct AFT methods: FARE, PMG, and TeCoA. We report the mean and standard deviation cal-
culated across three trials. For each AFT method, the highest performance under the Clean, PGD,
C&W, and AutoAttack (AA) settings is highlighted in red, blue, green, and purple, respectively.

Method Clean PGD C&W AA
CLIP (ViT-B/32) 24.33 0.07±0.02 0.13±0.01 0.13±0.00

FARE 22.51 6.09±0.01 6.02±0.01 5.71±0.00

FARE + TTC 23.09±0.22 16.97±0.08 16.40±0.03 22.82±0.03

FARE + R-TPT 22.70±0.02 16.77±0.03 17.05±0.05 19.46±0.07

FARE + TAME (Ours) 23.43±0.10 32.32±0.26 30.85±0.36 28.98±0.11

PMG 22.95 12.27±0.02 11.71±0.01 11.65±0.02

PMG + TTC 22.48±0.05 16.29±0.07 15.96±0.07 20.12±0.13

PMG + R-TPT 20.53±0.05 17.70±0.01 17.51±0.04 19.07±0.04

PMG + TAME (Ours) 21.02±0.17 21.40±0.14 21.09±0.22 20.80±0.04

TeCoA 22.56 11.96±0.01 11.42±0.01 11.49±0.01

TeCoA + TTC 22.24±0.07 16.14±0.11 16.02±0.13 20.00±0.23

TeCoA + R-TPT 22.84±0.05 19.16±0.07 19.07±0.08 21.34±0.10

TeCoA + TAME (Ours) 22.68±0.07 23.52±0.05 23.43±0.07 23.40±0.10

VLMs; and (3) our TAME consistently demonstrates strong adversarial robustness, delivering supe-
rior performance in most scenarios and achieving the best overall accuracy across all attack types,
while maintaining accuracy on clean images with minor and acceptable degradation. If higher clean
accuracy is required, the defense budget can be reduced, as explored in Appendix C.1. Addition-
ally, an intriguing observation is that TAME’s overall accuracy under adversarial attacks (48.18%
for PGD, 47.45% for C&W, and 47.8% for AutoAttack) surpasses that of BiomedCLIP on clean
images (42.04%). This phenomenon indicates a potential risk of label leakage during the attack
process. We will discuss it in the Appendix B.

4.3.2 EXTENSIBILITY ANALYSIS

To evaluate the extensibility of TAME, TTC, and R-TPT, we integrated each one with various adver-
sarially fine-tuned models. In this experimental setup, we utilized a pre-trained CLIP model with a
ViT-B/32 backbone as the base victim model. Due to the challenge of obtaining a fine-tuning dataset
that covers all downstream modalities, we implemented three AFT methods (i.e., FARE Schlarmann
et al. (2024), PMG Wang et al. (2024a), and TeCoA Mao et al. (2023)) by fine-tuning the CLIP
vision encoder on adversarial images from the TinyImageNet dataset. The presence of a significant
discrepancy between the adversarial training data and testing data can serve to assess the adaptabil-
ity of AFT methods in generalizing to unseen testing adversarial images. For conciseness, we only
display the average accuracy across 11 datasets in Table 2, and the complete results can be found in
Table 8. The results indicate that (1) AFT methods provide only a partial defense against attacks,
which can be attributed to their limited adaptation capability when generalized to diverse test data;
(2) all TAD methods consistently boost the adversarial robustness of adversarially fine-tuned mod-
els, demonstrating the effectiveness of test-time adversarial defense; and (3) our TAME achieves
significantly superior robustness enhancements across all adversarial attack types compared to TTC
and R-TPT, regardless of the deployed victim model, underscoring its exceptional extensibility.

5 CONCLUSION

In this paper, we propose TAME, a novel test-time adversarial defense method designed to improve
the zero-shot adversarial robustness of medical vision-language models. By leveraging the semantic
fragility of adversarial perturbations, TAME effectively restores model predictions through an ad-
versarial restoration map trained specifically for each test image, requiring only a single update step.
To mitigate adverse effects on clean inputs, we further introduce an adaptive weighting mechanism
that balances the trade-off between adversarial robustness and clean accuracy, eliminating the need
for manual hyperparameter tuning. Extensive experiments across multiple adversarial attacks and
11 medical datasets spanning 9 imaging modalities demonstrate the superiority of our approach, in-
dicating that TAME not only outperforms existing defense strategies but also generalizes effectively
to adversarially fine-tuned models. Future work will investigate the extension of this paradigm to a
wider range of medical modalities and a more extensive suite of adversarial attacks.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

As recommended, we state the reproducibility of this study here. All 11 medical datasets utilized in
this paper are public, and the download links are shown as follows:

• BTMRI: https://drive.google.com/file/d/1_lJLZRUmczqZqoN-dNq
kAzGzmi4ONoU5/view?usp=sharing

• BUSI: https://drive.google.com/file/d/1hB5M7wcAUTV9EtiYrijAC
oQ36R6VmQaa/view?usp=sharing

• COVID-QU-Ex: https://drive.google.com/file/d/1zMLN5q5e_tmH-d
eSZQiY4Xq0M1EqCrML/view?usp=sharing

• CTKidney: https://drive.google.com/file/d/1PBZ299k--mZL8JU7nh
C1Wy8yEmlqmVDh/view?usp=sharing

• DermaMNIST: https://drive.google.com/file/d/1Jxd1-DWljunRDZ8f
Y80dl5zUMefriQXt/view?usp=sharing

• Kvasir: https://drive.google.com/file/d/1T_cqnNIjmGazNeg6gziar
vCNWGsFEkRi/view?usp=sharing

• CHMNIST: https://drive.google.com/file/d/1tyQiYQmqAGNaY4SCK
_8U5vEbbaa1AD-g/view?usp=sharing

• LC25000: https://drive.google.com/file/d/1YIu5fqMXgyemisiL1L1
HCvES2nVpCtun/view?usp=sharing

• RETINA: https://drive.google.com/file/d/18U-Gc22h5QryomNNzY
4r4Qfrq52yf5EO/view?usp=sharing

• KneeXray: https://drive.google.com/file/d/1DBVraYJmxy2UcQ_nGLY
vTB2reITOm453/view?usp=sharing

• OCTMNIST: https://drive.google.com/file/d/1mYZNWxbPxnnVvcwHQ
YybA8gdMzQAoOem/view?usp=sharing

We followed the data processing pipeline detailed in Koleilat et al. (2025), which is also open-
source (https://github.com/HealthX-Lab/BiomedCoOp/tree/main). The results
of the competing methods are reproduced by using their publicly available source codes, and the
corresponding GitHub links are listed below:

• Anti-Adv: https://github.com/MotasemAlfarra/Combating-Adversa
ries-with-Anti-Adversaries

• HedgeDefense: https://github.com/burcywu/hedge_defense

• TTC: https://github.com/Sxing2/CLIP-Test-time-Counterattack
s/tree/main

• R-TPT: https://github.com/TomSheng21/R-TPT/tree/main

• FARE: https://github.com/chs20/RobustVLM

• PMG: https://github.com/serendipity1122/Pre-trained-Model-G
uided-Fine-Tuning-for-Zero-Shot-Adversarial-Robustness

• TeCoA: https://github.com/cvlab-columbia/ZSRobust4FoundationM
odel

The hyper-parameter configurations of our TAME can be found in Section 4.2, and the code and the
computational environment will be available on GitHub.
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APPENDIX

A DATASET DETAILS

Table 3 presents a summary of the 11 medical datasets used for evaluation in this study, encompass-
ing 9 typical biomedical imaging modalities: MRI, ultrasound, X-ray, CT, dermatoscopy, endoscopy,
histopathology, CFP, and OCT.

Table 3: Details of 11 datasets across 9 biomedical imaging modalities used in this study.

Modality Dataset Case Number
Magnetic Resonance Imaging (MRI) BTMRI 1717

Ultrasound BUSI 236

X-Ray COVID-QU-Ex 1656
KneeXray 6351

Computerized Tomography (CT) CTKidney 3738
Dermatoscopy DermaMNIST 2005

Endoscopy Kvasir 1200

Histopathology CHMNIST 1504
LC25000 7500

Color Fundus Photography (CFP) RETINA 1268
Optical Coherence Tomography (OCT) OCTMNIST 1000

B LABEL LEAKAGE BY ATTACKS

To validate the phenomenon of “label leakage”, we attacked BiomedCLIP using the PGD method
with an attack budget of 1/255 and a step size of 10. Specifically, we evaluated three settings: (1)
“Chance-level”: a chance-level baseline with random guessing; (2) “Random Noise”: classification
using perturbations initialized from random noise; and (3) “Label As Target”: classification using
adversarial perturbations generated by the PGD method. For the latter two, We employed a mini-
ResNet He et al. (2016) (about 0.3M parameters) as a simple classifier, utilized to predict the class
labels from the input perturbations. This classifier is trained by an Adam Kingma & Ba (2014)
optimizer using a learning rate of 0.001 for 10 epochs, with an 8:2 train–validation data split. As
shown in Figure 7, the “Chance-level” achieves an accuracy of approximately 1/k, where k denotes
the number of categories. The accuracy of “Random Noise” is comparable to this baseline across
most datasets, while “Label As Target” exhibits a significantly higher overall accuracy. This finding
highlights the potential risk of label leakage via adversarial attacks. We argue that this leakage occurs
since adversarial perturbations are optimized along gradient directions that are inherently label-
aligned, thereby embedding class-related information at the pixel or feature level. Consequently, a
defense approach that learns to recognize and reverse such information could transform adversarial
perturbations into signals that are beneficial to the model’s performance. This insight suggests that
future research should reconsider the supervision strategy of attack methods to mitigate the risk of
label leakage.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 ABLATION STUDY

In this section, we will discuss the effect of the proposed weighting mechanism and analyze the
sensitivity of our TAME to the defense budget δa and the step-size α. We repeated the experiments
on 11 medical datasets using BiomedCLIP as the victim model, and the results are summarized in
Table 4. It reveals that (1) the dynamic weight ω preserves performance on clean images by sacri-
ficing robustness to adversarial images, where the extremely high adversarial robustness intensifies
the suspicion of label leakage during adversarial attacks; (2) our TAME is robust to the variation
of δa and α; and (3) the performance on clean and adversarial images generally exhibits opposite
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Figure 7: Classification accuracy across 11 datasets under various situations, where the error bars
represent standard deviation calculated across 3 trials. Chance-level: the expected performance of
making predictions by random guessing. Random Noise: using the perturbations initialized by ran-
dom noise to train a simple classifier. Label As Target: using the adversarial perturbations produced
by PGD to train a simple classifier.

trends as δa and α decrease. The trade-off issue between clean and adversarial robustness will be
considered in our future work.

C.2 LARGER ATTACK BUDGET

We enlarged the attack budget from 1/255 to 4/255 to evaluate the effectiveness of our TAME and
other compared TAD methods in a more challenging environment. All the experiment configurations
of all methods are frozen to avoid additional tuning. Since amplifying the attack budget will not
affect the performance on clean images, the results under the clean setting are omitted. We reported
the results in Table 6. The results demonstrate that our TAME still remains robust against all attack
types even with such a larger attack budget and surpasses other compared methods across most
datasets, achieving the best overall accuracy.

C.3 DEPLOY TO OTHER MEDICAL VLMS

We further discussed the generalizability of the defense methods when deployed to other medical
VLMs. The PubMedCLIP Eslami et al. (2023) with a ViT-B/32 backbone is introduced as the victim
model, and other experimental configurations remain consistent with those in Table 1. The results
displayed in Table 5 reveal that our TAME consistently achieves the strongest overall adversarial
robustness against all attack types with an acceptable accuracy on clean images. The label leakage
phenomenon can also be clearly observed that the overall accuracies of our TAME against PGD
(41.41%), C&W (40.42%), and AutoAttack (36.19%) are much higher than the accuracy of the
PubMedCLIP baseline on clean images (27.24%).

C.4 ADVERSARIAL ROBUSTNESS ON NATURAL IMAGE TASKS

To evaluate the generalizability of our TAME in natural scenes, we followed previous adversarial
defense works Xing et al. (2025); Wang et al. (2024a) and conducted experiments on 16 diverse
natural image datasets, including four distinct tasks:

• General Object Recognition: CIFAR10 Krizhevsky et al. (2009), CIFAR100 Krizhevsky
et al. (2009), STL10 Coates et al. (2011), ImageNet Deng et al. (2009), Caltech101 Fei-Fei
et al. (2006), and Caltech256 Griffin et al. (2007).
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Table 4: Zero-shot adversarial robustness (%) of various variants of our TAME on 11 medical
datasets. We report the mean and standard deviation calculated across three trials.

Dataset Attack BiomedCLIP Ablation study for TAME
w/o ω ϵa = α = 4/255 ϵa = α = 2/255 Ours

BTMRI

Clean 56.79 38.36±1.62 54.07±1.09 55.44±0.98 54.13±1.09

PGD 0.68±0.07 76.84±0.22 58.71±0.09 54.38±0.06 61.21±0.33

C&W 0.68±0.03 76.32±0.29 58.40±0.40 54.49±0.48 61.50±0.43

AA 0.06±0.00 71.27±0.62 60.84±0.32 57.39±0.24 61.25±0.19

BUSI

Clean 59.75 35.17±3.51 61.72±2.77 62.57±2.69 62.71±2.07

PGD 0.00±0.00 74.44±0.87 62.99±2.09 49.01±2.30 68.08±2.45

C&W 0.00±0.00 75.42±1.51 65.68±1.51 49.01±2.23 70.90±0.53

AA 0.00±0.00 70.48±1.00 66.67±1.78 58.61±2.94 65.54±0.20

COVID-QU-Ex

Clean 43.82 31.72±0.30 43.39±0.30 44.38±0.28 36.38±0.26

PGD 0.00±0.00 66.47±0.18 47.54±0.09 38.67±0.38 54.41±0.22

C&W 0.00±0.00 64.99±0.04 47.14±0.11 38.46±0.36 53.70±0.42

AA 0.00±0.00 60.33±0.36 54.66±0.69 46.12±0.45 54.00±0.48

CTKIDNEY

Clean 42.43 30.48±0.47 43.39±0.51 45.15±1.15 40.36±0.38

PGD 0.87±0.03 56.08±0.09 48.66±0.32 43.03±0.36 53.01±0.60

C&W 0.88±0.02 55.80±0.06 48.21±0.73 42.86±0.36 52.02±0.60

AA 0.05±0.00 53.14±0.23 50.16±0.36 47.68±0.28 50.42±0.61

DermaMNIST

Clean 38.80 25.06±0.20 31.60±0.42 34.20±0.83 27.95±0.63

PGD 0.00±0.00 43.67±0.06 38.63±0.44 28.91±0.14 40.28±0.59

C&W 0.00±0.00 45.50±0.72 38.14±0.28 28.50±0.47 41.30±0.60

AA 0.00±0.00 42.37±0.21 45.22±0.30 38.57±0.31 41.99±0.25

Kvasir

Clean 54.58 27.64±1.46 48.94±1.29 50.61±1.09 48.36±1.00

PGD 0.00±0.00 65.72±0.45 53.72±0.14 46.47±0.44 59.61±0.08

C&W 0.00±0.00 63.83±0.54 52.30±0.34 46.45±0.17 58.11±0.22

AA 0.00±0.00 66.92±0.71 61.80±0.32 56.03±0.49 63.72±0.67

CHMNIST

Clean 30.65 18.15±0.79 29.77±0.42 30.65±0.30 21.77±0.71

PGD 0.00±0.00 28.81±0.11 30.52±0.80 26.02±0.58 25.97±0.17

C&W 0.02±0.03 28.57±0.32 30.96±0.36 25.73±0.74 24.98±0.73

AA 0.00±0.00 31.61±0.26 37.66±1.00 34.35±0.28 30.83±0.32

LC25000

Clean 50.01 36.87±0.38 46.71±0.27 48.94±0.02 44.04±0.23

PGD 0.01±0.00 59.96±0.33 51.22±0.45 42.66±0.18 55.75±0.56

C&W 0.02±0.01 56.36±0.06 48.99±0.96 41.11±0.14 52.47±0.41

AA 0.01±0.00 54.81±0.23 53.48±0.22 48.17±0.22 54.62±0.20

RETINA

Clean 26.26 27.55±0.58 26.10±0.17 25.94±0.82 26.18±0.30

PGD 0.00±0.00 35.04±0.15 20.22±0.73 15.12±0.38 26.13±0.53

C&W 0.00±0.00 35.89±0.78 20.24±0.60 14.85±0.30 26.21±0.48

AA 0.00±0.00 34.33±0.38 27.50±0.67 21.85±0.51 26.68±0.21

KneeXray

Clean 29.47 37.80±0.00 38.33±0.30 37.92±0.54 38.38±0.44

PGD 0.00±0.00 50.14±0.22 34.66±0.54 25.08±0.34 46.15±0.33

C&W 0.00±0.00 44.67±0.34 29.09±0.45 20.27±0.95 41.08±0.06

AA 0.00±0.00 40.18±0.16 39.77±0.32 36.49±0.25 39.61±0.26

OCTMNIST

Clean 29.90 34.93±0.25 33.90±0.24 33.47±0.95 34.10±0.36

PGD 6.27±0.68 41.67±0.68 39.23±0.57 33.30±0.08 39.40±0.29

C&W 6.37±0.17 41.47±0.42 39.53±0.82 33.90±0.08 39.63±0.38

AA 0.00±0.00 38.30±0.57 36.30±0.92 34.87±0.87 37.10±0.57

Average

Clean 42.04 31.25±0.25 41.63±0.34 42.66±0.12 39.49±0.21

PGD 0.71±0.06 54.44±0.06 44.19±0.20 36.60±0.19 48.18±0.18

C&W 0.72±0.01 53.53±0.14 43.52±0.25 35.97±0.20 47.45±0.14

AA 0.01±0.00 51.25±0.12 48.55±0.29 43.65±0.32 47.80±0.11

• Domain-specific Classification: FGVCAircraft Maji et al. (2013), EuroSAT Helber et al.
(2019), DTD Cimpoi et al. (2014), and PCAM Bejnordi et al. (2017).

• Fine-grained Recognition: OxfordPets Parkhi et al. (2012), Flowers102 Nilsback & Zis-
serman (2008), Food101 Bossard et al. (2014), and StanfordCars Krause et al. (2013).

• Scene Understanding: SUN397 Xiao et al. (2010) and Country211 Radford et al. (2021b).

The pre-trained CLIP served as the victim model, and the PGD method was utilized as the adversary.
Following Xing et al. (2025), we set the attack budget ϵp and the number of update steps for PGD
to 1/255 and 10, respectively. It should be noted that our TAME was deployed directly without
any manual tuning. We compared our TAME with four AFT methods (CLIP-FT Xing et al. (2025),
TeCoA Mao et al. (2023), PMG Wang et al. (2024a), and FARE Schlarmann et al. (2024)) and four
TAD methods (TTE Pérez et al. (2021), Anti-Adv Alfarra et al. (2022), HD Wu et al. (2021), and
TTC Xing et al. (2025)). The results shown in Table 7 demonstrate that our TAME achieves superior
performance on 9 downstream datasets and the best overall accuracy.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 5: Zero-shot adversarial robustness (%) of our TAME, the PubMedCLIP baseline, and other
competing TAD methods on 11 medical datasets. We report the mean and standard deviation cal-
culated across three trials. For each dataset, the highest performance under the Clean, PGD, C&W,
and AutoAttack (AA) settings is highlighted in red, blue, green, and purple, respectively.

Dataset Attack PubMedCLIP Anti-Adv HedgeDefense TTC R-TPT TAME

BTMRI

Clean 40.59 40.48±0.00 48.13±0.11 40.26±0.34 37.47±0.21 34.75±0.46

PGD 0.37±0.03 3.44±0.30 8.17±0.12 51.66±0.34 27.08±0.21 62.90±0.46

C&W 0.41±0.00 4.39±0.19 8.58±0.15 50.73±0.22 26.91±0.17 58.80±0.74

AA 0.06±0.00 3.94±0.06 18.37±0.10 40.46±0.56 30.77±0.12 48.67±0.38

BUSI

Clean 54.66 54.66±0.00 55.79±0.40 50.57±0.20 54.80±0.20 43.79±3.32

PGD 0.00±0.00 0.00±0.00 4.10±0.20 53.25±0.53 53.53±0.20 72.32±0.72

C&W 0.00±0.00 0.00±0.00 10.31±1.11 54.38±2.30 52.82±0.40 74.44±1.11

AA 0.00±0.00 3.81±1.04 3.25±0.20 24.72±1.06 54.94±0.20 75.28±0.72

COVID-QU-Ex

Clean 6.61 7.43±0.00 6.79±0.02 15.78±0.25 6.63±0.02 11.13±0.37

PGD 0.00±0.00 5.83±0.16 0.04±0.02 11.41±0.15 5.67±0.01 17.17±0.30

C&W 0.00±0.00 6.38±0.04 0.09±0.01 11.21±0.10 5.69±0.05 16.35±0.20

AA 0.02±0.00 1.79±0.01 0.32±0.03 12.32±0.14 6.22±0.03 14.25±0.24

CTKIDNEY

Clean 22.82 22.82±0.00 18.98±0.07 21.62±0.19 23.46±0.10 21.85±0.20

PGD 0.44±0.03 0.44±0.03 1.75±0.05 25.62±0.27 19.73±0.16 37.69±0.27

C&W 0.95±0.02 0.94±0.02 4.11±0.15 28.83±0.07 19.15±0.11 39.41±0.39

AA 0.05±0.00 0.05±0.00 4.00±0.10 20.35±0.51 21.41±0.01 29.05±0.38

DermaMNIST

Clean 16.36 16.06±0.00 27.48±0.12 20.42±0.61 18.29±0.08 16.23±0.39

PGD 0.00±0.00 0.13±0.05 3.19±0.15 15.79±0.22 14.51±0.07 29.31±0.09

C&W 0.00±0.00 0.23±0.06 4.66±0.22 15.35±0.27 14.00±0.16 26.63±0.27

AA 0.00±0.00 0.37±0.02 15.16±0.12 17.92±0.41 16.68±0.17 24.82±0.27

Kvasir

Clean 13.00 12.83±0.00 12.92±0.12 13.58±0.54 13.03±0.08 9.81±0.32

PGD 0.00±0.00 0.03±0.04 0.33±0.07 14.97±0.42 12.17±0.07 19.03±0.08

C&W 0.00±0.00 0.19±0.04 0.64±0.04 15.03±0.28 12.17±0.07 18.53±0.21

AA 0.00±0.00 0.00±0.00 0.36±0.10 16.08±0.30 12.86±0.17 16.75±0.12

CHMNIST

Clean 20.48 19.61±0.00 17.60±0.40 14.23±0.14 22.78±0.13 27.68±0.37

PGD 0.00±0.00 0.00±0.00 0.16±0.03 18.57±0.42 18.48±0.42 34.62±0.27

C&W 0.00±0.00 0.07±0.00 0.24±0.14 18.53±0.13 18.28±0.30 33.42±0.27

AA 0.00±0.00 0.00±0.00 1.64±0.21 17.42±0.00 21.23±0.31 33.56±0.36

LC25000

Clean 20.71 20.71±0.00 20.59±0.05 20.26±0.05 19.92±0.01 22.63±0.37

PGD 1.07±0.03 1.09±0.04 4.17±0.09 16.37±0.08 19.43±0.02 38.40±0.23

C&W 1.62±0.03 1.65±0.02 4.49±0.04 16.09±0.02 19.37±0.03 38.09±0.20

AA 0.20±0.00 0.24±0.01 2.39±0.04 19.71±0.05 19.62±0.03 39.85±0.07

RETINA

Clean 28.31 28.39±0.00 28.86±0.17 24.53±0.23 29.15±0.10 28.79±0.74

PGD 0.00±0.00 0.39±0.06 1.52±0.10 39.04±1.01 20.48±0.42 50.50±0.16

C&W 0.00±0.00 1.16±0.15 1.81±0.17 38.83±0.83 20.45±0.13 50.34±0.26

AA 0.00±0.00 2.68±0.17 5.23±0.16 24.16±0.48 25.47±0.19 33.41±0.21

KneeXray

Clean 38.65 38.89±0.00 38.51±0.03 34.56±0.22 38.65±0.00 35.41±0.45

PGD 0.00±0.00 0.18±0.09 0.56±0.17 44.44±0.35 28.84±0.16 52.17±0.44

C&W 0.00±0.00 0.48±0.05 0.72±0.17 43.84±0.75 28.95±0.17 51.17±0.56

AA 0.00±0.00 0.30±0.00 1.87±0.18 11.35±0.45 36.11±0.23 43.32±0.38

OCTMNIST

Clean 37.50 30.00±0.00 39.10±0.65 29.73±0.57 34.47±0.09 27.97±1.43

PGD 0.00±0.00 20.60±0.71 4.43±0.33 43.63±0.09 24.80±0.75 41.40±0.54

C&W 0.00±0.00 21.90±0.42 4.63±0.31 43.80±0.14 24.47±0.31 37.40±0.64

AA 0.10±0.00 19.80±0.00 10.50±0.86 48.30±1.63 28.73±0.39 39.13±0.41

Average

Clean 27.24 26.54±0.00 28.61±0.05 25.96±0.06 27.15±0.03 25.46±0.43

PGD 0.17±0.00 2.92±0.03 2.58±0.03 30.43±0.19 22.25±0.12 41.41±0.11

C&W 0.27±0.00 3.40±0.04 3.66±0.12 30.60±0.34 22.02±0.03 40.42±0.14

AA 0.04±0.00 3.00±0.10 5.74±0.07 22.98±0.26 24.91±0.05 36.19±0.10

D COMPLETE RESULTS

Here, we display the complete results for Figure 4, Figure 5, and Table 2 in Figure 8, Figure 9, and
Table 8, respectively. As demonstrated in Figure 8, the semantic fragility of adversarial perturbations
is observable universally across all 11 datasets, as evidenced by high KL divergence under weak
transformations, particularly random cropping and random rotation. Additionally, it can be found
that the KL divergence of clean images increases at a markedly higher rate with magnitude than that
of their adversarial counterparts on most datasets. This provides powerful evidence for the design
of our dynamic weighting mechanism. Figure 9 reveals that both random rotation and random
cropping yield a higher robustness ratio across all datasets. This can be attributed to that these two
transformations alter the values and/or positions of most pixels in the image and are common in
the model training process, thereby leading to low/high robustness on adversarial/clean images. The
results in Table 8 indicate that our TAME method boosts the performance of three adversarially fine-
tuned models obtained by distinct AFT methods, achieving superior results on most datasets and the
highest overall accuracy against all attack types. Additionally, an important finding is the absence
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Table 6: Zero-shot adversarial robustness (%) of our TAME, the BiomedCLIP baseline, and other
competing TAD methods on 11 medical datasets with a larger attack budget of 4/255. We report the
mean and standard deviation calculated across three trials. For each dataset, the highest performance
under the PGD, C&W, and AutoAttack (AA) settings is highlighted in blue, green, and purple,
respectively.

Dataset Attack BiomedCLIP Anti-Adv HedgeDefense TTC R-TPT TAME (Ours)

BTMRI
PGD 0.02±0.03 4.33±0.24 0.04±0.03 16.02±0.50 41.37±0.27 38.38±0.41

C&W 0.02±0.03 3.65±0.10 0.04±0.03 16.93±0.47 42.30±0.34 38.73±0.16

AA 0.02±0.03 7.20±0.29 4.85±0.29 19.92±0.69 48.71±0.43 43.37±0.34

BUSI
PGD 0.00±0.00 0.14±0.20 0.00±0.00 12.15±0.40 26.98±1.06 25.14±1.63

C&W 0.00±0.00 0.85±0.69 0.00±0.00 14.12±0.40 25.57±1.11 26.41±1.31

AA 0.00±0.00 3.81±0.00 2.97±0.35 22.74±1.56 39.83±1.25 41.38±3.14

COVID-QU-Ex
PGD 0.00±0.00 0.01±0.01 0.00±0.00 17.05±0.38 12.03±0.03 27.66±0.41

C&W 0.00±0.00 0.00±0.00 0.00±0.00 17.17±0.67 13.03±0.13 27.84±0.17

AA 0.00±0.00 0.18±0.02 9.77±0.07 18.04±0.07 19.94±0.14 34.06±0.11

CTKIDNEY
PGD 0.00±0.00 0.14±0.07 0.00±0.00 6.69±0.23 29.23±0.13 39.42±0.59

C&W 0.00±0.00 0.60±0.07 0.00±0.00 6.20±0.09 29.28±0.08 39.18±0.01

AA 0.00±0.00 0.35±0.08 3.98±0.09 7.31±0.68 38.29±0.56 39.59±0.25

DermaMNIST
PGD 0.00±0.00 0.10±0.07 0.00±0.00 3.76±0.15 5.60±0.24 12.67±0.43

C&W 0.00±0.00 0.15±0.07 0.02±0.02 4.22±0.20 5.50±0.22 13.40±0.20

AA 0.00±0.00 0.25±0.04 5.84±0.23 8.21±0.22 25.09±0.40 21.45±0.99

Kvasir
PGD 0.00±0.00 1.22±0.26 0.00±0.00 7.08±0.72 25.22±0.21 28.31±0.40

C&W 0.00±0.00 1.61±0.17 0.00±0.00 6.25±0.20 25.42±0.30 27.00±0.47

AA 0.00±0.00 2.69±0.24 4.31±0.08 15.17±0.18 42.92±0.36 43.31±0.55

CHMNIST
PGD 0.00±0.00 4.14±0.17 0.00±0.00 1.91±0.13 8.53±0.22 6.78±0.73

C&W 0.00±0.00 4.19±0.09 0.04±0.03 2.08±0.30 8.22±0.58 7.58±0.29

AA 0.00±0.00 2.44±0.19 3.75±0.19 11.95±0.49 19.44±0.58 17.95±0.30

LC25000
PGD 0.00±0.00 0.01±0.00 0.00±0.00 2.11±0.13 27.40±0.20 33.71±0.27

C&W 0.00±0.00 0.03±0.02 0.00±0.00 2.16±0.14 26.97±0.16 33.75±0.38

AA 0.00±0.00 4.84±0.02 8.73±0.04 12.45±0.11 39.76±0.17 43.20±0.21

RETINA
PGD 0.00±0.00 4.60±0.50 0.08±0.06 11.86±0.29 3.68±0.39 10.33±0.29

C&W 0.00±0.00 4.57±0.23 0.08±0.06 11.04±0.39 8.91±0.06 9.94±0.17

AA 0.00±0.00 8.44±0.06 6.97±0.23 20.11±0.87 28.71±0.46 17.64±0.84

KneeXray
PGD 0.00±0.00 0.00±0.00 0.00±0.00 16.20±0.76 6.08±0.25 34.88±0.25

C&W 0.00±0.00 0.08±0.06 0.00±0.00 16.06±0.64 32.45±0.47 33.39±0.82

AA 0.00±0.00 3.70±0.03 18.78±0.65 19.97±0.84 34.10±0.30 38.45±0.16

OCTMNIST
PGD 0.00±0.00 0.60±0.28 0.43±0.29 15.67±1.01 25.20±0.00 30.20±0.22

C&W 0.07±0.05 0.60±0.08 0.43±0.21 14.73±0.45 25.20±0.08 30.50±0.75

AA 0.00±0.00 0.40±0.00 0.20±0.22 23.13±0.39 25.13±0.05 33.03±0.37

Average
PGD 0.00±0.00 1.39±0.03 0.05±0.02 10.04±0.13 19.21±0.18 26.14±0.16

C&W 0.01±0.01 1.48±0.07 0.06±0.02 10.09±0.20 22.08±0.00 26.16±0.32

AA 0.00±0.00 3.12±0.02 6.38±0.10 16.27±0.28 32.90±0.04 33.95±0.29

Table 7: Zero-shot adversarial robustness (%) of our TAME, the CLIP baseline, and other competing
AFT and TAD methods under the PGD attack on 16 datasets. We report the mean and standard
deviation calculated across three trials. The results marked by ‡ are inherited from Xing et al. (2025).
The best and second-best results in each row are highlighted in bold and underline, respectively.

Dataset CLIP‡ Adversarial Fine-tuning (AFT) Test-time Adversarial Defense (TAD)
CLIP-FT‡ TeCoA‡ PMG‡ FARE‡ TTE‡ Anti-Adv‡ HD‡ TTC‡ TAME (Ours)

CIFAR10 0.74 3.34 33.61 40.66 19.65 41.35±6.14 12.39±0.07 17.22±0.45 28.75±0.18 63.20±0.15

CIFAR100 0.26 0.90 18.95 22.52 11.40 20.06±4.03 5.73±0.04 3.86±0.10 14.31±0.25 27.64±0.43

STL10 11.0 12.73 70.08 73.08 59.06 78.48±3.83 37.42±0.40 39.02±0.30 76.70±0.23 89.23±0.24

ImageNet 1.15 0.93 18.89 21.43 14.00 31.01±4.40 8.67±0.05 6.63±0.05 38.41±0.07 4.71±0.05

Caltech101 14.67 14.21 55.51 61.08 50.74 67.56±3.88 34.81±0.16 31.53±0.22 65.78±0.07 66.83±0.32

Caltech256 8.47 6.76 43.19 45.91 38.79 60.09±4.03 25.36±0.17 23.48±0.10 60.11±0.04 48.99±0.06

OxfordPets 1.04 2.10 38.35 41.18 31.07 50.33±7.30 20.42±0.22 12.04±0.16 57.87±0.15 83.57±0.40

Flowers102 1.14 0.54 21.94 23.43 17.14 35.88±4.72 7.16±0.41 7.29±0.06 39.14±0.28 51.48±0.11

FGVCAircraft 0.00 0.00 2.49 2.22 1.35 6.23±1.37 1.27±0.07 1.26±0.07 13.77±0.38 13.96±0.23

StanfordCars 0.02 0.06 8.76 11.65 6.75 22.36±4.17 4.40±0.30 2.71±0.09 33.01±0.07 30.46±0.14

SUN397 1.14 0.94 19.39 22.58 14.91 30.79±4.43 8.05±0.04 6.40±0.06 41.52±0.04 12.74±0.08

Country211 0.04 0.03 1.78 2.12 0.85 3.05±0.89 0.67±0.05 0.47±0.02 7.09±0.04 5.80±0.03

Food101 0.70 0.42 13.90 18.57 11.65 43.94±6.97 13.12±0.16 8.03±0.11 57.84±0.15 67.22±0.23

EuroSAT 0.03 0.04 11.96 12.60 10.67 6.91±2.13 2.15±0.04 4.57±0.09 12.19±0.24 28.40±0.24

DTD 2.98 2.39 17.61 14.95 15.64 23.90±2.34 5.62±0.07 11.63±0.17 27.32±0.25 24.84±0.26

PCAM 0.08 1.11 48.24 46.18 16.23 10.62±3.22 4.97±0.12 44.74±0.17 52.85±0.20 80.31±0.32

Average 2.70 2.91 26.54 28.76 20.00 33.28±3.98 12.01±0.04 13.81±0.06 39.17±0.02 43.71±0.13
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Figure 8: The KL divergence between BiomedCLIP’s predictions before and after applying trans-
formations across all 11 datasets with various modalities.

of label leakage when PMG is employed as the AFT method, which suggests that the occurrence of
this phenomenon depends on the specific victim model. Note that TeCoA fails on the BUSI dataset,
classifying all samples into the same category with high confidence. Consequently, applying other
attack or defense strategies yields identical results.
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Figure 9: The robustness ratio of 12 transformation strategies across all 11 datasets.

E THE USE OF LARGE LANGUAGE MODELS

In this paper, we employed DeepSeek-V3 and GPT-5 as assist tools to polish writing and identify
potential grammar or spelling errors.
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Table 8: Zero-shot adversarial robustness (%) of our TAME, TTC, and R-TPT integrated with three
distinct AFT methods: FARE, PMG, and TeCoA. We report the mean and standard deviation cal-
culated across three trials. For each AFT method, the best results under Clean, PGD, C&W, and
AutoAttack (AA) settings are highlighted in red, blue, green, and purple, respectively.
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Clean 24.64 38.56 6.36 30.71 28.83 17.08 24.87 29.76 26.50 14.49 25.80 24.33
CLIP PGD 0.02±0.03 0.00±0.00 0.19±0.00 0.01±0.01 0.00±0.00 0.00±0.00 0.07±0.05 0.01±0.01 0.45±0.20 0.00±0.00 0.00±0.00 0.07±0.02

(ViT-B/32) C&W 0.00±0.00 0.00±0.00 0.28±0.02 0.03±0.00 0.00±0.00 0.00±0.00 0.07±0.05 0.01±0.00 1.05±0.21 0.02±0.03 0.00±0.00 0.13±0.01

AA 0.00±0.00 0.42±0.00 0.00±0.00 0.21±0.00 0.05±0.00 0.00±0.00 0.07±0.00 0.32±0.00 0.00±0.00 0.12±0.00 0.20±0.00 0.13±0.00

FARE

Clean 29.76 17.37 9.35 28.06 22.19 15.08 23.34 23.43 26.10 33.39 19.50 22.51
PGD 19.74±0.08 16.95±0.00 0.84±0.01 6.20±0.02 3.16±0.02 0.17±0.00 12.59±0.03 4.60±0.01 2.44±0.00 0.12±0.00 0.20±0.00 6.09±0.01

C&W 19.02±0.11 16.95±0.00 0.79±0.01 5.69±0.02 3.11±0.02 0.25±0.00 12.65±0.03 4.84±0.01 2.37±0.00 0.18±0.00 0.37±0.05 6.02±0.01

AA 18.33±0.05 16.95±0.00 0.80±0.01 5.37±0.02 2.66±0.02 0.17±0.00 12.57±0.00 3.82±0.02 1.86±0.04 0.12±0.00 0.17±0.05 5.71±0.00

+ TTC

Clean 30.40±0.46 17.37±0.00 15.56±0.52 25.28±0.28 19.30±0.31 15.14±0.69 24.49±0.54 28.95±0.50 25.89±0.21 32.27±0.46 19.37±0.42 23.09±0.22

PGD 27.84±0.26 17.37±0.00 9.06±0.16 28.51±0.05 10.47±0.76 7.17±0.53 15.38±0.21 18.47±0.40 23.73±0.33 17.13±0.20 11.50±0.43 16.97±0.08

C&W 27.47±0.10 17.37±0.00 8.87±0.21 28.80±0.39 10.11±0.42 7.31±0.28 14.98±0.11 15.55±0.20 22.93±0.27 16.47±0.49 10.53±0.54 16.40±0.03

AA 31.16±0.26 17.23±0.20 16.95±0.03 28.46±0.26 17.49±0.80 12.78±0.69 22.19±0.35 28.29±0.16 29.16±0.32 28.46±0.33 18.83±1.02 22.82±0.03

+ R-TPT

Clean 30.81±0.10 17.37±0.00 15.37±0.15 28.03±0.15 20.95±0.11 16.39±0.28 22.38±0.20 18.26±0.17 26.10±0.06 32.91±0.08 21.17±0.41 22.70±0.02

PGD 27.02±0.09 17.37±0.00 10.17±0.19 23.34±0.12 12.60±0.24 10.81±0.40 17.89±0.11 12.90±0.05 22.53±0.37 18.14±0.07 11.67±0.31 16.77±0.03

C&W 27.28±0.12 17.37±0.00 10.11±0.12 23.15±0.05 13.12±0.07 11.69±0.10 17.67±0.03 12.63±0.13 22.03±0.21 21.01±0.26 11.47±0.49 17.05±0.05

AA 28.96±0.22 17.37±0.00 13.33±0.05 25.42±0.15 15.96±0.29 13.53±0.04 20.26±0.28 14.38±0.06 23.58±0.23 25.22±0.38 16.07±0.25 19.46±0.07

Clean 36.48±0.07 17.80±0.35 12.55±0.27 24.99±1.00 17.09±0.14 16.28±0.17 25.56±0.33 27.52±0.54 21.95±0.48 30.25±0.47 27.27±0.47 23.43±0.10

+ TAME PGD 45.08±1.09 21.19±1.38 11.97±0.18 33.16±0.75 24.06±0.12 20.39±0.20 33.55±0.08 43.44±0.62 31.81±0.42 57.05±0.13 33.83±0.68 32.32±0.26

(Ours) C&W 44.73±0.72 20.48±1.40 11.90±0.29 33.63±1.26 22.46±0.20 18.53±0.32 31.87±0.64 42.38±0.45 31.04±0.49 52.46±0.12 29.90±1.00 30.85±0.36

AA 41.04±0.96 17.80±0.35 13.28±0.14 29.81±0.65 22.46±0.12 21.14±0.69 29.17±0.35 34.49±0.46 29.16±0.64 50.69±0.49 29.70±1.10 28.98±0.11

PMG

Clean 27.84 17.80 26.97 24.88 16.91 15.08 22.54 19.72 21.06 36.35 23.30 22.95
PGD 23.12±0.05 17.37±0.00 15.11±0.01 14.54±0.07 7.43±0.04 6.19±0.08 15.49±0.00 14.39±0.03 8.65±0.07 4.37±0.06 8.30±0.00 12.27±0.02

C&W 22.97±0.03 17.37±0.00 14.12±0.05 13.71±0.03 5.37±0.05 5.17±0.00 15.16±0.00 12.71±0.01 7.49±0.00 6.18±0.03 8.60±0.00 11.71±0.01

AA 23.04±0.02 17.37±0.00 14.37±0.05 14.00±0.03 5.67±0.08 5.58±0.07 14.58±0.03 12.93±0.05 7.78±0.10 4.91±0.03 7.90±0.00 11.65±0.02

+ TTC

Clean 29.14±0.52 18.64±0.60 24.45±0.06 24.06±0.14 16.46±0.36 14.83±0.18 22.03±0.23 20.70±0.15 21.58±0.38 32.43±1.44 23.00±0.98 22.48±0.05

PGD 24.85±0.36 17.37±0.00 18.90±0.04 23.74±0.13 7.93±0.16 9.00±0.12 17.44±0.33 15.97±0.07 13.85±0.32 17.71±0.81 12.47±0.12 16.29±0.07

C&W 24.71±0.39 17.23±0.20 18.89±0.34 23.13±0.17 7.08±0.19 8.97±0.31 16.93±0.45 15.22±0.08 13.72±0.51 16.85±0.30 12.87±0.53 15.96±0.07

AA 28.17±0.36 18.78±0.20 22.81±0.16 24.72±0.21 11.74±0.08 11.36±0.48 20.37±0.13 18.47±0.13 17.59±0.49 28.02±0.21 19.33±0.52 20.12±0.13

+ R-TPT

Clean 27.53±0.03 17.37±0.00 27.38±0.04 24.03±0.09 13.02±0.04 12.95±0.17 22.34±0.24 17.64±0.06 13.85±0.43 31.20±0.20 18.50±0.22 20.53±0.05

PGD 25.92±0.17 17.37±0.00 25.08±0.12 22.31±0.10 10.49±0.06 12.03±0.22 20.66±0.03 16.13±0.08 11.07±0.04 21.14±0.30 12.57±0.05 17.70±0.01

C&W 26.15±0.05 17.37±0.00 24.83±0.10 21.97±0.16 9.66±0.09 12.03±0.10 19.88±0.20 15.48±0.03 10.49±0.49 21.35±0.53 13.37±0.19 17.51±0.04

AA 26.98±0.14 17.37±0.00 25.81±0.01 23.47±0.08 11.14±0.09 12.61±0.04 21.03±0.11 16.58±0.04 12.09±0.18 26.69±0.13 16.00±0.37 19.07±0.04

Clean 30.11±0.41 17.37±0.00 23.84±0.46 23.99±0.41 12.24±0.40 15.33±0.20 21.16±0.68 17.49±0.33 21.06±0.26 26.85±0.91 21.80±0.08 21.02±0.17

+ TAME PGD 35.74±1.03 17.51±0.20 23.26±0.24 21.98±0.27 9.90±0.12 14.28±0.69 20.81±0.34 16.80±0.15 17.61±0.29 38.91±0.93 18.63±0.17 21.40±0.14

(Ours) C&W 35.31±0.76 17.66±0.20 23.47±0.20 21.75±0.40 8.15±0.12 14.31±0.35 19.15±0.14 17.44±0.27 17.80±0.46 39.29±0.84 17.67±0.87 21.09±0.22

AA 30.07±0.34 17.37±0.00 23.58±0.27 22.37±0.38 9.83±0.14 14.67±0.27 20.17±0.17 16.09±0.19 18.17±0.15 36.41±0.70 20.13±0.26 20.80±0.04

TeCoA

Clean 27.78 17.37 15.98 21.91 15.46 15.33 22.74 18.80 25.39 37.68 29.70 22.56
PGD 27.26±0.00 17.37±0.00 4.25±0.01 13.79±0.03 7.50±0.06 3.75±0.07 13.83±0.00 12.95±0.03 10.88±0.07 9.62±0.03 10.40±0.00 11.96±0.01

C&W 27.26±0.00 17.37±0.00 1.79±0.02 13.33±0.05 6.03±0.00 3.30±0.04 13.76±0.00 12.69±0.04 10.54±0.04 9.64±0.07 9.87±0.05 11.42±0.01

AA 27.26±0.00 17.37±0.00 1.94±0.05 13.48±0.09 5.81±0.10 3.25±0.07 13.47±0.06 12.79±0.02 10.88±0.07 9.76±0.03 10.33±0.12 11.49±0.01

+ TTC

Clean 27.84±0.05 17.37±0.00 18.51±0.29 22.00±0.07 14.56±0.39 16.61±0.37 22.27±0.05 18.96±0.17 25.05±0.19 34.26±0.16 27.20±0.45 22.24±0.07

PGD 27.70±0.03 17.37±0.00 11.13±0.18 18.67±0.28 7.46±0.45 8.69±0.14 16.13±0.37 15.09±0.14 17.14±0.36 22.71±0.30 15.43±0.63 16.14±0.11

C&W 27.64±0.07 17.37±0.00 11.22±0.19 18.58±0.18 6.66±0.27 8.58±0.18 15.65±0.31 15.07±0.08 17.30±0.23 23.01±0.95 15.13±0.29 16.02±0.13

AA 27.72±0.08 17.37±0.00 16.96±0.21 20.88±0.23 10.50±0.13 13.78±1.04 19.77±0.39 16.57±0.03 22.16±0.07 32.31±1.02 21.97±0.45 20.00±0.23

+ R-TPT

Clean 27.70±0.03 17.37±0.00 22.63±0.03 21.70±0.08 12.74±0.06 16.44±0.14 21.12±0.31 18.83±0.09 28.16±0.40 31.86±0.30 32.67±0.46 22.84±0.05

PGD 27.45±0.06 17.37±0.00 18.40±0.09 17.59±0.09 10.32±0.04 11.97±0.14 18.33±0.11 17.67±0.02 22.16±0.07 22.10±0.22 27.37±0.71 19.16±0.07

C&W 27.47±0.03 17.37±0.00 18.31±0.02 17.84±0.15 9.48±0.04 12.61±0.28 17.86±0.17 17.71±0.04 21.85±0.17 22.32±0.15 26.97±0.40 19.07±0.08

AA 27.51±0.06 17.37±0.00 21.38±0.01 20.44±0.26 11.29±0.16 14.64±0.04 19.75±0.09 18.12±0.03 25.45±0.20 29.01±0.41 29.77±0.48 21.34±0.10

Clean 28.56±0.49 17.37±0.00 17.70±0.23 21.28±0.71 13.45±0.35 16.97±0.55 22.76±0.35 18.54±0.24 32.05±0.55 32.41±0.40 28.37±0.42 22.68±0.07

+ TAME PGD 30.13±0.29 17.37±0.00 15.92±0.18 19.88±1.06 13.45±0.25 16.03±0.22 21.19±0.43 17.96±0.23 32.81±0.40 45.61±0.16 28.37±0.24 23.52±0.05

(Ours) C&W 30.09±0.43 17.37±0.00 15.98±0.13 20.21±1.14 11.32±0.33 15.53±0.38 20.86±0.40 18.74±0.37 32.78±0.48 45.88±0.80 28.93±0.86 23.43±0.07

AA 29.00±0.70 17.37±0.00 16.94±0.22 20.84±0.79 12.99±0.12 17.47±0.65 21.52±0.41 17.57±0.12 30.76±1.13 44.26±0.15 28.63±0.61 23.40±0.10
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