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Abstract

Interpretable reinforcement learning policies are essential for high-stakes decision-
making, yet optimizing decision tree policies in Markov Decision Processes
(MDPs) remains challenging. We propose SPOT, a novel method for computing
decision tree policies, which formulates the optimization problem as a mixed-
integer linear program (MILP). To enhance efficiency, we employ a reduced-space
branch-and-bound approach that decouples the MDP dynamics from tree-structure
constraints, enabling efficient parallel search. This significantly improves runtime
and scalability compared to previous methods. Our approach ensures that each
iteration yields the optimal decision tree. Experimental results on standard bench-
marks demonstrate that SPOT achieves substantial speedup and scales to larger
MDPs with a significantly higher number of states. The resulting decision tree
policies are interpretable and compact, maintaining transparency without compro-
mising performance. These results demonstrate that our approach simultaneously
achieves interpretability and scalability, delivering high-quality policies an order of
magnitude faster than existing approaches.

1 Introduction

In high-stakes or safety-critical domains, it is crucial that reinforcement learning (RL) policies be
understandable by humans. Rather than relying on post-hoc explanations of opaque neural policies
(e.g., via LIME or SHAP), which can be incomplete or misleading [27]], a more direct approach is to
learn inherently interpretable policies. Decision tree policies have attracted significant attention as a
suitable interpretable model class: they are simple, rule-based decision structures (threshold tests
on state features leading to actions) that can represent non-linear behavior while remaining human-
comprehensible. A size-limited decision tree (bounded depth or number of leaves) is simulatable by
a person (one can manually follow the decision path) and decomposable (each decision node is an
understandable rule).

Optimizing a policy constrained to be a decision tree is notoriously difficult [6]. Rudin (2019) [19]
identified optimizing sparse logical models such as decision trees as the foremost grand challenge in
interpretable machine learning, emphasizing the distinction between inherently interpretable models
and post-hoc explanation methods. Unlike differentiable function approximators, decision trees have
a discontinuous, non-differentiable structure that precludes straightforward gradient-based training.
The space of possible trees grows combinatorially with depth, making brute-force search intractable
except for very small cases. In supervised learning, greedy algorithms like CART [8] can find
reasonably good trees but are not guaranteed to find the optimal tree and may perform arbitrarily
poorly in some cases. In the context of MDPs, an added challenge is that the policy’s decisions in one
state can influence the distribution of states encountered elsewhere. This means we cannot simply
optimize the tree on a static dataset of state-action examples; we must consider the global dynamics
of the MDP when evaluating a tree policy. Overall, finding an optimal or near-optimal decision tree
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policy in an MDP is a combinatorial optimization problem on top of the usual RL complexities, and
is generally NP-hard. These challenges have motivated a variety of research efforts to learn decision
tree policies in a tractable way.

1.1 Interpretable Policy Learning in RL
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Figure 1: Left: An interpretable policy learned by a decision tree of depth D = 2. Right: Illustration
of the Frozen Lake 4x4 (Stochastic) Markov Decision Process.

A number of prior works have proposed methods to learn interpretable RL policies (decision trees
or other rule-based representations) that balance interpretability and performance. These methods
can be broadly categorized into: (1) relaxation-based or programmatic methods that directly train a
restricted policy, and (2) imitation and distillation methods that extract an interpretable policy from a
complex one. We review key representatives of each approach:

One strategy is to soften or relax the tree representation to enable (approximate) gradient-based
optimization. For example, Gupta et al. (2015) [12] introduced a policy tree model that is optimized
via policy gradient, using a smooth parameterization of the splitting criteria. These approaches embed
the non-differentiable tree into a continuous optimization, often achieving decent performance, but
they do not guarantee a globally optimal tree. Another innovative idea is to reformulate the RL
problem itself to enforce a tree policy: Topin et al. (2021) [22]] proposed Iterative Bounding MDPs
(IBMDPs), a meta-MDP construction in which any optimal policy corresponds to a decision tree
for the original MDP. By solving the IBMDP with standard deep RL algorithms, they indirectly
obtain a tree-structured policy. This approach allows using powerful function approximation during
training while yielding a discrete tree policy in the end, but the solution quality still depends on
the RL training procedure. Finally, beyond decision trees, researchers have explored programmatic
policy learning. Verma et al. (2018) [24] introduced Programmatically Interpretable RL (PIRL),
using a high-level domain-specific programming language to represent policies. Their method, NDPS
(Neurally Directed Program Search), first trains a neural network policy and then performs a guided
search in the space of programs to find a policy that mimics the neural policy’s decisions.

Another framework for obtaining an interpretable policy is to leverage a teacher, typically a high-
performance but complex policy, and train a simpler model to imitate it. Dataset Aggregation
(DAgger) [18]] is a classic approach where an agent gradually collects states by following its current
policy and labels them with actions from an expert policy, iteratively improving the learned policy.
VIPER (Verifiable Imitation Policy Extraction) [4] builds on this idea to specifically learn decision
tree policies. VIPER augments DAgger by using the teacher’s Q-value information to focus the
learning on important states. This results in smaller, more accurate decision trees than naive imitation
learning. VIPER demonstrated success in distilling deep RL agents (like DQN policies) into compact
decision trees that can be formally analyzed. In summary, imitation-based methods can produce
high-quality tree policies if the teacher is strong; however, they inherit a fundamental limitation: if
the optimal policy in the MDP is too complex to be represented by a small tree, a student forced to
imitate that complex optimal (or any complex teacher) will struggle. The student might use its limited
capacity to mirror the teacher’s decisions in parts of the state space that are actually unnecessary
to obtain a high reward. In fact, recent work found that when a limited-depth tree is optimal for
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Figure 2: Branching Strategy Comparison between SPOT and OMDT. OMDT uses standard solvers
(e.g., Gurobi), requiring branching on all integer variables, thus linearly increasing complexity with
the number of states. In contrast, SPOT employs a two-stage reduced-space branch-and-bound
approach, branching only on tree variables.

the task, directly optimizing that tree can yield better performance than imitating a complex policy
[27]. This highlights an imitation gap: the best interpretable policy may differ from the behavior of a
black-box optimal policy, so chasing the latter via imitation can be counterproductive. In light of this,
a promising direction is to optimize the decision tree policy directly for the MDP’s returns, rather
than relying on a teacher.

1.2 Optimal Decision Tree Policies

To overcome the performance limitations of approximate methods, researchers have begun to tackle
the exact optimization of decision-tree policies in MDPs. Over the past decade, several works
have formulated the decision tree induction problem as a mixed-integer program (MIP) or other
combinatorial optimization problem to find the globally optimal tree.

Notably, Bertsimas & Dunn (2017) [6] and Verwer & Zhang (2017) [25] introduced MIP models for
optimal classification trees, and subsequent extensions incorporated various constraints (fairness [[1]],
robustness to adversarial examples [26], etc.) Due to the NP-hard nature of optimal tree induction, a
variety of techniques have been explored to improve solver efficiency: dynamic programming for
small trees [[10], constraint programming and SAT formulations [14} 16} 20} 23]], and specialized
branch-and-bound search algorithms that cleverly prune the search space [2, 3]. These works
demonstrated that for classification/regression tasks with a fixed dataset, one can often compute an
optimal decision tree for modestly sized problems, providing a guarantee of maximal accuracy given
the tree size. Vos and Verwer [27] brought this exact optimization approach into the RL setting.
OMDT (Optimal MDP Decision Trees) formulates finding a decision-tree policy for a given discrete
MDP as a single comprehensive MIP. In essence, their formulation combines the standard linear
programming formulation of an MDP’s optimal policy with additional integrality constraints that
restrict the policy to the structure of a binary decision tree. They link each state’s decision to the
traversal of some path in the tree and enforce consistency of actions with the tree’s predictions.
Using a MILP solver, OMDT can directly maximize the expected discounted return of a size-limited
decision tree policy. However, the exact approach comes with scalability challenges. Solving a large
MILP that encodes the entire MDP and a complex policy structure is computationally intensive. In
OMDT’s experiments, the approach was feasible for MDPs with on the order of 103-10? states and
for trees of depth up to around 5-7. The authors report that in some environments with larger state
spaces (e.g., a tic-tac-toe game MDP), OMDT required hours of runtime to surpass the performance
of the approximate VIPER method. This has motivated us to improve the scalability of tree policies.

A key open challenge is how to achieve scalability for decision tree policies. In particular, can we
design algorithms that find the tree policy more efficiently than directly solving the MILP, enabling
use on problems with more states?



In contrast to OMDT’s single huge MILP solve, we introduce a decision-tree policy iteration frame-
work that alternates between evaluating the current tree policy and improving it. At each policy
improvement step, finding the optimal decision tree (with respect to the current value function) is
formulated as an MILP, but we solve it using a reduced-space branch-and-bound procedure, which
leverages the problem’s structure by decoupling the MDP constraints. By distributing our approach
across multiple processors, we exploit parallelism to further speed up the search for the optimal tree
policy in each iteration. Empirically, in our experiments, this approach outperforms OMDT in both
runtime and scalability, finding optimal or near-optimal tree policies in problems where the baseline
MILP approach fails or takes prohibitively long.

Our work addresses gaps in interpretable reinforcement learning by developing a scalable and efficient
algorithm for optimizing interpretable decision-tree policies in Markov Decision Processes (MDPs).
The key contributions of this work are summarized as follows:

* The proposed method produces compact, interpretable policies suitable for deployment in sensi-
tive, safety-critical domains.

* We propose a novel decomposition strategy inspired by policy iteration. Instead of directly solving
a monolithic optimization, we iteratively decompose the problem into smaller, more tractable
subproblems. We provide theoretical guarantees that each of these subproblems can be solved to
global optimality, ensuring overall high-quality solutions.

* By leveraging the decomposition strategy, the optimization problems arising in each iteration be-
come independently solvable and highly parallelizable. This significantly enhances computational
efficiency and scalability.

» Extensive numerical experiments on standard benchmarks demonstrate that our approach yields
solutions dramatically faster than state-of-the-art methods. We observe significant runtime
improvements and demonstrate the capability to efficiently handle larger problem instances.

2 Preliminaries

Markov Decision Processes. A Markov Decision Process (MDP) provides a mathematical frame-
work for modeling sequential decision-making problems under uncertainty. Formally, an MDP is
defined as a tuple (S, A, P, R, ), where S is a finite set of states, A is a finite set of actions, P;;
represents the transition probability from state 7 to state 7’ given action k, R;;, denotes the immediate
reward received for transitioning from state 7 to ¢’ under action k, and v € [0, 1) is the discount
factor. The goal is to find a policy 7 that maximizes the expected cumulative discounted reward

E, [Ztio 'YtRitit+1kt]

Solving MDPs via Linear Programming and its Dual Formulation. For a finite, discounted MDP,
an optimal policy can be computed by formulating and solving a linear programming (LP) problem.
Let V; denote the optimal value function at state i, let po(7) represent the probability of starting in
state 7, and let P;;;, and R;;/, denote, respectively, the transition probability and immediate reward
when action k is executed in state ¢ transitioning to state ¢’. The primal LP formulation directly
encodes the Bellman optimality conditions in terms of state values:

min Zpo ) V;

i€S

s.t. V; — v Z Py Vir > Z Py Riire, Vie S, ke A
eSS i'eS

At optimality, these constraints hold with equality for at least one action per state. Intuitively, the
primal LP minimizes each state’s value while satisfying the constraints derived from Bellman’s
equation, resulting in the optimal value function. Subsequently, an optimal policy can be derived by
selecting the action(s) in each state that yield equality in the corresponding constraints.

Taking the dual of the primal LP yields an alternative formulation where the variables explicitly
represent the frequency with which each state-action pair is utilized. Define ¢;;, > 0 as the discounted
occupancy measure, representing the expected discounted number of times the agent visits state ¢

2We use 7 to represent state and k to represent action, differing from the traditional notation of s and a. This
choice is made to distinguish from variables commonly used in decision-tree contexts.



and selects action k. The dual LP maximizes the total expected discounted reward subject to linear
flow-balance constraints:

max Z Z ik (Z Py, Rii’k)

€S ke A i'eS
s.t. Z @ir = po(i) + Z Z Pk, Vie€S. (1)
ke A i'eES ke A

In this formulation, the term on the left-hand side of each constraint represents the flow out of state ¢,
while the right-hand side represents the flow info state 4, consisting of contributions from the initial
state distribution and transitions from predecessor states. Any feasible solution g thus corresponds to
a valid policy, and the dual objective directly quantifies the expected return of this policy.

3 Scalable Policy Optimization with Trees

The primary challenge in solving the full dual optimization problem for tree-structured MDP policies
arises from the coupling introduced by the MDP transition dynamics. Specifically, the system
of equations defined by Eq. creates a fully interconnected set of constraints, wherein each
state’s decision variables depend on transition probabilities that link them to all other states. This
interconnectedness implies that the optimization problem is not decomposable; it cannot be divided
into smaller, independently solvable subproblems because the transition terms inherently couple all
state-action variables together. Consequently, directly solving the complete dual formulation becomes
computationally impractical.

To address this issue, we draw inspiration from the classical value iteration algorithm [5 [13]]. Rather
than attempting to solve the entire coupled system simultaneously, we adopt an iterative strategy.
We start with an initial estimate of the value function, denoted by V°¢, and perform a single-step
Bellman update for each state based on this fixed value. For each state ¢, the single-step Bellman
update can be formulated as:

min V;
st. Vi=v Y Pu Vi 2 ) P Rk, Yk € A, @
i'eS i’eS

It can be found that iteratively solving Eq. (2) corresponds exactly to performing value iteration. The
critical advantage of adopting this iterative approach in our formulation is its inherent decomposability.
Specifically, in the Bellman backup LP presented above, the constraints are separated by state. Each
state ¢ is associated with its own independent set of inequalities, which eliminates direct coupling and
interdependencies between states.

Analyzing the dual form of this single-step LP provides insights into the underlying policy updates.
Specifically, the dual formulation of Eq. (Z)) for state ¢ can be expressed as

max Z ik Z Py (Rizrk, + V5

ke A i'eS
S.t. Z ik =1,
keA

Mik > 07 Vk € Aa
where ;5 is the dual variable which can also considered as the policy. When extending this policy
update formulation jointly across all states S, we arrive at the following aggregated optimization
problem

old
max Z q)zr Z ik Z Pii’k(Rii’k =+ ’Y‘/;?ld) (33)
s €S ke A i'€S
st Y pp=1, ViesS, (3b)
ke A
wir >0, VieS ke A (3c)



Here, the coefficient @fgld serves as a weight, indicating the relative importance given to each state ¢
during the overall policy update. This conceptualization is further clarified in Proposition [T}

Now, we introduce the decision tree policy constraints. Consider that each state ¢ has an associated
feature vector z; € RY', with each feature scaled to the unit interval [0, 1]. The decision tree consists
of nodes indexed by ¢t = 1,...,7, where T = 2P+1 — 1 denotes the total number of nodes for a
tree of depth D. Following the notation from [15]], we let p(¢) = [t/2] denote the parent of node
t, and define the sets A (t) and Ag(¢) to include the ancestors of node ¢ where the left or right
branch, respectively, is taken along the path from the root to node ¢. The tree nodes are partitioned
into decision nodes Tp = {1, ..., |7/2]} and leaf nodes 71, = {|7/2| + 1,...,T}. The resulting
constraints for the decision-tree-structured policy optimization problem are as follows:

Tree Constraints

> em=1, Vi € Tr, (3d)
ke A
>z =1, VieS (3e)
teTL
al (x; + € — €min) + €min < b + (14 €ma)(1 — 23¢), VtE€TL,m € AL(t),i€S (3
aTTnmi > by — (1 — 2i4), Vte Tp,me Agr(t),1€ S (3g)
F
> aj=dy, Vi e Tp (3h)
j=1
0< b < dy, Yt € Ty (3i)
dy < dpy(t), vVt € Tp (3j)
aji,dy € {0,1}, YVt € Tp (3k)
zi € {0,1}, Yt e TL 3D
ekt € {0, 1}, Vk e At e Ty (3m)
zit +cpt — 1 < pig, VieS,ke AteTg (3n)

In alignment with the constraint-design framework from [15], the tree structure is encoded through
four sets of variables: a,b,c,d. At each decision node ¢ € Tp, the binary variable d; indicates
whether a node splits. When a split occurs, it is characterized by a binary feature selection vector

ay = [aye, . .. 7apt]T € {0,1}¥ and a threshold b; € [0, 1]. At the leaves, cy; specifies the action k
assigned to leaf ¢, and z;; records if state ¢ terminates at leaf ¢. Constants €, €;ax, €min Stabilize the
mixed-integer big-M calculations as described in [7] (See also Appendix [A).

These constraints collectively preserve the logical and structural coherence of the decision tree.
Specifically, Constraint (3d) ensures that each leaf node is associated with exactly one action label.
Constraint guarantees that each state is assigned uniquely to one leaf node. Constraints (31)
and (3g) implement the appropriate branching behavior, directing states correctly based on their
feature values. Constraints (3h) and (31) ensure proper handling of non-splitting nodes: when no split
occurs at a node (i.e., d; = 0), all states reaching this node follow the right branch, ultimately directing
them consistently towards the right-most leaf. Constraint (3j) maintains hierarchical consistency,
enforcing that splits at parent nodes precede splits at child nodes, thereby ensuring logical downward
propagation of tree branches. Finally, Constraint explicitly restricts the feasible policy space to
policies that can be represented by decision trees.

Next, we explicitly derive ™" This quantity is the discounted occupancy measure, representing the
expected cumulative number of discounted visits to each state under the current policy 7°¢ . Formally,
it is defined as:

oo

(I);Told _ th]P’(St — Z'|7'r01d)
t=0



0 9 NN AW N =

Algorithm 1: Scalable Policy Optimization with Trees (SPOT)

Input: Number of iterations n, a sequence of thresholds {¢;}}_,

Initialize random policy 7o and compute its value function V?;

Set Vold « 10,

for/ =1tondo
Fix: Select tree parameters as tunable with probability ¢;; fix others;
Solve: With 1°!4, solve Problem (3) via Algorithm 2 to obtain policy 7;;
Evaluate: Compute V; and state distribution ®™ for 7;
Update: Vo1 « V;, ™" « &m;

end

Output: The policy in {71, ..., m,} with highest expected return

where P(s; = i|7°d) denotes the probability of being in state 7 at time step ¢ when following policy
7°4. The complete Algorithm is presented in Algorithm

Proposition 1. Each iteration of SPOT corresponds to performing a one-step policy gradient ascent
update starting from w°'. In particular, the update maximizes the same first-order objective that the
policy gradient theorem uses, resulting in a new policy that is a greedy improvement on 7.

SPOT differs from traditional policy gradient methods in a key way: instead of taking a small update
step in the gradient direction, we fully re-optimize the policy p to maximize the surrogate linearized
objective around 7°¢. This can be interpreted as performing exact policy improvement rather than
incremental improvement. Therefore, one iteration of SPOT corresponds to a one-step greedy
policy improvement that leverages the structure of the policy gradient objective while optimizing it
completely under the current value estimate of 7°!.

Proposition 2. If the class of decision-tree policies is expressive to represent an optimal MDP policy,
and the weighting vector ®° is strictly positive, then SPOT is guaranteed to converge to the optimal
solution.

4 Reduced-Space Branch-and-Bound Framework

The optimization problem described by (3) can be viewed as a two-stage stochastic programming
(TSSP) problem. Although traditional off-the-shelf solvers are generally effective, directly solving
these large-scale problems is often computationally intensive or even intractable in practice.

To address this challenge, we propose a reduced-space branch-and-bound (RSBB) framework specif-
ically designed for solving mixed-integer TSSP problems, enhanced with carefully constructed
lower and upper bounds [9]. This RSBB procedure initiates with the full feasible region M; and
iteratively refines the optimality gap by bisecting M into progressively smaller subsets, discarding
any subregions that cannot contain the optimal policy. At each iteration, a subregion M is assessed by
computing a lower bound 3(M ) and an upper bound (M ). If the gap between these bounds satisfies
a(M) — (M) < 0, where ¢ represents an extremely small threshold, the algorithm terminates.
Otherwise, the subregion M is further partitioned according to a defined branching rule, and the
process continues iteratively.

A significant advantage of this RSBB approach is its proven convergence, which occurs despite
branching exclusively on tree-structure descriptive variables, such as the split-indicator and threshold
vectors (i.e., a, b, ¢, d in constraints of Problem (3)). This convergence property remains valid [[15]
even in the presence of constraints involving both continuous and binary second-stage variables.

Theorem 1. RSBB converges to the global optimum, formally expressed as

lim o; = lim f; = f. 4
1—> 00

1—00

Here, f indicates the complete MILP formula of Problem (3). The finite nature of the feasible region
for optimal policies arises naturally from the finite number of distinct tree structures that can result
from the discrete selection of thresholds b at each decision node.
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4.1 Two Stage Stochastic Program

Note that variables a, b, ¢, d describe the structure of the decision tree and are the same for all states,
while policy-related variables z, and p are state-specific and describe the allocation and reward of a
specific state. Therefore, Problem (3)) with fixed V¢ can be reformulated as the following formula:

f(Mo) = max 3 Qi(m), 3)

where we denote m = (a, b, ¢, d) as all first-stage variables and Q;(-) represents the optimal value of
the second-stage problem:

old
#(m) = max ®F it Y P (Rigrg + VM 6a
Qi(m) = ma ijukz ik (Riirk + Vi) (6a)
s.t. Constraints (3a), 3d) ~ @n). (6b)
The closed set My := [m!, m"] denotes the region of the first stage variables. (-)!, (-)* represent

the lower and upper bounds of each variable. In each branch-and-bound (BB) node with a specific
partition M C M, we solve the problem f(M) = max > Qi(m).
meM jes

Leveraging this problem reformulation and its decomposable structure, we can derive effective lower
and upper bounding strategies within the RSBB framework to solve Problem (3). The lower bounds
can be directly constructed using existing techniques from the optimal decision tree literature [[15],
including scenario grouping, relaxed mixed-integer linear programming (MILP) bounds, and simple
primal bound searches. Unlike traditional formulations for optimal decision tree policy learning, the
decomposable structure of our approach enables straightforward parallelization, which significantly
accelerates convergence.

However, to fully leverage the unique structure and decomposability of Problem (), we introduce
a tailored closed-form decomposable upper bounding strategy specifically designed for this maxi-
mization problem. Additionally, this approach allows us to implement effective bound-tightening
techniques that accelerate convergence within the RSBB framework by pre-determining the optimal
actions for certain states during the branch-and-bound process. The overall structure and procedure
of the RSBB algorithm are summarized in Algorithm 2 (see Supplementary Material).

Algorithm 2: Reduced-Space Branch-and-Bound for Optimal Tree Policy

Input: My, non-zero tolerance e

Set iteration index ¢ = 0, Ml < {My} ;

Initial upper and lower bounds «; = a(My), 8; = B(My);

repeat

Node Selection

Select a set M € M satisfying 5(M) = §;;

M+ M\ {M};

11+ 1;

Branching

Partition M into subsets M, and Ms according to the branch strategy in Section [Ef
Add each subset to M to create separated descendent nodes;
Bounding

Compute a(My), B(My), a(Ma), B(Ma);

If B5(M;), j € {1, 2} is infeasible for some s € S, Ml «— M\ {}};
Bi <+ max{B(M') | M' e M},

a; + max{a;_1,a(M;), a(Ms)};

Remove all M’ from M if o (M") < 8;;

If Iﬁl — Ozi‘ < 5, STOP,

until M = 0;

4.2 Closed-Form Upper Bounding Strategy

At each BB node, the optimization problem includes an implicit constraint known as the non-
anticipativity constraint within the stochastic programming literature. This constraint requires that



all states share the same first-stage variables (i.e., the decision tree structure). By relaxing this
non-anticipativity constraint, we derive an upper bounding problem defined as

a(M) = max > Q;(m;). )
€S

m;EM 4
i

This relaxed problem naturally decomposes into |S| independent subproblems: «;(M) :=

max Q;i(m) with (M) := > «;(M). The optimal value «;(M) for each state ¢ can be effi-
me i€s

ciently computed by enumerating all possible leaf nodes that state ¢ could reach, without explicitly
solving any optimization problems. The computational complexity of this enumeration approach is
O (|T| + |TL|)- Since decision trees typically maintain a small depth for interpretability, this calcu-
lation can substantially outperform traditional optimization methods. Given a bound M = [m!, m*],
the enumeration process exhaustively identifies all feasible leaf nodes for state ¢, thereby determining
the globally optimal value of «;(M).

State Action Pre-determination An important benefit of the enumeration process utilized in the
closed-form upper bound calculation is the reduction of feasible leaf nodes for each state ¢ from the
full set 7z, to a smaller set 7,,. Here, T, denotes the set of leaf nodes reachable by state ¢ given
the current subregion M. By comparing the action selection indicators c; with their associated
range (i.e., ¢\, c,) across each leaf node ¢ € 7,, it becomes possible to pre-determine the optimal
action and reward for certain states even before solving their corresponding subproblems explicitly.
Specifically, the reward and optimal action for state ¢ under the current branch-and-bound (BB) node
can be evaluated by, for any k € A,i € S,

®)

1 otherwise,

R — {Qik if /\teTzi Chy = Clyp =1

where | means the upper bound is not determined.

Once the optimal action and corresponding value for a specific state 7 have been determined at a node
within the BB algorithm, this state can be excluded from subsequent upper-bound calculations. This
effectively reduces the computational load by decreasing the number of states to consider. Importantly,
these predetermined state-action pairs remain valid throughout all subsequent descendant nodes in
the BB search tree. This proactive state-action determination significantly mitigates computational
complexity, especially at deeper levels of the search tree. By avoiding redundant optimization
subproblems for previously determined states, the overall efficiency and scalability of the algorithm
are markedly enhanced.

S Experiments

We evaluate our algorithm by comparing it to OMDT [27] on large-scale MDPs.

MDP Preparation We prepare a set of 9 MDP datasets to evaluate our methods: sys_ad_1,
sys_ad_2, tic_vs_ran, tiger_vs_ant, csma_2_2, csma_2_4, firewire, wlan0, and wlanl.
The first four MDPs are available athttps://github.com/tudelft-cda-1ab/0MDT, while the re-
maining five can be found athttps://github.com/prismmodelchecker/prism-benchmarks/.
The properties of MDPs are shown in Table|[I]

Comparison We evaluate two variants of our method: (1) direct application of SPOT (Algorithm
E]), and (2) SPOT with a warm start, referred to as SPOT+WS. In SPOT+WS, an initial solution
generated by OMDT under a 5-minute time constraint serves as a warm start, subsequently refined by
SPOT. All experiments were performed with a uniform 60-minute computational budget. Table I]
reports the performance results for both variants, including the warm-start baselines.

Table [1| summarizes the normalized returns for 9 benchmark MDPs. SPOT+WS consistently outper-
forms both vanilla SPOT and OMDT, achieving notable improvements (e.g., 1201.7% on firewire
and 505.95% on csma_2_2). Furthermore, our analysis reveals that the warm start strategy is partic-
ularly effective for SPOT on larger MDPs, such as firewire, csma_2_4, and wlanO. Even when
OMDT already yields strong results (e.g., wlan0), SPOT maintains comparable performance.
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Table 1: Comparison of OMDT and SPOT on Large MDPs with Tree Depth D = 3. Values represent
normalized returns. The gain is calculated as SPOT and SPOT+WS gains relative to the absolute
value of OMDT (60min). The threshold is set to ¢; = 0.5

MDP S| |A]  F OMDT (5min) OMDT (60 min) SPOT (60 min) SPOT+WS (60 min) SPOT Gain (%) SPOT+WS Gain (%)
sys_ad_1 256 9 8 0.90884 0.94064 0.94260 0.93861 +0.2084 -0.2158
sys_ad_2 256 9 8 0.60547 0.77446 0.80902 0.80902 +4.4625 +4.4625
tic_vs_ran 2424 9 27 -1.0170 -1.0143 -1.0081 -1.0158 +0.6113 -0.1479
tiger_vs_ant 625 5 4 0.47150 0.81333 0.84102 0.65309 +3.4045 -19.7016
csma_2_2 1038 8 11 1.2025e-4 4.7332e-4 2.3898e-4 2.8681e-3 -49.5165 +505.95
csma_2_4 7958 8 11 -1.1582e-2 -1.1582e-2 -1.1699e-2 1.1466e-4 -1.0103 +100.99
firewire 4093 13 10 -9.9350e-3 4.8978e-2 -1.0035e-2 0.63757 -120.4926 +1201.7
wlanO 2954 6 13 0.93399 1.00000 0.99558 1.00000 -0.4420 0.0000
wlanil 6825 6 13 -0.76336 0.98730 0.99694 0.99694 +0.9764 +0.9764

6 Conclusion

In this paper, we presented a novel framework, SPOT, designed for computing decision tree policies
in Markov Decision Processes (MDPs). Our approach addresses the critical computational bottlenecks
encountered when optimizing tree-structured policies through policy iteration and a reduced-space
branch-and-bound algorithm. SPOT provides solid improvements on challenging MDPs while
maintaining competitive performance on simpler instances

Despite these results, our method has some limitations. Its performance still relies on the efficiency
of the underlying optimization solver, which may restrict scalability for extremely large or complex
MDPs. Future research could explore solver-independent acceleration methods or approximate
formulations to extend applicability to very large-scale decision-making problems.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] .

Justification: The claims made in the abstract and introduction accurately reflect the core
contributions of the paper, including the proposed decomposition strategy, the accompanying
theoretical analysis, and the well-designed experiments that support the main findings.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We state our limitations in the conclusion.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All proof are put in appendix and all theory are clearly stated with proper
assumptions.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The detailed experiment setting are explained in Section 5 and we also provide
a complete code in the supplementary material for reproduction.

Guidelines:
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The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the whole code package including the testing data file in the
supplementary material for reproduction.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We explained our experimental settings in Section 5.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have additional experiment results with statistical analysis such as error
bars in the appendix file of supplementary material package.

Guidelines:

* The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Section 5 and Supplementary material provide the details.
Guidelines:

* The answer NA means that the paper does not include experiments.
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9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This work conforms to the NeurIPS Code of Ethics.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In the part of introduction, we state the importance of explainable RL model in
many critical applications, which will help the development of our society.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

» Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The resource of datasets are introducted in Section 5 and part of them comes

from the free release of the author of OMDT paper, while others are xxxxx. Their usage
complies with their terms of access and non-commercial research intent.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

18


paperswithcode.com/datasets

15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Notation

We now clarify the symbols we used in writing:

Table 2: Summary of Notation

Category Description Example Variables

Decision Variables Optimization variables to be aj; € {0,1}, b, € [0,1], uix € [0, 1]
solved

MDP Parameters Fixed transition probabilities and Py, Rk, ¥
rewards

Algorithm Constants’| Fixed hyperparameters and com- €, €,,42,Emin, <I>f°]d

puted values
State/Action Indices Index sets for states and actions 4,9 € S,k € A
Time Indices Temporal or iteration indices t

B Case study: tiger_vs_ant

The tiger_vs_ant environment is a 5x5 grid world in which a tiger pursues an antelope. The state
is the tuple antelope_x, antelope_y, tiger_x, tiger_y, with features normalized to [0,1]. The tiger can
move up, right, down, left, or wait. The antelope moves randomly among valid cells, never leaving
the grid or stepping onto the tiger’s current cell. The agent receives a reward of 1 when the tiger
catches the antelope (same cell) and 0 otherwise, and the episode ends upon capture, and rewards
are discounted with a factor v € (0, 1). The task is challenging because the agent must anticipate
stochastic antelope motion and use positioning to restrict escape routes

if tiger 2<0.6

yes

if antelope_z < 0.2

Figure 3: Learned interpretable decision tree policy with D = 3 in environment tiger_vs_ant

We will demonstrate the interpretability of the above learned policy through the following aspects:
1. Domain-Meaningful Behavior (which shows the strategic coherence)
From the learned decision tree policy, we summarize the following strategies:

Cornering Strategy: When antelope is trapped near the left wall (z < 0.2), the tiger adapts:

3¢, €maz-€min are introduced due to the Big-M reformulation on tree direction constraints. Here € is a
vector of length F' (i.e., the number of state features), where for each state feature j, we define ¢; as follow [7]:
€j = min{x(t1),; — Tij|T+1),; # Tig,t € [|S] — 1]}, where x; ; denotes the sth largest value in the jth
feature. €min = min;{c;} and €mar = max;{e;}.
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* If tiger is well-positioned (z < 0.6), it waits patiently or chases vertically

* If tiger is far away (x > 0.6), it prioritizes closing the horizontal gap
Pursuit Strategy: In open areas, the tiger uses intelligent vertical positioning:

* Moves upward when positioned below the prey (tiger_y < 0.4)
* Moves downward when positioned above the prey (tiger_y > 0.4)

Escape Prevention: Near top boundary (antelope_y > 0.8), the policy focuses on blocking escape
routes rather than direct pursuit

2. Addresses Complexity Concern (This pattern correlates to the concept of Simulatability in [11]))

* Only 8 decision rules cover the entire 625-state space (5* states)
* Each path through the tree corresponds to a clear strategic situation

* The shallow depth (D = 3) ensures human comprehension
3. Uses Interpretable Features (This pattern correlates to the concept of Decomposability in [11])

 Spatial boundaries: Recognizes walls (z < 0.2 for left edge, y > 0.8 for top)
* Relative positioning: Implicitly reasons about tiger-antelope spatial relationships

* No complex engineered features: Uses raw normalized coordinates that directly map to grid
positions.

C Additional Experiment Details

C.1 Experiment Details

Details of SPOT Implementation. During SPOT training, we adopt a time-constrained setup with a
total runtime budget of one hour (60 minutes) and a maximum of five minutes allocated per iteration.
At each step, we retain the best solution found within the allotted time window. We fix the threshold
¢ at 0.5 and, for simplicity, set all coefficients Phi; ™ to 1. To enhance exploration, we employ an
epsilon-decay strategy: when computing V°'9, the evaluation is based on a greedy policy with an
exploration probability e = 1/I, where [ denotes the current iteration index. With probability ¢, the
policy randomly selects alternative actions rather than the greedy one. This mechanism encourages
the policy to explore beyond the most immediate choices. In each iteration, we use Algorithm 2]to
compute the solution.

C.2 Experiments with Tree Depth D = 4

Setup. The MDP setup and method comparison follow those in Section 5. The SPOT implementation
details are identical to Section|C.I] except that the tree-depth parameter is now set to D = 4.

Results. Table 3| reports the normalized return across all benchmarks. We find that even the vanilla
SPOT method surpasses OMDT in seven out of nine instances—for example, it increases the return on
sys_ad_2 from 0.75403 to 0.83337 (+10.76%) and reduces the loss on tic_vs_ran from —1.00610
to —1.00089. Incorporating warm-start initialization further amplifies these improvements: on
csma_2_2, SPOT+WS boosts the return from 0.00024 to 0.01485 (+6101.14%), and on firewire,
from —0.009935 to 0.63699 (+6514.90%). Even in the moderate case of csma_2_4, warm starts
boost performance by +100.97% (-0.01158 — 0.01147). These results confirm that SPOT’s depth
tuning yields steady improvements and that warm-start strategies can unlock substantial additional
performance gains in more challenging MDPs.

C.3 Experiments on Running Time

To demonstrate SPOT’s efficiency in solving each iteration problem, we conduct experiments com-
paring the runtime of different solution methods on the same optimization task.
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Table 3: Comparison of OMDT and Our Methods on Large MDPs with Tree Depth D = 4. Values
are normalized returns.

MDP S| |Al  F OMDT (5min) OMDT (60 min) SPOT (60 min) SPOT+WS (60 min) SPOT Gain (%) SPOT+WS Gain (%)
sys_ad_1 256 9 8 0.90823 0.94403 0.95416 0.95027 +1.073 +0.6610
sys_ad_2 256 9 8 0.74003 0.75403 0.83337 0.83519 +10.52 +10.76
tic_vs_ran 2424 9 27 -1.01700 -1.00610 -1.00089 0.38958 +0.5178 +138.7
tiger_vs_ant 625 5 4 0.53266 0.80464 0.92347 0.81389 +14.77 +1.150
csma_2_2 1038 8 11 2.3902e-4 2.3944e-4 -1.2252¢-2 1.4848e-2 -5216.9 +6101.14
csma_2_4 7958 8 11 -1.1582e-2 -1.1582¢-2 1.1466e-4 -1.1582¢-2 +100.99 0.0000
firewire 4093 13 10 -9.9350e-3 -9.9350e-3 0.63699 0.63757 +6511.6 +6517.4
wlanO 2954 6 13 0.42805 1.00000 0.97792 0.97792 -2.208 -2.208
wlani 6825 6 13 -0.76973 0.37665 0.99694 0.99694 +164.68 +164.68

Setup. For each MDP, we initialize the policy by selecting a fixed action across all states. Based on

this fixed policy, we compute the corresponding value function V°' and set ™" to the softmax of
the discounted state-action occupancy measure. We then perform a single iteration of optimization to
find a tree with depth D = 3 under three different approaches: (i) solving directly with Gurobi, (ii)
using RSBB (reduced space branch-and-bound) in serial, and (iii) using RSBB in parallel across 10
CPU cores. The solver is configured with a gap tolerance of 0.01 and a maximum runtime of 14,800
seconds. Each setup is repeated five times, and we report the mean and standard deviation of the
runtime.

Results. Figure | summarizes the results. For all instances except tic_vs_ran and tiger_vs_ant,
where none of the methods reach optimality within the time limit, parallel RSBB consistently achieves
superior efficiency. For example, on the firewire benchmark, solving directly with Gurobi requires
11,528.12 s, whereas parallel RSBB completes the task in only 15.91s. Similarly, on csma_2_4,
Gurobi exceeds the 14,800 s limit, while parallel RSBB finishes in just 42.568 s. This dramatic
reduction in computation time highlights the efficiency of the parallel RSBB approach.
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Figure 4: Running time comparisons across different MDPs using Gurobi, serial RSBB, and parallel
RSBB. Each bar represents the mean runtime, with error bars showing standard deviation.

D Proofs

D.1 Proof of Proposition ]

Proof. Given the current policy 7°¢, consider the optimization performed by SPOT at the update

step:
max Z (I’Zrom Z Hik Z Pk (Rii +V319) .
% k i

subjectto > ik = 1 for each state ¢ and p;, > 0. Here ;7 and Ry, are the transition probability
and reward for taking action k in state 4 and landing in state 7', and Vi‘,’ld is the value of state i’ under

7°4, This objective is the expected total discounted return of the new policy evaluated under the state
visitation weights of the old policy. To see this, define the Q-value of 7°'¢ for state—action pair (4, k)

22



as
Q" (i k) = Z Pk (Rivrk +4VI9).

Using this definition, we can rewrite the objective in a simpler form:
old old , .
max y O7 Y pan@" (i k).
i k

This expression represents the expected @-value of the new policy, weighting each state i by its

discounted occupancy CI)fom under 7. Because ™" is fixed during this optimization, the objective
separates by states. Maximizing it will assign, for each state 7, all probability mass u; to the action
k that has the highest Q”Md (i, k). In other words, the optimal y is the greedy policy 7" defined
by ¥ (k|i) = 1 for k = arg max, Q™" (i,a). This yields the maximum of the weighted Q)-value
objective.

To connect this update to the policy gradient, recall the policy gradient theorem [21]]. For a differen-
tiable policy 7y, the gradient of the expected return J(7p) can be written as
Vod(mo) = Y 7> Vomg(k | 1)Q™ (i, k).
i k
In particular, at 8 = old (i.e. at the current policy), the direction of steepest ascent in policy space is
determined by the term ) _, (ID?OM Dok Q™ (i, k)Vomg(k|i). Intuitively, this means that in each state i,
increasing the probability of an action k will increase .J at a rate proportional to @?OMQWOM (i, k). The
old old

optimization we performed above uses this same signal: ®7 Q™ (i, k) appears as the coefficient of

i in the objective. Thus, choosing the action that maximizes Q”Old (i, k) for each state (i.e. setting
wirx = 1 at the maximizing k) is precisely what the policy gradient would prescribe — it favors
actions with the largest positive impact on the objective. In fact, the above p-update can be seen
as solving for the policy that maximizes the first-order expansion of .J () around 7°9. By taking a
greedy, full step in the direction of this gradient (rather than an infinitesimal step), SPOT produces
the deterministic policy 7"" that locally maximizes the expected return improvement.

O

D.2 Proof of Proposition 2]

Proof. Assume that the decision tree policy class has enough capacity to represent the optimal policy.
This means at each iteration, when SPOT optimizes the tree policy, it can effectively carry out a policy
improvement step with respect to the current value function V°'4, We show that this improvement
step will monotonically increase the policy’s performance and reach optimality.

More specifically, for a fixed V°!, the objective follows:

mgxz (I);r"‘d Z ik Z Py (Riik + ,yvi?ld) . ©
¢ k &

Because the maximization separates by state (note that y;, for each state ¢ appears only in the term
for state 7 ), we can optimize each state’s decision independently. Let us define the Q-value of taking
action k in state ¢ under the old policy as

Q" (i, k) = Z Piine (Rigrr, + V)

Maximizing the inner sum over actions for a given state ¢ will simply pick the action that maximizes
this (Q-value. In other words, for each state 7,

old | ol
max " pikQ" (i, k) = max Q™ (i, k),
Yk

since the optimal choice is to put all the state’s probability mass on the single action k that yields the

highest Q”Old (i, k) (this corresponds to choosing that action deterministically in state ¢ ). Therefore,
the entire objective decouples over states and can be written as:

Z@yold mkax Qﬂ_old (17]{).
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The policy 7" that achieves this maximum is precisely the greedy policy improvement over 7°!4

for each state i, 7"V (i) = arg maxy, Q™ (i, k). By construction, this new policy 7"V is a decision
tree (deterministic) policy, assuming the tree function approximator is flexible enough to represent
that state-to-action mapping.

Crucially, because q)f(‘]d > 0 for every state 7, no state is ignored in this optimization. The strictly
positive weights ensure that improving the (Q-value in any state will increase the overall objective.
In other words, the weighted objective preserves the true ordering of policy performance: if one
policy yields higher value at some state without lowering it elsewhere, the objective (with all-positive
weights) will also be higher for that policy. This guarantees that the greedy step indeed aligns with
improving the actual value function of the policy.

The described greedy update is exactly the policy improvement step from dynamic programming.
By the policy improvement theorem [17], the new policy 7"V is guaranteed to be no worse than
74 in terms of its value for all states, and in fact strictly better for at least one state if 74 was not

already optimal. In other words, V™" (i) > V™" (i) for all states 4, with a strict inequality for some
state as long as 7°!9 is not optimal. Because our decision-tree function class can represent the policy
exactly and SPOT guarantees solving the optimal policy in each step, it finds the optimal policy after
convergence.

O

D.3 Proof of Theorem[T]

The proof of Theorem ] follows naturally from observing that the set of feasible solutions is finite.
Specifically, since each decision node in the tree can only take a finite set of meaningful split values b,
the number of distinct decision tree structures generated from these splits is also finite. Consequently,
a finite enumeration of solutions is inherently guaranteed, making the convergence of the proposed
RSBB algorithm straightforward.

Additionally, Problem (5) can be viewed as a specialized instance of a two-stage stochastic pro-
gramming problem. Consequently, the convergence analysis for our RSBB algorithm can leverage
established methodologies presented in earlier literature, particularly the frameworks described by [9]]
and [15]]. Although our problem features a distinct cost function formulation tailored for reinforce-
ment learning policy optimization, the fundamental structure of the branching process in SPOT
closely mirrors that of the classification tree optimization problems studied in [[15]. Specifically, the
choice of branching variables in each iteration, such as the split indicator variables (d), state feature
selection indicator variables (a), and threshold variables (b), remain identical to those in previous
optimal decision tree frameworks. Therefore, despite variable b being continuous rather than discrete,
the convergence properties derived in earlier works can also be applied in the current problem. This
continuity does not compromise convergence guarantees, as the underlying finite combinatorial
structure induced by discrete structural variables ensures that the algorithm systematically explores a
finite solution space and thus converges to the global optimum.

E Branching Strategy for Algorithm 2|

Algorithm [J]'s branching strategy prioritizes variables according to their structural significance within
the optimal decision tree. The binary variables d, which directly encode whether individual decision
nodes perform splits, naturally form the foundational structure of the tree. Therefore, branching
decisions first focus on these split-indicator variables.

For the remaining variables (a, b, c), we employ a heuristic procedure as follows: we first compute a
branching threshold defined as 7 = 1 — 1||* — b'|| . We then compare 7 to a uniformly generated
random number in the range [0, 1]. If this random number exceeds 7, branching occurs on the discrete
variable a, which specifies the splitting feature at the decision node. Should all components of
a already be fixed, we instead branch on the variable ¢, controlling the action assignment at leaf
nodes. Alternatively, if the random number is less than or equal to 7, branching is conducted on the
continuous variable b, selecting the midpoint between its current bounds as the branching point.
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Within each category of variables (a, b, ¢), we systematically prioritize branching based on ascending
node indices; for example, if two feature-selection variables a;; and a; ;41 remain undetermined,
branching will occur first on the variable associated with the lower-indexed node, i.e., a; ;.
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