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Abstract

This work studies the matrix sensing (MS) problem through the lens of the Restricted Isometry
Property (RIP). It has been shown in several recent papers that two different techniques of convex
relaxations and local search methods for the MS problem both require the RIP constant to be less
than 0.5 while most real-world problems have their RIPs close to 1. The existing literature guarantees
a small RIP constant only for sensing operators having an i.i.d. Gaussian distribution, and it is
well-known that the MS problem could have a complicated landscape when the RIP is greater than
0.5. In this work, we address this issue and improve the optimization landscape by developing two
results. First, we show that any sensing operator with a model not too distant from i.i.d. Gaussian
has a slightly higher RIP than i.i.d. Gaussian. Second, we show that if the sensing operator has
an arbitrary distribution, it can be modified in such a way that the resulting operator will act as a
perturbed Gaussian with a lower RIP constant. Our approach is a preconditioning/mixing technique
that replaces each sensing matrix with a weighted sum of all sensing matrices. This approach does
not require taking new measurements (which is not possible in many applications) and relies only
on mixing existing measurements. We numerically demonstrate that the RIP constants for different
distributions can be reduced from almost 1 to less than 0.5 via the preconditioning of the sensing
operator.

1 Introduction

In this paper, we focus on an important class of problems in non-convex optimization and machine learning, named
matrix sensing. The goal of the matrix sensing problem is to recover a low-rank matrix from a set of limited linear
measurements. To be more specific, given m sensing matrices A1, . . . , Am ∈ Rn×n, we define the linear sensing
operator A as A(M) = [⟨A1, M⟩, . . . , ⟨Am, M⟩]T for all M . The matrix sensing problem is formulated as the
following non-convex optimization problem:

min
M∈Rn×n

1
2∥A(M)− b∥2 subject to rank(M) = r. (1)

where b = A(M∗) is the observed vector, M∗ is the unknown ground truth matrix, and r denotes the rank of M∗. Since
the matrix sensing problem for an arbitrary solution M∗ (being a rectangular matrix or a square sign indefinite matrix)
can be converted to an expanded matrix sensing problem whose solution is a symmetric and positive semidefinite
matrix (Zhang et al., 2021), we assume that M∗ is positive semidefinite and symmetric without loss of generality.

The matrix sensing problem has a wide range of real-world applications in signal processing and machine learning,
such as the training of neural networks (Li et al., 2018), reconstruction of images and videos (Fowler et al., 2012;
Baraniuk et al., 2017), wireless sensor network (Razzaque et al., 2013), and quantum computing (Shabani et al., 2011;
Ayanzadeh et al., 2020). It has attracted significant attention in recent years as it sheds light on a broad range of non-
convex optimization problems, serving as a theoretical guarantee in deep learning theory (Li et al., 2018; Scarlett et al.,
2022). The complexity of the matrix sensing problem lies in the low-rank structure that creates spurious solutions,
which makes local search algorithms with a random initialization become stuck at a wrong second-order critical point
rather than the ground truth (Chen et al., 2019).

To overcome the above-mentioned non-convexity, one line of research relaxes this problem into a convex semi-definite
program (SDP) (Candès & Recht, 2012; Recht et al., 2010), by replacing the rank constraint with a nuclear norm
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constraint. However, solving the SDP relaxation requires a large amount of calculations (Candes & Recht, 2013).
Another popular way to deal with the low-rank constraint is the Burer-Monteiro (BM) factorization (Burer & Monteiro,
2003), which explicitly factorizes the low-rank matrix M into the form M = XX⊤ where X ∈ Rn×r (note that this
factorization uses the fact that M∗ is positive definite and symmetric). Hence, the matrix sensing problem can be
formulated as

min
X∈Rn×r

1
2∥A(XX⊤)− b∥2 (2)

With this natural reparametrization, the number of parameters reduces from O(n2) in M to O(nr) in X , where r is
usually close to 1. Problem (2) is unconstrained, and therefore simple first-order methods, such as Gradient Descent
(GD), can be applied to solve the problem. However, the factorized problem (2) is highly non-convex and NP-hard
to solve (Gillis & Glineur, 2011; Ge et al., 2017). There have been extensive studies on the optimization landscape of
the matrix sensing problem (Candes & Tao, 2010; Candès & Recht, 2012; Recht et al., 2010; Ge et al., 2017; Zhang
et al., 2018), and it turns out that the success of both SDP relaxation and local search methods relies on a condition
named Restricted Isometry Property (RIP), which is defined below.
Definition 1.1 (RIP (Candès & Recht, 2012)). Given a natural number s, the linear map A : Rn×n 7→ Rm is said
to satisfy the Restricted Isometry Property (RIP) condition of rank s for a constant δ, denoted as δs ∈ [0, 1), if the
inequality

(1− δs) ∥M∥2
F ≤ ∥A(M)∥2 ≤ (1 + δs) ∥M∥2

F (3)

holds for all matrices M ∈ Rn×n satisfying rank(M) ≤ s.

Intuitively, the RIP is a condition guaranteeing that linear measurements approximately preserve the Euclidean ge-
ometry of low-rank matrices. Specifically, a sensing operator satisfies the RIP if it acts nearly as an isometry on the
set of low-rank matrices, ensuring that the distances between these matrices are preserved after measurement. When
δs = 0, solving the matrix sensing problem is trivial, while δs close to 1 implies a complicated landscape for the
matrix sensing problem where the number of local minima could be exponential (Yalçın et al., 2023). Note that the
RIP constant is not unique. If δs is an RIP constant, every number greater than δs is also an RIP constant.

The RIP condition is crucial for the success of various recovery algorithms, as it underpins their ability to reconstruct
the original matrix accurately from compressed measurements. Started by the convex relaxation approach, Recht et al.
(2010) and Candès & Recht (2012) demonstrated that when the RIP constant satisfies the inequality δ5r ≤ 1/10, the
SDP relaxation is exact, allowing for the exact recovery of the ground truth M∗. Later, Bhojanapalli et al. (2016)
examined the factorized problem (2) and showed that δ2r ≤ 1/5 suffices to guarantee that all second-order critical
points for (2) correspond to the ground truth solution. Zhu et al. (2018) further established that δ4r ≤ 1/5 is sufficient
for the global recovery of the ground truth via a local search method. The recent paper (Zhang et al., 2021) showed
that δ2r < 1/2 is the tightest bound for guaranteeing such global properties.

Through the lens of RIP, one can guarantee benign optimization landscape and convergence to global optimality,
solving the matrix sensing problem either using convex relaxations such as SDP or using non-convex methods such
as the BM factorization with a random initialization. Furthermore, when the RIP constant is small, local search has
a linear convergence rate for the factorized problem (2) (Zheng & Lafferty, 2015; Lee & Stöger, 2023). Moreover,
strict-saddle property holds if δ2r < 1/2 , and this result was developed for general low-rank optimization problems
beyond matrix sensing (Bi et al., 2022). While the bound δ2r < 1/2 is sharp , it is not satisfied for most real-world
problems except in special cases such as a class of isometric distributions.
Definition 1.2 (Nearly isometrically distributed (Recht et al., 2010)). Let A be a random variable that takes values in
linear maps from Rn×n to Rm. We say that A is nearly isometrically distributed if for all X ∈ Rn×n it holds that

E
[
∥A(X)∥2] = ∥X∥2

F

and for all 0 < ϵ < 1 we have

P
(∣∣∥A(X)∥2 − ∥X∥2

F

∣∣ ≥ ϵ∥X∥2
F

)
≤ 2 exp

(
−m

2
(
ϵ2/2− ϵ3/3

))
and for all t > 0 we have

P
(

sup
X ̸=0

∥A(X)∥
∥X∥F

≥ 1 +
√

n2

m
+ t

)
≤ exp

(
−γmt2)

for some constant γ > 0.
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Given 0 < δ < 1 and 1 ≤ r ≤ m, it turns out that if A is nearly isometrically distributed, with high probability,
i.e., δr(A) ≤ δ if m = Θ(rn/δ2) (Recht et al., 2010; Candès & Plan, 2011). Independent and identically distributed
(i.i.d.) Gaussian entries with variance 1/m are nearly isometrically distributed, and the literature of matrix sensing
has heavily relied on the i.i.d. and Gaussian assumptions to justify the use of RIP. However, in practice we often have
no prior knowledge of the distribution of the sensing matrices, and in addition the independence assumption is hardly
satisfied.

There are many applications for which it is not possible to collect measurements whose sensing operators are i.i.d.
Gaussian or to increase the number of measurements to reduce the RIP. An example is the power systems state es-
timation (PSSE) problem where the goal is to learn the electrical signals of a power grid from sensory data. The
number of measurements cannot go beyond the number of lines and nodes in the network and each measurement
matrix has a structure conforming with the network topology. Motivated by such applications for which there is no
flexibility in collecting measurements with favorable properties, the objective of this paper is to study how a given set
of measurements can be manipulated to improve the RIP. To this end, we first study the case where the problem is not
Gaussian due to small perturbations, and we derive an upper bound on the change to the RIP constant in terms of the
distance of the distribution of the given operator from a Gaussian distribution. Next, we study whether an operator
with an arbitrary distribution can be modified so that it acts as a perturbed Gaussian for which the above result on its
RIP constant can be applied. For the case where the true distribution deviates significantly from normal distributions,
we introduce a preconditioning algorithm that replaces each sensing matrix with a weighted sum of all sensing matri-
ces. We discuss how this technique makes the resulting operator behave similarly to perturbed Gaussian distributions,
leading to a reduction in the RIP constant and improving the optimization landscape. Note that our preconditioing
technique mixes existing measurements and does not require obtaining new measurements.

While our focus is on low-rank matrix sensing, similar ideas have been explored in compressed sensing. For example,
(Wang & Qu, 2017) propose an SVD-based weighted measurement matrix to improve restricted isometry constants
(RICs) in sparse recovery, and (Herman & Strohmer, 2010) analyze general perturbations in sensing matrices and their
effect on signal recovery. These works illustrate the benefits of preconditioning and perturbation analysis for recovery
guarantees. Our contribution extends these ideas to low-rank matrix sensing, addressing a new problem: improving
the optimization landscape when the sensing matrices cannot be changed.

The paper is organized as follows. In Section 2, we illustrate the high-level idea of this work through a practical
application. In Section 3, we demonstrate the robustness of the RIP constant to small perturbations to the sensing
operator. We show that nearly-isometric measurements under a modest perturbation continue to satisfy the RIP, thereby
ensuring the reliable recovery of low-rank matrices. This finding is significant as it broadens the applicability of matrix
sensing techniques to real-world scenarios by relaxing the restrictive Gaussian assumption.

Furthermore, we investigate the role of orthogonalization in enhancing the optimization landscape of the matrix sens-
ing problem. In Section 4, we show that the orthogonalization of the sensing matrices can improve the RIP constant,
making the landscape more favorable for efficient recovery algorithms. To achieve this, we propose a novel precondi-
tioning method that optimizes the mixing of the measurements to reduce the RIP constant. We provide a theoretical
analysis for the proposed method, and empirically show that it is highly effective on various types of measurement
distributions, including Poisson, uniform, and correlated Gaussian distributions. In particular, we demonstrate that
the original RIP constants for these distributions could be close to 1 for which the SDP relaxation and local search
methods would fail to work, while the preconditioning technique reduces the RIP to less than 0.5 so that both of these
optimization methods can correctly solve the modified problem.

By addressing the above two aspects, our work contributes to a deeper understanding of the matrix sensing problem
with non-Gaussian models. We propose practical solutions to enhance recovery performance, paving the way for more
robust and efficient applications in matrix sensing and beyond.

Definitions and Notations The symbol ∥v∥ denotes the Euclidean norm of a vector v. ∥X∥F denotes the Frobe-
nius norm of a matrix X . ∥X∥M = maxi,j |Xij | denotes the largest absolute entry of a matrix X . ∥A∥∞ =
maxk maxi,j |Ak

ij | denotes the largest absolute entry of a sensing operator A, where Aij
k denotes the (i, j) entry of

the matrix Ak. σi(X) denotes the i-th largest singular value of a matrix X . λi(X) denotes the i-th largest eigenvalue
of a symmetric matrix X . ⟨A, B⟩ is defined as the inner product tr

(
AT B

)
for two matrices A and B of the same size,

where tr stands for trace. E(x) denotes the expectation of a random variable x. P(E) denotes the probability of en
event E. f = Θ(g) denotes that there exist constants c1, c2 > 0 such that c1g ≤ f ≤ c2g. f = O(g) denotes that
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there exists a constant c > 0 such that f ≤ cg. For a matrix X, vec(X) is the usual vectorization operation by stacking
the columns of the matrix X into a vector and mat(·) is the inverse operator. VStack(·) denotes concatenating the
rows of a matrix into a vector. [n] denotes the integer set {1, . . . , n}. δs(A) denotes the smallest value for δs that
satisfies the RIP condition of rank s for the sensing operator A. The matrix orthogonality and the orthonormal basis
are defined under the standard inner product ⟨·, ·⟩.

2 Illustrative Example

We illustrate the main idea of this work through a real-world application. The low-rank matrix sensing problem studied
in this paper naturally appears in power systems, where PSSE is solved every 5 minutes by power system operators Jin
et al. (2020). A power system is a graph with n nodes and a set of edges E . Each node of the system has a voltage
parameter xi to be learned. Each measurement j of the network is in the form of

bj =
∑

i:(j,i)∈E

xj(xj − xi)
zji

where zij is a known line parameter and xj(xj−xi)
zji

is the power flown over line (j, i). The right-hand side of the
measurement j can be written as

bj = ⟨Aj , xxT ⟩

for some matrix Ai that depends on the parameters zji and the topology of the graph (note that x is the vector
of all nodal voltages). We cannot change any measurement model Aj directly. Changing an entry of Aj means
removing/adding lines to a physical power grid or changing the reactances of the transmission lines on the streets,
which is impossible (the goal is to learn the voltages from the data given by the sensors rather than changing the
infrastructure). The existing methods requiring Aj to be Gaussian are not applicable at all since Aj is heavily structured
for power systems. We propose the following idea:

• We start with the sensors 1, 2, ..., m returning the measurements b1, ..., bn.

• We design some coefficient P11, ..., P1m, and create a mixed measurement P11b1 + · · · + P1mbm. We re-
place measurement 1 with this new combined measurement. Then, the new measurement can be written as
⟨Ã1, xxT ⟩, where Ã1 is equal to P11A1 + · · ·+ P1mAm.

• Note that the mixing idea cannot generate arbitrary values for Ã1. For example, if there is no physical line
between nodes 2 and 3, then the (2,3) entry of all matrices A1, ..., Am are zero and so the (2,3) entry of Ã1 is
also zero no matter how we select the coefficients P1j’s.

• We then proceed and replace measurement 2 with a new mixed measurement P21b1 + · · · + P2mbm. We
proceed with the replacement of all measurements similarly.

• Using this idea, we exploit the existing measurements/sensors, and do not require new measurements that
are not physically infeasible. The question is: How can Pij’s be designed so that the process of learning x
becomes simpler?

To explain the above idea in a general context, the above pre-conditioning technique to be studied in this paper allows
us to make linear combinations of the original sensing matrices, and we cannot change A to arbitrary Ã such as a
Gaussian i.i.d. sensing operator. We use mixed measurements to obtain

Ãi =
m∑

j=1
PijAj , ∀i ∈ {1, ..., m}

The new sensing operator can only be in the linear span space of the original sensing matrices.
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3 Perturbed Isometrical distribution

In this section, we investigate the behavior of RIP under deviations from the standard i.i.d. Gaussian assumption. The
existing literature establishes that if RIP is below 0.5, the Matrix Sensing problem is easy, and for i.i.d. Gaussian
samples, RIP can decrease below 0.5 as the sample size grows. However, for non-Gaussian distributions, RIP may
remain above 0.5 even with infinitely many samples, as RIP may not vary smoothly with changes in measurement
distributions. We aim to show that if the deviation from Gaussian is modest, increasing the number of samples can still
reduce RIP below 0.5, aligning it with Gaussian-like behavior. This is significant because for distributions far from
Gaussian, RIP may remain large despite an infinite number of samples, but our result shows that moderate deviations
still allow for improvement. We prove that given an arbitrary sensing operatorA, ifA is perturbed via another operator
that is bounded by ε, then its RIP constant will be increased by at most O(mn2ε).

Theorem 3.1. Consider an arbitrary operator A with the RIP constant δs ∈ [0, 1). Let ε be a nonnegative constant
such that ε < 1−δs

2mn2∥A∥∞
. For every bounded perturbation operator N with ∥N∥∞ ≤ ε, the perturbed sensing

operator A +N satisfies the RIP condition of rank s with the constant δs + (4mn2∥A∥∞ε + mn2ε2(1 − δ))/(2 +
mn2ε2).

See Appendix A for proof.

If N is chosen as −A, then the RIP condition is not satisfied. Similarly, if N1, . . . , Nm are chosen in a way that the
(i, j) entries of all matrices A1 + N1, . . . , Am + Nm are zero for some indices i and j, then the RIP condition again
no longer holds. For these reasons, the existence of an upper bound on ε in Theorem 3.1 is necessary.
Remark 3.2. With series expansion at ε = 0, the RIP constant derived in Theorem 3.1 can be approximated by
δs +mn2 (2∥A∥∞ε + 1

2 (1− δs)ε2 − ∥A∥∞mn2ε3 +O(ε4)
)
. On the other hand, sinceA satisfies the RIP condition

with the constant δs, the term ∥A∥∞ can be bounded by choosing a matrix X whose entry at the position of the
largest element of A is 1 and whose remaining entries are 0. Hence, ∥X∥2

F = 1 and ∥A∥2
∞ ≤

∑m
i=1 ⟨Ai, X⟩2 ⩽

(1 + δs) ∥X∥2
F , indicating that ∥A∥∞ ≤

√
1 + δs. Thus, the RIP condition for A + N can be upper bounded by

δs + mn2ε[2(1 + δs)1/2 + 1
2 (1 − δs)ε] up to the first-order approximation. If we apply the upper bound of ε to our

result, our upper bound on RIP due to first-order approximation is

δs + (1− δs)(1 + δs)1/2

∥A∥∞
+ 1− δs

8mn2∥A∥2
∞

Theorem 3.1 studies bounded perturbation operators N in the worst case. We will improve the results by relaxing the
boundedness of the perturbation.

Corollary 3.3. Consider an arbitrary operator A with the RIP constant δs ∈ [0, 1). Consider also a perturbation
operator N such that ∥N∥∞ is sub-Gaussian with mean 0 and variance proxy σ2/m. For every c > 0 and σ <

1−δs

2c
√

mn2∥A∥∞
, with probability at least 1 − 2 exp(−c2), the operator A + N satisfies the RIP condition with the

constant δs + c
√

mn2σ[2(1 + δs)1/2 + c
2

√
m

(1− δs)σ].

See Appendix B for proof.

Building on Corollary 3.3, we refine the RIP bound for a nearly isometrically distributed operator A.

Theorem 3.4. Assume thatA is nearly isometrically distributed and ∥N∥∞ is sub-Gaussian with mean 0 and variance
proxy σ2/m. There exist positive constants c1 and c2, independent of the parameters of N (such as σ) such that for
every c > 0 and σ < 1−δs

2c
√

mn2∥A∥∞
, with probability at least 1 − 2 exp(−c2) − exp (−c1m), the operator A + N

satisfies the RIP condition with the constant c2
√

ns log n/m + c
√

mn2σ[2(1 + δs)1/2 + c
2

√
m

(1− δs)σ].

See Appendix C for proof.
Remark 3.5. Due to Theorem 3.4, the RIP constant of the perturbed operator A + N compared to the RIP of A has
increased from O(1/

√
m) to O(1/

√
m) +O(

√
mσ) +O(σ2). Thus, when the perturbation σ is small, one can com-

pensate for the influence of the perturbation on the RIP constant by slightly increasing the number of measurements
m, which will reduce the RIP constant of the perturbed operator to the RIP constant of the unperturbed operator A.
This formula shows how many additional measurements are needed to nullify the effect of deviation from a Gaussian
distribution.
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To summarize above, Theorem 3.1 provides an RIP bound for a fixed sensing operator A and a bounded perturbation
N , and Corollary 3.3 extends this result to a random perturbation N . In Theorem 3.4, we further derive a high
probability bound for any nearly isometric random distributed sensing operatorA, and prove that the impact of a small
perturbation on RIP is small and that increasing the number of measurements m on a small scale can compensate for
the increase in RIP.

Additionally, We provide the following theorem on the robustness of RIP under distributional shifts. It formalizes how
RIP constants behave under small Wasserstein-1 perturbations and demonstrates stability.
Definition 3.6 (Wasserstein-1 Distance). Let µ, ν be two probability measures on Rd with finite first moments. The
Wasserstein-1 distance between µ and ν is defined as

W1(µ, ν) := inf
π∈Π(µ,ν)

∫
Rd×Rd

∥x− y∥2 dπ(x, y),

where Π(µ, ν) denotes the set of all couplings of µ and ν.
Theorem 3.7 (RIP under Wasserstein perturbation). Fix δ ∈ (0, 1). SupposeA ∼ P is nearly isometrically distributed
and achieves RIP with probability 1− exp(−c1m) as m ≥ c0 nr log(n). Let Ã ∼ Q with W1(P, Q) = w. Then, for

M := 1 +
√

n2

m , we have

PQ

(
δr(Ã) ≤ δ

)
≥ 1− exp(−c1m) − c2M

δ
w,

See Appendix D for proof.
Remark 3.8. The RIP for Q holds with asymptotically the same measurement order as for P , with an additional failure
probability term proportional to w. If w ≲ δ/M , no extra samples or a modest increase in m are needed to keep the
same confidence level.

4 Preconditioning of Matrix Sensing

In the previous section, we proved that small deviations from nearly isometrically distributed sensing matrices will
slightly increase the RIP constant. However, real-world sensing matrices often have unknown probability distributions
that cannot be approximated by Gaussian models, for which several empirical results have shown that the RIP constant
is often close to 1. To address this issue, we consider a sensing operator A coming from an arbitrary probability
distribution and develop a preconditioning algorithm to improve its RIP constant and make it act as a perturbed
Gaussian. Note that our preconditioning technique only mixes existing measurements and cannot arbitrarily change
the sensing matrices.

It has been proved in Ma et al. (2023; 2024) that the RIP constant can be reduced if the optimization complexity of
the matrix sensing problem is increased, e.g., via a tensor-based lifting technique. However, this incurs a high com-
putational cost and is not applicable to large-scale matrix sensing problems. To avoid this computational complexity,
we propose a simple and scalable linear preconditioning method, which replaces every sensing matrix with a linear
combination of all the original sensing matrices. More precisely, consider a weight matrix P ∈ Rm×m with its (i, j)
entry denoted as Pij . We construct a preconditioned operator Ã with the components Ã1, ..., Ãm as follows:

Ãi =
m∑

j=1
PijAj , ∀i ∈ {1, ..., m}

Therefore, ∀i ∈ {1, . . . , m},∀X , we have

⟨Ãi, X⟩ =
m∑

j=1
Pij⟨Aj , X⟩ =

m∑
j=1

Pijbj .

Hence, Ã(X) = Pb. The preconditioning is independent of the optimization method (such as local search or convex
relaxation) to be used to solve the matrix sensing problem, and the goal of preconditioning is to create a better structure
for the sensing operator and thus a better RIP constant. In what follows, we will develop a simple method for designing
P and study its impact on the RIP constant.
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4.1 Orthonormal Bases as Sensing Matrices

The following lemma for Haar distribution is the basis of our method.

Lemma 4.1 (Instance of the JL lemma (Johnson et al., 1984)). Let {xj}n
j=1 ⊆ Rd, and let P be a k × d random

matrix, consisting of the first k rows of a Haar-distributed random matrix in the orthogonal group O(d). Given ϵ > 0
and k = a log(n)

ϵ2 , there are absolute constants c and C such that with probability at least 1−Cn2− ac
4 the inequalities

(1− ϵ) ∥xi − xj∥2 ≤
(

d

k

)
∥Pxi − Pxj∥2 ≤ (1 + ϵ) ∥xi − xj∥2

hold for all i, j ∈ {1, . . . , n}.

The orthonormal vectors from the unitary matrix in QR decomposition of i.i.d. Gaussian matrices follow a Haar
distribution (Mezzadri, 2007). Given that those orthonormal bases maintain the distances during projection, we are
inspired to transform our original sensing operator A into a preconditioned operator Ã with orthonormal bases as
vectorized sensing matrices. To be more specific, we first write the sensing operator A into the vectorized form

A = [vec(A1), vec(A2), . . . , vec(Am)]T ∈ Rm×n2
.

Then, since the inner product of two matrices can be defined as a vector product, it holds that

A vec(X) = A(X), ∀X ∈ Rn×n.

By pre-multiplying the above equation with a weight matrix P ∈ Rm×m, we ideally intend to make the rows of PA
normalized and orthogonal to each other. Since the individual entries of a random orthogonal matrix are approximately
Gaussian for large matrices (Meckes, 2019), as m increases, these preconditioned operators are likely to act as i.i.d.
Gaussian.

Define the s-sparse set spans(A) as the set of all matrices X that can be written as X =
∑m

i=1 αiAi for some
coefficients α1, ..., αm such that at most s coefficients are nonzero. We say that A1, ..., Am are orthonormal if
⟨Ai, Aj⟩ = 0,∀i ̸= j and ⟨Ai, Ai⟩ = 1 otherwise.

Theorem 4.2. Assume that A1, ..., Am are orthogonal. It holds that

||A(X)||2

||X||2F
= 1, ∀X ∈ spans(A)

See Appendix E for proof.

Theorem 4.2 is a generalization of Parseval’s identity. The set spans(A) includes matrices that can be written as the
sum of at most s matrices from the set {A1, ..., Am}. As m increases, if this set continues to include orthonormal
matrices, the set spans(A) grows until it completely covers the low-rank set {X | rank(X) ≤ s}. Thus, it follows
from Theorem 3 that as m grows, the RIP constant for orthonormal matrices approaches zero (note that RIP is about
taking the minimum and maximum of the ratio ∥A(X)∥2/∥X∥F over matrices of rank at most s). Hence, Theorem
4.2 justifies the conversion of arbitrary sensing matrices into orthogonal matrices.

4.2 Preconditioning Algorithm

Based on the idea of using orthonormal bases as sensing matrices, we propose Algorithm 1, which applies the thin
singular value decomposition (SVD) to extract unitary sensing matrices from the given sensing operator.
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Algorithm 1 Preconditioned Matrix Sensing

1: for iteration = 1, 2, . . . , m do
2: ai ← vec(Ai)
3: end for
4: U, S, V ⊤ ← SVD(VStack(a1, a2, . . . , am))
5: for iteration = 1, 2, . . . , m do
6: Ãi ← mat(V ⊤

i )
7: end for
8: Return Ã = [Ã1, Ã2, . . . , Ãm]

Remark 4.3. The thin singular value decomposition of A written as USV ⊤ will obtain a row-orthogonal matrix
V ⊤ ∈ Rm×n2

whose rows are the eigenvectors of A⊤A. The new sensing matrices Ãi obtained by reshaping the
rows of V ⊤ into matrices are perpendicular to each other. For S = diag([σ1(A), . . . , σm(A)]) ∈ Rm×m, we could
assume A to be full rank in practice, and since σm(A) > 0, S becomes invertible. Since the extraction step can be
considered as a linear transformation, we can easily calculate the corresponding vector b′ = S−1U⊤b, and the weight
matrix is P = S−1U⊤.

The intuition behind the pre-conditioning algorithm is that after pre-conditioning, the individual entries of the new
sensing matrix are approximately Gaussian, and hence these preconditioned operators are likely to act as i.i.d. Gaussian
with small perturbation. As long as the new upper bound after perturbation is smaller than 0.5, we can obtain favorable
properties such as global optimality for the matrix sensing problem.

Theorem 4.4 (Approximate Gaussianization via SVD Preconditioning). Let A ∼ N
(

0, 1
m

)
∈ Rm×n2

be i.i.d.

Gaussian (m < n2), and let B ∈ Rm×n2
be any matrix such that W1(L(A),L(B)) = w. Let A = UAΣAV ⊤

A , B =
UBΣBV ⊤

B be the thin SVD of A and B, and define the preconditioned matrices B̃ := V ⊤
B ∈ Rm×n2

, Ã := V ⊤
A .

Then, in the full-rank regime and m≪ n2, the matrix B̃ has orthonormal rows, B̃B̃⊤ = Im, and with high probability,
its law is close to the Haar measure on the Stiefel manifold in the sense that W1

(
L(B̃),L(Ã)

)
≲

√
m

n w, and the entries
of B̃ are approximately Gaussian, up to deviations vanishing as n→∞.

See Appendix F for proof.
Remark 4.5. Theorem 4.4 shows that applying thin SVD preconditioning to an arbitrary matrix B produces a matrix
B̃ = V ⊤

B with orthonormal rows that is close in Wasserstein distance to Haar-distributed Ã = V ⊤
A . In the tall-

and-skinny regime (m ≪ n2), the entries of B̃ become approximately Gaussian. This implies that, regardless of
the original distribution of B, preconditioning effectively randomizes its rows and contracts the distribution towards
Haar/Gaussian. Consequently, the near-isometry properties of B̃ are enhanced, making it more likely to satisfy RIP
conditions and improving the theoretical guarantees for low-rank matrix recovery.

Theorem 4.6. Consider an arbitrary operator A with the RIP constant δs ∈ [0, 1). Then, the conditioned operator Ã
also satisfies the RIP condition with the constant 1− 1−δs

σ2
1(A) .

See Appendix G for proof.

Assumption 4.7. Assume that singular values of the matrix A ∈ Rm×n2
with m < n2 satisfy

Pr
{√

n2/m(1− ϵ)− 1 ≤ σi(A) ≤ 1 +
√

n2/m(1 + ϵ),

i ∈ [m]} ≥ 1− 2 exp
(
−n2ϵ2/2

)
, ∀ϵ > 0.

Assumption 4.8. Consider two constants ϵ and δ such that

0 < ϵ < 1−
√

m

n2 ,
[1 +

√
m
n2 (1 + ϵ)]2 − 1

2[1 +
√

m
n2 (1 + ϵ)]2 − 1

< δ <
1
2 .

8
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Theorem 4.9. Let A be a nearly isometrically distributed operator. Under Assumption 4.7 and Assumption 4.8,
there exist positive constants c0 and c1 depending only on δs such that, with probability at least 1 − exp (−c1m) −
2 exp (−n2ϵ2/2), as long as m ≥ c2sn log(n), the original sensing operator satisfies δs(A) ≤ δ and the conditioned

sensing operator satisfies δs(Ã) ≤ 1− (1− δ)/[1 +
√

n2

m (1 + ϵ)]2.

See Appendix H for proof.

To shed light on the two assumptions used in Theorem 4.9, note that Gaussian random matrices satisfy Assumption 4.7
as an example. Regarding Assumption 4.8, when ϵ → 0, δ → 1

2 , and the lower bound of δ is always smaller than 1
2 .

As a result, such pair (ϵ, δ) satisfying Assumption 4.8 always exists.
Remark 4.10. As m, n → ∞, in the order of m ≳ ns log n, it follows from the above theorem that the RIP of
the perconditioned operator is similar to that of the original operator. This is important since nearly isometrically
distributed operators have small RIPs when m is large and our result says that preconditioning does not transform such
optimal operators to sub-optimal operators. In summary, we have shown that preconditioning improves those operators
far from nearly isometrically distributed and does not deteriorate the RIP when the original operator is already nearly
isometrically distributed. operator. Since Gaussian random matrices satisfy the concentration inequality of the singular
values naturally, we can simplify the result of Theorem 4.9 below.
Corollary 4.11. Let A1, . . . , Am be i.i.d. Gaussian random matrices of mean zero and variance 1

m . Under Assump-
tion 4.8, there exist positive constants c0 and c1 such that, with probability at least 1−exp (−c1m)−2 exp (−n2ϵ2/2),

as long as m ≥ c0s(m + n2 log(mn2)), , it holds that δs(A) ≤ δ and δs(Ã) ≤ 1− (1− δ)/[1 +
√

n2

m (1 + ϵ)]2.

4.3 Simulation Experiments

In this subsection, we will demonstrate the performance of the preconditioning Algorithm 1 for s = 2r since δ2r

determines whether or not SDP relaxations or local search methods succeed to solve the matrix sensing problem.
However, measuring the true RIP value δ2r for any given sensing operator A requires checking the inequalities (3)
for all low-rank matrices X of rank at most 2r and determining the maximum and minimum possible values of
∥A(X)∥2

2/∥X∥2
F over all rank-2r matrices. This is equivalent to solving a non-convex optimization problem, which

is known to be NP−hard. Hence, we will instead measure the empirical RIP constant in our experiments. By

Figure 1: Empirical RIP curve

randomly selecting 1000 Gaussian distributed matrices M ∈ Rn×2r (we simply choose r = 1 in the following
experiments), we generate 1000 rank-2r matrices X = M⊤M ∈ Rn×n to be rank-2r matrices. Afterwards, we
calculate ∥A(M)∥2

2/∥X∥2
F for all those X matrices and compute the smallest and the largest values, denoted as α and

β correspondingly. Hence, we obtain the following inequalities over the generated samples of rank-2r matrices:

α∥X∥2
F ≤ ∥A(X)∥2 ≤ β∥X∥2

F . (4)

Since rescaling (multiplying the sensing operatorA by a constant c) will not affect the landscape of the matrix sensing
problem, we multiply all of the above inequalities by 2

α+β and calculate the empirical RIP constant for 2
α+βA, which

9
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is β+α
β−α . Given that the set of simulated X is a subset of all low-rank matrices, the simulated RIP is a lower bound

for true RIP value. We can see in Figure 1 that for Gaussian distributed sensing matrices, the empirical RIP value
decreases as the number of measurements m increases. The empirical RIP curve matches the m−1/2 curve, which is
the result of the true RIP bound in Recht et al. (2010). Hence, we could treat the empirical RIP value as an accurate
measure of the true RIP constant.

4.3.1 Synthetic Data

We randomly generate m sensing matrices under different distributions, including nearly isometric distributions such
as Gaussian and non-isometric distributions such as Poisson. Besides, we also generate A with special structures,
including low-rank structures and sparse structures. We numerically calculate the empirical RIP value before and after
the preconditioning step. We run experiments under different scenarios from n = 10 to n = 50, and run 100 trials
for each scenario to obtain the average empirical RIP value. The results are plotted in Figure 2. We can see from the

Figure 2: Empirical RIP comparison before and after preconditioning; the horizontal axis shows that the sensing ma-
trices are sampled from uniform distribution [0, 1], centered uniform distribution [−1, 1], standard normal distribution,
multivariate correlated normal distribution with ρ = 0.5, and poisson distribution separately. The first row is for gen-
eral sensing matrices, and the second row is for matrices with special structures.

figure that for uniform, correlated normal and poisson distribution, the original sensing operator has a RIP constant
close to 1, which means that with the i.i.d. Gaussian assumption violated, these measuring operators are no longer
nearly isometric and thus cannot guarantee a benign optimization landscape for the matrix sensing problem. However,
after preconditioning, we observe a clear decrease in the corresponding empirical RIP value. The preconditioned
sensing matrices have the same level of RIP constant compared to the standard normal distribution with the same m, n
values. On the other hand, for centered uniform and standard normal distribution, we can decrease the RIP constant
by increasing m, and the preconditioning step can still slightly help to decrease the RIP value. This improvement
becomes more obvious for the cases with a large m/n2.

In addition to unstructured operators A, we also study sensing matrices with special structures. For the low-rank
structure, we generate ai ∈ Rn×1 and define Ai = aia

⊤
i ∈ Rn×n. For the sparse structure, we generate a binomial

distributed mask with p = 0.3, and only 30% elements of A are likely to be non-zero. The results are similar to the
case of unstructured operators (see Figure 1), and the preconditioning effectively decreases the empirical RIP value
in both low-rank and sparse cases. Even centered uniform and normal distribution will be affected by these special
structures and show high empirical RIP values. One can observe that our preconditioning algorithm has a universal
impressive performance in a wide range of situations.

10
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Figure 3: Empirical RIP constants and recovery errors for power system state estimation with original and precondi-
tioned measurements. Preconditioning improves empirical RIP and reduces local search error.

Moreover, we can see that for the same level of (m, n), whatever the original distribution is, the empirical RIP value
after preconditioning for different types of distributions are almost the same, which means that in practice we may not
need to make additional assumptions on the distribution of sensing matrices; the landscape after preconditioning as
well as the RIP constant will mainly depend on the value of r, m, n. As is shown by simulation experiments, Algorithm
1 makes best use of the current information provided by the original sensing operator and remains stable under different
scenarios. The computational cost is also not high, only requiring O(m2n2) for a singular value decomposition of a
matrix of dimension m× n2.

4.3.2 Practical Power Flow Applications

To evaluate the impact of preconditioning on structured sensing operators in a realistic setting, we consider the power
system state estimation (PSSE) problem. In this context, the goal is to estimate nodal voltages x ∈ Rn from mea-
surements that correspond to power flows along transmission lines. The measurements are inherently structured and
cannot be freely increased, making this a representative scenario for our preconditioning technique.

Graph generation. We generate synthetic power networks with n nodes, where each pair of nodes (i, j) is connected
with probability pedge ∈ {0.5, 0.7, 0.9}. Each edge (i, j) is assigned a line reactance zij sampled uniformly from
[0.5, 2.0]. This results in a sparse, undirected graph where edges represent transmission lines and nodes represent
buses. The true nodal voltages xtrue are sampled from a standard normal distribution.

Measurement formulation. For each edge (i, j), we construct a symmetric matrix Aij ∈ Rn×n such that the
measurement bij = x⊤

trueAijxtrue encodes the quadratic power flow along that line. Specifically,

Aij [i, i] = Aij [j, j] = 1
zij

, Aij [i, j] = Aij [j, i] = − 1
zij

,

and all other entries are zero. Collectively, the measurement set {(Aij , bij)} defines a quadratic sensing problem of
the form

find X ⪰ 0 such that ⟨Aij , X⟩ = bij , ∀(i, j) ∈ E, where X = xx⊤.

SDP formulation. The convex relaxation of the quadratic recovery problem is formulated as a semidefinite program:

min
X⪰0

∑
(i,j)∈E

(
⟨Aij , X⟩ − bij

)2
.

11
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This SDP is globally optimal and recovers X = xtruex
⊤
true in the noiseless case. Its solution is independent of the

conditioning of the measurement operators because the convex relaxation always finds the global minimum if it exists.

Local search and preconditioning. For computationally scalable recovery, we always consider a factorized local
search algorithm, optimizing over X = UU⊤ with U ∈ Rn×r using gradient descent. Unlike SDP, this non-convex
algorithm is sensitive to the conditioning of the measurements. To improve convergence, we apply our preconditioning
technique to the measurement matrices and observations, producing {Ãij , b̃ij}.

Results and discussion. Figure 3 shows the empirical RIP constants and recovery errors for networks of different
sizes and edge densities. Preconditioning consistently improves the empirical RIP constant and significantly reduces
local search recovery error. In contrast, SDP recovery error remains largely unchanged, reflecting its global optimality.

These results illustrate a key practical insight: in large-scale power systems and other structured applications, local
non-convex algorithms are often necessary due to computational constraints. Consequently, preconditioning is espe-
cially valuable in realistic scenarios where (i) local algorithms are required for scalability, and (ii) measurement design
is constrained by physical or operational limits. Improving the RIP of the measurement operators directly enhances
the convergence and final accuracy of these local methods.

5 Conclusion

The results presented in this paper highlight several critical insights into the behavior of sensing operators and their
impact on the Restricted Isometry Property (RIP) constant. When dealing with a nearly isometric operator perturbed
by a sub-Gaussian term, the impact of deviation from the nearly isometric case can be effectively mitigated by increas-
ing the number of measurements. Specifically, the RIP constant ensures that a benign optimization landscape can be
preserved even in the presence of perturbations to the sensing operator. Thus, even in the presence of perturbations,
careful adjustment of the number of measurements provides a practical approach to deal with non-Gaussian distribu-
tions. Our findings also demonstrate both theoretically and empirically that the proposed preconditioning algorithm
significantly improves the RIP constant for various distributions. A notable observation is that, after preconditioning,
the RIP constant is nearly independent of the original distribution. This finding simplifies practical implementations,
as it eliminates the need for distribution-specific assumptions about the sensing matrices. Practitioners can rely on the
preconditioned sensing matrices to provide consistent RIP performance, primarily governed by the values of r, m, and
n.

Broader Impact Statement

This paper presents work whose goal is to advance the field of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be specifically highlighted here.
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A Proof of Theorem 3.1

Proof. Let N1, . . . , Nm denote the components of N , i.e., N (X) = [⟨N1, X⟩, . . . , ⟨Nm, X⟩]. For every matrix
X ∈ Rn×n satisfying rank(X) ⩽ s, it holds that

∥(A+N )(X)∥2

=
m∑

i=1
⟨Ai + Ni, X⟩2

=
m∑

i=1
⟨Ai, X⟩2 +

m∑
i=1
⟨Ni, X⟩2 + 2

m∑
i=1
⟨Ai, X⟩ ⟨Ni, X⟩

Since A satisfies the RIP condition with the constant δs, we have

(1− δs) ∥X∥2
F ⩽

m∑
i=1
⟨Ai, X⟩2 ⩽ (1 + δs) ∥X∥2

F

Due to the Cauchy-Schwarz inequality, one can write

0 ⩽
m∑

i=1
⟨Ni, X⟩2 ⩽

m∑
i=1
∥Ni∥2

F ∥X∥
2
F ⩽ mn2ε2∥X∥2

F ,

and ∣∣∣∣∣
m∑

i=1
⟨Ai, X⟩ ⟨Ni, X⟩

∣∣∣∣∣ =

∣∣∣∣∣
m∑

i=1
⟨Ai, Ni⟩

∣∣∣∣∣ ∥X∥2
F

⩽ mn2ε∥A∥∞∥X∥2
F

Hence,
0 <

(
1− δs − 2mn2∥A∥∞ε

)
∥X∥2

F ⩽ ∥(A+N )(X)∥2

⩽
(
1 + δs + mn2ε2 + 2mn2∥A∥∞ε

)
∥X∥2

F

indicating that A+N satisfies the RIP condition with the constant δs + mn2ε · 4∥A∥∞+ε(1−δs)
2+mn2ε2 .

B Proof of Corollary 3.3

Proof. Since ∥N∥∞ is sub-Gaussian bounded, we have P(∥N∥∞ ≥ ε) ≤ 2 exp
(
−mε2

σ2

)
. This implies that

P(∥N∥∞ ≤ ε) with probability at least 1 − 2 exp
(
−mε2/σ2). Combining Theorem 3.1 and ε = cσ/

√
m, it can be

concluded that with probability at least 1− 2 exp(−c2), A+N satisfies the RIP condition with the constant

δs + c
√

mn2σ[2(1 + δs)1/2 + c

2
√

m
(1− δs)σ].

This completes the proof.

C Proof of Theorem 3.4

Proof. It has been proved in Recht et al. (2010) that if A is nearly isometrically distributed, then there exist positive
constants c1 and c2 with c1 depending on the RIP constant of A such that, with probability at least 1 − exp (−c1m),
we have δs(A) ≤ c2

√
ns log n/m. Now, it follows from Corollary 3.3 that with probability at least 1− 2 exp(−c2)−

exp (−c1m), it holds that A+N satisfies the RIP condition with the constant

c2
√

ns log n/m + c
√

mn2σ[2(1 + δs)1/2 + c

2
√

m
(1− δs)σ].

This completes the proof.
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D Proof of Theorem 3.7

Proof. Let
Sr := {X ∈ Rn×n : rank(X) ≤ r, ∥X∥F = 1 }

be the unit Frobenius sphere of rank at most r. The RIP constant of A for rank r can be written as

δr(A) := sup
X∈Sr

∣∣∥A(X)∥2
2 − 1

∣∣.
Let Ã ∼ Q be another random map from Rn×n to Rm distributed with

W1(P, Q) := inf
π∈Π(P,Q)

E(A,Ã)∼π∥A − Ã∥F

We have the follwoing Lemma for the covering number for the rank-r unit sphere.

Lemma D.1 (Covering number of Sr). For any ρ ∈ (0, 1) there exists a ρ-net Nρ ⊂ Sr in Frobenius norm such that

|Nρ| ≤
(C

ρ

)(2n+1)r

.

Proof. Every X ∈ Sr admits an SVD X = UΣV ⊤ with U, V ∈ Rn×r having orthonormal columns, and Σ =
diag(σ1, . . . , σr) satisfying ∥Σ∥F =

(∑
i σ2

i

)1/2 = 1 and σi ≥ 0.

Construct (ρ/3)-nets:

U ⊂ St(n, r), V ⊂ St(n, r), D ⊂ {Σ ∈ Rr×r diagonal : ∥Σ∥F = 1, Σ ⪰ 0 },

in Frobenius norm. It is standard that

N
(
St(n, r), ∥ · ∥F , η

)
≤
(9

η

)nr

, N
(
{Σ : ∥Σ∥F = 1, Σ diag}, ∥ · ∥F , η

)
≤
(9

η

)r

.

(These follow by embedding St(n, r) ⊂ {Y ∈ Rn×r : ∥Y ∥F =
√

r} and covering the ambient sphere; for the
diagonal set we cover the ℓ2–unit sphere in Rr.)

Define Nρ := {UΣV ⊤ : U ∈ U , Σ ∈ D, V ∈ V }. For any X = UΣV ⊤ ∈ Sr, pick U ′ ∈ U , Σ′ ∈ D, V ′ ∈ V with
∥U − U ′∥F , ∥Σ− Σ′∥F , ∥V − V ′∥F ≤ ρ/3. Then

∥X − U ′Σ′V ′⊤∥F ≤ ∥(U − U ′)ΣV ⊤∥F + ∥U ′(Σ− Σ′)V ⊤∥F + ∥U ′Σ′(V − V ′)⊤∥F

≤ ∥U − U ′∥F ∥Σ∥2 + ∥Σ− Σ′∥F + ∥Σ′∥2∥V − V ′∥F

≤ ρ
3 · 1 + ρ

3 + 1 · ρ
3 = ρ,

since ∥Σ∥2, ∥Σ′∥2 ≤ ∥Σ∥F = ∥Σ′∥F = 1 and ∥V ⊤∥2 = ∥U ′∥2 = 1. Hence Nρ is a ρ-net of Sr, and

|Nρ| ≤
( 9

ρ/3

)nr

·
( 9

ρ/3

)r

·
( 9

ρ/3

)nr

=
(27

ρ

)(2n+1)r

From a finite net, we could have a uniform RIP bound.

Lemma D.2 (Net reduction for RIP). Let Nρ ⊂ Sr be a ρ-net and M̃ = sup∥Z∥F ≤1 ∥Ã(Z)∥2. Then

δr(Ã) ≤ max
Y ∈Nρ

∣∣∥Ã(Y )∥2
2 − 1

∣∣ + 2M̃2ρ.
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Proof. Fix any X ∈ Sr and choose Y ∈ Nρ with ∥X − Y ∥F ≤ ρ. We have∣∣∥Ã(X)∥2
2 − ∥Ã(Y )∥2

2
∣∣ =

∣∣ ∥Ã(X)∥2 − ∥Ã(Y )∥2
∣∣ · (∥Ã(X)∥2 + ∥Ã(Y )∥2

)
.

By linearity and the definition of M̃ ,∣∣ ∥Ã(X)∥2 − ∥Ã(Y )∥2
∣∣ ≤ ∥Ã(X − Y )∥2 ≤ M̃∥X − Y ∥F ≤ M̃ρ,

and ∥Ã(X)∥2 + ∥Ã(Y )∥2 ≤ 2M̃. Therefore∣∣∥Ã(X)∥2
2 − ∥Ã(Y )∥2

2
∣∣ ≤ 2M̃2ρ.

Since ∥X∥F = ∥Y ∥F = 1, we also have
∣∣∥X∥2

F − ∥Y ∥2
F

∣∣ = 0. Thus∣∣∥Ã(X)∥2
2 − 1

∣∣ ≤ ∣∣∥Ã(Y )∥2
2 − 1

∣∣ + 2M̃2ρ.

Taking the supremum over X ∈ Sr gives the claim.

Combining Lemma D.1 and Lemma D.2, for any ρ ∈ (0, 1) there exists a ρ-net Nρ ⊂ Sr with

|Nρ| ≤
(27

ρ

)(2n+1)r

such that
δr(Ã) ≤ max

Y ∈Nρ

∣∣∥Ã(Y )∥2
2 − 1

∣∣ + 2M̃2ρ, M̃ = sup
∥Z∥F ≤1

∥Ã(Z)∥2.

For a fixed X with ∥X∥F = 1, consider the map A 7→ ∥A(X)∥2. We have∣∣∥A(X)∥2 − ∥Ã(X)∥2∣∣ ≤ (∥A(X)∥+ ∥Ã(X)∥)∥A − Ã∥F .

Let M := suprank(X)≤r,∥X∥F =1 ∥A(X)∥. Then∣∣∥A(X)∥2 − ∥Ã(X)∥2∣∣ ≤ (M + M̃)∥A − Ã∥F .

Let A denote the space of linear maps A : Rn×n → Rm, identified with matrices in Rm×n2
so that the Frobenius

norm ∥ · ∥F on A is available. For r ∈ {1, . . . , n} define

fr(A) := sup
rank(X)≤r, ∥X∥F =1

∥A(X)∥2,

Lemma D.3 (Lipschitz property of fr). For any A, Ã ∈ A,

|fr(A)− fr(Ã)| ≤ sup
∥X∥F =1

∥(A− Ã)(X)∥2 ≤ ∥A− Ã∥F .

In particular, fr is 1-Lipschitz on (A, ∥ · ∥F ).

Proof. By triangle inequality, for any X ∈ Sr, ∥A(X)∥2 ≤ ∥Ã(X)∥2 + ∥(A − Ã)(X)∥2. Taking supremum over
X ∈ Sr yields fr(A) ≤ fr(Ã)+sup∥X∥F =1 ∥(A−Ã)(X)∥2. Swap the roles ofA, Ã to get the absolute value bound.
Finally, sup∥X∥F =1 ∥(A − Ã)(X)∥2 ≤ ∥A − Ã∥op(F →2) ≤ ∥A − Ã∥F , since the operator norm from (∥ · ∥F ) to
(∥ · ∥2) is bounded by the Frobenius norm.

Lemma D.4 (High-probability transfer via W1). Let P, Q be probability measures on A with W1(P, Q) ≤ ε, where
the cost is c(A, Ã) = ∥A − Ã∥F . Assume that under P ,

PP

(
fr(A) ≤M⋆

)
≥ 1− ξ.

Then for any Ξ > 0,
PQ

(
fr(Ã) ≤M⋆ + Ξ

)
≥ 1− ξ − ε

Ξ .
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Proof. By optimal transport (Kantorovich–Rubinstein), there exists a coupling π of (A, Ã) with marginals P, Q such
that Eπ∥A − Ã∥F ≤ ε. Fix Ξ > 0 and set the “good” event

E := {∥A − Ã∥F ≤ Ξ}.

By Markov’s inequality, π(Ec) ≤ ε/Ξ. On E , Lemma D.3 gives fr(Ã) ≤ fr(A) + Ξ. Therefore,

{fr(Ã) > M⋆ + Ξ} ∩ E ⊂ {fr(A) > M⋆}.

Taking probabilities under π,

PQ

(
fr(Ã) > M⋆ + Ξ

)
≤ PP

(
fr(A) > M⋆

)
+ π(Ec) ≤ ξ + ε/Ξ.

Rearrange to obtain the claim.

Corollary D.5 (Two-operator envelope). Under the assumptions of Lemma D.4, for any s, Ξ > 0, with probability at
least

1− ξ − ε

Ξ −
ε

s
under the coupling π,

the following hold simultaneously:

∥A − Ã∥F ≤ s, fr(A) ≤M⋆, fr(Ã) ≤M⋆ + Ξ.

Proof. By Markov, π(∥A − Ã∥F > s) ≤ ε/s. Combine with Lemma D.4 and a union bound.

Lemma D.6 (Quadratic comparison). Fix X ∈ Sr. On the event in Corollary D.5,∣∣∥A(X)∥2
2 − ∥Ã(X)∥2

2
∣∣ ≤ (

∥A(X)∥2 + ∥Ã(X)∥2
)
∥(A− Ã)(X)∥2 ≤ 2(M⋆ + Ξ) s.

Proof. The identity u2 − v2 = (u − v)(u + v) gives the first inequality with u = ∥A(X)∥2, v = ∥Ã(X)∥2. On the
event in Corollary D.5, ∥A(X)∥2 ≤M⋆ and ∥Ã(X)∥2 ≤M⋆ +Ξ; also ∥(A−Ã)(X)∥2 ≤ ∥A−Ã∥op(F →2)∥X∥F ≤
∥A− Ã∥F ≤ s. Hence the result.

Now we have the following two results:

(i) Finite net reduction. For any ρ ∈ (0, 1) there is a ρ-net Nρ ⊂ Sr (Frobenius norm) with |Nρ| ≤ (27/ρ)(2n+1)r

and, for any linear B,

δr(B) ≤ max
Y ∈Nρ

∣∣∥B(Y )∥2
2 − 1

∣∣+ 2M(B)2 ρ, M(B) := sup
∥Z∥F ≤1

∥B(Z)∥2. (5)

(ii) Wasserstein transfer of high-probability envelopes. Let fr(B) := supX∈Sr
∥B(X)∥2. The map B 7→ fr(B)

is 1-Lipschitz in ∥ · ∥F :
|fr(B)− fr(B̃)| ≤ ∥B − B̃∥F .

If W1(P, Q) = w (cost = ∥ · ∥F ), then for any Ξ > 0,

PQ

(
fr(Ã) ≤ fr(A) + Ξ

)
≥ 1− w

Ξ , (6)

where A ∼ P, Ã ∼ Q are coupled optimally in the Wasserstein sense.

Recall for nearly-isometrically distributed A ∼ P , fix a target δ ∈ (0, 1), due to (Recht et al., 2010) there exist
constants c0, c1 > 0 (depending on δ) such that if

m ≥ c0 rn log(n) (7)

then
PP (δr(A) ≤ δ) ≥ 1− exp(−c1m). (8)
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We now derive a parallel guarantee for Ã ∼ Q under W1(P, Q) = w.

Firstly, we couple (A, Ã) optimally so that E∥A − Ã∥F ≤ w. Fix a slack τ > 0, M⋆ := 3(1 +
√

n2

m ), and let

E1 := {M(A) ≤M⋆}, E2 :=
{

max
Y ∈Nρ

∣∣∥A(Y )∥2
2 − 1

∣∣ ≤ δ/3
}

, E3 := {∥A − Ã∥F ≤ τ}.

Then
PP (E1 ∩ E2) ≥ 1− exp(−c1m), P(E3) ≥ 1− w

τ
(Markov).

By the Lipschitz transfer equation 6 with Ξ = τ ,

PQ

(
fr(Ã) ≤M⋆ + τ

)
≥ 1− w

τ
.

Hence on the event G := E1 ∩ E2 ∩ E3 ∩ {fr(Ã) ≤M⋆ + τ}, we simultaneously have:

M(A) ≤M⋆, max
Y ∈Nρ

∣∣∥A(Y )∥2
2 − 1

∣∣ ≤ δ/3, ∥A − Ã∥F ≤ τ, M(Ã) ≤M⋆ + τ.

By a union bound,

P(G) ≥ 1− exp(−c1m)− 2w

τ
. (9)

Next, we transfer deviations from Nρ to Ã. Fix Y ∈ Nρ. On G,∣∣∥Ã(Y )∥2
2 − ∥A(Y )∥2

2
∣∣ ≤ (∥Ã(Y )∥2 + ∥A(Y )∥2

)
∥(Ã − A)(Y )∥2 ≤ 2(M⋆ + τ) τ.

Hence, on G,

max
Y ∈Nρ

∣∣∥Ã(Y )∥2
2 − 1

∣∣ ≤ δ

3 + 2(M⋆ + τ) τ.

Then we would extend the Net bound to all rank-r matrices. Applying equation 5 to Ã and using M(Ã) ≤ M⋆ + τ
on G, we have

δr(Ã) ≤ max
Y ∈Nρ

∣∣∥Ã(Y )∥2
2 − 1

∣∣+ 2(M⋆ + τ)2 ρ ≤ δ

3 + 2(M⋆ + τ)τ + 2(M⋆ + τ)2ρ.

Choose

ρ = δ

8M2
⋆

, τ = δ

8M⋆
.

Then, for τ ≤ 1 and using (M⋆ + τ) ≤ 9
8 M⋆,

2(M⋆ + τ)τ ≤ 2 · 9
8 M⋆ ·

δ

8M⋆
≤ δ

3 , 2(M⋆ + τ)2ρ ≤ 2 ·
(

9
8

)2
M2

⋆ ·
δ

8M2
⋆

≤ δ

3 .

Therefore, on G,

δr(Ã) ≤ δ

3 + δ

3 + δ

3 < δ.

By equation 9 and the choices of ρ, τ ,

PQ

(
δr(Ã) ≤ δ

)
≥ 1− exp(−c1m) − 16M⋆

δ
w.

Thus, provided m satisfies the usual RIP scaling equation 7, the only additional failure term is linear in the Wasserstein
mismatch w.
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E Proof of Theorem 4.2

Proof. We expand the orthonormal matrices A1, ..., Am into a basis for Rn×n. More precisely, consider orthonormal
bases V1, . . . , Vn2 ∈ Rn×n such that Vi = Ai for i = 1, . . . , m. Given a matrix X ∈ spans(A), we can write it as∑m

i=1 αiAi with at most s nonzero αi’s. Without loss of generality, we assume that ∥X∥2
F =

∑m
i=1 α2

i = 1. Now,
one can write:

∥A(X)∥2

∥X∥2
F

=
m∑

i=1

m∑
j=1
⟨Ai, αjVj⟩2 =

m∑
i=1

α2
i = 1.

This completes the proof.

F Proof of Theorem 4.4

Proof. By construction, B̃ = V ⊤
B satisfies

B̃B̃⊤ = VBV ⊤
B = Im,

so its rows are orthonormal.

Let σ1(A) ≥ · · · ≥ σm(A) denote the singular values of A. Standard results on Gaussian matrices guarantee that for
any ϵ > 0,

Pr
{

n√
m

(1− ϵ)− 1 ≤ σi(A) ≤ 1 + n√
m

(1 + ϵ), i = 1, . . . , m

}
≥ 1− 2 exp

(
− cn2ϵ2

)
for some absolute constant c > 0. Hence, with high probability, A has full row rank and σmin(A) ≳ n/

√
m.

By matrix perturbation theory, the map B 7→ VB is Lipschitz under the Frobenius norm, we will show that there exists
constant C such that:

∥VB − VA∥F ≤
C∥B −A∥F

σmin(A) .

Derivation of the Constant C

1. Alignment of Subspaces: The matrices VA and VB can be partitioned into subspaces corresponding to non-zero
and zero singular values. Let VA = [VA,1 | VA,2] and VB = [VB,1 | VB,2], where VA,1, VB,1 ∈ Rn2×m span the row
spaces of A and B, respectively.

2. Wedin’s sin θ Theorem: The principal angles θi between the subspaces spanned by VA,1 and VB,1 satisfy:

∥ sin Θ∥F ≤
∥B −A∥F

σmin(A) ,

where ∥ sin Θ∥F measures the subspace perturbation.

3. Frobenius Norm Bound: The difference ∥VB − VA∥F is minimized when the singular vectors are optimally
aligned. Using the Davis-Kahan sin θ theorem and orthogonal Procrustes alignment, we obtain:

∥VB − VA∥F ≤ 2
√

2∥ sin Θ∥F ≤
2
√

2∥B −A∥F

σmin(A) .

A tighter analysis (accounting for the worst-case alignment of all singular vectors) yields the constant 4
√

2:

∥VB − VA∥F ≤
4
√

2∥B −A∥F

σmin(A) .

Thus, for distributions,

W1(L(V ⊤
B ),L(V ⊤

A )) ≤ C

σmin(A)W1(L(B),L(A)) = C

σmin(A)w,
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and using the high-probability bound on σmin(A) gives

W1(L(B̃),L(Ã)) ≲
√

m

n
w.

Finally, the rows of B̃ are orthonormal vectors in Rn2
. In the tall-and-skinny limit m≪ n2, the marginal distribution

of each entry of a Haar-random row vector is approximately Gaussian by the universality of high-dimensional Haar
projections:

Ãij ∼ N
(

0,
1
m

)
.

By the Wasserstein contraction, B̃ is closer to Haar than B was to A, so B̃ij inherits this approximate Gaussianity.
Therefore, the SVD preconditioning contracts any initial distribution toward Haar/Gaussian, sufficient to stabilize the
RIP.

G Proof of Theorem 4.6

Proof. Since A satisfied the RIP condition, the following inequality holds for every matrix M with rank(M) ≤ s:

(1− δs) ∥M∥2
F ⩽ ∥A(M)∥2

2 = ∥A vec (M)∥2
2 ⩽ (1 + δs) ∥M∥2

F .

As Ã = PA, we introduce the operator norm of P and write

sup
M :A vec (M) ̸=0

∥PA vec (M)∥2
2

∥A vec (M)∥2
2

= λ1
(
P ⊤P

)
,

inf
M :A vec (M )̸=0

∥PA vec (M)∥2
2

∥A vec (M)∥2
2

= λm

(
P ⊤P

)
.

Now, we aim to bound ∥Ã(M)∥2
2 by the eigenvalues of P ⊤P . Since P = U⊤S−1, U is a unitary matrix, and S is

diagonal, we have P ⊤P = S−2, λ1
(
P ⊤P

)
= σ−2

m (A), and λm

(
P ⊤P

)
= σ−2

1 (A). Hence,

σ−2
1 (A)∥A vec (M)∥2

2 ≤ ∥PA vec (M)∥2
2 ≤ σ−2

m (A)∥A vec (M)∥2
2.

As a result, we obtain the lower bound

∥PA vec (M)∥2
2 ≥

1
σ2

1(A)∥A vec (M)∥2
2 ≥

1− δs

σ2
1(A)∥ vec (M)∥2

2.

On the other hand, since V is a unitary matrix, one can write

∥PA vec (M)∥2
2 = ∥S−1U⊤A vec (M)∥2

2

= ∥[Im, 0m×(n2−m)]V ⊤ vec (M)∥2
2

≤ ∥ vec (M)∥2
2

By combining the above two inequalities, we obtain the desired result for the RIP constant of Ã.

H Proof of Theorem 4.9

Proof. Inspired by the proof of Theorem 1 in Chen & Lin (2021), define the following events:

E
.= {Ã satisfies the RIP of rank s with the constant 1− (1− δ)/[1 +

√
n2

m
(1 + ϵ)]2},

F1
.= {A satisfies the RIP of rank s with the constant δ},
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F2
.=
{√

n2

m
(1− ϵ)− 1 ≤ σi(A) ≤ 1 +

√
n2

m
(1 + ϵ), i ∈ [m]

}
.

We will show that Pr (E) ≥ Pr (F1F2).

Consider the singular value decomposition of A as A = U [S, 0m×(n2−m)]V ⊤, where U ∈ Rm×m, S =
diag([σ1(A), . . . , σm(A)]) ∈ Rm×m, V ∈ Rn2×n2

. Under Assumption 4.8, we have
√

n2

m (1 − ϵ) − 1 > 0, and

therefore S is nonsingular. Hence, the preconditioning matrix defined as P = S−1U⊤ is valid.

If A ∈ F1F2, in light of Theorem 4.6, F1 implies that the conditioned operator Ã satisfies the RIP of rank s with the
constant 1 − 1−δ

σ2
1(A) . With F2 implying an upper bound on σ2

1(A), obtain that Ã satisfies the RIP inequality (3) with

the constant 1− (1− δ)/[1 +
√

n2

m (1 + ϵ)]2. We could also have A ∈ E. Hence we could have Pr (E) ≥ Pr (F1F2).
With the union bound Pr (F1F2) ≥ Pr (F1) + Pr (F2) − 1, we estimate the probabilities Pr (F1) and Pr (F2) using
Theorem 4.2 in Recht et al. (2010) and Assumption 4.7 to arrive at

Pr (E) ≥ Pr (F1F2)
≥ Pr (F1) + Pr (F2)− 1
≥ 1− exp (−c1m)− 2 exp (−n2ϵ2/2)

This completes the proof.

I Empirical RIP with Variance Bar

Figure 4: Empirical RIP comparison before and after preconditioning
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