Plan—-SOFAI: A Neuro-Symbolic Planning Architecture

Francesco Fabiano,' Vishal Pallagani, > Marianna Bergamaschi Ganapini, *> Lior Horesh, * Andrea
Loreggia, > Keerthiram Murugesan, * Francesca Rossi, * Biplav Srivastava 2

INew Mexico State University,

2University of South Carolina,
3Union College,
4IBM Research,

SUniversity of Brescia
ffabiano @nmsu.edu, vishalp@mailbox.sc.edu, bergamam @union.edu, lhoresh@us.ibm.com, andrea.loreggia@unibs.it,
keerthiram.murugesan @ibm.com, francesca.rossi2 @ibm.com, biplav.s@sc.edu

Abstract

The notion of Artificial Intelligence (Al) has garnered sig-
nificant attention in recent years and Al-based tools have
increasingly become integrated into our daily lives. As this
strand of research is gaining traction, one of the central de-
bates is whether end-to-end Machine Learning or symbolic
Al approaches alone can lead to an effective Al model, or if
these techniques need to be integrated into a synergistic sys-
tem. We believe the integration route to be the most promis-
ing. To this end, we introduce a specialization of a neuro-
symbolic architecture, known as SOFAI (Slow and Fast Al),
inspired by the cognitive framework popularized by D. Kah-
neman’s book “Thinking, Fast and Slow”. Our system, re-
ferred to as Plan—SOFAI, aims to tackle planning prob-
lems across a large spectrum of scenarios, with a specific fo-
cus on the classical setting. P1an—SOFAT leverages multiple
planning approaches, each possessing distinct characteristics
and categorized as either fast or slow while incorporating a
metacognitive process for governance. Finally, we evaluated
the performance of this system against state-of-the-art plan-
ners, demonstrating that our exhibits a solid balance between
solving speed and plans’ optimality.

Introduction

In recent years, the Al community has developed various au-
tonomous and efficient systems and techniques for solving
intricate problems across different domains. These problem-
solving methods encompass a spectrum, ranging from logic-
based approaches to neural-based models. The former fo-
cuses on defining rational behavior for Al systems, while
the latter seeks to mimic human behavior to some extent by
emulating the physiological processes of the human brain.
In this research, we introduce and examine a system that,
combining these techniques, addresses planning problems
within the classical setting. Our work is an extension of
the SOFALI architecture (Booch et al. 2021; Ganapini et al.
2022), which, in turn, draws inspiration from the widely rec-
ognized cognitive theory Thinking Fast and Slow by Kah-
neman (2011). Our proposed solution incorporates both fast
and slow solvers, along with a metacognitive module respon-
sible for orchestrating their usage. Slow solvers (referred to

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

as System-2) tackle problems through reasoning and sym-
bolic techniques, while fast solvers (System—1) rely on
past experiences to identify solutions to given problems. The
metacognitive module assumes a central role in selecting the
most suitable solver for a specific problem.

As previously mentioned, our focus in this paper is on
classical planning domains. Our implementation of the SO-
FALI architecture includes the following components: i) ex-
isting classical planners to be employed as System-2
solvers; and ii) case-based plans selectors and the so-called
Plansformer (Pallagani et al. 2023b), as fast solvers. Ex-
perimental results conducted on widely recognized planning
problem domains demonstrate that our architecture outper-
forms the use of existing planners alone in terms of striking
a balance between solving speed and solution quality.

The paper is structured as follows: after this concise intro-
duction, we provide background knowledge on the “Think-
ing, Fast and Slow” theory and automated planning. We sub-
sequently outline how we incorporated the core concepts of
the thinking fast and slow theory into the planning environ-
ment, with a specific focus on the metacognitive module and
the solvers. We then present the experimental setup illustrat-
ing how our system performs in solving planning problems.
We conclude the paper by summarizing our main contribu-
tions and offering insights into ongoing work.

Background
Thinking Fast and Slow in Al

Thanks to advancements in algorithms, techniques, compu-
tational power, and specialized hardware (Marcus 2020), au-
tomated reasoning tools have significantly improved in effi-
ciency and reliability within their respective domains. How-
ever, all of these tools still lack capabilities that, we humans,
naturally associate with the notion of “intelligence” such as
generalizability, robustness, and abstraction. Consequently,
an increasing part of the Al community is striving to ad-
dress these limitations by creating systems that exhibit more
“human-like qualities”. One prominent strategy to address
this challenge, adopted by various research groups (Newell
1992; Sun 2006; Goel, Chen, and Wierman 2017; Ganapini
et al. 2022), involves the development of tools referred to as
cognitive architectures (Kotseruba and Tsotsos 2020). These

architectures, usually, aim to combine the strengths of both
algorithmic and neural approaches. In particular, in this pa-
per, we explore classical planning in the context of one of
these architectures that stems from a modern cognitive the-
ory, i.e., the well-known Thinking Fast and Slow paradigm
popularized by D. Kahneman in Kahneman (2011).
Kahneman’s theory categorizes human reasoning into
two distinct Systems, denoted as System-1 (S1) and
System—-2 (S2). In particular, S1 represents intuitive
and imprecise decision-making processes (‘“‘thinking fast”),
while S2 provides tools for handling complex decisions
through logical and rational thinking (“thinking slow”).
Other than problem difficulty, S1 and S2 discern which
problem they should tackle based on the experience accumu-
lated on the problem itself. That is, when a new non-trivial
problem has to be solved, it is handled by S2. However,
some problems initially solvable only by S2, can later be
solved by S1 after accumulating sufficient experience. This
transition occurs because the procedures employed by S2
to solve these problems also generate examples that S1 can
later use readily with minimal effort. We note that S1 and
S2 are not systems in the multi-agent sense, but rather they
encapsulate two wide classes of information processing.

The SOFAI Architecture

As the main contribution of this paper, we present a system
inspired by cognitive theories to solve the classical planning
problems. In particular, our tool is based on a recent archi-
tecture called SOFAI (Booch et al. 2021; Ganapini et al.
2022) that is, in turn, inspired by the dual-system proposed
by Kahneman (2011). Following the ideas of Kahneman, the
architecture is equipped with two types of Systems ded-
icated to computing a solution to an incoming task, and a
third agent in charge of orchestrating the overall reasoning.

In this architecture, incoming problems are initially han-
dled by S1 solvers that have the required skills to tackle
them. S1 solvers compute a solution relying on the expe-
rience collected by the architecture. The computation is not
affected by the size of the input problem and thus S1 solvers
provide a solution in constant time.

The solution computed by the S1 solver (from now on for
the sake of simplicity, let us assume it is just one S1 solver)
and the corresponding confidence level is made available to
the metacognitive (MC) module, presented next, which can
now choose between the proposed solution or engaging a
S2 solver. An S2 agent is typically a reasoning model that
is able to deal with the current problem, this kind of solver
is more demanding in terms of time and other types of re-
sources. For this reason, only MC agent can decide to acti-
vate an S2 solver.

Let us note that, while implementing different strategies,
e.g., parallel use of the various systems, is certainly possible,
this line of research is focused on investigating the integra-
tion of cognitive theory in Al and that is why we are inter-
ested in analyzing the ‘base case’, when only one process
can be executed at the time.

The Metacognitive Module Following the SOFAI archi-
tecture by Ganapini et al. (2022), let us now present a de-

scription of the metacognitive (MC) module. SOFAI archi-
tecture, and consequently P1an—-SOFAT, is equipped with a
set of mechanisms that allows them to both monitor and con-
trol their own cognitive activities, processes, and structures.
The goal of this form of control is to improve the quality of
the system’s decisions. SOFAI has a centralized metacogni-
tive module that exploits both internal and external data and
arbitrates between S1 and S2 solvers.

This metacognitive module itself follows the thinking fast
and slow paradigm. This means that MC is comprised of two
main phases: the first one takes intuitive decisions without
considering many factors, while the second one is in charge
of carefully selecting the best-solving strategy, considering
all the available elements whenever the first phase did not
manage to return an adequate solution. We will refer to the
former with MC-1 and to the latter with MC-2.

MC-1 is in charge of deciding whether to accept the solu-
tion proposed by the S1 solver or to activate MC-2. MC-1
takes this decision considering the confidence, among other
few factors, of the S1 solver: if the confidence, which usu-
ally depends on the amount of experience, is high enough,
MC-1 tries to adopt the S1 solver’s solution.

If MC-1 decides that the solution of the S1 solver is not
“good enough”, it engages MC-2. Intuitively, this module
needs to evaluate whether to accept the solution proposed
by the S1 solver, use it to guide the S2 solving procedure,
or completely discard it and then activate the S2 reasoner.
To do this, MC-2 compares the expected reward for the
S2 solver with the expected reward of the S1 one: if the
expected additional reward of running the S2 solver, com-
pared to the S1 one, is large enough, then MC-2 activates the
S2 solver, using the solution proposed by S1 as heuristic if
this is above a certain level of correctness. MC-2, following
the human reasoning model (Shenhav, Botvinick, and Cohen
2013), is designed to avoid costly reasoning processes unless
an even greater expected reward compensates the additional
cost for the solution that the S2 solver will devise.

Let us note that, in this work, to better emulate
the expected behavior of a planner we will only allow
Plan-SOFAT to produce correct solutions.

Classical Planning

The idea of automated planning has been present since the
birth of Al and it has been widely explored in the com-
puter science community ever since. This area of research
is a branch of Artificial Intelligence where the objective is to
find plans, that is, sequences of actions, that can lead some
acting agent(s) to achieve desired goals.

Its “basic” form is referred to as classical planning. In this
setting, in order to have tractable and approachable prob-
lems, domains consider constrained environments, i.e., they
have to be i) static; ii) deterministic; and iii) fully observ-
able (Ghallab, Nau, and Traverso 2004).

Formally, a classical planning problem can be defined by
atuple (S, A, I, G), where: i) S is a finite set of states; ii) A
is a finite set of actions; iii) I C S represents the initial
state; and iv) G C S represents the set of goal states. A so-
lution is then a sequence of actions that transforms the initial

state into a state that satisfies the goal conditions. In classi-
cal planning, finding an optimal solution is a key objective,
which involves identifying the best possible sequence of ac-
tions according to a certain metric, such as the plan’s length.
Hence, an optimal plan 7* from the set of all possible plans
II is defined as: 7* = argmin || where 7 € II. This op-
timality criterion ensures that among all the plans that can
achieve the goal, the one with the minimum number of ac-
tions is selected.

While is not our intention to provide a detailed expla-
nation of the broad field of classical planning, we address
the interested readers to Ghallab, Nau, and Traverso (2004);
Russell and Norvig (2010); Bolander and Andersen (2011)
for a complete introduction on the topic.

Thinking Fast and Slow in Planning

Two of the prominent lines of work in Al, i.e., data-driven
approaches and symbolic reasoning, seem to embody (even
if loosely) the two Systems presented above. In particu-
lar, data-driven approaches share with S1 the ability to build
(possibly imprecise and biased) models from past experi-
ence, often represented by sets of data. For example, per-
ception activities, such as seeing, that in humans are handled
by S1, are currently addressed with Machine Learning (ML)
techniques in Al. Similarly, S2’s capability to solve complex
problems using a knowledge-based approach is somewhat
emulated by Al techniques based on logic, search, and plan-
ning, which make use of explicit and well-structured knowl-
edge. While the parallelism data-driven—S1 and symbolic —
S2 represent are a starting point in developing an automated
fast and slow Al, we should not assume these two techniques
to be the exclusive representative of the respective System.

In this paper, we transpose the concepts derived from the
thinking fast and slow paradigm into the classical planning
setting. We will start by presenting general definitions for
S1 and S2 solvers and then describe the actual implemen-
tations of S1 and S2 reasoners in this setting. The general
characterization of a S1 solver, triggered immediately when
the problem is presented to P1an-SOFAT, does not require
many factors. These solvers are assumed to rely on the past
experience of P1lan—SOFAT itself. Moreover, we assume
that the running time for S1 approaches to be independent of
the input and, instead, to depend on the experience accumu-
lated by the overall architecture. Finally, we consider a S1
solver to be an entity that relies on “intuition” (with a slight
abuse of notation). Taking into account these characteristics,
the next question that naturally arises is can classical plan-
ning ever be considered as S1 tasks, considering that plan-
ners, traditionally, always rely on look-ahead strategies? We
considered some ideas that could help us develop a S1 plan-
ner. Among those, only a few were not using search methods
(intensively) but rather mostly relied on experience. Finally,
we identified two feasible, yet functional, ways to exploit
experience in the aforementioned planning settings.

The first approach makes use of pre-computed plans; that
is, S1 can be used to determine which of the plans already
generated by past experiences is the one that “fits the best”
the current problem. Of course, determining if an already

computed plan is a good choice or not for the current prob-
lem is a difficult research question on its own. Since the
focus of this work is to devise a fast and slow architec-
ture for planning rather than optimizing its internal compo-
nents, we decided to use a simple, yet effective, criterion to
select the best-fitting plan. In particular, the first variation
of S1 selects, among past solutions for the same domain,
the pre-computed plan that is the closest in terms of Leven-
shtein Distance and Jaccard Similarity (Rinartha, Suryasa,
and Kartika 2018), as we will see in more detail later.

Instead, the latter version of S1, referred to as Plans-
former (Pallagani et al. 2023b), is based on a learning mech-
anism using LLMs pre-trained in coding languages such
as Python, Java, and Ruby. The intuition behind selecting
a code-based LLM is to inherit the syntactical knowledge,
similar to the family of languages used to define a planning
problem. Plansformer is fine-tuned on CodeT5 (Wang et al.
2021) using planning problem instances and their corre-
sponding plans. Given a new problem instance, Plansformer
is capable of generating a possibly valid plan, along with
the confidence score for the generated plan. The confidence
score is computed using the average non-zero probabilities
of the generated tokens in the plan returned by Plansformer.

Our Plan—-SOFAT is a S1-by-default architecture: when-
ever a new problem is presented, a S1 solver with the neces-
sary skills to solve the problem starts working on it, generat-
ing a solution and a confidence level. This allows to min-
imize the resource consumption making use of the much
faster S1 solving process when there is no need for S2—that
is when the solution proposed by S1 is “good enough”. Nev-
ertheless, as for the human brain, S1 may encounter prob-
lems that it cannot solve, either due to its lack of experience
or the inherent intricacy of the problem itself. These situ-
ations require, then, the use of more thought-out resolution
processes, generally provided by S2 approaches. Notice that
we do not assume S2 solvers to be always better than S1
solvers: given enough experience, some tasks could be bet-
ter solved by S1 solvers. This behavior also happens in hu-
man reasoning (Gigerenzer and Brighton 2009). Similarly,
we don’t assume S1 to be always more efficient than S2;
in fact, if the problem is very simple it is possible that the
“well-thought” process of S2 could take less time than S1.

As for S2 we considered solving procedures that em-
ploy traditional planning strategies. In particular, we used
the state-of-the-art Fast Downward (Helmert 2006) and
LPG (Gerevini and Serina 2002) solvers, presented in the
background.

Metacognition Module for Planning

In what follows, we provide a “concrete” view of the S1/S2
framework in the classical planning settings using of Algo-
rithms 1-3.

Before going into detail, let us briefly comment on the
input and the parameters of these algorithms. The process
requires the domain description (D), a particular instance ()
that we want to solve on such domain, and the time limit
(TL) within which the instance needs to be solved. The pa-
rameters, instead, represent some internal values that cap-
ture some sort of “inclination” of the architecture towards

employing S1. In particular, we have that: i) the accept-
able correctness (A) represents the minimum ratio of solved
goals, w.r.t. the total number of them, that defines an ac-
ceptable solution. Let us note that this measure can also be
changed to depend on other factors or to account for goals’
importance, for example. Its default value is 1.0, meaning
that P1an-SOFAT will only accept valid plans acting as a
full-fledged planner; ii) H defines the minimum correctness
level (as defined above) to use the solution found by S1 to
guide the solving procedure of S2 (if possible). The default
value is 0.3; iii) T1 represents the minimal amount of experi-
ence required by P1an—SOFATI to consider a solution pro-
posed by S1. Its default value is set to 20; iv) T2 represents
the minimum number of S1 usages after which it will con-
sider S1 accountable for its mistakes. This threshold allows
the architecture to initially try to employ S1 more freely,
to augment its experience. Conversely, after the minimum
number 72 of solutions, the metacognition actually uses the
previous performances of S1 to check for S1 accountability.
Its default value is set to 20; v) T3 is a value between 0 and
1 and it is used to represent the risk-aversion of the archi-
tecture: the higher the value the more incline P1an—SOFAT
is to use S2. The default value is set to 0.6; vi) € is a factor
that is used to scale the probability that S1 solution may ac-
tually be employed even if it was not considered convenient.
This is added to increase the number of S1 usages, and con-
sequently its experience, in those situations where the low
confidence of S1 itself may limit it too aggressively. Let us
note that the solution proposed by S1 needs to be validated
before being accepted in any case (Line 2 of Algorithm 2).
Its default value is 0.1; vii) (M) represents the experience
of P1lan-SOFAI. Every time a solution for a problem is
found, this is stored in the memory with a series of useful
information, e.g., the correctness value, the employed sys-
tem (i.e., S1 or S2), the difficulty of the instance, the re-
quired time, and so on. The default values of these variables
were determined through a study aimed at achieving balance
between utilizing S1 and S2. We are also currently working
on creating automated methods to fine-tune these parameters
for optimal resolution of the problem at hand.

We are now ready to describe in more detail Algo-
rithms 1-3. Let us start by presenting Algorithms 1. In par-
ticular, we can identify MC-1 in Lines 1-16, and MC-2 in
Lines 17-39. As already mentioned, to better emulate the
thinking fast and slow paradigm, we assume S1 to auto-
matically start and provide a solution at the beginning of
MC-1. That is why we start the metacognitive process by
storing the results of such process in the variables p and cx,
which represent the solution found by S1 and the confidence
that S1 has about this solution appropriateness, respectively.
The metacognitive process then proceeds to check whether
the experience accumulated by the architecture is enough
to consider S1 reliable (Line 3). If the architecture has
enough experience, the metacognition considers the confi-
dence of S1, adjusted to take into account the previous so-
lutions proposed by S1 itself (Lines 4-12), and determines
whether S1°s confidence is within the tolerated risk, identi-
fied by T3 (Line 13). If the confidence of S1 is enough, then
Plan-SOFAT tries to employ S1’s solution (line 14).

Algorithm 1: Fast and Slow Planning Architecture
Input: Domain (D), Instance (/), Time Limit (TL)
Parameter: Acceptable Corr. (A), T1, T2, T3, ¢, Memory (M),
Output: Plan (S), Correctness (C)

1: Let p be the solution of / found by S1

2: Let cx be the confidence of S1 on p.

3: if [M.solved_instances(D)| > TI then

4 if [M.solved_instances(D, S1)| < T2 then
5 LetK=0

6: else

7: Let avg_corr =0

8 for all i € M.solved_instances(D, S1) do
9: avg_corr 4 = leoreteonsll

10: end for

11: Let K = 1— avg_corr

12: end if

13: if cx x (1 — K) > T3 then

14: return (S,C) = try Si(p,D,I,TL)

15: end if

16: end if

17: Let diff = I.compute_difficulty()

18: Let est_time = M.avg_time_from diff (diff)
19: Let rem_time = TL — elapsed_time

20: Let est_cost = <time

21: if est_cost > 1 then
22: return (S,C) = try Si(p,D,I,TL)

23: else

24: Let prob= (1 —T3) x €

25: if prob > generate_random number(0, 1) then

26: return (S,C) = try_Si(p,D,I,TL)

27: else estvetcostets)

28: C= Teegoms0l

29: if C > A then

30: if (1 — (est_cost x (1 —T3)) > C x (1 — K) then
31: return (S, C) = S2_solve(p.D,I,rem_time,C)
32: else

33: return (S = p,C)

34: end if

35: else

36: return (S, C) = S2_solve(null,D,I,rem_time,C)
37: end if

38: end if

39: end if

If at any point, S1’s solution is considered not appropri-
ate by the metacognitive process—because it violates some
checks—then MC-2 starts. This part of the procedure be-
gins by determining a value that represents the difficulty of
the problem instance (derived by various factors such as the
number of agents, possible actions, fluents, and so on) at
Line 17. This measure is then used to determine the average
solving time for a given difficulty and to estimate the cost of
solving the given problem (Lines 18-20). If the cost exceeds
1 then there is not enough time to call S2 and P1an-SOFAI
tries to employ S1. The system can also adopt S1 with a
probability that is related to the risk aversion 73 and a pa-
rameter e, this is done in Lines 24-26, to improve the explo-
ration skill of the architecture itself. Plan-SOFAT evalu-
ates the solution proposed by S1 and, if it is acceptable (Line
29), whether the extra time required by S2 counterbalanced
the cost (Line 30). If the solution is not acceptable or the in-

crease in correctness is big enough S2 is called (Line 36 and
31, respectively), otherwise the solution proposed by S1 is
used (Line 33).

Algorithm 2: try_S1 function

Input: Plan (p), Domain (D), Instance (1), Time Limit (7L)
Parameter: Acceptable Correctness (4)
Qutput: Plan (S), Correctness (C)

C= |I.solved_goals(p)]|
|I.tot_goals()|

. if C > A then

return (S = p, C)
else

return (S, C) = S2_solve(null,.D,I,TL,C)
. end if

QN RLN

Algorithm 3: S2_solve function

Input: Plan (p), Domain (D), Instance (/) Time Limit (7L), S1
Correctness (C)
Output: Plan (S)
1: if C > H then
p-heur=p
else
p_heur =)
: end if
. if S2 (D,I, p_heur) terminates within 7L then
return (S = S2.get_plan(), C = 1)

: elseif p | = null then

. _ __ |l.solved_goals(p)|
9: return <S =P, C= m>

10: else
11: OPT-OUT
12: end if

PRAINRBD

Algorithms 2 and 3 are instead used to try and adopt the
solution proposed by S1 and to try and solve the problem
with S2, respectively. In particular, Algorithms 2 takes the
solution proposed by S1 and checks whether it has an ac-
ceptable degree of correctness. If it does then the solution
is employed, otherwise, Algorithm 3 is called. This function
simply calls the S2 approach (i.e., Fast Downward or LPG)
on the instance of the problem to solve and, if it terminates
before the available time ends, it returns the plan found by
the S2 planner with confidence equal to 1. If S2 cannot find
the solution within the time limit then the solution from S1,
if acceptable, is adopted; otherwise, P1lan—SOFATI returns
no solution and terminates. Let us note that the initial part of
the algorithm (Lines 1-5) checks whether the solution pro-
posed by S1 has a high enough level of correctness to be
employed as heuristics for the actual S2 resolution process.
If it does, this solution (represented by p) is given to S2 so
that the planner can make use of this information otherwise,
it is discarded and an empty solution is passed to S2. Dif-
ferent S2 solvers might handle partial solutions differently;
e.g., in our case, Fast Downward is not able to exploit this
extra information while LPG is able to use re-planing tech-
niques on the S1 solution.

S1 and S2 solvers

In the previous paragraph, we described how our architec-
ture decides which solving approach is the most appropriate,
here we will provide a high-level overview of solving pro-
cesses themselves. In particular, we designed our S1 solvers
to solely rely on past experience.

The first type of S1 solver, which is the case-based one,
analyzes the memory and looks, through the various solved
instances (using either S1 itself or S2), which one is the
closest to the problem that is being tackled. Once the closest
instance is identified, S1 returns the plan associated with it
as a solution and the distance value as a measure for con-
fidence. This distance can be calculated in two different
ways, generating effectively two different S1 solvers. The
first measure of distance considers the problems as a set of
formulae, i.e., the ones that comprise the initial and goal
states, and adopts the well-known Jaccard Similarity (Ri-
nartha, Suryasa, and Kartika 2018). The second metric is
calculated by transforming the two instances into two dis-
tinct strings, once again comprised of all the initial and goal
states information (separated by the special characters “|”),
that are then compared using the Levenshtein distance (Hal-
dar and Mukhopadhyay 2011) to determine the actual dis-
tance measure.

The other type of S1 takes the domain and problem
description of a planning instance and maps it to a se-
quential prompt given as input to Plansformer (Pallagani
et al. 2023b). The output obtained is a plan along with the
associated confidence score. Plansformer (Pallagani et al.
2023Db) is a learning-based planner developed by fine-tuning
CodeT5 (Wang et al. 2021), a language model pre-trained
on programming languages, using a planning dataset. While
there are many Large Language Models (LLMs) to select
as a candidate for this work, we shortlist the models pre-
trained on code generation to exploit the syntactic infor-
mation in the programming languages implicitly captured
in their weights. CodeT5 is a masked language model con-
sisting of an encoder-decoder stack inspired by the trans-
former architecture. It is capable of performing a wide range
of tasks including code generation and understanding tasks.
The CodeT5 model possesses several properties amenable
to the planning domain, such as its ability to generate goal-
directed, sequential instruction and semantically meaning-
ful program codes with syntactic and structural constraints.
The reason for choosing CodeT5 based on empirical evalua-
tion of planning capabilities of different LLMs is presented
in (Pallagani et al. 2023a). The planning dataset used to
fine-tune CodeT5 encompasses classical planning domains
such as Blocksworld, Gripper, etc. Let us note that this
S1 makes use of a pre-computed training set and does not
increase its experience during the solving phase. This is a
design choice and we leave the exploration of Plansformer
with “dynamic” training as a future work. The effectiveness
of different S1 systems is highly dependent on the quantity
and quality of past plans they utilize. Finally, for the sake
of brevity, we refer to (Pallagani et al. 2023a) for a com-
prehensive examination of how the dataset quality impacts
Plansformer’s performance and knowledge transferability.

Finally, while for S1 we needed to implement ad-hoc so-

lutions, the same is not true for S2 planners. In fact, as men-
tioned we employed two state-of-the-art classical planners,
i.e., Fast Downward and LPG, as our S2 solvers. Given that
explaining how these planners work is beyond the scope of
this paper, we can safely assume these approaches to be
black boxes that return the best possible solutions if ex-
ist. Nonetheless, we refer the interested readers to Helmert
(2006); Gerevini and Serina (2002) for a detailed explana-
tion of the internal mechanisms of Fast Downward and LPG,
respectively.

Let us just highlight the main differences between the
two approaches to better understand in which scenarios one
planner could provide a better solving procedure than the
other. Classical planning encompasses various strategies for
solving complex problems, among which FD and LPG are
particularly notable. FD employs a systematic, heuristic-
driven search strategy that translates planning problems into
multi-valued planning tasks. Utilizing causal graph heuris-
tics, FD is designed to achieve optimal solutions by sys-
tematically exploring the search space. This method is well-
suited for static environments where domain complexities
are predictable and can be encapsulated within a structured
search strategy.

In contrast, LPG employs a stochastic local search ap-
proach, which is ideal for environments rich in potential
solutions. LPG’s adaptability is evident in its handling of
partial plans, which can be incrementally adjusted in re-
sponse to changing conditions. This adaptability renders
LPG highly effective in dynamic settings that demand fre-
quent plan revisions due to environmental shifts or new data.
The strength of LPG in replanning is rooted in its rapid abil-
ity to modify partial plans through local search techniques.
Such flexibility is vital in non-static environments, enabling
LPG to swiftly identify alternate routes to the goal when the
initial plan becomes untenable. The local search is funda-
mental to this process, equipping LPG to traverse a dense
search space and pinpoint feasible solutions with minimal
computational demand.

Experimental Results and Discussion
Experimental Setup

In this section, we compare the new architecture introduced
as the main contribution of this paper with Fast Down-
ward (Helmert 2006) and LPG (Gerevini and Serina 2002)
that, to the best of our knowledge, are state-of-the-art solvers
in the classical planning setting. All the experiments were
performed on a 3.00GHz Intel Core i9-13900K machine
with 128GB of memory equipped with an NVIDIA GeForce
RTX 4090.

To evaluate our architecture we employed 5 well-known
classical domains, i.e., Blocks-World, Ferry, Gripper,
Tower of Hanoi, and Miconic. In the interest of brevity, we
will not introduce the domains and we will direct the inter-
ested readers to (Seipp, Torralba, and Hoffmann 2022).

The experiments are comprised of 500 different problems,
100 instances for each domain, that vary different character-
istics of the domain, the initial state, and the goal state. Ev-
ery instance is automatically generated, and this generation

process is random. Subsequently, the optimal plan length
of each instance is determined by solving the problem us-
ing Fast Downward. The optimality of a solution is assessed
by calculating the extra length in comparison to the optimal
plan, expressed as a percentage. If the optimal plan has a
length of o0 and the calculated plan has a length of [, then the
optimality is computed as ((I — 0)/0) * 100. In this context,
the ideal optimality value is represented by “+0.0%”.

Regarding the various input and parameters of the archi-
tecture (used in Algorithms 1, 2, 3) we imposed: i) a Time
Limit (TL) of 60s to solve each instance; ii) an Acceptable
Correctness (A) of 1.0, meaning that all the goals must be
satisfied for a S1 solution to be considered; iii) the various
thresholds (i.e., H, T1, T2, T3) and € to have their default
values; and iv) the Memory (M) to be initially filled with 25
solved problems (5 from each domain).

System-—1 Selection

The first set of experiments of our works is used to identify
the “best” S1 approach to reduce the scope of in-depth anal-
yses required to evaluate P1an—-SOFAT against the base-
line. These results are presented in Table 1. Let us note
that, following each attempted resolution by S1, if the prob-
lem remains unsolved, an instance of a S2 solver (i.e., Fast
Downward) is invoked to increase the available experience
of the S1 solver itself.

To streamline the discussion, we have designated the var-
ious S1 with the following abbreviations:

* RNG: this approach randomly selects one of the instances
in memory as a potential solution. This method serves as
a baseline for comparison, aiming to be outperformed by
a more strategically configured S1.

* LEV: in this approach, the solver picks as a possible so-
lution the plan of the instance that minimizes the Leven-
shtein distance w.r.t. the problem at hand;

* JAC: similarly to the LEV, this approach makes use of the
Jaccard distance to select a possible plan;

* CB: this approach combines both LEV and JAC and se-
lects the solution proposed by the method with the highest
confidence;

* PF: this approach employs Plansformer as solver;

e MIX: this approach entails selecting the solution with the
highest (normalized) confidence score from among all
available S1 methods described above.

It is evident from the information presented in Table 1 that
PF outperforms the others in terms of accuracy. This method
not only produces the highest number of successfully solved
and optimal plans but also delivers the best results con-
cerning optimality. The primary drawback of utilizing a
Plansformer-based approach is the relatively longer infer-
ence time, approximately 2 seconds, much higher than other
methods. Although a 2-seconds delay may not be consid-
ered a significant overhead for more challenging instances,
it could pose an issue when dealing with easy planning in-
stances that could be resolved in mere milliseconds by a S2
solver. Considering that the primary objective of this study is
to introduce an architecture capable of effectively combining

[rvG [1EV | \ CB \ PF [wix |
Valid Plans 9 (1.80%) | 117 (23.40%) | 79 (15.80%) | 117 (23.40%) | 402 (80.40%) | 395 (19.00%)
Optimal Plans 0(0.00%) | 54 (10.80%) | 42(8.40%) | 54 (10.80%) | 386 (77.20%) | 379 (75.80%)
[Time (ave) [0002s | 00035 | [00035 | 20795 | 2055 |
[Correctness (avg) || 0.106] 0.512 \ \ 0.511 \ 0.943 \ 0.921 |
[Optimality (avg) || +24.15% | +556% | +5.56% | +556% | +034% | +042% |

Table 1: Comparison between the various S1 solvers treated as standalone planners. The percentage numbers of correct and
optimal plans (Lines 2 and 3 of the Table, respectively) are relative to the whole batch of experiments, i.e., 500 instances.

S1 and S2 planning approaches, rather than delving into the
details of these approaches individually, we will postpone
the investigation of Plansformer optimization to future re-
search. Nevertheless, we will regard PF as the most promis-
ing approach at our disposal and will employ this configu-
ration as the S1 component of P1an—-SOFAT for the forth-
coming set of experiments. Let us note that we tested all the
possible configurations (not reported to avoid unnecessary
clutter) and the results reflect what was expected, i.e., using
Plan-SOFATI with the best S1 approach produces the best
results.

Experimental Results

The experiments conducted in this section are intended to

determine whether P1an-SOFAT can be considered an ef-

fective substitute for state-of-the-art planners. It is worth
noting that while P1an—-SOFAT can be utilized to accept
partial solutions, depending on the value of the Acceptable

Correctness parameter (A), thereby offering a valuable tool

for resource-constrained scenarios, in this particular context,

we exclusively evaluate P1an—-SOFAT as a fully-fledged
planner. Evaluations of P1an—-SOFAT with partial solutions

can be found in (Fabiano et al. 2023)

As a baseline for our experiments, we used the solvers
Fast Downward (FD) (Helmert 2006) and LPG (Gerevini
and Serina 2002). We let the solvers tackle all the instances
with a time-out of 60 seconds per instance. The main idea
is that these approaches represent the current capabilities of
classical planning and are comparable to a solely S2-based
architecture.

We then compared the baseline results with different con-
figurations of the architecture outlined in this paper (Ta-
ble 2). To avoid unnecessary clutter, let us identify the vari-
ous configurations, with the following abbreviations:

* FD: This configuration represents the Fast Downward
planner with the heuristics 1mstar (blind ()). It aims
to find solutions while also seeking optimality and is our
baseline for solvers that do not heavily rely on local search
and, consequently, produce reasonably sized solutions.

* LPG: This setting we employs the LPG planner with the
—quality modality. The approach is geared toward find-
ing solutions using local search and striving for maxi-
mum optimality. Since LPG incorporates local search, the
achieved solution optimality tends to be relatively low.

* SOFAI-PF-FD: In this setup, S1 is identified by PF (as
above) and S2 is FD (as described in the first item of this
list). If the solution returned by PF does not have a cor-
rectness > A, i.e., in our case > 1.0, S2 is adopted.

* SOFAI-PF-LPG: This configuration is similar to
SOFAI-PF-FD but utilizes LPG as S2 instead of FD.

* SOFAI-PF-FDxLPG: In this configuration, PF repre-
sents the S1, and S2 is a combination of FD and LPG.
In particular, LPG serves as a planner capable of adapt-
ing partially complete plans (in this case generated by PF)
into complete plans. If the correctness level of the plan
from PF is > A, that plan is directly output. However, if
the correctness level is higher than H (but still below A),
the partially correct plan from PF is adapted using LPG.
Finally, if the correctness of S1 is lower than H, FD is used
to solve the problem from scratch.

* SOFAI-PF-LPGxLPG: This configuration is similar to
SOFAI-PF-FDxLPG but utilizes LPG as a S2 instead of
FD when P1an-SOFAT needs to replan from scratch, i.e.,
when the solution proposed by PF has correctness < H.

Discussion

Table 2 provides some noteworthy findings. Let us begin
our examination by focusing on our baseline, which encom-
passes FD and LPG. Notably, it is evident that although FD
displays the most favorable optimality metrics, it falls short
in resolving specific issues, resulting in higher overall re-
source consumption. Conversely, LPG, thanks to its local-
search-based approach, manages to solve all the problems
with a low time consumption, rendering it the most efficient
strategy in this regard. However, it is worth mentioning that
the use of local search often leads to LPG producing solu-
tions with less-than-ideal optimality statistics. Subsequently,
PF alone, which represents the best S1 planner at our dis-
posal, resolves a substantially smaller subset of issues in
comparison to both FD and LPG. Nevertheless, it demon-
strates a robust optimality metric, and an acceptable average
planning time (thanks to its constant-time solving process).

Evidently, an ideal outcome would involve combining the
optimality characteristics of FD with the fast solving time
of LPG. Unfortunately, such a synergy cannot be achieved
as the distinct problem-solving processes are seen as black-
boxes to one another and combining them in a unique tool
would necessitate a substantial effort comparable to devis-
ing an entirely new solver. In this context, our proposed sys-
tem, Plan-SOFATI, offers an alternative for enabling di-
verse solvers to interface and collaborate.

The adaptable architecture Plan—-SOFAT allows us to
merge the quick problem-solving capacity of PF, albeit less
precise than the baseline, with the baseline itself in various
ways. This enables the development of an approach that si-
multaneously maintains strong optimality and augments the

I FD [LPG I PF || SOFAT-PF-FD [SOFAT-PF-LPG | SOFAT-PF-FDxLPG | SOFAT-PF-LPGXLPG |
[Valid Plans [[451(90.20%) | 500 (100.00%) |[402 (80.40%) || 483 (96.60%) [500 (100.00%) | 490 (98.00%) [490 (98.00%) \
[Optimal Plans__|| 451 (90.20%) | 264 (52.80%) || 386 (77.20%) || 464 (92.80%) | 434 (36.80%) | 445 (89.00%) | 443 (89.60%) |
[SI Plans | - [- |[402 (80.40%)][398 (79.60%) | 401 (80.20%) | 397 (79.40%) [394 (78.30%) |
Optimal | = = | 7386 (96.02%) || 379 (95.23%) 383 (95.51%) 377 (94.96%) 378 (95.94%) \
[52 Plans 451 (90.20%) [500 (100.00%) || - 85(17.00%) [99 (19.80%) | 93 (18.60%) I 96 (19.20%)
Optimal 451 (100.00%) 264 (52.80%) = 85 (100.00%) 51 (51.52%) 68 (73.12%) 70 (72.92%)
[FD 451 (90.20%) | - | - 85(17.00%) | - | 5 (1.00%) | -
Optimal 451 (100.00%) = = 85 (100.00%) = 5 (100.00%) =
[IPG — [500 (100.00%) || — — [99(19.80%) | — \ 5 (1.00%)
Optimal = 264 (52.80%) = = 51 (51.52%) = 2 (40.00%)
[PF+LPG - | - \ - - | - | 88 (17.60%) | 91 (18.20%)
Optimal - - - - - 63 (71.59%) 68 (74.73%)
[Time (avg) [8479s [0675 || 2.079s || 4.915s [2.318s [2.199s [2.163s \
[Optimality (avg) || +0.00% | +23.68% || +034% || _ +0.02% | +9.78% [+1.13% [+4.86% \

Table 2: Comparison of the various configuration of P1an—SOFAT with FD and LPG. Each method is divided into its internal
processes, highlighting the contribution of each solving tool. The gray lines indicate the percentage of plans relative to the line
above. Line 12 presents statistics for “PF + LPG” indicating the number of times a not-valid plan found by PF was considered

‘good enough’ (correctness > H) to be used as a partial solution for a subsequent LPG replanning.

problem-solving spectrum (w.r.t. PF), consequently reduc-
ing execution time. The best example of this approach is
SOFAI-PF-FDxLPG, which, in our estimation, represents
the most balanced trade-off among all the analyzed planning
techniques. This instance takes full advantage of the solu-
tions generated by S1 and of the two S2 solvers. Although
the solving time is highly dependent on the inference time
of PF, any enhancement of this problem-solving technique
could yield an even more rapid architecture. We leave the
optimization of PF, and the investigation of new S1 solvers
for future research.

Let us emphasize that this instance of Plan—-SOFAT,
while rooted in specific S1 and S2 solvers, embodies a
broader contribution. We introduce a methodology for merg-
ing diverse planning techniques within a unified architec-
ture, mirroring human cognition by capitalizing on both
symbolic and experience-based reasoning.

Furthermore, the flexibility of P1an-SOFAT extends to
modifications in S1 and S2 solvers, potentially yielding nu-
merous P1lan—SOFAT instances tailored to distinct scenar-
ios. In this regard, P1an—-SOFAT serves as a centralized tool
for maximizing the variety of planners found in the litera-
ture, combining them with other techniques to address their
respective limitations. This adaptability also extends to in-
ternal parameters, permitting users to fine-tune the architec-
ture for accommodating less accurate solutions in the inter-
est of time savings or vice versa. For example, if we wanted
to Plan—-SOFAT to domains characterized by low solution
density, it is reasonable to forego reliance on LPG and in-
stead explore alternative strategies for harnessing precom-
puted plans, such as leveraging PF to compute plan prefixes
and reduce the computational burden on FD.

Ultimately, P1an—-SOFATI is not confined to the classi-
cal planning scenarios. Thanks to its capacity to adapt to
resource constraints, this architecture can be useful in re-
solving problems within settings where inherent complexity,
e.g., multi-agent epistemic planning (Bolander 2017), would
otherwise render the planning process infeasible. This is il-
lustrated in Fabiano et al. (2023) where an older version of
the architecture, instantiated for multi-agent epistemic plan-
ning, is presented. In such intricate cases, the trade-off of

accepting partially correct but sound plans becomes a vi-
able means of producing solutions that, albeit partial, pos-
sess useful information.

Conclusions and Ongoing Work

In this work, we presented an architecture to tackle plan-
ning problems, in classical settings, that is heavily inspired
by the well-known cognitive theory Thinking Fast and Slow
by Kahneman (2011). This tool builds on the SOFAI ar-
chitecture (Ganapini et al. 2022), which makes use of a
metacognitive process to arbitrate the solving processes, and
two solvers referred to as S1 and S2. While S2 is di-
rectly derived from the literature the S1 solvers have been
designed ad-hoc for the proposed architecture to exploit
past experience. The SOFAI-inspired approach showed very
promising results demonstrating the ability to combine di-
verse solving approaches to enhance their performances.
Another advantage of the proposed architecture is that it can
be used to incorporate new solving techniques developed by
the community. In fact, our tool can be easily modified to
employ different S1 or S2, or multiple versions of them.
While the obtained results are promising, we are contin-
uously working on improving P1lan—-SOFATI. First, we are
devising ways of making our architecture easy to use with
different solving approaches. That is, we are working on an
encoding of P1lan—-SOFAT that is completely independent
of the solving approach where the interested researcher can
plug multiple planners, as S1 or S2 solvers, to test their in-
teraction. To this end, we are also working on devising new
strategies to incorporate the solutions proposed by S1 into
the S2 solving process, independently from the latter while
also automatically adjusting the default values of the inter-
nal thresholds. An example of such strategies would be to
let S1 generate partial solutions that can create new initial
states, where a set of sub-goals is already satisfied, to reduce
the workload of the S2 solvers. Finally, we are also working
on devising and optimizing existing experience-based plan-
ners. Most notably we are investigating ways of integrating
the concept of continual learning in PF, allowing this tech-
nique to learn over time when employed in P1lan-SOFAT.

References

Bolander, T. 2017. A gentle introduction to epistemic plan-
ning: The DEL approach. arXiv preprint arXiv:1703.02192.

Bolander, T.; and Andersen, M. B. 2011. Epistemic planning
for single-and multi-agent systems. Journal of Applied Non-
Classical Logics, 21(1): 9-34.

Booch, G.; Fabiano, F.; Horesh, L.; Kate, K.; Lenchner, J.;
Linck, N.; Loreggia, A.; Murugesan, K.; Mattei, N.; Rossi,
F.; and Srivastava, B. 2021. Thinking Fast and Slow in AL
In Proceedings of the 35th AAAI conference, 15042—15046.

Fabiano, F.; Pallagani, V.; Ganapini, M. B.; Horesh, L.;
Loreggia, A.; Murugesan, K.; Rossi, F.; and Srivastava, B.
2023. Fast and Slow Planning. CoRR, abs/2303.04283.

Ganapini, M. B.; Campbell, M.; Fabiano, F.; Horesh, L.;
Lenchner, J.; Loreggia, A.; Mattei, N.; Rossi, F.; Srivastava,
B.; and Venable, K. B. 2022. Thinking fast and slow in Al:
The role of metacognition. In International Conference on
Machine Learning, Optimization, and Data Science, 502—
509. Springer.

Gerevini, A.; and Serina, I. 2002. LPG: A Planner Based on
Local Search for Planning Graphs with Action Costs. 13-22.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: theory and practice. Elsevier.

Gigerenzer, G.; and Brighton, H. 2009. Homo heuristicus:
why biased minds make better inferences. Top Cogn Sci,
1(1): 107-143.

Goel, G.; Chen, N.; and Wierman, A. 2017. Thinking fast
and slow: Optimization decomposition across timescales. In
2017 IEEE 56th Annual Conference on Decision and Con-
trol (CDC), 1291-1298. IEEE.

Haldar, R.; and Mukhopadhyay, D. 2011. Levenshtein dis-
tance technique in dictionary lookup methods: An improved
approach. arXiv preprint arXiv:1101.1232.

Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research, 26: 191-246.

Kahneman, D. 2011. Thinking, Fast and Slow. Macmillan.

Kotseruba, I.; and Tsotsos, J. K. 2020. 40 years of cognitive
architectures: core cognitive abilities and practical applica-
tions. Artificial Intelligence Review, 53(1): 17-94.

Marcus, G. 2020. The Next Decade in Al: Four Steps To-
wards Robust Artificial Intelligence. arXiv:2002.06177.

Newell, A. 1992. SOAR as a unified theory of cognition:
Issues and explanations. Behavioral and Brain Sciences,

15(3): 464-492.

Pallagani, V.; Muppasani, B.; Murugesan, K.; Rossi, F.; Sri-
vastava, B.; Horesh, L.; Fabiano, F.; and Loreggia, A. 2023a.
Understanding the Capabilities of Large Language Models
for Automated Planning. arXiv preprint arXiv:2305.16151.

Pallagani, V.; Muppasani, B.; Srivastava, B.; Rossi, F;
Horesh, L.; Murugesan, K.; Loreggia, A.; Fabiano, F.;
Joseph, R.; Kethepalli, Y.; et al. 2023b. Plansformer Tool:
Demonstrating Generation of Symbolic Plans Using Trans-
formers. In IJCAI, volume 2023, 7158-7162. International
Joint Conferences on Artificial Intelligence.

Rinartha, K.; Suryasa, W.; and Kartika, L. G. S. 2018. Com-
parative Analysis of String Similarity on Dynamic Query
Suggestions. In 2018 Electrical Power; Electronics, Com-

munications, Controls and Informatics Seminar (EECCIS),
399-404.
Russell, S. J.; and Norvig, P. 2010. Artificial Intelligence -

A Modern Approach, Third International Edition. Pearson
Education. ISBN 978-0-13-207148-2.

Seipp, J.; Torralba, A.; and Hoffmann, J. 2022. PDDL Gen-
erators. https://doi.org/10.5281/zenodo.6382173.

Shenhav, A.; Botvinick, M. M.; and Cohen, J. D. 2013. The
Expected Value of Control: An Integrative Theory of Ante-
rior Cingulate Cortex Function. Neuron, 79(2): 217-240.
Sun, R. 2006. The CLARION cognitive architecture: Ex-
tending cognitive modeling to social simulation. Cognition
and multi-agent interaction, 79-99.

Wang, Y.; Wang, W.; Joty, S.; and Hoi, S. C. 2021. Codet5:
Identifier-aware unified pre-trained encoder-decoder mod-

els for code understanding and generation. arXiv preprint
arXiv:2109.00859.

