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Abstract

Recent developments in 3D vision have enabled signif-
icant progress in inferring neural fluid fields and realistic
rendering of fluid dynamics. However, these methods re-
quire dense captures of real-world flow, which demand spe-
cialized lab setups, making the process costly and challeng-
ing. Scientific machine learning (SciML) foundation mod-
els, pretrained on extensive simulations of partial differ-
ential equations (PDEs), encode rich multiphysics knowl-
edge and thus provide promising sources of domain priors
for inferring fluid fields. Nevertheless, the transferability
of these foundation models to real-world vision problems
remains largely underexplored. In this work, we demon-
strate that SciML foundation models can significantly re-
duce the data costs of inferring real-world 3D fluid dy-
namics with improved generalization. Our method lever-
ages strong forecasting capabilities and meaningful rep-
resentations of SciML foundation models. We equip neu-
ral fluid fields with a novel collaborative training that uti-
lizes augmented frames, and fluid features extracted by our
foundation model. We demonstrate significant advance-
ments in both quantitative metrics and visual quality over
previous methods, improving 9~36% peak signal-to-noise
ratio (PSNR) in future prediction with 25~50% reduc-
tion in the number of training frames, thereby showcas-
ing the practical applicability of SciML foundation mod-
els in real-world fluid dynamics. We release our code at:
https://github.com/delta-lab-ai/SciML-HY.

1. Introduction

Fluid phenomena are ubiquitous in our 3D world, from the
powerful ocean currents, to the turbulent jet streams in the
air. One important yet open challenge in understanding flu-
ids is to recover fluid dynamics from visual observations,
also known as the inference of 3D fluid fields. Formally
stated, given visual inputs (2D images or video sequences),
this task aims to infer invisible quantities like density and
velocity in the spatiotemporal domain (3+1D) (Figure 1
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left). This facilitates downstream rendering of realistic flu-
ids in computer games and videos [71], and even appli-
cations of broad impact, such as weather forecasting [52]
and airfoil design [65]. Unlike rigid bodies, fluids present a
unique challenge due to their dynamic and complex nature,
requiring advanced computational methods.

Recent advancements in 3D vision have enabled signif-
icant progress in inferring fluid fields. This includes both
multi-view benchmarks [17] of high-quality flow videos
with well-calibrated camera poses, and also neural fluid
fields [11-13, 27, 81] jointly optimized by rendering loss
and physics constraints. However, learning neural fluid
fields is notorious for its high costs of acquiring dense
fluid views '. Methods like HyFluid [81] require four
videos with 120 continuous frames each. This requirement
relies on specialized lab setups. For example, collecting and
calibrating the ScalarFlow dataset [17] requires insulated
containers with heaters, fog machines with servo-controlled
valves, and multiple cameras, with an estimated total cost
of around $1,100. Many fluid dynamics phenomena occur
rapidly, necessitating the use of high-speed cameras to cap-
ture detailed visualizations. These specialized imaging sys-
tems can add significant expenses to experimental setups,
with costs reaching thousands of dollars per camera. [1, 82].
With mobile devices or drones, capturing real-world fluid
views in the wild will become even more challenging.
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Figure 1. Inferring neural fluid fields requires densely captured
views. Meanwhile, PDE simulations are important for building
SciML foundation models. How to utilize this rich domain knowl-
edge to improve 3D fluid reconstruction in the real world?

“Frame” and “view” are used interchangeably in the context of fluid
field reconstruction, following [81]. We will unify them under “frame” to
avoid ambiguity.
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A common strategy to achieve data efficiency and im-
proved generalization is to introduce prior knowledge. Sci-
entific machine learning (SciML), which aims to learn phys-
ical dynamics, is a promising source of prior (Figure 1,
right). Deep neural networks (DNNs) provide surrogate
models for approximations of partial differential equations
(PDEs) and real-world challenges like weather forecast-
ing [41, 52] and turbulent flow [34]. SciML foundation
models are further advanced in recent works [28, 29, 46,
54,60, 62,70, 80]. By scaling up extensive training datasets
to incorporate multiphysical domains and PDE simulations
(such as Navier-Stokes, Burgers’, shallow water), SciML
foundation models aim to encode common physical behav-
iors and improve generalization in scientific contexts.

Although promising, SciML foundation models are
mainly pretrained and evaluated on synthetic PDE simu-
lations [48, 61, 63]. These simulations, while encoding
rich physical domain knowledge, still differ from real fluid
captures with multiscale patterns and noisy measurements
(Figure 1). This poses questions about the transferability of
SciML foundation models in real-world 3D fluid problems.
In contrast, foundation models in popular ML domains have
been widely utilized as strong priors. Vision models such
as DINO [6, 51] and CLIP [53] have been leveraged to
support generalizable representations and semantic aware-
ness [7, 45, 64, 68, 73, 75, 79]. Large language models
(LLMs) [2, 16, 66, 67] are pretrained on high-quality cor-
pora and interact with the informal spoken language of hu-
man users every day. Therefore, we ask our core question:

How to utilize SciML foundation models to
advance 3D reconstruction of real-world fluids?

In this work, we provide affirmative answers (Figure 2),
and demonstrate that pretrained SciML foundation models
can enhance data efficiency in inferring neural fluid fields
from sparse videos. We establish the foundation for incor-
porating pretrained physics knowledge as a prior for real-
world fluid reconstruction. Our core idea is to leverage
the strong forecasting and meaningful representations of
SciML foundation model, and “distill” this prior into neu-
ral fluid fields. We demonstrate both improved quantita-
tive metrics and the high-quality visual appearance of our
method on real-world flow captures with significantly re-
duced training input frames. Specifically:

1. Given extremely sparse initial frames from short videos
of flows, our foundation model forecasts future steps
(temporal frames) and enables a collaborative training
strategy for neural fluid fields with more augmented fluid
frames (Section 3.2 and Figure 6).

2. To improve generalization, we introduce meaningful
representations of flows into neural fluid fields. These
representations are extracted by our foundation model
and carefully aligned with the camera rays used in the
fluid field (Section 3.3 and Figure 7).
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Figure 2. Our method is significantly more data-efficient than
previous works (PINF [11], HyFluid [81]) on future prediction.
X-axis: different numbers of training frames (nf) per video. Y-
axis: temporal index of reliably predicted future frames with peak
signal-to-noise ratio (PSNR) threshold of 25 (higher is better).

3. We provide comprehensive experiments and ablation
studies (Section 4). Our method not only unlocks ex-
treme data efficiency (25~50% reduction in the number
of training frames), but also achieves both improved re-
construction error and visual quality (10~36% improved
peak signal-to-noise ratio in future prediction).

2. Preliminary
2.1. Inferring Fluid Fields from Videos

Our method is developed to work with HyFluid [81], which
infers neural fluid fields (density and velocity) from videos.

Problem Definition. Given videos of smoke rising up-
wards (Figure 1, left), with the number of frames (views)
used in each video denoted by nf, neural fluid fields aim
to infer the density field o (x, y, z, t) and the underlying ve-
locity field u(z,y, z,t) = (vs, vy, v,) of the smoke, both
parameterized by deep networks.

For the density field o(z,y, z,t), HyFluid randomly
samples camera rays (,y, z,t) and reconstructs the den-
sity using a 4D extension of iNGP [49], which accelerates
the neural rendering with multiscale hash encoding of spa-
tiotemporal positions. During training, this density field is
optimized by comparing input and rendered views via dif-
ferentiable volume rendering (Figure 4 bottom). Similarly,
the velocity field u(x,y, z,t) is inferred by another iNGP
model, and is supervised by physics-informed losses that
enforce mass conservation for incompressible flows and
divergence-free velocity. We follow the assumptions of the
original ScalarFlow dataset, whose reconstruction model
assumes incompressible flow (see Section 3 of [17]). Un-
der atmospheric pressure and low Mach numbers, this is a
standard and reasonable approximation for smoke.

During inference, the density field is used to render the
visual appearance of the smoke, and the learned velocity



field can be used to advect (evolve) the density over tem-
poral steps for both re-simulation (interpolation of the tem-
poral range seen during training) and future prediction (ex-
trapolation of unseen future temporal ranges).

The ScalarFlow Dataset: Smoke Videos with Calibrated
Cameras. Recent works on fluid field reconstruction fo-
cus on the ScalarFlow dataset [17]: a comprehensive col-
lection of volumetric reconstructions of real-world smoke
plumes (Figure 1 left). It encompasses a wide array of
complex, buoyancy-driven flows rising upwards that tran-
sition into turbulence, capturing observable scalar transport
processes. To the best of our knowledge, the ScalarFlow
dataset is by far the best-calibrated benchmark on real-
world fluid (smoke) dynamics.

2.2. SciML Foundation Model

For time-dependent PDEs, the solution is a mapping from
the joint of a spatial and temporal domain to the dynam-
ics of the physical system (e.g. density, velocity, vortic-
ity of the fluid at a certain spatiotemporal location): v :=
T xS — RY In current literature [41, 42, 46, 63],
the forward modeling operator A/ computes the PDE so-
lution given T}, € Z7T consecutive previous timesteps:
Ni=v(t =Ty AL, ..., v(t — At,-) — v(t,-), where
At is the granularity of the temporal grid. This enables
finite-difference approximations of the temporal derivatives
of PDEs. See Figure 3 for an illustration.

SciML aims to find ML-based surrogate models for for-
ward modeling by learning an approximation from data
Ny ~ N (¢ for learnable parameters). To optimize Ny,
we take a dataset D comprising /N discretized PDE simu-
lations (“samples”) D := {v() |i=1,..., N}, and min-
imize a loss functional L, typically the normalized root of

the mean squared error (nRMSE = %
2

where vireq
is the prediction from NV).

Traditionally, SciML models focus on learning simula-
tions of one PDE [41, 42, 44]. However, recent works
explored and verified benefits of scaling up the pretrain-
ing data to include diverse PDE systems, thus developing
SciML foundation models [28, 29, 46, 54, 60, 62, 70, 80].
Intuitively, although these PDEs model very different phys-
ical systems, this “multi-tasking” strategy 1) implicitly en-
force the learning of the compositionality of PDEs (which
describe core components like nonlinear advection or dif-
fusion in common and also augment specialized terms like
buoyancy or system constraints); 2) facilitate transfer learn-
ing and knowledge sharing across multiple PDE families.

3. Methods

In our work, we aim to reduce the number of video frames
(nf) required by learning neural fluid fields, thereby im-

Figure 3. Forecasting by SciML foundation models [29, 46].
Given T;,, previous steps, the model predicts the next step of the
fluid dynamics (here, each frame shows the vorticity of the fluid).

proving data efficiency. Our method can be applied to
any NeRF-based fluid models, in this paper we mainly use
HyFluid as our baseline, see the results on other baselines
(PINF [11]) in Section A.8 of the supplementary material.
In Figure 4, we overview our proposed framework>.

3.1. How to Utilize SciML Foundation Models for
Inferring Real-World Fluid Fields?

Inspired by recent works [29, 46], we first develop our
SciML foundation model as follows:

1. Architecture. We adopt a 3D version of the Swin Trans-
former [43, 78] (6.5M parameters), a popular vision
transformer architecture, as our foundation model®. Tt
tokenizes input temporal 2D frames (v([t — T;,, - At :
t—At], -)) with a 3D convolution layer, forwards through
efficient windowed attentions, and predicts the next tem-
poral step v(¢, -). Without loss of generality and follow-
ing previous works [29, 46, 63], we choose T;,, = 10.
Tuning T;, may lead to better performance, but is not
the focus of our method.

2. Multiphysics Pretraining. We utilize the PDEBench
dataset [63] for pretraining. Specifically, we pretrain
our foundation model on the joint of diverse simulations
of the following PDEs: both compressible and incom-
pressible Navier-Stokes, shallow water, and reaction-
diffusion. See Section B.4 in the supplement for de-
tails. We sample each equation uniformly, zero-pad chan-
nels of PDEs with fewer variables, and match different
PDE simulations to the same spatial resolution via inter-
polation. We will experimentally verify the benefits of
this multiphysics pretraining in Section 4.4.

3. Fine-tuning.  After pretraining, we fine-tune on
ScalarFlow*. Inspired by recent works [39, 52], we em-

2Qur method directly interacts with only the density field of HyFluid,
the velocity field is implicitly improved via the density field.

3(1) Why not use larger model sizes? We will show that, even with a
small model, we can already achieve strong improvements. Using larger
models may further boost performance, but this is not the focus of our
work. Recent SciML foundation models also consider sizes smaller than
10M parameters [29, 62, 69, 80]. (2) Architecture choices: We adhere to
the original design of the Swin Transformer and avoid introducing ad hoc
modifications. Although recent works on SciML foundation models adopt
different architectures [29, 46], the commonly shared aspect of these works
is their joint multiphysics pretraining, not their deep network architectures.

4The same set of sparse video frames that will be used to train HyFluid.
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Figure 4. Overview: We improve the data efficiency (i.e., reduce the number of input fluid frames “n£”) of learning neural fluid fields via
the pretrained SciML foundation model. Given sparse input videos, we utilize our foundation model to: 1) forecast future steps to augment
denser frames for training (Section 3.2); 2) extract flow representations and aggregate into embeddings of fluid density fields (Section 3.3).

ploy a curriculum schedule to encourage forecasting fur-

ther temporal steps, gradually increasing autoregressive

steps from 3 to 8 by 1 every 20 training epochs. Both
pretraining and fine-tuning use the nRMSE loss.

We expect two core benefits of our SciML foundation
model that can be utilized in the real world (highlighted
with yellow in Figure 4):

1. Strong Forecasting. As our foundation model is pre-
trained with the next-frame prediction, it can natively
forecast precise future steps as augmented frames of flu-
ids to complement sparse videos (Section 3.2).

2. Representation Learning. As a data-driven approach
similar to DINO [6, 51], the feature space constructed
by our SciML foundation model can extract meaningful
features of fluids to facilitate better generalization of 3D
neural fluid fields (Section 3.3).

3.2. Co-Training via Foundation Model Forecasting
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Figure 5. Collaborative training between HyFluid and the founda-
tion model improves future predictions. “v0, v1, v2” match mod-
els annotated in Figure 6. HyFluid can be progressively improved
(vO—v1—v2) with more augmented frames. Y-axis: temporal in-
dex of reliably predicted future frames (thresholded by PSNR=25).
X-axis: number of training frames (nf) per video.

Given sparse smoke videos, one way to address data

scarcity is to augment more frames. We first study the fore-
casting performance of both our SciML foundation model
and the neural fluid fields. As shown by two dotted curves
in Figure 5 (“Foundation Model v0” vs. “HyFluid v0”), the
forecasting quality of the foundation model is much better
than the neural fluid fields.

To utilize the strong forecasting of our foundation model,
we propose a collaborative training strategy for neural fluid
fields. The core idea is to train the foundation model
and neural fluid field with augmented frames (Figure 6).
We alternately concatenate the reliably predicted frames
(thresholded by PSNR=25) from the foundation model or
neural fluid field into the current training set, and fine-
tune each other. This collaborative training can also be
viewed as a knowledge distillation from the foundation
model to the neural fluid field in the output space. As
shown by two dashed curves in Figure 5 (“Foundation
Model v1”, “HyFluid v1”), the collaborative training en-
hances the forecasting of both models, and the final version
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Figure 6. Collaborative training between HyFluid and our SciML
foundation model via forecasting with augmented frames. “v0, v1,
v2” match the corresponding curves in Figure 5.



of the neural fluid field (solid curve “HyFluid v2”) achieves
much stronger future predictions. By achieving compara-
ble PSNR with fewer input frames, we demonstrate that our
collaborative training can significantly improve the data ef-
ficiency of neural fluid fields. Notably, while the foundation
model itself is data-driven and does not explicitly encode
the Navier—Stokes equation, the training of HyFluid (v2)
over extended temporal frames still introduces new physical
knowledge through regularization from fluid simulation.

3.3. Feature Aggregation from Foundation Model

In addition to leveraging the augmented frames via the
foundation model’s forecasting, we further aggregate the
learned representation from the foundation model into the
neural fluid field. This can be viewed as a knowledge distil-
lation from the foundation model to the neural fluid field in
the feature space. We show our design of feature aggrega-
tion in Figure 7. This includes three steps:

1. For each camera ray (z,,Yp, 2p), We use the camera’s
extrinsics and intrinsics to project the ray onto the posi-
tion in image coordinates (R g, Wimg)-

2. We reshape the sequence of tokens in our foundation
model into 2D feature maps, and extract the feature vec-
tor corresponding to the camera ray via interpolating
over the neighboring four feature coordinates. This fea-
ture vector is shared by all points sampled along the ray.

3. We use a two-layer MLP (with ReLU activation) to map
the feature vector to the same feature dimensionality as
the embedded features of the spatiotemporal coordinates
of the density field, and sum them for aggregation.
During training, features are extracted from fluid frames

from videos. During testing, since videos are not acces-
sible, the SciML foundation model extracts features based
on frames rendered by the density field from prior temporal
steps. To extract features of frames before the temporal step
at T;,, we use temporal-wise interpolation to supplement
necessary frames as inputs to the foundation model.

4. Experiments
4.1. Settings

Datasets. We use real captures from the ScalarFlow
dataset [17], released in the repository of HyFluid. For each
scene, there are five videos from five cameras fixed at po-
sitions evenly distributed across a 120° arc centered at the
rising smoke. In each video, we consider the first nf frames
(where the smoke plumes upwards from the bottom), and
adjust nf to study our data efficiency. Each video has a
resolution of 1920 x 1080. These videos have been post-
processed to remove backgrounds. Following HyFluid, for
each scene, we use four videos for training and hold one out
for testing (i.e., as the ground-truth novel view).

Tasks. We compare with two previous works on neural
fluid fields: PINF [11] and HyFluid [81]. Due to the lack of
true 3D volume in ScalarFlow, we evaluate the reconstruc-
tion quality using view rendering. Following [81], we con-
sider three tasks: novel view synthesis, re-simulation, and
future prediction. In novel view synthesis, the density field
is used to render smoke views from unseen camera param-
eters; thus, its quality is evaluated based on rendering ac-
curacy. For re-simulation and future prediction, the learned
velocity field is utilized to advect the density across tem-
poral coordinates. Thus, the quality of the learned velocity
field is assessed based on its effect on the density field. In
our future prediction experiments, no model is ever trained
with ground-truth future frames from videos. We refer the
reader to [81] for more details about these tasks.

Evaluation Metrics. We report the peak signal-noise ra-
tio (PSNR) averaged over frames. We leave the structural
similarity index measure (SSIM) and the perceptual metric
LPIPS [83] in Section A.6 in Section A.6 in the supplemen-
tary material. These metrics are also widely used in previ-
ous deblurring works [21, 22].

4.2. Data-Efficiency Inference of Fluid Fields

We first report the inference of fluid density fields. By de-
fault, HyFluid [81] and PINF [11] used 120 frames (i.e.,
nf=120) from each video during training. We consider us-
ing a much fewer numbers of sparse training frames than
HyFluid and PINF. During collaborative training, we use
20 augmented frames (from nf+1 to n£+20) in each round.
These predicted frames are refreshed rather than accumu-
lated. Our method improves both data efficiency and per-
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Figure 7. We aggregate representations learned by our SciML
foundation model into HyFluid with three steps: (1) project from
spatiotemporal location to the camera plane; (2) extract and inter-
polate neighboring features; (3) aggregate features from the foun-
dation model into neural fields. “Cfy.,”: feature dimension of
SciML foundation model. “Cherf”: hidden dimension of neu-
ral density field (NeRF).



Table 1. Comparing PSNR (higher the better) of fluid field reconstruction by different methods. We report mean values over 3 random runs
(see Table 5 in the supplement for standard deviations). “nf”: number of input training frames (views). For future prediction, we report
the PSNR averaged over 20 future frames (i.e., frames with indices from nf+1 — nf£+20).

Methods Novel View Synthesis

Re-Simulation

Future Prediction

nf=20 nf=40 nf=60 nf=20

nf=40 nf=60 nf=20 nf=40 nf=60

PINF [11] 33.45 31.05 30.90 24.28

24.86 24.08 21.71 20.85 20.67

HyFluid [81] 33.83 (+0.38) 33.32 (+2.27) 32.84 (+1.94) 33.89 (+9.61) 33.27 (+8.41) 32.02 (+7.94) 25.22 (+3.51) 23.98 (+3.13) 23.66 (+2.99)
Ours 34.50 (+1.05) 33.48 (+2.43) 32.84 (+1.94) 34.34 (+10.06) 33.36 (+8.50) 32.42 (+8.34) 27.59 (+5.88) 28.36 (+7.51) 27.76 (+7.09)

Novel View
Synthesis

Re-simulation

Future
Prediction

PINF HyFluid

t=60 65 70

Ours

Figure 8. Visualization of novel view synthesis (top), re-simulation (middle), future prediction (bottom) on ScalarFlow [17] when 60
frames (per video) are used for training (i.e., n£=60). “GT”: ground truth.

formance. As shown in Table 1, our PSNR consistently
outperforms HyFluid and PINF under different sparse train-
ing frames (nf), across all three tasks’. Most importantly,
in future prediction, our method can improve PSNR by 9%
(27.59 vs. 25.22) and up to 36% (28.36 vs. 20.85) compared
to HyFluid and PINF, respectively. This strong and reliable
future prediction further contributes to a 25~50% reduction
in the number of training frames (Figure 2), achieving sig-
nificant data efficiency.

4.3. More Realistic Visual Quality

Besides measuring PSNR, it is crucial to visually assess
the rendering quality of different methods to ensure real-
istic and artifact-free reconstructions. We present qualita-
tive comparisons in Figure 8. For both novel view synthesis
and re-simulation, our method successfully recovers fine-
grained details while mitigating artifacts in HyFluid and
PINF. Our ability to accurately reconstruct density fields

SPSNRs across different n s are not comparable, since the numbers of
testing frames used to calculate PSNR are also adjusted to be equal to the
numbers of training frames.

further unlocks high-fidelity future predictions. Even when
provided with sparse input frames, our method is signif-
icantly more stable and robust than HyFluid and PINF,
which suffer from degraded reconstructions and weak fore-
casting capabilities. Our approach preserves the original
structure of the fluid while maintaining a natural and physi-
cally consistent upward flow. Both the PSNR measurements
and qualitative visualizations strongly indicate that our re-
construction is quantitatively superior and visually more re-
alistic than those produced by HyFluid and PINF.

4.4. Benefits of SciML Pretraining

As the core of our SciML foundation model is the joint pre-
training on diverse PDE simulations (Section 2), it is critical
to study and verify the true benefits of the domain knowl-
edge from multiphysics pretraining.

To compare different PDE sources, we also pretrain
another SciML model on the Maxwell equations, which
govern electromagnetic waves and largely differ from the
Navier-Stokes equations of ScalarFlow®.

6Simulation settings for Maxwell are in Section B.4.1.



Table 2. Benefit of multiphysics pretraining on the PSNR (higher the better) of fluid field reconstruction.

13

nf”: number of input training

frames.For future prediction, we report the PSNR averaged over 20 future frames (i.e., frames with indices from nf+1 — n£+20).
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Methods
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Figure 9. Benefit of multiphysics pretraining on future prediction
over different numbers of initial training frames per input video
(x-axis). We show the temporal index of reliably predicted future
frames (thresholded by PSNR=25) on the y-axis (higher is better).

We analyze and identify two benefits below.

Improved generalization of neural fluid fields. We
compare the performance of neural fluid fields equipped
with our foundation model, with and without multiphysics
pretraining. As shown in Figure 9, our multiphysics pre-
training can largely improve the data efficiency of neu-
ral fluid fields during future prediction. In contrast, both
SciML models—without pretraining or pretrained on irrele-
vant PDE simulations (Maxwell)—lead to worse future pre-
dictions. Moreover, over all three fluid reconstruction tasks,
the utilization of multiphysics pretraining leads to much
improved PSNR, as shown in Table 2. We also evaluate
DPOT [29] with pretrained weights, see results in Section
A.7 in the supplementary material. These results validate
the necessity of high-quality pretraining of our SciML foun-
dation model, and the lack of a strong prior is the key to the
worse performance of HyFluid and PINF.

Faster convergence during fine-tuning. Multiphysics
pretraining also enables fast convergence during fine-tuning
on real-world fluid data. As shown in Figure 10, despite
gaps between PDE simulations and Scalarflow, our pre-
trained weights can still be quickly adapted to achieve ac-
curate predictions and forecasting. In comparison, SciML
models without pretraining or pretrained on Maxwell con-
verge much more slowly during fine-tuning.

4.5. Ablation Study

We further provide ablation studies on our decoupled frame-
work to demonstrate the benefits of each individual compo-

Epochs
Figure 10. Multiphysics pretraining accelerates the convergence
during fine-tuning of our SciML foundation model (on 40 initial
frames from each of the four training videos in ScalarFlow).
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Figure 11. Ablation study of our decomposed methods on future
prediction. X-axis: different numbers of initial training frames per
video. Y-axis: temporal index of reliably predicted future frames
(thresholded by PSNR=25) (higher is better).

nent. As shown in Table 3 and Figure 11, both our meth-
ods outperform the HyFluid baseline, with the combined
approach achieving the best performance. For more abla-
tion studies and comparison with other SciML foundation
models, please read Section A in the supplementary mate-
rial.

5. Related works
5.1. 3D Reconstruction of Fluid

To reconstruct 3D fluid from visual measurements, tradi-
tional approaches utilized active sensing [26, 31, 33] or par-
ticle imaging velocimetry (PIV) [3, 19]. While effective,
they necessitated sophisticated and controlled lab environ-
ments. Supervised view synthesis was recently proposed.



Table 3. Ablation study of our methods on the PSNR (higher the better) of fluid field reconstruction. “nf”: number of input training
frames. For future prediction, we report the PSNR averaged over 20 future frames (i.e., frames with indices from nf+1 — n£+20).

Novel View Synthesis

Re-Simulation Future Prediction

Methods

nf=20 nf=40 nf=60 nf=20 nf=40 nf=60 nf=20 nf=40 nf=60
Baseline (HyFluid [81])  33.52 32.12 31.64 33.27 32.98 31.56 2391 23.98 23.84
+ Co-training 34.56 33.19 32.31 34.03 33.13 32.61 28.02 25.20 26.87
+ Feature Aggregation 33.88 33.18 32.76 33.88 33.29 32.09 26.58 27.13 25.61
Ours 34.50 33.48 32.84 34.34 33.36 3242 27.59 28.36 27.76

In [82], regularizers on view interpolation and projection
consistency were designed for reconstruction from light to-
mography views. NeRFlow [15] learned 4D spatiotemporal
representations of dynamic scenes by capturing 3D occu-
pancy, radiance, and dynamics while enforcing consistency
across different modalities. PINF [11] proposed to recon-
struct fluid dynamics by leveraging PDEs (Navier-Stokes)
to train a continuous spatiotemporal scene representation
with a neural radiance field. NeuroFluid [27] proposed a
particle-driven neural renderer that integrates fluid physi-
cal properties into volume rendering and includes a particle
transition model to minimize differences between rendered
and observed fluid views. HyFluid [81] proposed hybrid
neural fluid fields to jointly infer fluid density and velocity
fields, using a set of physics-based losses to enforce phys-
ically plausible density and velocity fields. However, no
previous works explored the introduction of prior knowl-
edge for data efficiency and improve generalization.

5.2. Scientific Machine Learning

SciML, fueled by advancements in deep learning, mod-
els physical phenomena and differential equations [8, 9,
37, 38]. Physics-informed neural networks (PINNs)[24,
25, 55, 58, 87] aim to incorporate physics into neural net-
works by including the differential form of the PDE as
an additional physics loss regularization term. However,
this paradigm has been confined to specific PDE scenarios
(e.g., fixed PDE coefficients). Moreover, recent work has
highlighted several fundamental issues with PINN-based
methods[ 18, 36]. In contrast, operator learning methods, in-
cluding Fourier Neural Operators [35, 40, 41] and the Deep
Operator Network [44], have made progress in approximat-
ing the solution operators of PDEs. Although these data-
driven approaches show promise in learning PDE solutions,
they rely on vast quantities of high-fidelity labeled data. Re-
searchers have also explored generating synthetic PDE so-
lutions to train SciML models [30]. More recently, SciML
foundation models have been developed [28, 29, 46, 54, 60,
62, 70, 80] by scaling up training datasets to incorporate
multiple PDE simulations. SciML foundation models aim
to encode common physical behaviors and enhance the gen-
eralization and scalability of SciML.

5.3. Foundation Models for 3D Reconstruction

Foundation models for vision are large-scale models pre-
trained on vast amounts of images or videos, designed to
generalize across downstream vision tasks [6, 53, 56, 57,
59, 74, 77, 86]. CLIP [53] employed contrastive learning
with extensive image-text data and achieved zero-shot per-
formance. DINO [6] exemplified self-supervised learning
and achieved impressive segmentation with minimal super-
vision, proving useful for visual correspondence and recog-
nition [4, 10, 47, 72]. Diffusion models [14, 32, 50, 59]
demonstrated exceptional image generation capabilities,
with their learned feature spaces also serving recognition
purposes, such as in semantic segmentation [5, 76]. To
leverage these 2D vision foundation models in 3D recon-
struction, researchers increasingly explored the potential of
distilling 2D features into 3D space, exemplified by gener-
alizable neural radiance fields (NeRFs) proposed to bridge
this gap [7, 45, 64, 68, 73, 75, 79, 84]. Fine-tuning pre-
trained source models while training 3D reconstruction is
also a common strategy. For example, Condense [85] en-
hances downstream task performance by jointly pretraining
2D and 3D features through multi-view images, creating a
unified 2D-3D feature embedding space. From a broader
perspective, when applying DINO to downstream domains
with significantly different data distributions, such as med-
ical imaging [20] or image matting [23], further fine-tuning
is often necessary.

6. Conclusions

In this work, we demonstrate that integrating SciML foun-
dation models with neural fluid fields provides a substan-
tial improvement in data efficiency and generalization for
inferring 3D fluid fields. Through a collaborative train-
ing approach, our method leverages the foundation model’s
forecasting capabilities to augment data, thereby reducing
the reliance on extensive training frames. Additionally, the
aggregation of pretrained representations enables more ac-
curate reconstructions of fluid dynamics from sparse video
frames. The results indicate that this strategy not only en-
hances reconstruction quality but also achieves robust per-
formance in novel view synthesis and future prediction. Our
work highlights the practical applicability of SciML foun-
dation models in real-world fluid dynamics.
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