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Figure 1: Overview of proposed framework. Our framework comprises two core components: (1)
MM-HELIX benchmark to evaluate the reflective capabilities of MLLM, and (2) AHPO method to
boost reflection capability and transfer enhanced skills to general reasoning tasks.

ABSTRACT

While current Multimodal Large Language Models (MLLMs) have demonstrated
proficiency in reasoning tasks such as mathematics and logic, their capacity for
long-chain reflective reasoning, a prerequisite for solving complex real-world
problems, remains largely underexplored. In this work, we first conduct an ex-
tensive empirical investigation to evaluate this capability. Leveraging a carefully
designed data synthesis engine, we construct MM-HELIX, a multimodal bench-
mark consisting 1260 samples of 42 challenging synthetic tasks that require iterative
thinking and backtracking. Empirical results on this benchmark reveal that existing
MLLMs exhibit significant performance deficits in long-chain reflective reason-
ing. To address this limitation, we generate post-training data and further explore
learning paradigms for exploiting such data. We first develop the Step-Elicited
Response Generation pipeline to create MM-HELIX-100K, a large-scale dataset of
100k high-quality, reflective reasoning traces for instruction-tuning stage. Given
that standard Reinforcement Learning fails on complex tasks due to sparse reward
signals and catastrophic forgetting after Supervised Fine-Tuning, we propose Adap-
tive Hybrid Policy Optimization (AHPO), a novel training strategy that dynamically
unifies offline supervision and online optimization into a single stage. This strategy
enables the model to learn from expert data when rewards are sparse and conduct
independent exploration once proficient. When applied to the Qwen2.5-VL-7B
baseline, our method achieves a +18.6% accuracy improvement on MM-HELIX
benchmark and demonstrates strong generalization with a +5.7% average perfor-
mance gain on general mathematic and logic tasks. Our work demonstrate that
reflective reasoning in MLLMs can be effectively learned and generalized, paving
the way for developing more capable MLLMs.
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1 INTRODUCTION

Human cognition is fundamentally characterized by the processes of reflection and backtracking.
This iterative cycle of trial, error, and correction allows individuals to adapt to novel environments
and progressively refine their decisions for greater accuracy. Inspired by this cognitive process,
recent advancements in Large Language Models (LLMs) have integrated reflective and multi-step
thinking strategies (Guo et al., 2025a), unlocking significant improvements in their reasoning abilities.
Concurrently, Multimodal Large Language Models (MLLMs) have undergone rapid development,
achieving impressive performance across a spectrum of downstream tasks, from perception (e.g.,
recognition) to reasoning (e.g., mathematic). Despite these advances, a significant limitation persists
in current MLLMs. The majority of these models are designed to generate outputs in a single, direct
pass, lacking the intrinsic mechanisms for self-correction and iterative refinement. Consequently,
their capacity for end-to-end, multi-step reflective reasoning within rich multimodal contexts remains
largely unexplored and underevaluated.

Existing research, e.g. Enigmata (Chen et al., 2025), VGRP-Bench (Ren et al., 2025), and Code2Logic
(Tong et al., 2025), have primarily concentrated on text-only problems or puzzle-like challenges that
are often constrained to multiple-choice or fill-in-the-blank formats, thereby failing to adequately
evaluate the end-to-end reflective reasoning capabilities of MLLMs. To address this critical research
gap, we introduce MM-HELIX, a comprehensive benchmark designed to evaluate the long-chain
iterative reasoning capabilities of MLLMs. MM-HELIX contains 42 meticulously curated challeng-
ing tasks from diverse online sources, categorized into four domains: Algorithm, Graph, Puzzle,
and Game. Each task requires the model to perform careful visual observation, develop a deep
understanding of complex rules, and generate an extended chain-of-thought that necessitates reflec-
tion and backtracking. We constructed a versatile procedural generation pipeline to systematically
generate samples. This pipeline features: (1) a rule-based code Generator programmatically creates
multimodal questions with tunable parameters, spanning five hierarchical difficulty levels, which
indicates very easy, easy, middle, hard, very hard. (2) a Solver module engineered to produce
ground-truth solutions; and (3) a Verifier module to algorithmically validate answers for tasks with
non-unique solutions. This Verifier also functions as a reward oracle in our reinforcement learning
environment. Following a rigorous filtering process, our benchmark consists of 1,260 high-quality
samples. Our comprehensive evaluation reveals that state-of-the-art MLLMs struggle significantly
on MM-HELIX. For instance, even a leading model like Qwen-2.5-VL-72B achieves a mere 13.9%
accuracy, underscoring a profound deficit in their reflective reasoning capabilities.

Based on the observation, we wonder if we can boost the reflection of MLLMs within MM-HELIX
and generalize to general reasoning tasks like mathematics and logic. We then propose the Step-
Elicited Response Generation (SERG) pipeline, a method for efficiently generating high-quality,
reflective CoT traces by integrating rule-based, key-step knowledge. Leveraging SERG, we construct
MM-HELIX-100K, a large-scale dataset comprising 100k high-quality samples that span 42 tasks
across a full spectrum of difficulty levels.

Our initial experiments reveal the limitations of standard training paradigms: instruction-tuning on
MM-HELIX-100K caused catastrophic forgetting, while on-policy reinforcement learning failed due
to extreme reward sparsity since base model lacks the foundational ability to solve the tasks. To this
end, we introduce Adaptive Hybrid Policy Optimization (AHPO), a framework that dynamically
integrates off-policy expert guidance with on-policy exploration. AHPO implements an explore-
with-supervision strategy by dynamically modulating the off-policy loss via a reward-based gating
mechanism. Specifically, when the rewards within a group are sparse, indicating the model is
struggling, the off-policy expert data is integrated to guide the model toward correct trajectories.
Conversely, once the model demonstrates proficiency and rewards become dense, the off-policy loss
is attenuated, encouraging the policy to explore and discover novel solutions. Training with AHPO
on a combination of MM-HELIX-100K and a general mathematics RL dataset yielded substantial
gains. The model not only demonstrated mastery on in-domain tasks, achieving a +18.6% accuracy
improvement on MM-HELIX, but also successfully generalized its enhanced reflective skills to
general math and logic tasks, with a +5.7% average increase in accuracy. These results validate
that our approach effectively cultivates reflective capabilities that are both robust and transferable.

Our contributions can be summarized as follows:
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1. We introduce MM-HELIX, a benchmark comprising 42 challenging multimodal tasks specifically
designed to assess long-chain, iterative, and reflective reasoning. Through systematically evaluation,
we reveal the critical deficiencies of state-of-the-art MLLMs in these complex reasoning domains.

2. We propose the Step-Elicited Response Generation (SERG) pipeline, a novel and efficient method
for generating high-quality demonstration data. We leverage SERG to construct MM-HELIX-100K,
a large-scale dataset of 100k multimodal high-quality reflective Chain-of-Thought (CoT) traces.

3. We introduce Adaptive Hybrid Policy Optimization (AHPO), a novel training algorithm that
dynamically integrates off-policy expert data with on-policy exploration in a single stage. This
hybrid approach is specifically designed to overcome the challenges of sparse rewards, fostering the
acquisition of complex reasoning skills that demonstrate substantial generalization.

2 RELATED WORK

Multimodal Large Language Models. In recent years, MLLMs have rapidly advanced in both
general multimodal capabilities and specialized reasoning. Representative models such as Gemini 2.5
(Comanici et al., 2025), Qwen-2.5-VL (Bai et al., 2025b), and InternVL3 (Wang et al., 2025) establish
strong general multimodal capabilities. More recently, reasoning-oriented models such as GLM-4.5V-
Thinking (Team et al., 2025b), Seed1.5-VL (Seed et al., 2025), and Kimi-VL-A3B-Thinking (Team
et al., 2025a) explicitly emphasize structured thinking. Together, these works indicate a growing
consensus that reasoning is the next frontier for MLLMs.

Exploration of Long-chain Reasoning. Chain-of-Thought prompting (CoT) (Wei et al., 2022) and
Tree-of-Thoughts (ToT) (Yao et al., 2023) demonstrate the value of intermediate reasoning traces.
Procedural generation has emerged as a solution: Enigmata (Chen et al., 2025) creates logic puzzles,
Code2Logic (Tong et al., 2025) synthesizes multimodal QA from game logic, and benchmarks such
as VGRP-Bench (Ren et al., 2025) reveal persistent weaknesses in algorithmic reasoning. However,
these works have primarily concentrated on text-only problems or puzzle-like challenges that are
often constrained to multiple-choice or fill-in-the-blank formats.

Reinforcement Learning Method. On-policy algorithms, such as PPO (Schulman et al., 2017),
stabilize training by clipping updates, but this is computationally expensive. Variants such as GRPO
(Shao et al., 2024) improve stability through within-group advantage, while DAPO (Yu et al., 2025a)
dynamically adjusts policy optimization, and GSPO (Zheng et al., 2025) emphasizes gradient scaling
for more efficient updates. Off-policy methods reduce training costs by reusing data. Besides, LUFFY
(Yan et al., 2025) applies sequence-level optimization to exploit offline preference datasets. Those RL
methods all meet problems of inefficient training when facing hard tasks, thus, we propose AHPO to
simplify training and enhance multimodal reasoning.

3 METHOD

3.1 MM-HELIX: BENCHMARKING MULTIMODAL REFLECTIVE END-TO-END REASONING

Recent advancements in Multimodal Large Language Models (MLLMs) (Comanici et al., 2025; Bai
et al., 2025b; Wang et al., 2025; Luo et al., 2025b;a) have demonstrated remarkable capabilities, yet a
significant limitation persists in their capacity for complex, multi-step reflective reasoning. Existing
benchmarks often focus on direct inference tasks, such as mathematical and logical problem-solving,
overlooking the evaluation of long-chain visual reasoning processes in an end-to-end manner. To
address this gap, we introduce MM-HELIX, a novel benchmark specifically designed to assess
and challenge the limits of multimodal reflective reasoning in MLLMs. The construction of this
benchmark is guided by four core principles: Multimodal, Long-Chain Reasoning, Reflection, and
End-to-End. To instantiate these principles, we have curated 42 diverse tasks from public web
resources and existing academic datasets, which are organized into four categories: algorithms,
graphs, puzzles, and games, as shown in Fig. 2. Each task necessitates that the model comprehend
complex rules, recognize states within a visual context, and engage in a sequential process of thought,
reflection, and backtracking to reach a solution, presenting a substantial challenge to current MLLMs.

To ensure the scalability, diversity, and controlled difficulty of our benchmark, we develop a procedural
generation framework. This framework is architected around three core components: an Instance
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Figure 2: Overview of tasks in MM-HELIX benchmark. MM-HELIX contains 42 challenging tasks
designed to evaluate long-chain reflective reasoning across five progressive levels of difficulty.

Generator, a deterministic Solver, and an automated Verifier. The Instance Generator produces
problem instances based on task-specific rules and scalable parameters. Each generated instance
comprises three elements: Question Description: A textual prompt outlining the task with its
corresponding detailed rules. Visual Input: An image presenting the initial problem scenario (e.g.,
a game board). Initial State: A structured data representation of the visual input to facilitate post-
evaluation verification. An example is shown in Fig. 3; see Appx. A.6 for all cases.

Game Rules:  
1. Control a snake to move around the grid 
using commands (up, down, left, right)  
2. The snake must eat all apples on the grid 
3. When the snake eats an apple, it grows 
longer by one segment  
4. The snake cannot collide walls or itself 
5. The snake moves one cell at a time 

Reference Answer

Image Question

Category

up up left up right right 
right down down…… Solver

Level

Game Level 5 

Initial State

Snake: (3,2) (3,1) 
Apples: (0,1) …… 
 
 

Output Format Requirements:  
Answer should be a sequence of moves 
Example:  
up right down left up 

Goal:   
Find a sequence of moves to eat all apples 

Nibbles 

Figure 3: Example of Nibbles task (Level 5) in
MM-HELIX benchmark. The snake must eat all
apples on the grid by executing a sequence of
moves, demanding long-term reflection.

For each generated instance, the Solver first an-
alyzes the initial state using a rule-based algo-
rithm to determine the instance’s solvability. If
a solution is deemed to exist, the Solver pro-
duces a feasible solution to serve as the ground
truth. While tasks in the algorithm and graph cat-
egories typically have a unique solution, game
and puzzle tasks often permit multiple valid so-
lutions. To facilitate objective and accurate eval-
uation, we construct an automated Verifier to
assess model outputs. This component employs
two distinct validation strategies based on the
complexity of the required response. For tasks
with simple, discrete answers (e.g., a boolean
or a numerical value), it performs a direct exact-
match comparison against the ground truth. For
tasks requiring complex, multi-step solutions,
the Verifier first standardizes the model’s output
and then simulates the proposed sequence of actions from the Initial State, leveraging the problem’s
intrinsic rules to confirm the solution’s validity.

A key feature of MM-HELIX is its hierarchical difficulty system, designed for the fine-grained
evaluation of model capabilities. We scale task difficulty by programmatically adjusting task-specific
parameters within the generation framework, primarily by controlling the number of reasoning steps
required for a correct solution. By modulating these parameters, we generate tasks across five distinct
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difficulty levels ranging from Level 1 (very easy) to Level 5 (very hard), where both the problem’s
scale and reasoning complexity increase with each level. This tiered structure enables a precise
identification of the performance degradation threshold for a given model, thereby revealing the
limitations of its reasoning capacity. The final evaluation set comprises 1,260 unique instances, a
corpus size selected to ensure statistical robustness while maintaining computational tractability. The
dataset is balanced across both tasks and difficulty levels: for each of the 42 tasks, we generated 30
instances by sampling 6 instances from each of the 5 difficulty levels. This composition facilitates a
reliable and granular assessment of model performance across a wide spectrum of complexity.

3.2 MM-HELIX-100K: GUIDING MULTIMODAL REFLECTIVE REASONING

The capability for long-chain reflection is crucial in various advanced applications. However, our
evaluation results on MM-HELIX reveal that even state-of-the-art MLLMs, such as Qwen-2.5-
VL-72B, struggle significantly with these challenging reflective tasks, achieving an accuracy of
only approximately 10%. This performance gap motivates our investigation into whether targeted
instruction tuning can enhance this reflective capability and if such improvements can generalize to
other complex reasoning domains, such as mathematics and logic.

MM-HELIX-CoT
The box at (4,6) is one up and one right from me. 
To push it down .....  
Hmm — no. To push a box down, I have to be 
above it. So to push the box from (4,6) to (5,6), I 
need to be at (3,6)?  
Wait — let’s see the path. I can go up to (4,5), then 
up to (3,5). Then right to (3,6) 
…… 
After the first push, I am at (4,6), and the box is at 
(5,6). So I can immediately push it again — down 
to (6,6), and I end up at (5,6).  
 
 
 

Move 1: Planning to move up - Current 
surroundings: up: empty, down: empty, left: 
empty, right: empty - 🚶 MOVE: Player moves 
up to (4, 5) (repositioning) 
…… 
Move 13: Planning to move left - Current 
surroundings: up: wall, down: wall, left: box, 
right: empty - ✅ PUSH: Moving left pushes box 
from (1, 2) to (1, 1) (GOAL!) 

Rule-Based CoT

Rule-Guided               
Scaffolding

Solver

Verifier

Answer

LLM-based 
Enhancement

Figure 4: Demonstration of our Step-Elicited Re-
sponse Generation pipeline.

To effectively train models for such complex,
long-chain reasoning, a large-scale, high-quality
dataset of reasoning trajectories is indispensable.
To this end, we introduce MM-HELIX-100K,
a meticulously curated dataset for instruction-
tuning comprising 100k instances. The dataset
spans 42 distinct tasks and incorporates high-
quality responses with reflection.

Generating high-quality Chain-of-Thought
(CoT) trajectories at this scale presents a
formidable challenge. Conventional meth-
ods, such as prompting a large model to
generate reasoning steps from scratch in an
unconstrained manner, are often inefficient
and yield low-quality results. To overcome
these challenges, we develop a hybrid and
highly efficient data generation pipeline, which
we term Step-Elicited Response Generation
(SERG), as the pipeline shown in Fig. 4. The
process begins with our task-specific generators
creating a base set of 150k problem instances. We first employ a programmatic, rule-based
CoT constructor to generate a deterministic, skeletal reasoning path by strategically embedding
anchors—critical intermediate states or calculations—and connecting them with template-based
natural language descriptions. This initial step produces a logically sound but often mechanical and
rigid reasoning trace, which is suboptimal for training a nuanced language model.

This rule-based trajectory then serves as a high-quality scaffold for a powerful model, in this work
Qwen3-235B. We provide the model with the original question and the rule-based reasoning path,
prompting it to refine this scaffold into a more natural, comprehensive, and human-like reasoning
process that includes reflective steps. This enhancement phase enriches the dataset with linguistic
diversity and more detailed explanations. To guarantee the final dataset’s integrity, each generated
trajectory is only accepted if its final answer passes the corresponding automated verifier. This
stringent filtering mechanism is crucial for eliminating any errors introduced during the LLM
enhancement phase and ensures the high fidelity of the training data.

3.3 AHPO: ADAPTIVE HYBRID ALGORITHM FOR GENERALIZING REFLECTION

On-policy reinforcement learning algorithm, such as GRPO, update its model exclusively from data
generated by the current policy. In complex task domains like MM-HELIX, the policy seldom
generates successful trajectories, leading to severe reward sparsity that renders the training process
inefficient and often ineffective (see Fig. 6). A common strategy to mitigate this is to initialize the
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Figure 5: Demonstration of Adaptive Hybrid Policy Optimization (AHPO). AHPO dynamically inte-
grates off-policy expert guidance with on-policy exploration, leading to performance generalization.

policy via Supervised Fine-Tuning (SFT) on an offline dataset of expert demonstrations. However,
this methodology can induce a significant distributional shift, biasing the policy towards the SFT data
distribution and constraining its ability to generalize and adapt during the subsequent RL phase.

To overcome these limitations, we introduce Adaptive Hybrid Policy Optimization (AHPO), a
novel algorithm that integrates off-policy and on-policy learning into a unified training framework
shown in Fig. 5. The cornerstone of our method is an adaptive mechanism that modulates the
influence of offline expert data based on the policy’s real-time performance. This allows the model to
leverage expert guidance when needed and to rely on its own exploration as it improves.

The AHPO objective function dynamically combines a standard off-policy loss with an on-policy
GRPO-style objective. The off-policy component is negative log-likelihood loss on expert data y∗ :

Loff−policy(θ) = − 1

|y∗|

|y∗|∑
t=1

log πθ(y
∗
t |x, y∗<t). (1)

The on-policy component is a clipped policy gradient objective:

Lon−policy(θ) = − 1∑N
i=1 |τi|

N∑
i=1

|τi|∑
t=1

CLIP(ri,t(θ), Ai, ϵ), (2)

Ai =
R(τi)−mean({R(τi) | τi ∼ πθold(τ), i = 1, 2, . . . , N})

std({R(τi) | τi ∼ πθold(τ), i = 1, 2, . . . , N})
, (3)

where Ai represents the estimated advantage for trajectory τi, and ri,t(θ) =
πθ(τi,t|q, τi,<t)/πθold

(τi,t|q, τi,<t) is the probability ratio for importance sampling. Follow-
ing (), we omit the KL divergence term from the original GRPO formulation to reduce constraints on
policy exploration and decrease computational overhead.

AHPO unifies these objectives into a single loss function, where the influence of the off-policy term
is governed by an adaptive coefficient ξ:

LAHPO(θ) =ξLoff−policy(θ) + Lon−policy(θ) (4)

=− 1

Z
(

Noff∑
i=1

|y∗
i |∑

t=1

ξ log πθ(y
∗
i,t|xi, y

∗
i,<t)︸ ︷︷ ︸

Off-policy objective

+

Non∑
i=1

|τi|∑
t=1

CLIP(ri,t(θ), Ai, ϵ)︸ ︷︷ ︸
On-policy objective

), (5)

the activation coefficient ξ is controlled by the following adaptive rule:

ξ = 1

(
Non∑
i=1

I(R(τi) = 1) < R̂

)
. (6)

Here, I(·) is the indicator function and R̂ is a predefined success rate threshold. This mechanism
conditionally applies supervision from expert data: it provides dense guidance when the model’s
on-policy success rate is below the threshold R̂, preventing the agent from getting stuck or hacking
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Figure 6: Comparison of GRPO, LUFFY and
Static-AHPO. Static-AHPO achieves best perfor-
mance on challenging tasks.
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Figure 7: Comparison of Static-AHPO and
AHPO. AHPO dynamically integrates expert
data to ensure a robust training.

in early training. Conversely, as the policy improves and consistently achieves high rewards, the
off-policy supervision is deactivated (ξ = 0). This adaptive strategy ensures that expert guidance is
present during the crucial initial stages of learning but fades out to allow the model to refine its policy
through pure exploration. This prevents the model from merely memorizing the expert distribution
and encourages the discovery of more robust solutions.

While prior work, such as LUFFY (Yan et al., 2025), has used expert data as positive examples in a
preference-based RL framework, our empirical results demonstrate that this approach is less effective
than our adaptive loss formulation for the complex tasks. Furthermore, the activation coefficient
ξ plays a key role in making robust training. Although a static coefficient provides strong initial
guidance, it creates a persistent conflict between the off-policy expert distribution and the models’s
evolving on-policy distribution. This mismatch can destabilize training and even lead to performance
degradation once the model has surpassed the proficiency of the expert data, as shown in Fig. 7.

For our off-policy expert data, we utilize the high-quality CoT trajectories from the MM-HELIX-100K
dataset. By dynamically balancing the exploitation of this expert data with on-policy exploration,
AHPO effectively learns the reflective reasoning capabilities required by MM-HELIX benchmark and
successfully generalizes these skills to broader reasoning domains, leading to significant performance
enhancements in tasks involving mathematics and logic.

4 EXPERIMENT

4.1 EVALUATION RESULTS ON MM-HELIX

Our comprehensive evaluation of 23 leading MLLMs on MM-HELIX benchmark, with full results
detailed in Tab. 1, reveals critical limitations in the reasoning capabilities of current models. The
evaluation settings are detailed in Appx. A.2. The analysis yields three primary findings:

First, a profound deficit exists in multimodal reflective reasoning. Even the most advanced proprietary
model, GPT-5 can only achieve 58.1% accuracy, with no other model surpassing the 50% threshold.
This performance gap is even more pronounced for open-source models; the leading contender, Intern-
S1-241B, reaches just 33.3% accuracy. The importance of this targeted capability is also underscored
by the fact that models capable of iterative reflection systematically outperform their non-reflective
counterparts. For instance, a powerful model like InternVL-3-78B, despite its strong performance on
general benchmarks, scores a mere 9.9%. This stark contrast validates that MM-HELIX successfully
isolates and measures this critical reasoning skill.

Second, models excel at structured computation but falter in tasks requiring dynamic state tracking.
Models demonstrated the highest proficiency on Algorithm tasks, which primarily involve mathemat-
ical computation. Performance was moderate on Graph and Puzzle tasks, while the weakest results
were observed in Game task. This trend suggests that while current MLLMs are adept at executing
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Table 1: Evaluation results on MM-HELIX across both multimodal and text-only settings. These
results underscore the ongoing difficulty MLLMs face with complex, long-chain reflective tasks.
Thinking models with reflective reasoning capabilities generally achieve higher scores than those
without. Furthermore, a significant modality gap is observed where text-only inputs are superior.

Model Thinking
Breakdown by Category Overall

Algorithms Graphs Puzzles Games

Txt Img Txt Img Txt Img Txt Img Txt Img

Proprietary Models

GPT-5 (OpenAI, 2025b) ✓ 83.0 88.5 98.3 50.4 80.9 52.6 80.0 40.0 84.5 58.1
Seed-1.5-VL (Guo et al., 2025b) ✓ 89.3 78.9 86.7 40.4 51.6 41.9 55.6 33.3 66.9 48.3
o4-mini (OpenAI, 2025c) ✓ 76.3 50.7 95.0 42.1 69.1 45.8 66.7 35.6 75.2 44.7
Gemini-2.5-Flash (Comanici et al., 2025) ✓ 92.6 66.7 88.3 40.8 52.1 36.7 49.4 28.3 67.3 42.7
GPT-4.1 (OpenAI, 2025a) × 61.9 44.4 73.8 35.0 30.9 16.8 13.9 8.9 43.3 25.1
GPT-4o (OpenAI, 2024) × 33.7 18.9 44.6 25.4 10.2 4.2 10.6 6.7 21.8 11.7

Open-Source Models

Intern-S1-241B-A28B (Bai et al., 2025a) ✓ 75.2 69.3 76.7 30.0 35.3 23.5 26.1 15.0 50.4 33.3
GLM-4.5V-106B-A12B-Thinking (Team et al., 2025b) ✓ 49.6 29.3 40.4 11.3 15.3 20.2 12.2 13.9 27.0 19.5
Kimi-VL-16B-A3B-Thinking-2506 (Team et al., 2025a) ✓ 45.9 36.3 49.6 23.3 9.6 10.4 10.6 7.2 28.9 19.3
GLM-4.1V-9B-Thinking (Team et al., 2025b) ✓ 38.1 30.7 50.4 29.2 11.6 7.4 5.0 6.1 23.7 16.3
Qwen-2.5-VL-72B (Bai et al., 2025b) × 24.4 18.5 42.1 25.8 8.2 3.9 5.6 7.2 20.1 13.9
Qwen-2.5-VL-32B (Bai et al., 2025b) × 22.2 15.2 46.3 22.5 8.1 4.7 5.6 6.7 20.6 12.3
QVQ-72B-Preview (Team, 2024) ✓ 22.6 21.1 36.7 16.7 4.9 3.3 6.7 3.3 17.7 11.1
MiniCPM-V-4.5-8B (Yu et al., 2025b) ✓ 20.0 20.0 32.1 20.8 5.8 3.7 0.0 3.3 13.0 10.4
InternVL3-78B (Zhu et al., 2025) × 20.0 14.4 43.3 25.4 10.2 4.0 10.0 1.1 18.6 9.9
InternVL3-38B (Zhu et al., 2025) × 19.3 14.1 40.8 22.5 8.2 3.5 7.8 5.6 16.7 9.7
Llama-4-Scout-109B-A17B-16E (Meta, 2025) × 24.1 16.3 40.8 21.3 4.4 4.2 2.2 1.7 15.2 9.7
Ovis2-34B (Lu et al., 2024) × 14.4 10.4 33.8 22.1 3.9 1.2 5.0 1.7 12.0 7.2
Gemma-3-27B-IT (Team, 2025) × 20.7 10.4 44.2 22.1 6.5 0.5 5.6 1.7 16.6 6.9
Qwen-2.5-VL-7B (Bai et al., 2025b) × 5.6 5.9 25.4 17.9 0.4 0.4 0.6 1.1 8.0 6.3
InternVL3-8B (Zhu et al., 2025) × 8.1 5.9 28.8 16.7 1.6 0.7 1.1 1.1 8.1 4.9
Ovis2-8B (Lu et al., 2024) × 7.8 3.3 24.2 15.4 0.5 0.2 1.1 0.6 6.7 3.8

Ours

MM-HELIX-7B-Thinking ✓ 32.2 34.8 27.5 19.2 16.3 25.3 16.1 16.7 21.8 24.9

well-defined calculations, they lack robustness in adhering to complex instructions and performing
the iterative state-tracking inherent to strict rules.

Besides, significant modality gap still exists between text and vision. When problems were presented
in a text-only format, performance improved dramatically. GPT-5’s accuracy, for example, surged
from 58.1% on the multimodal tasks to 84.5% on their text-only equivalents. This significant
performance drop highlights a persistent gap between language and visual inputs.

4.2 MAIN RESULTS OF AHPO

We benchmark our proposed AHPO against a comprehensive set of baselines, including pure RL
(GRPO), SFT, a sequential SFT+RL pipeline, and an alternative hybrid algorithm LUFF, with training
settings detailed in Appx. A.2. As shown in Tab. 2, the results strongly demonstrate the superiority
of our method. On MM-HELIX, AHPO achieves the highest accuracy of 24.9% among all
methods, representing a substantial +18.6% point improvement over the base model Qwen2.5-
VL-7B. Notably, this performance also exceeds that of significantly larger, state-of-the-art models
such as Qwen2.5-VL-72B and GLM-4.5V-106B. More importantly, AHPO demonstrates remarkable
generalization of its learned reflective reasoning capabilities. When trained on a mix including
the MMK12 RL dataset which lacks explicit CoT traces, the model still learns to apply reflective
inference on out-of-domain tasks. This is attributed to AHPO’s explore-with-supervision mechanism,
which fosters intrinsic reasoning skills rather than mere mimicry. Consequently, AHPO achieves
an average performance gain of +5.7% points across general mathematics and logic tasks,
validating its ability to transfer complex reasoning skills to entirely new domains.

In contrast, the baseline methods reveal critical limitations. The RL-only approach (GRPO) shows
negligible improvement on both task sets, failing to learn effectively from the sparse reward signals.
While SFT significantly boosts in-domain performance, achieving comparable performance with
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Table 2: Comparison of AHPO and other training strategies. AHPO achieves significant improvement
on MM-HELIX while also showing great performance transfer to general mathematics and logic
tasks, indicating a robust enhancement of both specialized and generalized reasoning abilities.

Method Type
In-Domain General Reasoning

MM-HELIX MathVision MathVerse-V LogicVista WeMath Average

Qwen2.5VL-7B Baseline 6.3 25.2 40.5 45.6 34.5 36.5

+GRPO On-policy 9.0(+2.7) 25.8 41.0 43.6 36.4 36.7(+0.2)

+SFT Off-policy 23.8(+17.5) 21.7 33.0 38.7 26.2 29.9(-6.6)

+SFT&GRPO Sequential 23.3(+17.0) 25.9 39.1 45.9 35.7 36.7(+0.2)

+LUFFY Hybrid 9.1(+2.8) 26.0 37.9 42.7 34.8 35.4(-1.1)

+AHPO (Ours) Hybrid 24.9(+18.6) 26.6 47.5 53.5 41.1 42.2(+5.7)

Table 3: Comparison of CoT generation methods
cost. Our hybrid approach significantly save the
generation cost and make less redundancy.

Method Pass@16 (%) Inf. Time (hrs) Avg. Len. (tokens)

Model Rollout 25.00 ∼311.96 7140.59

SERG 99.80 ∼27.78 5500.53

Table 4: Efficiency of our dataset in SFT stage.
Our method outperforms Rule-Based CoT, indi-
cates great quality of our generation method.

Method Puzzle Game Algorithm Graph Overall

Rule-Based 19.3 11.1 22.6 19.6 18.9
Ours 23.5 16.7 32.6 20.4 23.8

AHPO, it induces catastrophic forgetting, leading to a substantial performance degradation on the
general reasoning tasks. Sequentially applying GRPO after SFT fails to recover this deficit, indicating
that the reflective skills learned via fine-tuning do not effectively transfer to out-of-domain problems
within this paradigm. LUFFY, which mitigates sparse rewards by substituting policy rollouts with
expert data, shows minor gains but remains significantly less effective than AHPO in both performance
and generalization. These findings underscore the superior efficacy and generalization capacity of
AHPO’s unified training strategy compared to sequential pipelines and other hybrid methods.

4.3 COMPARISON OF GENERATION PIPELINE

To validate the effectiveness of our SERG pipeline, we conducted a comparative analysis against
two baselines. First, we compared SERG’s efficiency and output quality against direct roll-outs
from a powerful LLM (Qwen3-235B). For this, we prompted the model to generate reasoning
trajectories for 1,000 samples without guidance. As detailed in Tab. 3, this unconstrained approach
was computationally prohibitive, incurring substantial time costs and producing highly redundant
responses. In contrast, SERG demonstrated vastly superior performance, reducing the generation
time by 90% while yielding significantly more concise and structured reasoning traces. econd, we
evaluated the downstream utility of SERG-generated data. We fine-tuned a model using 22k samples
generated by SERG and compared its performance against a model trained on an equivalent amount
of data generated by a purely rule-based method. As shown in Tab. 4, the model trained on SERG data
outperformed the rule-based baseline by 4.9%. This result confirms that SERG produces data of a
higher quality, leading to more effective downstream model training. Collectively, these experiments
validate that SERG strikes an optimal balance between generation efficiency and data quality.

5 CONCLUSION

In this work, we address the critical deficiency of MLLMs in long-chain reflective reasoning. We
begin by introducing MM-HELIX, a benchmark that confirmed the profound limitations of current
models. To solve this, we develop the MM-HELIX-100K dataset to provide high-quality training
data and proposed AHPO, a method that unifies on- and off-policy learning to effectively cultivate
this skill. The resulting MM-HELIX-7B model achieved significant performance gains on both our
in-domain benchmark and general reasoning tasks. Our findings establish that reflective reasoning is
a transferable skill that can be instilled and generalized in MLLMs.

9
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLM was not involved in the development of the ideas for this article. As for the writing process,
we only used LLM to correct minor errors such as grammatical errors. During the data construction
process, we rewrote the reasoning process using LLM Qwen3-235B.

A.2 EXPERIMENT SETTINGS

Evaluation Settings. All evaluations were conducted using the VLMEvalKit framework. For our
primary benchmark, MM-HELIX benchmark, evaluation parameters were tailored to the model
type. For models equipped with thinking mode, we set the maximum generation length to 32,768
tokens (or 16,384 for models with smaller context windows) and a temperature of 0.6 to allow for
diverse outputs. For models without thinking steps, the maximum length was set to 8,192 tokens
and the temperature was set to 0.0. To isolate the textual reasoning component of the tasks, we also
created a text-only version of the problems by transcribing the multimodal inputs. To assess the
generalization of reasoning skills, we included a suite of challenging external benchmarks focusing
on mathematics and logic: MathVision (Wang et al., 2024), MathVerse-VisionOnly (Zhang et al.,
2024), LogicVista (Xiao et al., 2024), and WeMath (Qiao et al., 2024).

Training Settings. The RL training stage was implemented using the VERL framework and the
verifiers from MM-HELIX-Engine were integrated into VERL as reward judger. We used a global
batch size of 128. During the RL stages, we generated 5 response trajectories for each data sample.
In AHPO, success rate threshold R̂ is defined to 2. For SFT stage, we used 22k samples from
MM-HELIX-100k dataset. In RL stage (for GRPO, LUFFY, and our AHPO), we created a combined
training set of approximately 37k samples by mixing data from our MM-HELIX-CoT-100k and the
general mathematics RL dataset MMK12 (Meng et al., 2025), which contains 15k multimodal QA
pairs and no off-policy response. For hybrid algorithms like LUFFY and our proposed AHPO, the
response from MM-HELIX-CoT-18k served as off-policy expert data. The MMK12 dataset contained
no off-policy traces, compelling the model to learn via exploration in the mathematical domain.

A.3 DETAILS OF COMPARISON OF COT GENERATION PIPELINE

Figure 8: Tokens distribution of Rule-Based CoT
and CoTs generated by model rollout, and SERG.

We compares the length distribution of Rule-
Based CoT, CoTs generated by model rollout,
and those generated by Step-Elicited Response
Generation (SERG). The average token count
for Rule-Based CoT is 2728.83, for model roll-
out it is 7552.17, and for SERG it is 5715.61.
The specific distribution is presented in Fig. 8.

Due to the rigid, mechanical reasoning process
of Rule-Based CoT and the inefficiency, redun-
dancy inherent in model rollout, coupled with
the lack of supervision to ensure the correctness
of the reasoning process, we propose the Step-
Elicited Response Generation (SERG) pipeline.
The CoTs generated by SERG address the short-
comings of the first two approaches, providing
a more accurate and concise reasoning process with reduced redundancy and improved quality.

This distribution reveals that CoTs generated by model rollout exhibit greater redundancy, containing
a higher proportion of irrelevant information. In contrast, SERG produces higher-quality CoTs with
fewer extraneous details, benefiting from the structured logical reasoning steps of the Rule-Based
CoT. This highlights the superiority of our Step-Elicited Response Generation pipeline.
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A.4 MM-HELIX-100K STATISTICS

Table 5: Difficulty distribution of tasks
in MM-HELIX-100k.

Category Count Percentage

1 18,932 17.48%

2 20,834 19.23%

3 23,531 21.72%

4 22,280 20.55%

5 19,038 17.56%

Table 6: Statistics for question, answer, and
chain-of-thought (cot) in MM-HELIX-100k.

MM-HELIX-100k Average Tokens Count

Question 161.93

Question Language 295.58

Answer 45.52 108,362

Rule-Based CoT 2,houzhi643.51

Final CoT 4,181.40

We perform a statistical analysis of MM-HELIX-100k. The difficulty distribution of MM-HELIX-
100k is uniform, with detailed data presented in Tab. 5. Additionally, we conduct token length
analysis for the questions, answers, and CoTs in MM-HELIX-100k, with the results shown in Tab. 6.

A.5 TASK DIFFICULTY SETTINGS

For each task, we divide the difficulty based on different parameters when constructing the initial
state of the data. The following is a typical example.

Difficulty Settings of Nibbles

Level 1

Initial State

Map Size: 6 * 6

Num of Apples: 1

Level 2

Initial State

Map Size: 7 * 7

Num of Apples: 2

Level 3

Initial State

Map Size: 8 * 8

Num of Apples: 3
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Level 4

Initial State

Map Size: 9 * 9

Num of Apples: 4

Level 5

Initial State

Map Size: 10 * 10

Num of Apples: 5

A.6 MM-HELIX BENCHMARK EXAMPLES

Aquarium

Image

Category: Puzzle

Difficulty: Level 1

Question
The grid is divided into multiple aquariums (regions).
Your task is to determine which cells are filled with
water based on the following rules:
Game Rules:
1. Each region must be filled to a uniform water level
(from bottom up).
2. Water cannot float — if a cell is filled, the cell
directly below it (if any, in same region) must also be
filled.
3. The numbers outside the grid indicate how many
cells are filled with water in each row and column.
4. Regions are separated by thick black lines in the
grid. Cells within the same region (enclosed by thick
lines) must follow the same water level rule. Cells
separated by thinner lines are still in the same region.
Coordinate system:
(x, y) where (0, 0) is the top-left cell. x increases to
the right, y increases downward.
Answer Format:
Please list all the cells that are filled with water in the
format: [(x1, y1), (x2, y2), ...]
Example: [(0, 4), (1, 4), (1, 3), (2, 3)]

Reference Answer
[(2, 1), (3, 1), (0, 2), (3, 2), (0, 3), (1, 3)]
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Kakuro

Image

Category: Puzzle

Difficulty: Level 3

Question
Your task is to solve the Kakuro puzzle from the
given image by filling white cells with appropriate
digits.

Game Rules:
1. The puzzle is a grid where black cells contain clue
numbers and white cells need to be filled with digits
1-9.
2. In black cells, numbers below the diagonal are
’down’ clues, and numbers above are ’right’ clues.
3. Each clue indicates the sum of consecutive white
cells in that direction.
4. Digits in each run cannot repeat.

Coordinate System:
- The grid coordinates start at (0,0) in the top-left
corner.
- Rows increase downward and columns increase to
the right.

Output Format:
Provide your answer as a space-separated
list of coordinate-value pairs in the format:
(row,column):value.

Example: (0,2):5 (0,7):7 ...

Reference Answer
(1,0):4 (1,1):3 (1,3):6 (2,1):2 (2,2):6 (3,0):9 (3,3):3
(3,4):9 (4,1):6 (4,3):9
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Nibbles

Image

Category: Puzzle

Difficulty: Level 3

Question
You are a puzzle solver focusing on Snake puzzles.

Game Rules:
1. Control a snake to move around the grid using
directional commands (up, down, left, right).
2. The snake must eat all apples on the grid to win.
3. When the snake eats an apple, it grows longer by
one segment.
4. The snake cannot collide with walls or itself.
5. The snake moves one cell at a time in the chosen
direction.

Input:
An image showing the initial state with the snake
and apples.

Goal:
Find a sequence of directional moves to eat all
apples without the snake colliding with walls or itself.

Output Format Requirements:
Your answer should be a sequence of directional
moves separated by spaces.
Valid moves are: up, down, left, right.
Example: up right down left up.

Reference Answer
down down down down down left left left left left
down left
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Nonogram

Image

Category: Puzzle

Difficulty: Level 2

Question
Your task is to solve the Nonogram puzzle according
to the rules and current state below:

Game Rules:
- The numbers outside each row or column are clues.
- Each number indicates a continuous block of filled
cells.
- The order of the numbers matches the order of the
blocks from left to right (for rows) or top to bottom
(for columns).
- There must be at least one empty cell between
consecutive blocks in a row or column.
- Fill the grid so that all row and column clues are
satisfied simultaneously.

Symbols:
- ’X’ → Filled cell
- ’.’ → Empty cell

Output Format:
Output the solution as a text-based grid using ’X’
and ’.’.
Each line represents a row in the solved grid.
No spaces between characters.

Example:
.X...
X..X.
..X..
X..X.
X.X..

Task:
Carefully analyze the given image of the Nonogram.
Produce the complete solved grid according to the
rules.

Reference Answer
X....
.X..X
...X.
..X..
.....
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Numbrix

Image

Category: Puzzle

Difficulty: Level 2

Question
Your task is to solve the Numbrix puzzle based on
the following rules and the current state below:

Game Rules:
1. Numbrix is played on a square grid, where some
cells are already filled with numbers.
2. You must fill in the empty cells with numbers to
create a continuous path starting from 1 up to the
maximum number in the sequence, which is not
necessarily equal to the total number of cells (n²).
3. The numbers must be adjacent either horizontally
or vertically (not diagonally).
4. Each number can only be used once.
5. The path must form a single continuous sequence
where consecutive numbers are adjacent.
6. Not every empty cell needs to be filled.
Depending on the puzzle configuration, some cells
may remain empty.

Important Notes:
* The highest number in the puzzle might be equal or
less than the total number of grid cells (e.g., n2 − 1,
or even smaller).
* It is your job to determine what the highest number
is, based on the filled numbers and the constraints of
the puzzle.

Current Numbrix State:
The current state of the Numbrix puzzle is shown in
the image below.

Output Format Requirements:
1. The final answer should be the completed grid
with all numbers from 1 to the correct highest
number, aligned clearly in rows and columns.

Example answer format for a 5x5 grid:

|11|10|9|2|3|
|12|13|8|1|4|
|15|14|7|6|5|
|16|19|20|23|24|
|17|18|21|22|25|

Reference Answer
|17|16|15|12|11|
|18|19|14|13|10|
|21|20|7|8|9|
|22|23|6|1|2|
|25|24|5|4|3|
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Shingoki

Image

Category: Puzzle

Difficulty: Level 4

Question
You are given a Shingoki puzzle. This is a logic
puzzle where you need to draw a single continuous
loop on a grid.

Game Rules:
1. Draw exactly one continuous loop without
crossings or branches.
2. The loop must eventually return to its starting
point.
3. White circles must be passed through in a straight
line (no turning at white circles).
4. Black circles must be turned upon (the path must
change direction at black circles).
5. Each circle has a number that represents the
sum of the lengths of the two straight line segments
extending from that circle.

Coordinate system:
- (0,0) is the top-left corner.
- Row numbers increase downward, column numbers
increase rightward.
- The loop connects adjacent grid points (no diagonal
connections).

Objective:
Find the single continuous loop that:
- Passes through all circles according to their type
constraints.
- Satisfies all circle value constraints (sum of line
segment lengths).
- Forms a closed loop without crossings or branches.

Output Format:
Represent your solution as a sequence of connected
line segments.
Each segment connects two adjacent grid points:
(r1,c1)-(r2,c2).
Adjacent points differ by exactly 1 in either row or
column (no diagonals).
List all segments separated by spaces in one
continuous string.
The segments should form a complete closed loop.
Example format: (0,0)-(0,1) (0,1)-(1,1) (1,1)-(1,0)
(1,0)-(0,0).

Reference Answer
(0,0)-(0,1) (0,1)-(0,2) (0,2)-(0,3) (0,3)-(0,4) (0,4)-
(0,5) (0,5)-(1,5) (1,5)-(2,5) (2,5)-(3,5) (3,5)-(4,5)
(4,5)-(5,5) (5,5)-(5,4) (5,4)-(5,3) (5,3)-(5,2) (5,2)-
(5,1) (5,1)-(5,0) (5,0)-(4,0) (4,0)-(3,0) (3,0)-(2,0)
(2,0)-(1,0) (1,0)-(0,0)
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SlidingPuzzle

Image

Category: Puzzle

Difficulty: Level 2

Question
Your task is to solve the 15-puzzle game according
to the rules and current state below:

Game Rules:
1. The puzzle is played on a 4x4 grid with 15
numbered tiles and one empty space.
2. You can only move tiles horizontally or vertically
into the empty space.
3. The goal is to arrange the tiles in numerical order
with:
- First row: 1, 2, 3, 4
- Second row: 5, 6, 7, 8
- Third row: 9, 10, 11, 12
- Fourth row: 13, 14, 15, empty space.

Coordinate System:
- The grid positions are numbered from left to right
and top to bottom.
- Columns (horizontal): numbered 1, 2, 3, 4 from left
to right.
- Rows (vertical): numbered 1, 2, 3, 4 from top to
bottom.
- Each position can be identified by its row and
column (row, column).

Current Puzzle State:
The initial state is represented in the image shown.

Output Format Requirements:
"up" means the tile below the empty space moves up
into the empty space.
"down" means the tile above the empty space moves
down into the empty space.
"left" means the tile to the right of the empty space
moves left into the empty space.
"right" means the tile to the left of the empty space
moves right into the empty space.

Your final answer format should be given like: up
down up left right.

Reference Answer
left down left up up
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Snake

Image

Category: Puzzle

Difficulty: Level 3

Question
Please examine the image carefully. The image
shows a Snake puzzle grid.

Rules:
1. Draw a single, non-intersecting snake path from S
(start) to E (end).
2. The snake occupies some cells; it cannot touch
itself, even diagonally.
3. The numbers outside the grid indicate how many
snake cells appear in each row and column.

Provided Clues:
- Grid size: 9×9
- Row counts: 0, 0, 0, 0, 8, 1, 1, 1, 1
- Column counts: 0, 1, 1, 1, 1, 1, 1, 1, 5

Refer to the image to solve the puzzle

Output Format:
Return the snake path as a sequence of coordinates,
e.g.: (r0,c0) (r1,c1) ...

Reference Answer
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (4,7) (4,8) (5,8) (6,8)
(7,8) (8,8)

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Sokoban

Image

Category: Puzzle

Difficulty: Level 3

Question
Your task is to solve the Sokoban puzzle according
to the rules and current state shown in the image:

Game Rules:
1. You are the player and can move up, down, left, or
right.
2. You can push boxes one space at a time.
3. You cannot pull boxes.
4. Boxes can only be pushed if there’s an empty
space behind them.
5. The goal is to push all boxes onto target positions.
6. Walls cannot be moved through or pushed.

Current Sokoban State:
The current state of the Sokoban puzzle is in the
image shown below.

Direction Definitions:
- "up": Move up
- "down": Move down
- "left": Move left
- "right": Move right

Output Format Requirements:
Your final answer should be in the format of a
space-separated sequence of moves like: up right
down left.

Reference Answer
left left down down left left up up right down down
left down right up up up right right right
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Wordsearch

Image

Category: Puzzle

Difficulty: Level 5

Question
Your task is to solve the wordsearch game according
to the rules and current state below:

Task:
You are given a word search puzzle. Your task is to
find the listed word hidden in the grid and provide
their exact locations in the specified format.

Game Rules:
1. Words can be hidden horizontally, vertically, or
diagonally.
2. Words can read forwards or backwards.
3. Words always follow a straight line (no zigzag-
ging).
4. Each word’s location should be identified by:
- The starting position (coordinate where the first
letter appears)
- The direction in which the word extends

Coordinate System:
- The grid uses coordinates where (x, y) represents
the position.
- x-axis: Numbers from 1 to width, running horizon-
tally from left to right.
- y-axis: Numbers from 1 to height, running vertically
from top to bottom.
- Example: Position (3, 4) means column 3 from left,
row 4 from top.

Direction Notation:
- N: North (upward)
- S: South (downward)
- E: East (rightward)
- W: West (leftward)
- NE: Northeast (up and right)
- NW: Northwest (up and left)
- SE: Southeast (down and right)
- SW: Southwest (down and left)

WordSearch State:
The current state of the WordSearch is shown in the
image given below.

Output Format Requirements:
Your final answer format should be given like:
WORD DIRECTION @ (x, y), where WORD is the
word you found, DIRECTION is the direction in
which the word extends, and (x, y) is the starting
position of the word.

Reference Answer
ELEPHANT NE @ (5,14)
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Tapa

Image

Category: Puzzle

Difficulty: Level 1

Question
Please look at the displayed Tapa puzzle image. The
numbers in the cells are clues indicating the lengths
of connected groups of black cells surrounding that
clue.

Task:
Your task is to fill in the grid with black cells
according to the following rules.

Game Rules:
1. All black cells must form a single connected
group**: This means that all the black cells on the
grid must be connected in one continuous region,
without any isolated black cells.
2. There cannot be any 2x2 block of black cells: A
2x2 block of black cells is not allowed anywhere
on the grid. This means that no four black cells can
form a square.
3. Clue cells: Each number in a clue cell indicates
the length of a connected group of black cells
surrounding that clue. The "surrounding" refers
to the 8 neighboring cells that are orthogonally
and diagonally adjacent to the clue (i.e., the cells
that are directly adjacent horizontally, vertically, or
diagonally to the clue).
- For example, a clue "3" means that exactly three
black cells must be placed among the 8 surrounding
cells, and these three black cells must form a single
connected group.
- Each clue cell contains only a single number
representing one connected group of black cells.
4. Grid size: The grid is a sizexsize matrix of cells.
Each row and column will contain a mix of black (B)
and white (W) cells.

Coordinate System:
The grid uses a coordinate system where (0,0)
is the top-left corner, the first number represents
the row (increasing downward), and the second
number represents the column (increasing rightward).

Output Format:
- List only the coordinates of cells that should be
colored black
- Use the format (row,column) for each coordinate
- Separate multiple coordinates with commas
- For example: (0,1), (1,2), (2,0), (2,1)

Reference Answer
(0,1), (0,2), (0,3), (1,3), (2,3), (3,2), (3,3)
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Maze

Image

Category: Puzzle

Difficulty: Level 5

Question
Your task is to solve the maze game according to the
rules and current state below:

Game Rules:
1. The maze consists of a grid of cells.
2. Walls are represented by bold black line between
cells, not as cells themselves.
3. You can move horizontally or vertically between
adjacent cells if there is no wall between them.
4. You can only move through one cell at a time in
any direction.
5. The goal is to find a path from the start cell (Green
Circle) to the end cell (Red Cross).

Direction Definitions:
- “up”: Move to the cell above the current position.
- “down”: Move to the cell below the current
position.
- “left”: Move to the cell to the left of the current
position.
- “right”: Move to the cell to the right of the current
position.

Current Maze State:
The maze is represented in the image shown below.

In this representation:
- Green circle marks the start position.
- Red cross marks the end position.

Output Format Requirements:
Your final answer should be in the format like: right
down left up.

Reference Answer
up left left up left down down right down right right
right up up up left left up up right up left left down
left left up left down down left down down down
down left left left down right down left down down
right up right right up up right right down right up up
left left
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Hanoi

Image

Category: Puzzle

Difficulty: Level 1

Question
Your task is to solve the hanoi game according to the
rules and current state below:

Game Rules:
1.The Tower of Hanoi consists of three pegs
(numbered 1, 2, and 3) and n (maybe 3) disks of
different sizes (from 1 to n).
2. Disks are stacked on pegs with larger disks always
below smaller ones.
3. Only one disk can be moved at a time, from the
top of one peg to the top of another.
4. A larger disk cannot be placed on top of a smaller
disk.

Current Hanoi State:
The current state of the Tower of Hanoi is in the
image shown below.

Goal State:
The goal is to move all disks to peg 3, maintaining
the size order (largest at bottom, smallest at top).

For 3 disks: Peg 1: [], Peg 2: [], Peg 3: [3, 2, 1].

In this representation:
- Each peg is shown with its contents in array format.
- Numbers represent disk sizes (higher numbers =
larger disks).
- Disks are listed from bottom to top (first element =
bottom disk, last element = top disk).

Output Format Requirements:
Your final solution format should be given like: (x,y)
(x,y) (x,y)..., where x is the disk number and y is the
destination peg number.

Reference Answer
(1, 3)
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Hitori

Image

Category: Puzzle

Difficulty: Level 2

Question
You are given an image of a Hitori puzzle.

Puzzle Rules:
1. In each row and each column, numbers in
unshaded cells must be unique.
2. Shaded cells cannot be adjacent horizontally or
vertically.
3. All unshaded cells must form a single connected
region (connected orthogonally).

Coordinate System:
- Coordinates must be in the format (row, column)
- (0, 0) refers to the top-left cell of the grid
- Indexing is zero-based

Output Format:
Please return the set of shaded cell coordinates.
Example output:
{(0, 1), (2, 3), (4, 2)}

Reference Answer
{(0, 4), (2, 1), (3, 4), (0, 0), (4, 2), (3, 0), (1, 3)}

Futoshiki

Image

Category: Puzzle

Difficulty: Level 1

Question
Your task is to recognize the grid and inequality
constraints from the image, solve the puzzle, and
provide the answer in a structured format:

Game Rules:
1. The puzzle is a N×N grid (e.g., 5×5).
2. Fill each cell with a number from 1 to N.
3. Each number must appear exactly once in each
row and each column (no repetition).
4. Inequality symbols between cells (either ’<’ or
’>’) must be satisfied:
- A horizontal constraint (i,j) < (i,j+1) means the left
cell must be less than the right.
- A vertical constraint (i,j) < (i+1,j) means the top
cell must be less than the bottom.

Answer format:
Output the final solution as a 2D list of integers.
answer: [[row1], [row2], ...,
[rowN]]

Reference Answer
[[4, 2, 1, 3], [1, 3, 4, 2], [2, 1, 3, 4], [3, 4, 2, 1]]
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Eulero

Image

Category: Puzzle

Difficulty: Level 1

Question
Your task is to solve the Eulero puzzle, based on the
rules and the current puzzle state shown below.
Goal: Fill all empty cells such that the following
rules are satisfied:
Global Rules:
1. Each cell contains a letter-number pair (like A1).
2. Each letter appears exactly once in every row and
every column.
3. Each number appears exactly once in every row
and every column.
4. Each letter-number pair is unique across the
entire grid (i.e., no duplicate pairs anywhere).
5. For an N×N grid, the letters used are the first N
letters of the alphabet (A=1, B=2, ..., up to the N-th
letter), and the numbers used are from 1 to N.
Current Puzzle State:
The puzzle is displayed in the image below:
1. Some cells are pre-filled with letter-number pairs.
2. Blank cells are empty and must be filled in.
Output Format:
Each row should be represented as a single line of
letter-number pairs, separated by | (without spaces).
Each row must be on a new line using \n to separate
them.
For example:
A1|B2|C3
B3|C1|A2
C2|A3|B1
Answer Format: Please provide the letter-number
pairs in the format as shown in the example above.

Reference Answer
B3|A1|C2
A2|C3|B1
C1|B2|A3
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Bridges

Image

Category: Puzzle

Difficulty: Level 4

Question
Please look carefully at the image showing a Bridges
puzzle (Hashiwokakero). In this puzzle, you need to
connect all numbered "islands" using horizontal/ver-
tical bridges.
Game Rules:
1. Each island displays a number indicating how
many bridges must connect to it
2. Bridges can only run horizontally or vertically
between islands
3. Bridges cannot cross other bridges or islands
4. At most 2 bridges can connect any pair of islands
5. All islands must form a single connected network
Coordinate system:
- The grid uses (x,y) coordinates starting from (0,0)
in the top-left corner - X increases from left to right,
Y increases from top to bottom
Answer Format:
Provide your solution with each bridge connection in
the format: (x1,y1)-(x2,y2):count
For example: (0,4)-(2,4):1 (2,1)-(2,4):1 (2,4)-(4,4):1

Reference Answer
(1,1)-(1,5):1
(1,1)-(4,1):1
(4,1)-(4,2):1
(4,1)-(7,1):1
(4,2)-(4,5):2
(4,5)-(4,6):1

Campsite

Image

Category: Puzzle

Difficulty: Level 3

Question
Solve this Campsite puzzle by placing tents adjacent
to trees while adhering to the game rules.
Game Rules:
1) Each tent must be orthogonally adjacent to at least
one tree (up, down, left, or right).
2) No tents can be adjacent to each other, even diago-
nally.
3) The number of tents in each row and column must
match the given constraints.
Coordinate System:
Return the coordinates where tents should be placed
as a list of [row, column] pairs using 1-based indexing
(e.g., top-left is [1,1]).
Answer Format:
[[1, 3], [3, 1], [4, 3]]

Reference Answer
[[2, 5], [3, 3], [5, 3], [5, 6]]

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Sudoku

Image

Category: Puzzle

Difficulty: Level 1

Question
Your task is to solve the 9x9 Sudoku puzzle according
to the rules and current state below:
Game Rules:
1. Fill the grid so that each row contains the digits
1–9 exactly once.
2. Each column must contain the digits 1–9 exactly
once.
3. Each 3x3 subgrid (rows 1–3/4–6/7–9 × columns
1–3/4–6/7–9) must contain the digits 1–9 exactly
once. 4. Do not alter any given digits from the puzzle.
Coordinate System:
- The grid is indexed left-to-right and top-to-bottom. -
Columns: numbered 1–9 from left to right. - Rows:
numbered 1–9 from top to bottom.
Current Puzzle State:
- The puzzle to solve is shown in the grid below:
- Given digits in the grid are fixed and cannot be
changed. - 0 represents empty cells.
Sudoku Grid:

2 5 3 9 0 4 8 1 0
0 8 1 3 2 5 4 9 0
6 4 9 1 7 8 5 3 2
3 6 4 8 0 7 2 5 0
1 2 5 4 3 6 7 8 0
9 7 8 5 1 2 6 4 0
0 0 2 0 5 0 9 7 4
5 0 6 7 4 9 1 2 8
4 9 0 2 0 1 3 6 5


Answer Format:
Please output the fully solved grid as 81 integers in
row-major order, separated by single spaces. The
output should look like:

5 7 1 4 8 2 6 3 9
6 3 9 7 1 5 2 4 8
2 4 8 3 9 6 5 7 1
3 9 5 1 2 7 4 8 6
4 8 6 9 5 3 7 1 2
7 1 2 8 6 4 3 9 5
8 6 3 5 7 9 1 2 4
1 2 4 6 3 8 9 5 7
9 5 7 2 4 1 8 6 3


Reference Answer

2 5 3 9 6 4 8 1 7
7 8 1 3 2 5 4 9 6
6 4 9 1 7 8 5 3 2
3 6 4 8 9 7 2 5 1
1 2 5 4 3 6 7 8 9
9 7 8 5 1 2 6 4 3
8 1 2 6 5 3 9 7 4
5 3 6 7 4 9 1 2 8
4 9 7 2 8 1 3 6 5


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Binairo

Image

Category: Puzzle

Difficulty: Level 1

Question
Please examine the grid carefully. The grid shows a
Binairo puzzle grid with 0s and 1s. Empty cells need
to be filled.
Rules:
1. Fill the grid with 0s and 1s
2. Each row and column must contain exactly 2 0s
and 2 1s
3. No three consecutive identical digits in any row or
column
4. All rows must be unique and all columns must be
unique
Coordinate System:
- Rows are numbered 1 to 4 from top to bottom -
Columns are numbered 1 to 4 from left to right
Solve the 4×4 Binairo puzzle shown in the image and
provide your complete solution.
Output Format:
Your answer must be formatted as a grid of 0s and 1s
separated by spaces, with rows separated by newlines.
For example:
0 1 1 0
1 0 1 0
0 1 0 1
1 0 0 1

Reference Answer
0 1 0 1
1 0 0 1
1 0 1 0
0 1 1 0
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Minesweeper

Image

Category: Puzzle

Difficulty: Level 2

Question
Your task is to solve the Minesweeper puzzle
according to the rules and the current state below:

Game Rules:
1. Minesweeper is played on a grid where some cells
contain hidden mines.
2. Numbers on the grid represent how many mines
are adjacent to that cell (including diagonally).
3. A cell with no number means it has no adjacent
mines (this is represented as a blank cell).
4. The goal is to identify the location of all mines
without detonating any.
5. You can mark a cell as containing a mine if you’re
certain based on logical deduction.

Current Minesweeper State:
The current state of the Minesweeper puzzle is
shown in the image.

Output Format Requirements:
Your final answer should list all mine locations using
0-based coordinates in the format (row,col).

Example answer format:
(0,5),(0,7),(1,1),(1,2)

Reference Answer
(2, 0),(3, 1),(4, 3)

24 Points

Image

Category: Algorithm
Difficulty: Level 1

Question
Use these numbers exactly once, and combine them
with +, -, ×, ÷, and parentheses to make 24. Please
provide your answer as an expression that includes
only numbers, operators, and parentheses. Example
answer format: (9 - 3) × 8 ÷ 2.

Reference Answer
(1 + 7) × (9 - 6)
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Best Time To Buy And Sell Stock

Image

Category: Algorithm
Difficulty: Level 1

Question
Given a bar chart of stock prices over time and each
bar’s height is the price on that day. You can buy and
sell as much as you want, but can only hold one stock
at a time. Calculate the maximum profit you can get
from this transaction. If you cannot get any profit,
answer 0. Please provide your answer as an integer.

Reference Answer
13

Trapping Rain Water

Image

Category: Algorithm

Difficulty: Level 1

Question
Here is a bunch of bars lined up side by side, where
the width of each bar is 1 and consecutive bars are
adjacent with no gaps between them. Compute how
much water it can trap after raining. Please provide
your answer as an integer.

Reference Answer
45

H Index

Image

Category: Algorithm
Difficulty: Level 1

Question
Here is a bar chart showing how many times each
of a researcher’s papers was cited. Determine the
researcher’s h-index: the largest value h such that at
least h papers have at least h citations each. Please
provide your answer as an integer.

Reference Answer
5
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Largest Rectangle In Histogram

Image

Category: Algorithm
Difficulty: Level 1

Question
Here is a histogram made of bars where each 1 unit
wide and packed tightly together. What’s the biggest
rectangle you can fit entirely inside the histogram?
Please provide your answer as an integer.

Reference Answer
20

Longest Increasing Subsequence

Image

Category: Algorithm
Difficulty: Level 1

Question
Here is a row of bars each with some height. Pick a
subset of these bars where each one is strictly taller
than the last and they appear in order from left to
right. What’s the longest such sequence you can
find? Please provide your answer as an integer.

Reference Answer
3

Container With Most Water

Image

Category: Algorithm

Difficulty: Level 1

Question
Given a row of vertical bars where consecutive bars
are adjacent with no gaps between them. Pick any
two bars and form the sides of a water container,
with the x-axis as the base. How much water can the
biggest possible container hold? Please provide your
answer as an integer.

Reference Answer
18
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Count Hills And Valleys

Image

Category: Algorithm

Difficulty: Level 1

Question
Here is a terrain made of bars. Hill: A flat or raised
area where the land right before it is lower, and the
land right after it is lower too. Valley: A flat or dipped
area where the land right before is higher, and the
land right after is higher too. Neighboring bars with
the same height count as part of the same hill/valley.
Calculate the number of hills and valleys. Please
provide your answer as an integer.

Reference Answer
3

Calcudoku

Image

Category: Puzzle
Difficulty: Level 1

Question
This is a 3x3 Calcudoku puzzle. Each row and col-
umn must contain the numbers 1 to 3 exactly once.
The grid is divided into regions, each with a tar-
get number and a specified operation. The num-
bers within each region must be combined using the
given operation to achieve the target number. Please
solve the puzzle and provide the solution as a two-
dimensional array. Example answer format: [[1, 2, 3,
4], [4, 3, 2, 1], [2, 1, 4, 3], [3, 4, 1, 2]].

Reference Answer
[[3, 1, 2], [2, 3, 1], [1, 2, 3]]

CryptoMath

Image

Category: Algorithm
Difficulty: Level 1

Question
Solve this CryptoMath puzzle, where each letter rep-
resents a unique digit (0-9). Different letters must
correspond to different values, and no leading letter
can be zero. Please provide your answer as a list of
comma-separated "letter"=number pairs. Example
answer format: ["A"=5, "B"=3, ... , "Z"=9].

Reference Answer
["A"=1, "B"=6, "C"=2, "D"=0, "E"=5]
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Kukurasu

Image

Category: Puzzle

Difficulty: Level 1

Question
This is a 3x3 Kukurasu puzzle. You need to fill the
grid with black cells according to the following rules:
1. The sum of column positions (1 to 3) of black cells
in each row must equal the number on the right. 2.
The sum of row positions (1 to 3) of black cells in
each column must equal the number at the bottom.
Please solve the puzzle and provide the solution as a
two-dimensional array, using 0 for white cells and 1
for blackcells. Example answer format: [[1, 1, 0], [1,
0, 1], [0, 0, 1]].

Reference Answer
[[ 0, 0, 1], [1, 1, 0], [1, 0, 0]]

Wordladder

Image

Category: Puzzle
Difficulty: Level 1

Question
This is a Word Ladder puzzle. Transform the left
word into right word by changing one letter at a time,
ensuring that each step forms a valid word. The rules
are as follows 1. Change exactly one letter at a time.
2. Each step must form a valid English word. Please
provide the complete solution path from ’how’ to
’met’ as a list of strings. Example answer format:
["hug", "bug", "beg", "bet", "set"].

Reference Answer
["how", "hot", "got", "get", "met"]

Skyscrapers

Image

Category: Puzzle
Difficulty: Level 1

Question
Arrange skyscrapers of heights 1-3 on this 3x3 grid.
The rules are as follows: 1. Each row and column
must contain exactly one of each height (1 to 3).
2. The numbers around the grid indicate how many
skyscrapers are visible when looking from that di-
rection, with taller buildings obscuring shorter ones
behind them. Please provide your answer as a two-
dimensional list. Example answer format: [[1, 2, 3,
4], [4, 3, 2, 1], [2, 1, 4, 3], [3, 4, 1, 2]].

Reference Answer
[[3, 2, 1], [1, 3, 2], [2, 1, 3]]
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Eulerian Cycle

Image

Category: Graph
Difficulty: Level 1

Question
Given the undirected, connected graph below, deter-
mine if there is an Eulerian cycle. If it exists, output
the cycle as a list (e.g., [0,1,2,3,0]). If not, output
’No’.

Reference Answer
[0, 7, 6, 3, 4, 2, 7, 5, 2, 1, 0]

Eulerian Path

Image

Category: Graph
Difficulty: Level 1

Question
Given the undirected, connected graph below, deter-
mine if there is an Eulerian path. If it exists, output
the path as a list (e.g., [0,1,2,3]). If not, output ’No’.

Reference Answer
[0, 5, 4, 3, 2, 4, 0, 1, 2]

Graph Isomorphism

Image G1 Image G2
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Question
Given two connected undirected planar graphs G1 and G2 shown below, determine if they are
isomorphic by analyzing their planar structure. Answer with ’Yes’ or ’No’.

Reference Answer
Yes

Hamiltonian Cycle

Image

Category: Graph
Difficulty: Level 1

Question
Given the undirected, connected graph below, de-
termine if there is a Hamiltonian cycle. If it exists,
output the cycle as a list (e.g., [0,1,2,3]). If not, out-
put ’No’.

Reference Answer
[0, 1, 5, 4, 2, 3]

Hamiltonian Path

Image

Category: Graph
Difficulty: Level 1

Question
Given an undirected graph below, determine whether
a Hamiltonian path starting from vertex 2 (marked in
red) exists. If it exists, output the path as a list (e.g.,
[0,1,2,3]). If not, output ’No’.

Reference Answer
[2, 0, 1, 3]
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Max Flow

Image

Category: Graph
Difficulty: Level 1

Question
Below is a layered directed acyclic graph (DAG) with
capacities on each edge. Compute the maximum flow
from node 0 to node 3. Answer with the maximum
flow value (an integer).

Reference Answer
14

Shortest Distance

Image

Category: Graph
Difficulty: Level 1

Question
Given a weighted undirected graph below, what is
the shortest distance from node 0 to node 5? Answer
with a number (can be integer or decimal).

Reference Answer
10

Topological Sort

Image

Category: Graph
Difficulty: Level 1

Question
Given the directed acyclic graph (DAG) shown in
the image below, please list ONE possible valid topo-
logical orders. Answer with a list of numbers. For
example: [0, 1, 2, 3].

Reference Answer
[4, 5, 2, 0, 1, 3]
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A.7 EXAMPLES IN MM-HELIX-100K

Nibbles

Image

Question
You are a puzzle solver focusing on Snake puzzles.
Game Rules: 1. Control a snake to move around the grid using directional commands (up, down,
left, right) 2. The snake must eat all apples on the grid to win 3. When the snake eats an apple,
it grows longer by one segment 4. The snake cannot collide with walls or itself 5. The snake
moves one cell at a time in the chosen direction
Input: - An image showing the initial state with the snake and apples
Goal: Find a sequence of directional moves to eat all apples without the snake colliding with
walls or itself.
Output Format Requirements: Your answer should be a sequence of directional moves separated
by spaces. Valid moves are: up, down, left, right Example: up right down left up

Rule-based CoT
I need to solve this Snake puzzle by carefully analyzing the image and applying strategic
reasoning. Let me work through this step by step.
### Step 1: Understanding the Game Rules and Mechanics
Let me first clarify the fundamental rules of this Snake puzzle:
**Core Movement Rules:** - The snake moves one cell at a time in four directions: up, down,
left, right - The snake cannot immediately reverse direction (e.g., if moving right, cannot move
left next) - Each move, the snake’s head advances to the next cell in the chosen direction
**Collision Rules:** - The snake dies if it hits any wall (moves outside the grid boundaries) -
The snake dies if its head collides with any part of its own body - These are the only two failure
conditions
**Apple and Growth Mechanics:** - There are 3 apple(s) placed on the 8×8 grid - When the
snake’s head reaches an apple’s position, the apple is consumed - Upon eating an apple, the
snake’s length increases by exactly 1 segment - The tail doesn’t move for one turn when an apple
is eaten (snake grows)
**Victory Condition:** - **Primary Goal:** Consume all 3 apple(s) without any collisions -
The puzzle is solved when no apples remain on the board
**Strategic Implications:** - As the snake grows longer, navigation becomes more constrained -
Path planning must account for future snake length - Early moves must preserve space for later
maneuvers
### Step 2: Careful Image Analysis and Initial State Reading
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Now I will read the image carefully to extract the precise initial game state:
**Grid Layout Analysis:** - Grid dimensions: 8 rows × 8 columns - Total cells available: 64 -
Coordinate system: (row, col) with (0,0) at top-left
**Visual Grid Representation:** “‘ ........ ........ ...A.... ..S..... ..H..... .......A ....A... ........ “‘
Legend: H = Snake Head, S = Snake Body, A = Apple, . = Empty Cell
**Snake Initial Configuration:** - Snake body positions: [(4, 2), (3, 2)] - Snake length: 2
segments - Head position: (4, 2) - Current facing direction: down - Tail position: (3, 2)
**Apple Locations Analysis:** - Apple positions: [(2, 3), (6, 4), (5, 7)] - Number of apples to
collect: 3 - Apples sorted by Manhattan distance from head: [(2, 3), (6, 4), (5, 7)]
**Distance Analysis:** - Apple at (2, 3): 3 moves minimum (Manhattan distance) - Apple at (6,
4): 4 moves minimum (Manhattan distance) - Apple at (5, 7): 6 moves minimum (Manhattan
distance)
**State Reading Verification:** Let me double-check my reading of the initial state: ✓Grid size
correctly identified as 8×8 ✓Snake head at (4, 2) facing down ✓Snake body has 2 segments
total ✓Found all 3 apples on the grid ✓No overlapping positions between snake and apples
**Spatial Constraints:** - Available empty cells: 59 - Grid boundaries: rows [0, 7], columns [0,
7] - Movement constraints: cannot reverse direction, cannot hit walls or self
### Step 3: Strategic Exploration and Detailed Reasoning Process
Now I’ll develop a comprehensive strategy to solve this puzzle through systematic exploration:
**Initial Strategic Assessment:**
**Apple-by-Apple Strategic Analysis:**
**Target 1: Apple at (2, 3)** - Manhattan distance: 3 moves - Direct path analysis: Need to
move -2 vertically, 1 horizontally - Path considerations: * Check if snake body blocks direct
routes * Evaluate alternative paths if direct route blocked * Consider space requirements for
future growth * Ensure tail clearance for return paths
**Target 2: Apple at (6, 4)** - Manhattan distance: 4 moves - Direct path analysis: Need to
move 2 vertically, 2 horizontally
**Target 3: Apple at (5, 7)** - Manhattan distance: 6 moves - Direct path analysis: Need to
move 1 vertically, 5 horizontally
**Move-by-Move Strategic Reasoning:**
Let me trace through the solution logic step by step:
**Move 1: right** - Current head: (4, 2) → New head: (4, 3) - Direction change: down → right
- No apple at (4, 3), snake maintains length 2 - Safety check: position (4, 3) is within bounds and
collision-free
**Move 2: up** - Current head: (4, 3) → New head: (3, 3) - Direction change: right → up -
No apple at (3, 3), snake maintains length 2 - Safety check: position (3, 3) is within bounds and
collision-free
**Move 3: up** - Current head: (3, 3) → New head: (2, 3) - Direction change: up → up -
✓Apple consumed at (2, 3)! Snake grows to length 3 - Safety check: position (2, 3) is within
bounds and collision-free
**Move 4: right** - Current head: (2, 3) → New head: (2, 4) - Direction change: up → right -
No apple at (2, 4), snake maintains length 3 - Safety check: position (2, 4) is within bounds and
collision-free
**Move 5: down** - Current head: (2, 4) → New head: (3, 4) - Direction change: right → down
- No apple at (3, 4), snake maintains length 3 - Safety check: position (3, 4) is within bounds and
collision-free
**Move 6: down** - Current head: (3, 4) → New head: (4, 4) - Direction change: down →
down - No apple at (4, 4), snake maintains length 3 - Safety check: position (4, 4) is within
bounds and collision-free
**Move 7: down** - Current head: (4, 4) → New head: (5, 4) - Direction change: down →
down - No apple at (5, 4), snake maintains length 3 - Safety check: position (5, 4) is within
bounds and collision-free
**Move 8: down** - Current head: (5, 4) → New head: (6, 4) - Direction change: down →
down - ✓Apple consumed at (6, 4)! Snake grows to length 4 - Safety check: position (6, 4) is
within bounds and collision-free
... (continuing for 4 more moves)
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**Strategic Heuristics Applied:** - **Nearest-First Strategy:** Prioritize closest apples to
minimize travel distance - **Space Preservation:** Avoid moves that create dead-ends or
trap the snake - **Growth Planning:** Account for snake length increase when planning
paths - **Boundary Awareness:** Use grid edges strategically to guide movement - **Tail
Management:** Ensure the tail has clearance for complex maneuvers
**Alternative Path Consideration:** - If direct path to nearest apple is blocked, consider perimeter
approach - Evaluate trade-offs between immediate apple collection vs. strategic positioning -
Plan escape routes before entering confined spaces
**Risk Assessment:** - Monitor available space as snake grows longer - Avoid creating situations
where the snake blocks its own path to remaining apples - Maintain flexibility for direction
changes throughout the solution
### Step 4: Solution Validation and Comprehensive Reflection
Now I’ll thoroughly validate the solution and reflect on the reasoning process:
**Solution Completeness Verification:** ✓All 3 apples are successfully collected ✓Solution
contains 12 moves ✓Snake length progression: 2 → 5 (growth of 3)
**Collision Safety Verification:** Let me verify each move is safe: ✓All moves verified safe -
no wall or self-collisions detected ✓Final snake length: 5 (expected: 5) ✓Remaining apples: 0
(expected: 0)
**Strategic Reflection:** - The solution demonstrates effective application of nearest-first
strategy - Space management was crucial for avoiding self-trapping scenarios - Growth planning
ensured the snake maintained maneuverability throughout
**Algorithm Efficiency Analysis:** - Solution efficiency: 12 moves for 3 apples - Average
moves per apple: 4.0 - Path optimality: Solution balances directness with safety constraints
**Final Answer Confidence:** Based on thorough analysis and verification, the solution is:
**right up up right down down down down right up right right**
This solution successfully guides the snake to collect all apples while avoiding all collision risks.
The strategic approach demonstrates systematic planning and careful execution of the Snake
puzzle mechanics.

MM-HELIX-100k
<think> Alright, let’s dive into this Snake puzzle. I’m looking at the grid and trying to get a feel
for the layout — not just the positions, but the *space*, the flow, how the snake might move
through it as it grows. This isn’t just about getting from point A to B; it’s about doing so in a
way that doesn’t paint the snake into a corner later.
First, let’s orient ourselves. The grid is 8×8, and from what I can see, the snake starts with its
head at (4,2), and there’s a body segment just above it at (3,2). So it’s pointing downward. There
are three apples: one up at (2,3), another down at (6,4), and one way over to the right at (5,7).
Hmm. The closest apple is (2,3) — just two rows up and one column to the right from the head.
That feels like a natural first target. But I can’t just rush up — the body is directly above the
head, so if I go up immediately, I’d be moving into where the body just was. Wait, no — the
snake moves forward, and the tail follows. So as long as I don’t try to reverse direction, I should
be fine. But right now, the snake is facing down. If I go *up*, that’s a 180-degree turn — which
isn’t allowed. So I can’t go up first. That’s a key constraint.
So, options from (4,2): I can’t go down (would hit the wall? No — row 4 to 5 is fine), but down
is the current direction. Wait — I *can* continue down, or go left or right. But not up, because
that would be reversing.
Wait — actually, the rule is you can’t reverse into your own body. Since the body is at (3,2),
above the head, moving up would immediately collide with the body. So yes, up is invalid. So
first move must be either right, left, or down.
Left from (4,2) is (4,1) — empty. Right is (4,3) — also empty. Down is (5,2) — also clear. So
three options.
Now, the apple at (2,3) is the closest, but I can’t go straight up. So I need to approach it from a
different angle, or create space to maneuver.
Maybe I can go right first, then up. That might work. Let’s try that in my mind.
Start: head at (4,2), body at (3,2).
Move 1: **right** → head to (4,3). Body shifts — now body is at (4,2), tail was at (3,2) but
now moves to (4,2)? Wait no — when the head moves, the entire snake shifts forward: the head
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moves to (4,3), the previous head (4,2) becomes the new body segment, and the old body (3,2)
disappears? No — actually, in Snake, the tail moves forward too unless you eat an apple.
Wait — correction: in standard Snake, when you move, the head advances, and the tail retracts
— so the body follows the path. Only when you eat an apple does the tail *not* retract, so the
snake grows.
So after moving right: head at (4,3), body at (4,2), tail at (3,2)? No — the body should be the
previous head position, and the tail moves up.
Let’s track it properly:
- Initial: head (4,2), body (3,2) — so the snake occupies (3,2) and (4,2), with head at bottom. -
Move **right**: head goes to (4,3). The body follows: the segment that was at (4,2) is now the
body, and the tail that was at (3,2) moves to (4,2). So now snake is: head (4,3), body (4,2), tail
(4,2)? No — two segments: head and one body. After move, positions are: (4,3) and (4,2). The
old body (3,2) is gone — it moved down to (4,2)? No.
Actually, in a two-segment snake, when the head moves, the body takes the head’s old position,
and the tail (which is the body) leaves its old position.
So: start — positions: (3,2) and (4,2), with (4,2) as head.
After **right**: head moves to (4,3). The body moves to where the head was: (4,2). So now
snake is at (4,2) and (4,3), head at (4,3), body at (4,2). The old tail (3,2) is no longer part of the
snake.
Yes, that makes sense.
Now, from (4,3), can I go **up**? To (3,3). Is that safe? (3,3) is empty — no apple, no wall.
And I’m not reversing — I was going right, now up — that’s a 90-degree turn, allowed. So yes.
Move 2: **up** → head to (3,3), body to (4,3), tail to (4,2)? No: body was at (4,2), now moves
to (4,3)? Let’s track:
After move 1: head (4,3), body (4,2)
Move 2: head to (3,3), body takes (4,3), so now snake is (4,2), (4,3), (3,3)? No — only two
segments. After move, positions: head (3,3), body (4,3). The old body (4,2) is now gone — the
snake shifted.
Wait — no: when the head moves to (3,3), the body moves to the head’s previous position (4,3),
and the tail (which was at (4,2)) is left behind. So yes, snake is now at (4,3) and (3,3).
Now, from (3,3), I can go **up** to (2,3) — and there’s an apple! And I’m not reversing — I
was going up, continue up — that’s fine.
Move 3: **up** to (2,3) — eat the apple! Snake grows. So now, when the head moves to (2,3),
the body follows to (3,3), and the tail (which was at (4,3)) moves to (3,3)? No — because it
grew, the tail doesn’t retract. So the body segments are: new head (2,3), then (3,3), then (4,3).
So now length is 3.
Great — one apple down.
Now, where to next? The remaining apples are at (6,4) and (5,7). (6,4) is closer — from (2,3) to
(6,4) is 4 down, 1 right — Manhattan distance 5. (5,7) is farther.
But I need to get down there. From (2,3), I’m facing up, but I just moved up. I can go left, right,
or down — not up (would be reversing if I were going up, but I just came from down? Wait
— my last move was **up**, so I’m facing up. So I can go left, right, or up — but not down
(reverse).
But I want to go down eventually. So I need to turn left or right first.
Right to (2,4)? That’s empty. Let’s try **right**.
Move 4: **right** to (2,4). Now facing right. Body: (2,3), (3,3). Tail still at (4,3)? Let’s see:
after eating, snake was at (2,3), (3,3), (4,3). After moving head to (2,4), body follows: (2,3) →
(2,4)? No — head moves to (2,4), the first body segment moves to (2,3), the second moves to
(3,3), and the tail (4,3) moves to (3,3)? No — with growth, when you move *after* eating, the
tail *does* move — only during the eat move does the tail not retract.
Clarify: when you eat an apple, that move causes the snake to grow — so the tail does *not*
move that turn. But on subsequent moves, the tail moves normally.
So after move 3 (eating), snake occupies: (2,3), (3,3), (4,3) — three segments.
Now move 4: **right** → head to (2,4). The body shifts: (2,3) → (2,4)? No — the head moves
to (2,4), the segment that was at (2,3) moves to where the head was — but the head was at (2,3)?
No — head was at (2,3), moves to (2,4). So the first body segment (at (3,3)) moves to (2,3), and
the tail (at (4,3)) moves to (3,3). So now snake is at (2,4), (2,3), (3,3).
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Yes.
Now, I want to go down toward (6,4). From (2,4), I can go **down** — that’s allowed, since
I’m facing right, down is a turn.
Move 5: **down** to (3,4). Is (3,4) safe? Yes, empty. Snake now: head (3,4), body (2,4), (2,3)?
No — after move: head (3,4), first body (2,4), second body (2,3)? No — the body segments
shift: (2,4) → (3,4)? No.
Head was at (2,4), moves to (3,4). The segment that was at (2,3) moves to (2,4), and the one at
(3,3) moves to (2,3). So now: (3,4), (2,4), (2,3).
Wait — the snake was at (2,4), (2,3), (3,3). After moving head to (3,4), the body follows: (2,4)
becomes the new body position, but it moves to where the head was — (2,4)? I’m getting
tangled.
Standard rule: each segment moves to the position of the one ahead of it.
So: - Head moves from (2,4) to (3,4) - The first body segment (at (2,3)) moves to (2,4) - The
second body segment (at (3,3)) moves to (2,3)
So snake now occupies: (3,4), (2,4), (2,3)
(3,3) is now empty.
Now, continue **down** to (4,4)
Move 6: **down** → head to (4,4). Then body: (3,4) → (4,4)? No — head (3,4) → (4,4), body
(2,4) → (3,4), tail (2,3) → (2,4). So snake: (4,4), (3,4), (2,4)
Still safe.
Move 7: **down** → to (5,4). Body: (4,4) → (5,4)? Head (4,4) → (5,4), body (3,4) → (4,4),
tail (2,4) → (3,4). So (5,4), (4,4), (3,4)
Move 8: **down** → to (6,4). And there’s an apple! Eat it. Snake grows to length 4.
So now, after eating: head at (6,4), and the body follows: previous head (5,4) becomes body,
(4,4) becomes next, (3,4) becomes tail — but since it grew, the tail doesn’t retract. So segments:
(6,4), (5,4), (4,4), (3,4)
Now, one apple left at (5,7). From (6,4), I need to go right — but I’m facing down (last move
was down), so I can go left, right, or down — not up.
(5,7) is at row 5, column 7. I’m at row 6, column 4. So I need to go up one and right three.
But I can’t go up directly — that would be reversing. So I need to turn right first.
Move 9: **right** → to (6,5). Now facing right. Snake: head (6,5), body (6,4), (5,4), (4,4) —
tail at (4,4)? Let’s track: after eating, snake at (6,4), (5,4), (4,4), (3,4). Move right: head to (6,5),
body to (6,4), then (5,4), then (4,4) — tail moves to (5,4)? No — each segment shifts forward:
(6,4) → (6,5)? No.
Head was at (6,4), moves to (6,5). The first body segment (5,4) moves to (6,4), the next (4,4)
moves to (5,4), the tail (3,4) moves to (4,4). So now: (6,5), (6,4), (5,4), (4,4)
Good.
Move 10: **right** → to (6,6). Head (6,6), body (6,5), (6,4), (5,4)
Move 11: **right** → to (6,7). Head (6,7), body (6,6), (6,5), (6,4)
Now, I need to go to (5,7). So **up**. Am I allowed? I’m facing right, up is a 90-degree turn —
yes.
Move 12: **up** → to (5,7). Apple! Eat it. Snake grows to length 5.
Now all apples are collected.
Let me double-check for collisions:
- All moves stayed within 0–7 rows and columns. - No move went into a wall. - Did the snake
ever hit itself? Let’s see the path:
After move 3: snake at (2,3), (3,3), (4,3) — fine.
After move 4: (2,4), (2,3), (3,3) — no overlap.
After move 5: (3,4), (2,4), (2,3) — all distinct.
After move 6: (4,4), (3,4), (2,4)
After move 7: (5,4), (4,4), (3,4)
After move 8: eat at (6,4) → (6,4), (5,4), (4,4), (3,4)
After move 9: (6,5), (6,4), (5,4), (4,4) — (6,4) is adjacent, not overlapping.
After move 10: (6,6), (6,5), (6,4), (5,4)
After move 11: (6,7), (6,6), (6,5), (6,4)
After move 12: (5,7), (6,7), (6,6), (6,5), (6,4) — all good.
No self-collisions, no walls, all apples eaten.
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The path feels natural: start by going right to avoid reversing, then up to get the first apple. Then
snake down the right side, collecting the second apple on the way down. Then move right across
the bottom, and finally up to the last apple.
I could have tried to go for (5,7) first, but that would have been longer and riskier. This way, I
kept the snake compact early on, and used the open space on the right to move freely.
So the final answer is: right up up right down down down down right up right right </think>
Final Answer: right up up right down down down down right up right right
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A.8 COMPLETE BREAKDOWN RESULTS

This section provides the full breakdown results over the four task types of MM-HELIX.

A.8.1 BREAKDOWN RESULTS ON THE ALGORITHMS CATEGORY

Table 7: Breakdown results on the Algorithms category.

Model 24 BuySell Container Hills Crypto HIndex Rect LIS Rain
Proprietary Models

GPT-5 (OpenAI, 2025b) 96.7 80.0 93.3 73.3 100.0 96.7 90.0 93.3 73.3
Seed-1.5-VL (Guo et al., 2025b) 100.0 80.0 83.3 60.0 86.7 83.3 73.3 73.3 70.0
o4-mini (OpenAI, 2025c) 86.7 10.0 36.7 43.3 60.0 66.7 50.0 63.3 40.0
Gemini-2.5-Flash (Comanici et al., 2025) 96.7 43.3 66.7 56.7 83.3 76.7 56.7 70.0 50.0
GPT-4.1 (OpenAI, 2025a) 63.3 46.7 56.7 16.7 26.7 60.0 33.3 43.3 53.3
GPT-4o (OpenAI, 2024) 10.0 30.0 23.3 0.0 0.0 30.0 23.3 33.3 20.0

Open-Source Models

Intern-S1-241B-A28B (Bai et al., 2025a) 86.7 80.0 70.0 83.3 63.3 46.7 66.7 83.3 43.3
GLM-4.5V-106B-A12B-Thinking (Team et al., 2025b) 56.7 16.7 40.0 3.3 23.3 23.3 33.3 53.3 13.3
Kimi-VL-16B-A3B-Thinking-2506 (Team et al., 2025a) 90.0 36.7 33.3 10.0 16.7 43.3 26.7 43.3 26.7
GLM-4.1V-9B-Thinking (Team et al., 2025b) 76.7 10.0 43.3 13.3 20.0 30.0 16.7 30.0 36.7
Qwen-2.5-VL-72B (Bai et al., 2025b) 13.3 20.0 26.7 16.7 0.0 43.3 6.7 30.0 10.0
Qwen-2.5-VL-32B (Bai et al., 2025b) 33.3 26.7 16.7 0.0 3.3 16.7 3.3 26.7 10.0
InternVL3-78B (Zhu et al., 2025) 46.7 20.0 20.0 6.7 6.7 10.0 10.0 10.0 0.0
InternVL3-38B (Zhu et al., 2025) 43.3 3.3 23.3 3.3 3.3 13.3 3.3 26.7 6.7
Llama-4-Scout-109B-A17B-16E (Meta, 2025) 66.7 30.0 3.3 10.0 0.0 6.7 3.3 20.0 6.7
MiniCPM-V-4.5-8B (Yu et al., 2025b) 53.3 6.7 20.0 13.3 6.7 30.0 13.3 33.3 3.3
QVQ-72B-Preview (Team, 2024) 76.7 20.0 26.7 3.3 0.0 20.0 3.3 33.3 6.7
Ovis2-34B (Lu et al., 2024) 23.3 0.0 3.3 6.7 0.0 20.0 13.3 26.7 0.0
Gemma-3-27B-IT (Team, 2025) 10.0 0.0 13.3 3.3 0.0 23.3 10.0 30.0 3.3
Qwen-2.5-VL-7B (Bai et al., 2025b) 10.0 0.0 6.7 0.0 0.0 10.0 3.3 23.3 0.0
InternVL3-8B (Zhu et al., 2025) 10.0 0.0 6.7 3.3 0.0 10.0 0.0 23.3 0.0
Ovis2-8B (Lu et al., 2024) 13.3 0.0 0.0 0.0 0.0 10.0 0.0 6.7 0.0

Ours

MM-HELIX-7B-Thinking 56.7 30.0 46.7 40.0 10.0 46.7 26.7 43.3 13.3

The abbreviations used in the table above are explained in the following table:

Table 8: Abbreviation list of the keywords in the Algorithms category.

Abbreviation Task
24 24 Points
BuySell Best Time to Buy and Sell Stock
Container Container With Most Water
Hills Counting Hills and Valleys
Crypt CryptoMath
HIndex H-Index
Rect Largest Rectangle in Histogram
LIS Longest Increasing Subsequence
Rain Trapping Rain Water
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A.8.2 BREAKDOWN RESULTS ON THE GRAPHS CATEGORY

Table 9: Breakdown results on the Graphs category.

Model EulerCyc EulerPath GraphIso HamilCyc HamilPath MaxFlow ShortDist TopoSort
Proprietary Models

GPT-5 (OpenAI, 2025b) 33.3 33.3 53.3 40.0 60.0 80.0 90.0 13.3
Seed-1.5-VL (Guo et al., 2025b) 23.3 30.0 56.7 23.3 46.7 70.0 60.0 13.3
o4-mini (OpenAI, 2025c) 33.3 33.3 53.3 33.3 50.0 66.7 56.7 10.0
Gemini-2.5-Flash (Comanici et al., 2025) 30.0 36.7 43.3 26.7 46.7 63.3 66.7 13.3
GPT-4.1 (OpenAI, 2025a) 10.0 20.0 63.3 20.0 33.3 70.0 60.0 3.3
GPT-4o (OpenAI, 2024) 6.7 26.7 56.7 16.7 20.0 33.3 43.3 0.0

Open-Source Models

Intern-S1-241B-A28B (Bai et al., 2025a) 16.7 26.7 50.0 16.7 23.3 50.0 56.7 0.0
GLM-4.5V-106B-A12B-Thinking (Team et al., 2025b) 0.0 10.0 6.7 10.0 20.0 30.0 13.3 0.0
Kimi-VL-16B-A3B-Thinking-2506 (Team et al., 2025a) 16.7 20.0 46.7 16.7 26.7 40.0 20.0 0.0
GLM-4.1V-9B-Thinking (Team et al., 2025b) 16.7 23.3 46.7 16.7 33.3 50.0 43.3 3.3
Qwen-2.5-VL-72B (Bai et al., 2025b) 16.7 23.3 56.7 10.0 20.0 43.3 36.7 0.0
Qwen-2.5-VL-32B (Bai et al., 2025b) 13.3 20.0 30.0 16.7 23.3 40.0 36.7 0.0
InternVL3-78B (Zhu et al., 2025) 10.0 20.0 46.7 16.7 26.7 40.0 40.0 3.3
InternVL3-38B (Zhu et al., 2025) 10.0 23.3 46.7 16.7 13.3 33.3 36.7 0.0
Llama-4-Scout-109B-A17B-16E (Meta, 2025) 16.7 26.7 43.3 10.0 23.3 26.7 20.0 3.3
MiniCPM-V-4.5-8B (Yu et al., 2025b) 6.7 23.3 40.0 20.0 16.7 26.7 30.0 3.3
QVQ-72B-Preview (Team, 2024) 16.7 16.7 36.7 6.7 13.3 20.0 20.0 3.3
Ovis2-34B (Lu et al., 2024) 16.7 23.3 53.3 23.3 16.7 23.3 13.3 6.7
Gemma-3-27B-IT (Team, 2025) 16.7 26.7 33.3 16.7 23.3 36.7 20.0 3.3
Qwen-2.5-VL-7B (Bai et al., 2025b) 10.0 23.3 53.3 0.0 13.3 23.3 20.0 0.0
InternVL3-8B (Zhu et al., 2025) 13.3 26.7 33.3 16.7 23.3 6.7 13.3 0.0
Ovis2-8B (Lu et al., 2024) 16.7 10.0 26.7 23.3 13.3 16.7 16.7 0.0

Ours

MM-HELIX-7B-Thinking 16.7 23.3 20.0 10.0 26.7 26.7 30.0 3.3

The abbreviations used in the table above are explained in the following table:

Table 10: Abbreviation list of the keywords in the Graphs category.

Abbreviation Task
EulerCyc Eulerian Cycle
EulerPath Eulerian Path
GraphIso Graph Isomorphism
HamilCyc Hamiltonian Cycle
HamilPath Hamiltonian Path
MaxFlow Max Flow
ShortDist Shortest Distance (Weighted)
TopoSort Topological Sort
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A.8.3 BREAKDOWN RESULTS ON THE PUZZLES CATEGORY

Table 11: Breakdown results on the Puzzles category (Part 1).

Model Aqua Bina Brid Calcu Camp Eule Futo Hito Kaku Kuku
Proprietary Models

GPT-5 (OpenAI, 2025b) 33.3 23.3 83.3 30.0 63.3 53.3 33.3 83.3 26.7 100.0
Seed-1.5-VL (Guo et al., 2025b) 10.0 30.0 50.0 16.7 86.7 60.0 20.0 40.0 36.7 63.3
o4-mini (OpenAI, 2025c) 26.7 13.3 73.3 23.3 53.3 50.0 30.0 43.3 43.3 76.7
Gemini-2.5-Flash (Comanici et al., 2025) 3.3 20.0 60.0 3.3 46.7 46.7 16.7 63.3 36.7 40.0
GPT-4.1 (OpenAI, 2025a) 3.3 0.0 46.7 13.3 13.3 33.3 10.0 40.0 16.7 60.0
GPT-4o (OpenAI, 2024) 0.0 20.0 0.0 3.3 16.7 20.0 10.0 16.7 13.3 33.3

Open-Source Models

Intern-S1-241B-A28B (Bai et al., 2025a) 3.3 23.3 60.0 26.7 20.0 16.7 20.0 20.0 30.0 0.0
GLM-4.5V-106B-A12B-Thinking (Team et al., 2025b) 13.3 30.0 13.3 6.7 60.0 6.7 6.7 30.0 0.0 33.3
Kimi-VL-16B-A3B-Thinking-2506 (Team et al., 2025a) 3.3 16.7 20.0 6.7 16.7 13.3 26.7 13.3 16.7 10.0
GLM-4.1V-9B-Thinking (Team et al., 2025b) 6.7 16.7 6.7 13.3 40.0 10.0 3.3 16.7 13.3 20.0
Qwen-2.5-VL-72B (Bai et al., 2025b) 0.0 6.7 13.3 10.0 23.3 16.7 10.0 6.7 0.0 6.7
Qwen-2.5-VL-32B (Bai et al., 2025b) 3.3 0.0 10.0 3.3 6.7 3.3 16.7 0.0 6.7 13.3
InternVL3-78B (Zhu et al., 2025) 0.0 0.0 30.0 26.7 3.3 3.3 6.7 3.3 0.0 13.3
InternVL3-38B (Zhu et al., 2025) 3.3 3.3 16.7 20.0 0.0 3.3 13.3 10.0 6.7 10.0
Llama-4-Scout-109B-A17B-16E (Meta, 2025) 6.7 10.0 13.3 3.3 30.0 16.7 3.3 23.3 10.0 3.3
MiniCPM-V-4.5-8B (Yu et al., 2025b) 6.7 3.3 10.0 10.0 20.0 10.0 20.0 6.7 6.7 6.7
QVQ-72B-Preview (Team, 2024) 10.0 13.3 6.7 6.7 6.7 6.7 16.7 10.0 13.3 0.0
Ovis2-34B (Lu et al., 2024) 13.3 30.0 6.7 13.3 6.7 13.3 30.0 10.0 0.0 10.0
Gemma-3-27B-IT (Team, 2025) 6.7 3.3 10.0 3.3 0.0 0.0 6.7 13.3 10.0 3.3
Qwen-2.5-VL-7B (Bai et al., 2025b) 13.3 0.0 3.3 0.0 6.7 0.0 10.0 6.7 10.0 16.7
InternVL3-8B (Zhu et al., 2025) 6.7 0.0 3.3 16.7 10.0 0.0 10.0 3.3 6.7 0.0
Ovis2-8B (Lu et al., 2024) 0.0 10.0 0.0 0.0 0.0 6.7 3.3 10.0 0.0 3.3

Ours

MM-HELIX-7B-Thinking 3.3 23.3 50.0 6.7 46.7 43.3 20.0 13.3 30.0 26.7

Table 12: Breakdown results on the Puzzles category (Part 2).

Model Nono Num Shin Sky Snak Sudo Tapa WLad WSch
Proprietary Models

GPT-5 (OpenAI, 2025b) 26.7 86.7 80.0 53.3 10.0 26.7 50.0 36.7 100.0
Seed-1.5-VL (Guo et al., 2025b) 3.3 6.7 70.0 40.0 100.0 50.0 33.3 20.0 60.0
o4-mini (OpenAI, 2025c) 13.3 50.0 43.3 43.3 96.7 3.3 43.3 30.0 100.0
Gemini-2.5-Flash (Comanici et al., 2025) 0.0 40.0 40.0 40.0 83.3 40.0 36.7 10.0 70.0
GPT-4.1 (OpenAI, 2025a) 0.0 16.7 53.3 20.0 43.3 0.0 3.3 10.0 33.3
GPT-4o (OpenAI, 2024) 0.0 0.0 6.7 3.3 33.3 0.0 0.0 13.3 13.3

Open-Source Models

Intern-S1-241B-A28B (Bai et al., 2025a) 0.0 26.7 13.3 23.3 53.3 53.3 16.7 0.0 43.3
GLM-4.5V-106B-A12B-Thinking (Team et al., 2025b) 0.0 0.0 0.0 6.7 40.0 20.0 6.7 6.7 50.0
Kimi-VL-16B-A3B-Thinking-2506 (Team et al., 2025a) 0.0 10.0 3.3 6.7 50.0 10.0 0.0 0.0 26.7
GLM-4.1V-9B-Thinking (Team et al., 2025b) 0.0 10.0 0.0 3.3 30.0 3.3 6.7 0.0 0.0
Qwen-2.5-VL-72B (Bai et al., 2025b) 0.0 6.7 16.7 3.3 13.3 6.7 0.0 0.0 10.0
Qwen-2.5-VL-32B (Bai et al., 2025b) 0.0 6.7 3.3 3.3 16.7 3.3 0.0 0.0 3.3
InternVL3-78B (Zhu et al., 2025) 0.0 0.0 6.7 3.3 6.7 0.0 0.0 3.3 0.0
InternVL3-38B (Zhu et al., 2025) 0.0 0.0 3.3 3.3 3.3 0.0 0.0 0.0 3.3
Llama-4-Scout-109B-A17B-16E (Meta, 2025) 0.0 0.0 20.0 3.3 13.3 0.0 0.0 6.7 16.7
MiniCPM-V-4.5-8B (Yu et al., 2025b) 0.0 0.0 0.0 0.0 6.7 0.0 0.0 0.0 16.7
QVQ-72B-Preview (Team, 2024) 0.0 0.0 6.7 0.0 0.0 0.0 0.0 6.7 10.0
Ovis2-34B (Lu et al., 2024) 0.0 0.0 0.0 0.0 0.0 3.3 3.3 0.0 0.0
Gemma-3-27B-IT (Team, 2025) 0.0 0.0 3.3 0.0 3.3 0.0 0.0 0.0 10.0
Qwen-2.5-VL-7B (Bai et al., 2025b) 0.0 0.0 0.0 0.0 3.3 0.0 0.0 6.7 3.3
InternVL3-8B (Zhu et al., 2025) 0.0 0.0 0.0 3.3 0.0 0.0 6.7 0.0 3.3
Ovis2-8B (Lu et al., 2024) 0.0 0.0 0.0 0.0 0.0 3.3 6.7 0.0 6.7

Ours

MM-HELIX-7B-Thinking 13.3 23.3 60.0 20.0 16.7 30.0 6.7 6.7 40.0

The abbreviations used in the table above are explained in the following table:
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Table 13: Abbreviation list of the keywords in the Puzzles category.

Abbreviation Task
Aqua Aquarium
Bina Binairo
Brid Bridges
Calcu Calcudoku
Camp Campsite
Eule Eulero
Futo Futoshiki
Hito Hitori
Kaku Kakuro
Kuku Kukurasu
Nono Nonogram
Num Numbrix
Shin Shingoki
Sky Skyscrapers
Snak Snake
Sudo Sudoku
Tapa Tapa
WLad Word Ladder
WSch Wordsearch
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A.8.4 BREAKDOWN RESULTS ON THE GAMES CATEGORY

Table 14: Breakdown results on the Games category.

Model Maze Mine Nib Slide Soko Hanoi
Proprietary Models

GPT-5-2025-08-27(16K) (OpenAI, 2025b) 10.0 23.3 10.0 86.7 16.7 93.3
Seed-1.5-VL(16K) (Guo et al., 2025b) 6.7 53.3 20.0 63.3 3.3 53.3
o4-mini(16K) (OpenAI, 2025c) 6.7 26.7 10.0 66.7 13.3 90.0
Gemini-2.5-flash(16K) (Comanici et al., 2025) 0.0 50.0 13.3 46.7 3.3 56.7
GPT-4.1-2025-04-14(32K) (OpenAI, 2025a) 3.3 0.0 0.0 3.3 0.0 46.7
GPT-4o (OpenAI, 2024) 0.0 0.0 0.0 3.3 0.0 36.7

Open-Source Models

Intern-S1-241B-A28B (Bai et al., 2025a) 0.0 20.0 0.0 36.7 0.0 33.3
GLM-4.5V-106B-A12B-Thinking (Team et al., 2025b) 0.0 16.7 3.3 10.0 3.3 50.0
Kimi-VL-16B-A3B-Thinking-2506 (Team et al., 2025a) 0.0 3.3 0.0 3.3 0.0 10.0
GLM-4.1V-9B-Thinking (Team et al., 2025b) 0.0 0.0 3.3 3.3 0.0 26.7
Qwen-2.5-VL-72B (Bai et al., 2025b) 0.0 20.0 0.0 36.7 3.3 26.7
Qwen-2.5-VL-32B (Bai et al., 2025b) 0.0 16.7 3.3 33.3 0.0 6.7
InternVL3-78B (Zhu et al., 2025) 0.0 0.0 3.3 6.7 0.0 16.7
InternVL3-38B (Zhu et al., 2025) 0.0 3.3 3.3 10.0 6.7 13.3
Llama-4-Scout-109B-A17B-16E (Meta, 2025) 0.0 3.3 0.0 10.0 0.0 33.3
MiniCPM-V-4.5-8B (Yu et al., 2025b) 0.0 0.0 0.0 3.3 3.3 13.3
QVQ-72B-Preview (Team, 2024) 0.0 3.3 3.3 6.7 0.0 16.7
Ovis2-34B (Lu et al., 2024) 0.0 0.0 0.0 3.3 0.0 6.7
Gemma-3-27B-IT (Team, 2025) 0.0 0.0 0.0 3.3 0.0 3.3
Qwen-2.5-VL-7B (Bai et al., 2025b) 0.0 0.0 0.0 0.0 0.0 3.3
InternVL3-8B (Zhu et al., 2025) 0.0 0.0 0.0 0.0 0.0 6.7
Ovis2-8B (Lu et al., 2024) 0.0 0.0 0.0 0.0 3.3 3.3

Ours

MM-HELIX-7B-Thinking 3.3 16.7 23.3 26.7 3.3 26.7

The abbreviations used in the table above are explained in the following table:

Table 15: Abbreviation list of the keywords in the Games category.

Abbreviation Task
Maze Maze
Mine Minesweeper
Nib Nibbles
Slide Sliding Puzzle
Soko Sokoban
Hanoi Tower of Hanoi
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