
Auto-Instruct: Automatic Instruction Generation and Ranking
for Black-Box Language Models

Zhihan Zhang�♠∗, Shuohang Wang♢, Wenhao Yu♠, Yichong Xu♢, Dan Iter♢,
Qingkai Zeng♠, Yang Liu♢, Chenguang Zhu♢, Meng Jiang♠

♠University of Notre Dame
♢Microsoft Azure AI

zzhang23@nd.edu

Abstract

Large language models (LLMs) can perform a
wide range of tasks by following natural lan-
guage instructions, without the necessity of
task-specific fine-tuning. Unfortunately, the
performance of LLMs is greatly influenced by
the quality of these instructions, and manually
writing effective instructions for each task is a
laborious and subjective process. In this paper,
we introduce Auto-Instruct, a novel method to
automatically improve the quality of instruc-
tions provided to LLMs. Our method lever-
ages the inherent generative ability of LLMs
to produce diverse candidate instructions for a
given task, and then ranks them using a scor-
ing model trained on a variety of 575 exist-
ing NLP tasks. In experiments on 118 out-
of-domain tasks, Auto-Instruct surpasses both
human-written instructions and existing base-
lines of LLM-generated instructions. Further-
more, our method exhibits notable generaliz-
ability even with other LLMs that are not incor-
porated into its training process.1

1 Introduction

Instruction-tuned large language models (LLMs)
have gained considerable popularity as solutions to
a myriad of NLP tasks, owing to their proficiency
in interpreting natural language instructions (Wei
et al., 2021; Chung et al., 2022; Ouyang et al., 2022;
Taori et al., 2023). As fine-tuning LLMs often be-
comes unfeasible, instructions play an increasingly
crucial role in prompting such black-box LLMs.
Especially in the true few-shot 2 setting (Perez et al.,
2021) where the user aims to tackle a new task
with only a basic task description and a few data

∗This work was done when Zhihan was an intern at Mi-
crosoft Azure AI.

1Model and code are available at https://github.com/
ytyz1307zzh/Auto-Instruct.

2A scenario where no additional training or validation data
are available for hyperparameter tuning and prompt selection,
in addition to the few-shot examples (Perez et al., 2021).

Order adjectives correctly
in English sentences.

Input: Which sentence has
the correct adjective order:
(A) rubber terrible ship
(B) terrible rubber ship
Output: (B)

FLAN-T5

Demonstrations

Seed Instruction

In this task, you will be
given two sentences
with adjectives…

generate

rank & select

+
concatenate

(B)
inference

Selected Instruction

575 training tasks
……

Candidate instructions

Which sentence has the
correct adjective order:
(A) green new chair
(B) new green chair

Test Example

Instruction Generation

Instruction Ranking

Downstream Inference

Candidate instructions
of diverse styles

In this task, you will be
given two sentences
with adjectives…

Selected Instruction

Which sentence has the
correct adjective order:
(A) green new chair
(B) new green chair

Test Example

one-sentence instruction

one-paragraph instruction

step-by-step instruction

example-explaining instruction

Figure 1: The Auto-Instruct pipeline. We first prompt
the LLM to generate a diverse set of candidate instruc-
tions with different styles, and then train a model to
rank and select the most effective instruction for a given
example. Finally, the selected instruction is used to
prompt the LLM to infer the output for this example.

examples at hand, a well-crafted instruction is im-
perative in enabling the LLM to grasp the required
input-output mapping to complete the task.

Despite the significance of instructions, the pre-
vailing approach when using a black-box LLM on
a new task remains to be manual prompt engineer-
ing (White et al., 2023; Mishra et al., 2023). Such
an approach, however, is not only time-consuming
but also tends to yield suboptimal instructions.
Against this backdrop, efforts have been made to
empower LLMs to generate instructions automat-
ically (Honovich et al., 2022; Zhou et al., 2022;
Singh et al., 2022). These approaches feed the
LLM a handful of examples and prompt it to gen-
erate an instruction based on these demonstrations.
While such methods showcase the LLM’s capa-
bility to generate coherent instructions (Honovich
et al., 2022), only generating a single instruction

https://github.com/ytyz1307zzh/Auto-Instruct
https://github.com/ytyz1307zzh/Auto-Instruct

cannot guarantee reliable performance for unseen
examples in the given task. As a straightforward
solution, validation sets have been used to evalu-
ate the effectiveness of a set of sampled instruc-
tions (Zhou et al., 2022; Singh et al., 2022), but
this is impracticable for many tasks defined under
the true few-shot setting (Suzgun et al., 2022). Be-
sides, these approaches have primarily been tested
on simple tasks where basic instructions are already
sufficient, such as arithmetic operations or senti-
ment classification. More complex tasks in NLP
benchmarks (Wang et al., 2022), which necessi-
tate careful instruction engineering, remain largely
unexamined for an automatic solution.

To address the aforementioned challenges, we
propose Auto-Instruct, a novel approach to auto-
matically generate and rank instructions for black-
box LLMs across various NLP tasks, under the
true few-shot setting. For each downstream task,
we first prompt the LLM to sample a variety of
candidate instructions, based on a basic seed in-
struction and few-shot demonstrations. We collect
a diverse candidate set by specifying the expected
style of each instruction. Recognizing the variable
performance of LLMs across different instructions,
coupled with the lack of validation data for pre-
emptive instruction selection, we train a scoring
model to rank and select the most appropriate in-
struction for each downstream test example. To
ensure necessary generalizability in the few-shot
setting, the model is trained on 575 exisiting NLP
tasks before being deployed for out-of-domain test
tasks. Finally, the selected instruction is used to
prompt the LLM for downstream inference.

In experiments with OpenAI’s text-davinci-003,
Auto-Instruct yields remarkable performance on
118 out-of-domain tasks from Super Natural In-
structions (SuperNI; Wang et al., 2022) and Big
Bench Hard (BBH; Suzgun et al., 2022). Showing
robust generalizability in out-of-domain scenarios,
Auto-Instruct outperforms human-written seed in-
structions, the state-of-the-art instruction genera-
tion approach iPrompt (Singh et al., 2022), and vari-
ous baselines of prompting the LLM for instruction
selection. Moreover, Auto-Instruct exhibits impres-
sive performance in the zero-shot setting and in
generalization to other LLMs (i.e., ChatGPT and
GPT-4). Our study underlines that automatically
generating and ranking instructions is a promising
approach for leveraging the power of black-box
LLMs effectively.

2 Related Work

The choice of instructions plays a pivotal role in
effectively utilizing LLMs. To this end, a range of
approaches has been implemented, with parametric
optimization and LLM-based generation standing
out as prominent methods. Parametric optimiza-
tion primarily involves utilizing parameters to tune
instructions (Shin et al., 2020; Shi et al., 2022;
Deng et al., 2022). For instance, Shin et al. (2020)
employed a gradient-based search over a predeter-
mined length of discrete tokens as the instruction.
Shi et al. (2022) further improved this approach by
preserving the readability of the sampled tokens
through a perplexity constraint. As a more flexible
approach, Deng et al. (2022) optimized instruction
generation through reinforcement learning, with
rewards computed based on the LLM output. How-
ever, these strategies require access to either LLM
parameters or a training set for optimization, mak-
ing them less applicable to black-box LLMs with
only a limited number of available examples. More-
over, instructions generated by these methods often
lack fluency or even become gibberish, thereby
compromising their interpretability.

In contrast, the LLM-based generation thread
selects instructions by directly prompting the
LLM (Honovich et al., 2022; Zhou et al., 2022;
Singh et al., 2022). For example, Honovich et al.
(2022) were among the first to reveal that LLMs
could write an instruction for a given task after ob-
serving just a few demonstrations, and Zhou et al.
(2022) improved the quality of the generated in-
structions by selecting the best performed one on
the validation data. iPrompt (Singh et al., 2022)
is the most capable method so far with its itera-
tive generation and validation process for selecting
instructions. Nevertheless, these approaches still
necessitate a validation set for instruction ranking,
and the instructions they generate typically under-
perform compared to those written by humans.

Besides the choice of instructions, researchers
have also explored other orthogonal directions of
improving LLM prompts, such as the selection of
in-context demonstrations. Some works focused on
identifying the most suitable demonstrations from
training examples (Rubin et al., 2022; Lu et al.,
2022a; Wang et al., 2023a) and their optimal order-
ing (Lu et al., 2022b) in the few-shot prompt. Other
studies examined the engineering and selection of
reasoning chains that are paired with the few-shot
demonstrations on multi-step reasoning tasks (Wei

et al., 2022; Zhang et al., 2022b; Ye and Durrett,
2023; Liang et al., 2023b). We reserve the explo-
ration of integrating these orthogonal techniques
with our approach to holistically optimize the entire
LLM prompt for future work.

3 Problem Formulation

In this work, we focus on the true few-shot set-
ting where a user aims to tackle a new task with a
black-box LLM. While it is easy to come up with
a handful of examples and a basic description, the
user may not have insights into what kind of in-
structions would be effective for unseen examples.
Hence, given the few-shot examples as demonstra-
tions and the basic description as a seed instruction,
our goal is to automate the process of creating a
more effective instruction for the given task.

We formulate our problem following the con-
ventional practices of in-context learning (Dong
et al., 2023). In the aforementioned few-shot set-
ting, the prompt to query a black-box LLM com-
prises an instruction I , the test input x, and a few
input-output pairs as demonstrations {xdi , ydi }ni=1.
The LLM is expected to generate an output y ∼
P (·|I, {xdi , ydi }ni=1, x). This work aims to automat-
ically find a superior instruction I ′ based on the
human-written seed instruction Is, thereby circum-
venting the need for substantial manual engineer-
ing. Besides, we also explore the zero-shot setting
where no demonstrations are given to the LLM.

Despite the instruction potentially having mul-
tiple ways of integrating with the demonstrations
and the test input, to reduce the complexity of the
problem, we format the whole prompt in the order
of (I, xd1, y

d
1 , · · · , xdn, ydn, x). This aligns with the

convention of problem-solving where the task is
first outlined, followed by the provision of data
examples, and the test input is finally provided. In
practice, we use n = 3 for all tasks.

4 Auto-Instruct

Auto-Instruct is composed of two steps: instruction
generation and instruction ranking. We first prompt
the black-box LLM to generate a diverse set of can-
didate instructions (§4.1) for each downstream task.
Next, we train a scoring model to rank all candidate
instructions for each given test example, as differ-
ent examples can benefit from different instructions
(§4.2). Then, the top-ranked instruction is selected
to prompt the black-box LLM on that specific test
example for downstream inference.

Write a step-by-step instruction on how
to solve the following task.

Task: [seed instruction]

Examples:
Input: [input of demonstration #1]
Output: [output of demonstration #1]
……
Input: [input of demonstration #n]
Output: [output of demonstration #n]

Instruction:

Figure 2: The meta-prompt that guides the LLM to
generate a step-by-step instruction for the given task.
Other meta-prompts are shown in Appendix E.

4.1 Instruction Generation
As mentioned in §3, we leverage a basic human-
written task description as the seed instruction
Is and prompt the black-box LLM to gener-
ate a number of candidate instructions {Icj}mj=1.
Specifically, in the few-shot setting, we prompt
the LLM to generate candidate instructions
Ic ∼ P (·|Is, {xdi , ydi }ni=1) based on the seed in-
struction and few-shot demonstrations. Previous
approaches (Zhou et al., 2022; Singh et al., 2022)
only utilized a single meta-prompt3 and collected
candidate instructions via token sampling. Usually,
such sampled instructions only show minor vari-
ations in phrasing rather than substantial content
diversity. Moreover, their quality recursively rely
on the arbitrary choice of the meta-prompt, which
transfers the unreliability of manual instruction en-
gineering to manual meta-prompt engineering.

In our improved approach, we curate a set of
meta-prompts to stimulate the LLM to sample di-
verse candidate instructions by defining different
required styles of the instruction. These meta-
prompts include:

1. Write an instruction on how to solve the fol-
lowing task in one sentence.

2. Write an instruction on how to solve the fol-
lowing task in one paragraph.

3. Write a step-by-step instruction on how to
solve the following task.

4. Write an instruction on how to solve the fol-
lowing task. The instruction must include the
explanations of the given examples.

Alongside these 4 meta-prompts, we also bring
in human-written instructions from existing NLP
tasks as demonstrations to guide the generation of

3The prompt for the LLM to generate instructions.

SuperNI few-shot SuperNI zero-shot BBH few-shot BBH zero-shot
0

5

10

15

20

St
an

da
rd

 D
ev

ia
tio

n
of

 P
er

fo
rm

an
ce

Figure 3: Box plot showing how much the LLM per-
formance varies with different instructions, tested on
OpenAI’s text-davinci-003. Performance is evaluated
by ROUGE-L on SuperNI and Accuracy on BBH. Each
value represents the standard deviation of LLM perfor-
mance across all generated instructions on a single task.

instructions. Intuitively, we prompt the LLM to
emulate the style of human-written instructions in
these demonstration tasks. We source demonstra-
tion tasks with their instructions from our training
tasks in SuperNI, grouping them into 3 clusters
based on the length of their instructions, so as to
guide the LLM to generate instructions of different
granularities. Figure 2 provides an example of the
meta-prompt #3. Other meta-prompts are detailed
in Appendix E.

Based on these 7 distinct meta-prompts (i.e., 4
style-specific meta-prompts + 3 groups of demon-
stration tasks), we sample 3 instructions under each
meta-prompt via nucleus sampling (Holtzman et al.,
2020). Including the original seed instruction, we
collect a total of 22 candidate instructions for each
task. As a result, we create a diverse and com-
prehensive set of candidate instructions, thereby
reducing the randomness brought by the nuances
of different meta-prompts.

In the zero-shot setting, due to the absence of
demonstrations, the LLM is prompted to generate
the candidate instruction Ic ∼ P (·|Is) based solely
on the seed instruction. Besides, the example-
explaining meta-prompt is removed. As we demon-
strate in §5.4.5, even without the aid of demonstra-
tions, our style-specific meta-prompts still enable
the LLM to generate informative instructions.

4.1.1 Instability Under Different Instructions
While LLMs are capable of generating meaningful
instructions, relying on a single generated instruc-

tion will probably lead to suboptimal performance
due to the LLM’s sensitivity to the phrasing of
the instructions. This instability is particularly ev-
ident in the zero-shot setting due to the lack of
demonstrations to assist prediction. In Figure 3,
we calculate the standard deviation of LLM per-
formance using different instructions, after having
evaluated all instructions for each downstream task.
This indicates the expected performance fluctua-
tion when substituting one instruction for another.
The median standard deviation across all tasks are
3.1 and 4.2 points in ROUGE-L for few-shot and
zero-shot settings respectively on SuperNI, and the
upper quartiles are 5.7 and 6.9 points respectively.
The choice of instruction even causes double-digit
performance fluctuation on many tasks. Therefore,
the development of a method to rank and select
instructions becomes an essential undertaking.

4.2 Instruction Ranking

In a true few-shot setting, demonstrations are in-
adequate to reflect the effectiveness of candidate
instructions due to the small sample size. To cir-
cumvent this limitation, we train a generalizable
instruction ranking model across a variety of NLP
tasks, and subsequently apply it to each test exam-
ple in out-of-domain tasks. Intuitively, this model
is trained to rank instructions against their down-
stream performance on the LLM, i.e., to assign
higher scores to more effective instructions.

4.2.1 Model
Owing to the proven generalizibility of the T5
model family (Raffel et al., 2020; Sanh et al.,
2022), we start from the instruction-tuned FLAN-
T5-Large model (Chung et al., 2022) and train it
with our instruction ranking objective. Given a
specific example (x, y) where x is the input and
y is the ground-truth output, as well as an arbi-
trary candidate instruction Ic, the model predicts
a score QT5(I

c, x) as an estimate of the instruc-
tion’s effectiveness on the example. Leveraging the
instruction-following nature of FLAN-T5, we give
the following prompt to the ranking model:

Example: 𝑥𝑥. Input: 𝐼𝐼𝑐𝑐. Is this a good instruction
to solve the example?

QT5(I
c, x) is then calculated as the logit of the

“yes” token at the starting position of the decoder.
Additionally, we obtain the downstream perfor-
mance of Ic by calculating the ROUGE-L score
between the LLM’s predicted output ŷ (when Ic is

used as the instruction) against the groud-truth out-
put y, denoted as r(y, ŷ). The model is then trained
with a list-wise loss to align the scores QT5(I

c, x)
of all candidate instructions with their correspond-
ing downstream performance r(y, ŷ), while consid-
ering relative superiority among different instruc-
tions. Specifically, we first normalize both the list
of predicted scores QT5(I

c, x) and the list of down-
stream performance r(y, ŷ) by applying softmax
across all candidate instructions, and then compute
the KL-divergence between these two normalized
distributions as the training loss:

L =
1

|B|
∑

(x,y)∈B

KL
(
σ
(
r (y, ŷ)

)
||σ

(
QT5 (I

c, x)
))

,

where ŷ ∼ PLLM(·|Ic, {xdi , ydi }ni=1, x).

Note that B is a batch of examples and σ is the
softmax function. During testing, given a spe-
cific test example, among all candidate instructions,
we select the Ic that achieves the highest score
QT5(I

c, x) as the final instruction, and prompt
LLM with it to obtain the desired output.

4.2.2 Training Data
To train such a ranking model with generalizabil-
ity to out-of-domain tasks, we categorize the tasks
in the SuperNI benchmark by their task type (e.g.,
QA, sentiment analysis, etc.) and group these cate-
gories into training and test sets. We exclude tasks
involving non-English languages or those with ex-
cessively long inputs. To avoid data leakage, we
also exclude tasks from the training data which
are sourced from the same dataset as any test task.
This yields 575 tasks for training and 91 for testing.
We sample up to 400 examples from each train-
ing task, which leads to 122k in total. Additional
data pre-processing and filtering methods utilized
to accelerate the training process can be found in
Appendix A.

5 Experiments

5.1 Settings
To evaluate our approach under the true few-shot
setting, we test it on a variety of out-of-domain
tasks — 91 from SuperNI (Wang et al., 2022) and
27 from BBH (Suzgun et al., 2022), where there is
no overlap between task categories in training and
testing. The SuperNI test set comprises both clas-
sification and generation tasks, e.g., commonsense
classification, information extraction, etc4. BBH

4The full list of SuperNI test tasks is in Appendix G.

presents a diverse set of tasks spanning common-
sense QA and math problems. Average ROUGE-
L5 and exact-match accuracy are used for evalua-
tion on SuperNI and BBH, respectively. Our main
experiments are conducted using OpenAI’s text-
davinci-003 for instruction generation and down-
stream inference. We also explored the instructions
generated by ChatGPT (gpt-3.5-turbo) or GPT-
4 (OpenAI, 2023) in §5.4.1.

In the zero-shot setting, the ranking model is sep-
arately trained on data where downstream ROUGE
scores of candidate instructions are likewise ob-
tained under zero-shot prompting. For zero-shot
classification tasks, we append additional format-
ting instructions to the seed instruction to narrow
down the answer options in both instruction gener-
ation and downstream inference. Additional exper-
imental settings can be found in Appendix B.

5.2 Baselines
As baselines in our experiments, we first con-
sider three alternative approaches based solely on
prompting the LLM:
(1) Cross-Validation. We leverage the 3-shot
demonstrations as validation data to rank the in-
structions, with each one acting as the test example
iteratively while the other two serve as demonstra-
tions. The ROUGE-L score (or accuracy for BBH)
is used as the primary ranking criterion, and the
log-probability of the ground-truth output is com-
pared as tiebreaker. The instruction selected by the
demonstrations is then applied on all test examples
within the same task.
(2) LM Selection. We directly prompt the LLM
itself to select an instruction by enumerating all
candidate instructions in a single prompt. We num-
ber the instructions and ask the LLM to generate
the number of the instruction it deems most suitable
to each test example.
(3) On-the-fly Generation. As a simplified variant
without instruction ranking, the model is asked to
directly generate an instruction for each test ex-
ample. The generated instruction is then used to
prompt the LLM for the same example.

Furthermore, we consider iPrompt (Singh et al.,
2022), the existing state-of-the-art approach in opt-
mizing instructions with LLMs. iPrompt iteratively
generates instructions until it cannot find one with
better performance on a validation set. To evaluate

5The original authors of SuperNI found ROUGE-L posi-
tively correlated to accuracy on classification tasks, so average
ROUGE-L is applied for simplicity.

Methods Generation Ranking Few-shot Zero-shot
SuperNI BBH SuperNI BBH

Empty Instruction* None None 57.03 51.18 35.86 45.12
Human Instruction* Human None 60.94 50.30 46.81 45.59
Random Selection† LLM Random 61.61 50.88 45.80 45.98
iPrompt* LLM (iterative) Examples 57.08 50.46 - -
iPrompt+* LLM (iterative) Examples 61.13 50.82 - -
Cross-Validation* LLM Examples 62.02 51.20 - -
LM Selection† LLM LLM 61.69 51.96 44.19 45.05
On-the-fly Generation† LLM None 61.03 51.38 45.85 45.47
Auto-Instruct† LLM Trained Model 64.35 52.04 49.50 47.35

Table 1: Results on SuperNI (91 tasks) and BBH (27 tasks) under the few-shot and zero-shot setting respectively.
We report ROUGE-L on SuperNI and accuracy on BBH. Methods with * apply the same instruction for a certain
task, while methods with † can select different instructions for different examples. iPrompt iteratively generates
and ranks candidate instructions, while other methods adopt a generate-then-rank pipeline. We note that iPrompt,
iPrompt+ and Cross-Validation are not applicable under the zero-shot setting due to the need of validation examples.
Detailed results on SuperNI of different task categories can be found at Appendix D.1.

iPrompt under the true few-shot setting, we con-
duct its validation on the 3-shot demonstrations.
Besides, since the original iPrompt generates in-
structions based on the examples without any task
description, for a fair comparison, we implement an
iPrompt+ baseline that uses a similar meta-prompt
to ours with the seed instruction (See Appendix C
for details). In addition, we evaluate the perfor-
mance of not using any instruction (Empty In-
struction), directly using the human-written seed
instruction (Human Instruction) or randomly se-
lecting an instruction from the generated candidates
(Random Selection) on each task.

5.3 Results

The overall results of SuperNI and BBH are shown
in Table 1, where scores are averaged across all
tasks. Auto-Instruct shows notable consistency and
generalizability in out-of-domain scenarios, sur-
passing all baselines across different benchmarks
and settings. Key findings are outlined below.

The LLM shows competitive ability in gener-
ating effective instructions, yet ranking is still
necessary. In alignment with previous work (Zhou
et al., 2022; Singh et al., 2022), the LLM is able
to generate effective instructions for various tasks.
Our style-specific meta-prompts enables the LLM
to produce a diverse set of instructions to cater to
varied scenarios where different tasks may favor
different styles of instructions. In the few-shot
setting, the LLM-generated instructions already

surpass their human-written counterparts on aver-
age, as indicated by the random selection scores.
Although humans may have prior knowledge of
some examples when they write the instructions,
the LLM, not given any demonstrations in the zero-
shot setting, generates instructions of comparable
quality to those written by humans. Nevetheless,
neither random selection nor directly generating a
single instruction (i.e., on-the-fly generation) signif-
icantly improves over the human-written baseline.
This aligns with the instability of the LLM perfor-
mance across different instructions as discussed in
Figure 3, which indicates further instruction rank-
ing is still essential.

Simply prompting the LLM or using the vali-
dation data are not reliable in the low-resource
setting. Although offering the convenience of not
training any models, both directly prompting the
LLM (LM selection) and using few-shot demonstra-
tions for validation (iPrompt and cross-validation)
fail to deliver consistently improved results com-
pared to random selection. This highlights that (1)
the LLM itself lacks clue of the expected down-
stream performance of different instructions; (2)
the volume of validation data must be substantial
enough to effectively estimate the performance of
instructions on the test data, which brings high cost
in many realistic scenarios.

Our trained instruction ranking model is the
most effective approach to select instructions so
far. Although the data and instructions for out-of-

Methods ChatGPT GPT-4

Few-shot, instructions from text-davinci-003

Human 60.39 67.31
Random 60.44 67.07
Auto-Instruct 62.88 69.45

Few-shot, instructions from ChatGPT/GPT-4

Human 60.39 67.31
Random 60.44 66.77
Auto-Instruct 62.32 68.16

Zero-shot, instructions from ChatGPT/GPT-4

Human 47.77 54.11
Random 46.22 53.06
Auto-Instruct 49.04 55.53

Table 2: SuperNI results of transferring Auto-Instruct
to ChatGPT and GPT-4, using either (1) instructions
generated by text-davinci-003, or (2) instructions gener-
ated by the same model as downstream inference (i.e.,
ChatGPT or GPT-4). The instruction ranking model is
still the one trained on text-davinci-003 instructions.

domain tasks are not seen by the ranking model,
it exhibits promising generalizability in selecting
effective instructions thanks to the training on hun-
dreds of different tasks. For example, on the Su-
perNI benchmark, it outperforms random selection
by 4% and 8% on few-shot and zero-shot settings
respectively. Besides, our complete pipeline deliv-
ers a relative 6% improvement over the original
human instructions in both few-shot and zero-shot
settings, indicating that the human-written instruc-
tions still need improvement in many contexts.

5.4 Analysis

In this section, we delve deeper into the perfor-
mance of our approach by analyzing the use of
other LLMs for instruction generation, the perfor-
mance on seen tasks, the size of training data, and
case studies. Additional analysis of the comparison
between Auto-Instruct and multi-answer ensemble
is in Appendix D. These analyses are conducted in
the few-shot setting unless stated otherwise.

5.4.1 Generalization to other LLMs
To further test the generalizability of our approach,
we transfer Auto-Instruct to other LLMs by us-
ing ChatGPT (gpt-3.5-turbo) and GPT-4 as down-
stream inference models. As Table 2 suggests, in-
structions selected by Auto-Instruct on text-davinci-
003 are still effective if transferred to ChatGPT and

Methods Selection Acc Win Rate
Top1 Top5 vs. Empty vs. Human

Human 45.25 70.35 22.43 -
Random 46.76 70.13 24.95 16.87
Cross-Validation 47.61 68.73 26.77 20.74
LM Selection 47.53 71.07 25.17 17.93
Auto-Instruct 52.54 73.10 29.51 23.89

Table 3: Evaluation of instruction ranking on silver la-
bels. Left: we evaluate the percentage of cases where the
selected instruction is the best (top-1) or is among top-5
candidates, according to the actual downstream perfor-
mance. We note that there could be multiple instructions
sharing the best score. Right: we check the percentage
of selected instructions that outperform either the empty
instruction or the human-written ones.

GPT-4. Furthermore, our instruction ranking model
is able to rank instructions generated by ChatGPT
or GPT-4 under both few-shot and zero-shot scenar-
ios, despite not having seen any instruction created
by these LLMs during training. Improved results
can also be seen when transferring Auto-Instruct
to LLaMA-2-chat (Touvron et al., 2023), a recent
open-source LLM, as shown in Appendix D.2. As a
conclusion, despite variations in phrasing across in-
structions generated by different LLMs, the under-
lying pattern determining instruction effectiveness
is transferable, although the largest improvement
is still seen in the same-LLM experiments. Suffice
to say, our trained instruction ranking model can
be directly applied to select instructions for other
LLMs without the need of re-training.

5.4.2 Evaluation of Instruction Ranking

To investigate the effectiveness of the instruction
ranking model, we compare it with other instruc-
tion selection baselines by assigning silver labels
to candidate instructions, with results detailed in
Table 3. First, we use the actual downstream per-
formance of the candidate instructions as silver
labels. Our ranking model is more capable of dis-
tinguishing better instructions, as shown by an evi-
dently higher accuracy of picking the top-1 or top-
5 instructions among all 22 candidates. Second,
we evaluate how often the selected instruction im-
proves the downstream performance in comparison
to either the empty instruction or the human-written
instruction. Once again, the instructions from our
ranking model makes the most significant improve-
ments, advancing the human-written counterparts
in 7% more cases than random selection. The con-

Methods Unseen Tasks Seen Tasks

Human 54.59 40.32
Random 55.57 39.74
Auto-Instruct 60.18 45.89
⊢ (vs. Random) (+8.3%) (+15.5%)

Table 4: Results on instruction-sensitive test data of both
seen tasks (100 tasks seen in training) and unseen tasks
(the same as Table 1) from SuperNI. We additionally
report the relative improvement ratio to the random
selection baseline since the vanilla performance is not
on the same scale.

0% 25% 50% 75% 100%
% Training Tasks

60.5

61.0

61.5

62.0

62.5

63.0

63.5

64.0

Av
g.

 R
OU

GE

Figure 4: Results of using different number of training
tasks. 0% means directly using the pre-trained FLAN-
T5 checkpoint in instruction ranking, which shows a
similar performance to random instruction selection.

sistent performance gain across all silver-label eval-
uations further corroborates the superiority of our
model over alternative ranking methods based on
cross-validation or LM selection.

5.4.3 Auto-Instruct on Seen Tasks

Besides the out-of-domain setting, we explore an
in-domain setting where we select additional exam-
ples from tasks seen during training, so as to further
examine the competency of the instruction rank-
ing model. For a fair comparison of the model’s
ranking abilities across different tasks, we experi-
ment with instruction-sensitive examples, defined
as examples where not all candidate instructions
yield the same ROUGE score. We sample 100 ad-
ditional examples from each of 100 tasks that are
seen in training but not included in the dev set. As
presented in Table 4, the model shows enhanced
ranking ability on seen tasks due to prior exposure
to the instructions during training. This indicates
that our approach is useful in both data-rich and
data-scarce circumstances.

5.4.4 Effect of More Training Tasks

To analyze the effect of large-scale multi-task train-
ing on out-of-domain generalizability, we manipu-
late the number of training tasks of the instruction
ranking model. Specifically, We exclude tasks from
the training set by their category, i.e., all tasks from
selected categories are removed. As shown in Fig-
ure 4, the increment in the number of training tasks
from additional categories is a key contributor to
the superior performance of our model compared
to the random selection baseline. Since the per-
formance has not plateaued when all tasks are in-
cluded, it is plausible to expect further performance
gains if more training tasks are available.

5.4.5 Analysis of the Selected Instructions

Figure 6 illustrates how our selected instructions
improve the original human instructions. As in-
dicated by the average similarity scores, Auto-
Instruct is able to provide instructions more simi-
lar to the optimal ones among the candidates. As
demonstrated by the scatter plot, in scenarios where
the selected instruction outperforms the human in-
struction, its embedding usually deviates signifi-
cantly from that of the human instruction but stays
close to the optimal one. These results suggest that
the selected instruction refines the human-written
seed instruction by progressing towards the ideal
solution, while the embedding distance between the
selected and seed instructions makes such improve-
ment hard to achieve by pure manual engineering.

In addition, we offer a case study in Figure 5
in the zero-shot setting where the LLM cannot re-
fer to any demonstrations. Nevertheless, the LLM
manages to generate additional examples using the
knowledge gained from its extensive pre-training.
These additional examples can act as demonstra-
tions to create a “2-shot inference” setting, leading
to a correct prediction that could not be achieved
via the original zero-shot inference. Conversely, we
also present an example where the LLM-generated
instruction includes hallucinated descriptions that
distort the original meaning of the seed instruc-
tion. The mismatch between this instruction and
the test example results in its rejection by the rank-
ing model. Readers may find further case studies
in Appendix F.

6www.sbert.net/docs/pretrained_models.html

www.sbert.net/docs/pretrained_models.html

Human Instruction: Given a tuple, determine whether the Head is used for the Tail or not. Only answer with “Yes” or “No”.

Generated Instruction (Selected by the Ranking Model): In this task, you are given a tuple which is a set of two
elements, Head and Tail. Your task is to determine whether the Head is used for the Tail or not. To do this, you need to
consider the meaning of the Head and Tail and determine whether the Head can be used to achieve the purpose of the Tail.
For example, if the Head is “hammer” and the Tail is “nailing a nail”, then the answer is “Yes” because a hammer can be
used to nail a nail. If the Head is “hammer” and the Tail is “cutting a board”, then the answer is “No” because a hammer
cannot be used to cut a board. Only answer with “Yes” or “No”.

Test Input: Head: dental floss. Tail: provide dental hygiene. Human Instruction
Answer: No

Auto-Instruct
Answer: Yes

Case Study (Zero-Shot)

Generated Instruction (Discarded by the Ranking Model): To determine whether the Head is used for the Tail or not, you
need to compare the two elements of the tuple. If the Head is the same as the Tail, then the answer is “Yes”. If the Head is
not the same as the Tail, then the answer is “No”.

Figure 5: In this case, Auto-Instruct selects an instruction which “transforms” the zero-shot inference to a “2-
shot” inference by providing additional examples (highlight in red), while discarding an instruction that includes
hallucination in the task description (highlight in blue). The human instruction is also included in ranking candidates.

Cosine Similarity GPT-ada-002 MPNet-base
Human v.s. Best 89.22 73.22
Auto-Instruct v.s. Best 91.20 75.43

Figure 6: Above: Instruction embeddings of 5 SuperNI
tasks where Auto-Instruct selected instruction performs
better than human instruction, as visualized by T-SNE.
“Best” refers to the instruction with the highest ROUGE
score. Below: Average cosine similarity between in-
struction embeddings on all SuperNI tasks. Two embed-
ding models are text-embedding-ada-002 from OpenAI
and all-mpnet-base-v2 from Sentence-Transformers6.
Best viewed in color.

6 Conclusion

In this work, we introduce Auto-Instruct, an au-
tomatic approach of generating, ranking and se-
lecting instructions, which offers a solution to the
high cost and subjectivity associated with human-
engineered instructions. Our approach begins by
prompting the LLM to generate a diverse set of
candidate instructions. Next, an instruction ranking
model trained on hundreds of tasks is used to rank

the candidate instructions and select the most effec-
tive one to solve a specific example. Experimental
results demonstrate that our approach provides bet-
ter instructions than both human-written ones and
those produced by previous instruction generation
approaches, as tested on 118 out-of-domain tasks.

Limitations

To our knowledge, this work has the following
limitations:

• Due to the considerable cost associated with
OpenAI models, and the limited capacity of
their API interface, we only score the can-
didate instructions on a moderate number of
tasks as described in §4.2.2. Given the re-
sults in Figure 4, we expect that the model
could demonstrate improved generalizability
if more training data with labeled instructions
were available.

• The scope of this study is limited to the gener-
ation of instructions in English; tasks in non-
English languages are not part of our training
data. As a result, the model might not perform
satisfactorily for non-English tasks. Further
investigation into generating cross-lingual in-
structions is left for future work.

• Despite employing a wide range of meta-
prompts, which significantly mitigates the de-
pendence on prompt engineering, the phrasing
of these meta-prompts could still influence the
quality of the instructions generated. We leave
the exploration of automatically diversify the
generated instructions as future work.

Acknowledgements

This work was supported by NSF IIS-2119531,
IIS-2137396, IIS-2142827, IIS-2234058, CCF-
1901059, and ONR N00014-22-1-2507. We thank
Canwen Xu (University of California San Diego)
for his valuable suggestions during paper writing.

References
Hyung Won Chung, Le Hou, Shayne Longpre, Barret

Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent Y. Zhao,
Yanping Huang, Andrew M. Dai, Hongkun Yu, Slav
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2022. Scaling instruction-finetuned language models.
ArXiv preprint, 2210.11416.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan
Wang, Han Guo, Tianmin Shu, Meng Song, Eric P
Xing, and Zhiting Hu. 2022. Rlprompt: Optimizing
discrete text prompts with reinforcement learning.
ArXiv preprint, 2205.12548.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong
Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, and
Zhifang Sui. 2023. A survey for in-context learning.
ArXiv preprint, 2301.00234.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text
degeneration. In 8th International Conference on
Learning Representations, ICLR 2020.

Or Honovich, Uri Shaham, Samuel R. Bowman, and
Omer Levy. 2022. Instruction induction: From
few examples to natural language task descriptions.
ArXiv preprint, 2205.10782.

Zhenwen Liang, Dian Yu, Xiaoman Pan, Wenlin Yao,
Qingkai Zeng, Xiangliang Zhang, and Dong Yu.
2023a. Let gpt be a math tutor: Teaching math word
problem solvers with customized exercise generation.
In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2023.

Zhenwen Liang, Dian Yu, Xiaoman Pan, Wenlin Yao,
Qingkai Zeng, Xiangliang Zhang, and Dong Yu.
2023b. Mint: Boosting generalization in mathe-
matical reasoning via multi-view fine-tuning. ArXiv
preprint, 2307.07951.

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu,
Song-Chun Zhu, Tanmay Rajpurohit, Peter Clark,
and Ashwin Kalyan. 2022a. Dynamic prompt learn-
ing via policy gradient for semi-structured mathemat-
ical reasoning. ArXiv preprint, 2209.14610.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022b. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2022.

Aditi Mishra, Utkarsh Soni, Anjana Arunkumar, Jinbin
Huang, Bum Chul Kwon, and Chris Bryan. 2023.
Promptaid: Prompt exploration, perturbation, testing
and iteration using visual analytics for large language
models. ArXiv preprint, 2304.01964.

OpenAI. 2023. GPT-4 technical report. ArXiv preprint,
2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex
Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter
Welinder, Paul F. Christiano, Jan Leike, and Ryan
Lowe. 2022. Training language models to follow
instructions with human feedback. In Annual Con-
ference on Neural Information Processing Systems
2020, NeurIPS 2022.

Ethan Perez, Douwe Kiela, and Kyunghyun Cho. 2021.
True few-shot learning with language models. In Ad-
vances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Process-
ing Systems 2021, NeurIPS 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2022. Learning to retrieve prompts for in-context
learning. In Proceedings of the 2022 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2022.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H.
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,
M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon
Kim, Gunjan Chhablani, Nihal V. Nayak, Debajyoti
Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han
Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong,
Harshit Pandey, Rachel Bawden, Thomas Wang, Tr-
ishala Neeraj, Jos Rozen, Abheesht Sharma, An-
drea Santilli, Thibault Févry, Jason Alan Fries, Ryan
Teehan, Teven Le Scao, Stella Biderman, Leo Gao,
Thomas Wolf, and Alexander M. Rush. 2022. Multi-
task prompted training enables zero-shot task gener-
alization. In The Tenth International Conference on
Learning Representations, ICLR 2022.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.

https://doi.org/10.48550/arXiv.2210.11416
https://arxiv.org/abs/2205.12548
https://arxiv.org/abs/2205.12548
https://doi.org/10.48550/arXiv.2301.00234
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.48550/arXiv.2205.10782
https://doi.org/10.48550/arXiv.2205.10782
https://doi.org/10.48550/arXiv.2305.14386
https://doi.org/10.48550/arXiv.2305.14386
https://doi.org/10.48550/arXiv.2307.07951
https://doi.org/10.48550/arXiv.2307.07951
https://arxiv.org/abs/2209.14610
https://arxiv.org/abs/2209.14610
https://arxiv.org/abs/2209.14610
https://aclanthology.org/2022.acl-long.556
https://aclanthology.org/2022.acl-long.556
https://aclanthology.org/2022.acl-long.556
https://doi.org/10.48550/arXiv.2304.01964
https://doi.org/10.48550/arXiv.2304.01964
https://doi.org/10.48550/arXiv.2304.01964
https://doi.org/10.48550/arXiv.2303.08774
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2021/hash/5c04925674920eb58467fb52ce4ef728-Abstract.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/2022.naacl-main.191
https://aclanthology.org/2022.naacl-main.191
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
http://proceedings.mlr.press/v80/shazeer18a.html
http://proceedings.mlr.press/v80/shazeer18a.html

In Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Proceedings of
Machine Learning Research.

Weijia Shi, Xiaochuang Han, Hila Gonen, Ari Holtzman,
Yulia Tsvetkov, and Luke Zettlemoyer. 2022. Toward
human readable prompt tuning: Kubrick’s the shining
is a good movie, and a good prompt too? ArXiv
preprint, 2212.10539.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with au-
tomatically generated prompts. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2020.

Chandan Singh, John X. Morris, Jyoti Aneja, Alexan-
der M. Rush, and Jianfeng Gao. 2022. iprompt: Ex-
plaining data patterns in natural language via inter-
pretable autoprompting. ArXiv preprint, 2210.01848.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi,
Denny Zhou, and Jason Wei. 2022. Challenging
big-bench tasks and whether chain-of-thought can
solve them. ArXiv preprint, 2210.09261.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. ArXiv preprint, 2307.09288.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Xinyi Wang, Wanrong Zhu, and William Yang Wang.
2023a. Large language models are implicitly topic

models: Explaining and finding good demonstrations
for in-context learning. ArXiv preprint, 2301.11916.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023b. Self-consistency im-
proves chain of thought reasoning in language mod-
els. In The Eleventh International Conference on
Learning Representations, ICLR 2023.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo-
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva
Naik, Arjun Ashok, Arut Selvan Dhanasekaran, An-
jana Arunkumar, David Stap, Eshaan Pathak, Gi-
annis Karamanolakis, Haizhi Gary Lai, Ishan Puro-
hit, Ishani Mondal, Jacob Anderson, Kirby Kuz-
nia, Krima Doshi, Kuntal Kumar Pal, Maitreya Pa-
tel, Mehrad Moradshahi, Mihir Parmar, Mirali Puro-
hit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit
Verma, Ravsehaj Singh Puri, Rushang Karia, Savan
Doshi, Shailaja Keyur Sampat, Siddhartha Mishra,
Sujan Reddy A, Sumanta Patro, Tanay Dixit, and
Xudong Shen. 2022. Super-naturalinstructions: Gen-
eralization via declarative instructions on 1600+ NLP
tasks. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2022.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. ArXiv preprint,
2109.01652.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed H Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. In Advances in Neu-
ral Information Processing Systems, NeurIPS 2022.

Jules White, Quchen Fu, Sam Hays, Michael Sandborn,
Carlos Olea, Henry Gilbert, Ashraf Elnashar, Jesse
Spencer-Smith, and Douglas C. Schmidt. 2023. A
prompt pattern catalog to enhance prompt engineer-
ing with chatgpt. ArXiv preprint, 2302.11382.

Xi Ye and Greg Durrett. 2023. Explanation selection
using unlabeled data for in-context learning. ArXiv
preprint, 2302.04813.

Mengxia Yu, Zhihan Zhang, Wenhao Yu, and Meng
Jiang. 2023. Pre-training language models for com-
parative reasoning. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2023.

Zhihan Zhang, Wenhao Yu, Zheng Ning, Mingxuan Ju,
and Meng Jiang. 2023. Exploring contrast consis-
tency of open-domain question answering systems
on minimally edited questions. Transactions of the
Association for Computational Linguistics, TACL, 11.

Zhihan Zhang, Wenhao Yu, Chenguang Zhu, and Meng
Jiang. 2022a. A unified encoder-decoder framework

https://arxiv.org/abs/2212.10539
https://arxiv.org/abs/2212.10539
https://arxiv.org/abs/2212.10539
https://aclanthology.org/2020.emnlp-main.346/
https://aclanthology.org/2020.emnlp-main.346/
https://aclanthology.org/2020.emnlp-main.346/
https://doi.org/10.48550/arXiv.2210.01848
https://doi.org/10.48550/arXiv.2210.01848
https://doi.org/10.48550/arXiv.2210.01848
https://doi.org/10.48550/arXiv.2210.09261
https://doi.org/10.48550/arXiv.2210.09261
https://doi.org/10.48550/arXiv.2210.09261
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://arxiv.org/abs/2301.11916
https://arxiv.org/abs/2301.11916
https://arxiv.org/abs/2301.11916
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://aclanthology.org/2022.emnlp-main.340
https://aclanthology.org/2022.emnlp-main.340
https://aclanthology.org/2022.emnlp-main.340
https://doi.org/10.48550/arXiv.2109.01652
https://doi.org/10.48550/arXiv.2109.01652
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://doi.org/10.48550/arXiv.2302.11382
https://doi.org/10.48550/arXiv.2302.11382
https://doi.org/10.48550/arXiv.2302.11382
https://arxiv.org/abs/2302.04813
https://arxiv.org/abs/2302.04813
https://doi.org/10.48550/arXiv.2305.14457
https://doi.org/10.48550/arXiv.2305.14457
https://transacl.org/ojs/index.php/tacl/article/view/5031
https://transacl.org/ojs/index.php/tacl/article/view/5031
https://transacl.org/ojs/index.php/tacl/article/view/5031
https://doi.org/10.18653/v1/2022.emnlp-main.43

with entity memory. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2022.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2022b. Automatic chain of thought prompt-
ing in large language models. ArXiv preprint,
2210.03493.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2022. Large language models are human-level
prompt engineers. ArXiv preprint, 2211.01910.

A Training Data Pre-Processing

As detailed in §4.2, the instruction ranking model is
trained to rank candidate instructions against their
downstream performance on the LLM. The down-
stream performance of an instruction Ic refers to
how well the LLM’s predicted output ŷ matches the
ground-truth output y when using Ic to prompt the
LLM, as quantified by the ROUGE-L score r(y, ŷ).
To calculate this score, we pair each training exam-
ple with all 22 candidate instructions of the corre-
sponding task (generated with the method in §4.1),
and collect the LLM’s predicted output to the ex-
ample prompted by each candidate instruction. Af-
ter calculating the ROUGE-L scores against the
ground-truth, we discard examples where candi-
date instructions are not distinctly rankable – in
cases where the range of downstream performance
across different instructions is less than 10 points
in ROUGE-L.

To accelerate the training process, we sample 8
candidate instructions from the total pool of 22 for
each example, and train the model to rank these
8 instructions. However, in some tasks, certain
instructions may significantly outperform others.
Uniformly sampling 8 candidate instructions could
result in such “extraordinary” instructions being
disproportionately favored too many times in the
training of the ranking model. To address this, we
inversely proportion the sampling rate of each in-
struction to its popularity (i.e., the number of cases
where this instruction is superior to all others). Fi-
nally, we sample up to 400 examples from each
training task, which leads to 122k training exam-
ples in total.

B Detailed Experimental Settings

The instruction ranking model is initialized with
FLAN-T5-Large (780M parameters; Chung et al.,
2022), and is trained using Adafactor (Shazeer and
Stern, 2018) with learning rate 5e-5, batch size 128
and dropout rate 0.1. We employ an in-domain
dev set including a total of 5k unseen examples
from 100 training tasks to select the best check-
point within 5 epochs. The validation performance
on the dev set is 67.66 in ROUGE-L, while random
selection only achieves a score of 54.28. When
using OpenAI models, for instruction generation,
we set the maximum instruction length to be 300 to-
kens, and we use a temperature of 1.0 and top_p of
0.75 for token sampling; for downstream inference,
we set both to 0 for deterministic outputs. Gen-

https://doi.org/10.18653/v1/2022.emnlp-main.43
https://arxiv.org/abs/2210.03493
https://arxiv.org/abs/2210.03493
https://doi.org/10.48550/arXiv.2211.01910
https://doi.org/10.48550/arXiv.2211.01910

Data:
Input: [input of demonstration #1]
Output: [output of demonstration #1]
……
Input: [input of demonstration #n]
Output: [output of demonstration #n]

Instruction:

Figure 7: The meta-prompt of instruction generation
with iPrompt7.

Write an instruction on how to solve the
following task.

Task: [seed instruction]

Examples:
Input: [input of demonstration #1]
Output: [output of demonstration #1]
……
Input: [input of demonstration #n]
Output: [output of demonstration #n]

Instruction:

Figure 8: The meta-prompt of instruction generation
with iPrompt+, similar to ours in Figure 10.

erating all candidate instructions for 91 SuperNI
test tasks cost us 18 USD in total, according to
OpenAI’s pricing (0.02 USD per 1k tokens for text-
davinci-003). In text-davinci-003 experiments, the
random selection score is calculated as the aver-
age score across all instructions on each example,
including the human-written seed instruction. In
ChatGPT and GPT-4 instructions, due to the lim-
ited capacity of their API interfaces, we randomly
sample an instruction for each example and test its
performance.

C The iPrompt Baseline

In this section, we outline the adaptations made to
the iPrompt8 (Singh et al., 2022) method for our
setting. We mainly address two discrepancies be-
tween its original implementation and our setup:
(1) the original iPrompt generates instructions us-
ing GPT-J (Wang and Komatsuzaki, 2021), and (2)
it uses a validation set to score and select instruc-
tions. To address (1), we use text-davinci-003 for
its instruction generation, identical to the model

7In the original iPrompt implementation, the meta-prompt
ends with the suffix Prompt:. However, this leads to incoher-
ent instruction generation on our benchmarks. Therefore, we
changed it to Instruction: which addressed this issue.

8www.github.com/csinva/imodelsX/tree/master/
imodelsx/iprompt

used for downstream inference. For (2), we con-
duct its instruction validation on the 3-shot demon-
strations. Due to the cost of iteratively requesting
the OpenAI API, we incorporate an early stopping
criterion which halts the process if the validation
performance9 has not improved for 10 iterations.
Actually, almost all tasks stopped before 30 iter-
ations. Following this, We select the instruction
with the best validation performance to evaluate on
the test examples.

According to the original codebase, we use the
meta-prompt shown in Figure 7 for instruction gen-
eration with iPrompt. Since this meta-prompt does
not utilize any task description, for a fair compar-
ison, we implement an iPrompt+ baseline with a
similar meta-prompt to our method which utilizes
the seed instruction, as shown in Figure 8. Readers
can refer to the original paper (Singh et al., 2022)
for technical details of iPrompt.

D Additional Experimental Results

In this section, we present more experimental re-
sults in addition to those analyzed in Section 5. All
experiments in this section are conducted in the
few-shot setting unless stated otherwise.

D.1 SuperNI Results by Task Category

Here, we present the detailed experimental results
on 8 different categories of SuperNI test tasks (see
Appedix G for the list of test tasks). As shown
in Figure 9, Auto-Instruct surpasses the human-
written and random instructions no matter it is
evaluated on classification, extraction or genera-
tion tasks, with the only exception as answerability
classification. Notably, Auto-Instruct outperforms
the original human-written instruction by 10%, 9%
and 8% on commonsense classification (classifica-
tion tasks), word analogy (short generation tasks)
and dialogue generation (long generation tasks),
respectively.

D.2 Generalization to Other LLMs

In addition to Section 5.4.1, we further assess the
generalizability of Auto-Instruct to open-source
LLMs. As demonstrated in Table 5, instructions
selected by Auto-Instruct enhance the performance
of LLaMA-2-chat (Touvron et al., 2023). This once
again underscores the capability of Auto-Instruct

9The average ROUGE-L score between the LLM’s pre-
dicted output and the ground-truth on validation data.

www.github.com/csinva/imodelsX/tree/master/imodelsx/iprompt
www.github.com/csinva/imodelsX/tree/master/imodelsx/iprompt

Human Random Selected75

77

79

81

83

77.65

79.78

81.35

Coherence Classification

Human Random Selected40

41

42

43

44

45

41.82
42.44

42.98

Data to Text

Human Random Selected68

69

70

71

72

70.12
70.61

70.3

Answerability Classification

Human Random Selected65

67

69

71

73

67.57 68.04

70.44

Information Extraction

Human Random Selected58

60

62

64

66

68

70

61.28
62.41

67.17

Commonsense Classification

Human Random Selected60

62

64

66

68

70

72

63.59 62.98

69.06

Word Analogy

Human Random Selected60

62

64

66

62.8

63.79 64.02

Code to Text

Human Random Selected32

34

36

38

34.13
34.66

36.73

Dialogue Generation

Figure 9: Few-shot performance of instructions selected by Auto-Instruct (denoted as “Selected”) on all 8 categories
of SuperNI test tasks, compared to human-written and random selected instructions.

Methods LLaMA-2-chat-7B

Few-shot, instructions from text-davinci-003

Human 53.87
Random 54.18
Auto-Instruct 55.90

Table 5: SuperNI results of transferring Auto-Instruct
to LLaMA-2-chat-7B, using instructions generated by
text-davinci-003. The instruction ranking model is still
the one trained on text-davinci-003 instructions.

to generalize across different LLMs without re-
training the instruction ranking model. It is worth
noting that we use instructions generated by text-
davinci-003 in these experiments, because both
the 7B and 13B versions of LLaMA-2-chat exhibit
weaker abilities in following our meta-prompts for
instruction generation, contrasted with mega-size
GPT models. We leave the study of instruction
generation with recent open-source LLMs as future
work.

D.3 Compare to Answer Ensemble
Given that Auto-Instruct includes sampling mul-
tiple candidate instructions before selecting the
best one, we compare it to another sampling ap-
proach, i.e., sampling and ensembling multiple an-
swers. Using the original human-written instruc-
tion, we sample responses 10 times with nucleus
sampling (Holtzman et al., 2020), without sam-
pling multiple instructions. Then, we ensemble
all 10 responses by marginalizing the LM prob-
ability of each unique response before selecting
the most probable one, similar to the idea of self-

Method Score

Human 60.94
Human (Ensemble) 61.08
Auto-Instruct 64.35

Table 6: Results of multi-answer ensemble prompted by
human-written instructions on SuperNI test tasks.

consistency (Wang et al., 2023b). The results,
shown in Table 6, indicate that the answer ensem-
ble approach only brings a marginal improvement
on SuperNI, which is not comparable to the perfor-
mance gain achieved with Auto-Instruct.

E Meta-Prompts for Instruction
Generation

In this section, we list all meta-prompts utilized dur-
ing instruction generation, as outlined in §4.1. For
the zero-shot setting, we omit the “Examples” field
in the meta-prompt to let the LLM rephrase the seed
instruction. Besides, the meta-prompt with explana-
tions to the demonstrations is not applicable in the
zero-shot setting. The meta-prompt that uses other
tasks as demonstrations (Figure 10e) is integrated
with three groups of demonstration tasks, each vary-
ing in the average instruction length. Therefore, the
LLM is prompted to generate instructions of similar
granularity to the demonstration tasks. Demonstra-
tion tasks are sampled from SuperNI. In SuperNI,
each task is paired with a concise task summary
and a detailed task definition which is usually much
longer. For each demonstration task, we use the

Write an instruction on how to solve the
following task in one sentence.

Task: [seed instruction]

Examples:
Input: [input of demonstration #1]
Output: [output of demonstration #1]
……
Input: [input of demonstration #n]
Output: [output of demonstration #n]

Instruction:

(a) One-sentence instruction

Write an instruction on how to solve the
following task in one paragraph.

Task: [seed instruction]

Examples:
Input: [input of demonstration #1]
Output: [output of demonstration #1]
……
Input: [input of demonstration #n]
Output: [output of demonstration #n]

Instruction:

(b) One-paragraph instruction

Write a step-by-step instruction on how
to solve the following task.

Task: [seed instruction]

Examples:
Input: [input of demonstration #1]
Output: [output of demonstration #1]
……
Input: [input of demonstration #n]
Output: [output of demonstration #n]

Instruction:

(c) Step-by-step instruction

Write a step-by-step instruction on how
to solve the following task.

Task: [seed instruction]

Examples:
Input: [input of demonstration #1]
Output: [output of demonstration #1]
……
Input: [input of demonstration #n]
Output: [output of demonstration #n]

Instruction:

(d) Example explanation instruction

Write an instruction on how to solve the following task.

Task: [seed instruction of task #1]

Examples: [input-output demonstrations of task #1]

Instruction: [instruction of task #1]
……

Task: [seed instruction of task #N]

Examples: [input-output demonstrations of task #N]

Instruction: [instruction of task #N]

Task: [seed instruction of the test task]

Examples: [input-output demonstrations of the test task]

Instruction:

(e) Use other tasks as demonstrations

Figure 10: Meta-prompts that we use to specify different desired styles of instructions during instruction generation.
For Figure 10e, we collect 3 groups of demonstration tasks with varying average instruction length (short, medium,
long), so as to guide the LLM to generate instructions of different granularities.

task summary as the seed instruction and the task
definition as the target instruction. We abstain from
utilizing the task definition in test tasks because (1)
some task definitions are too long to fit in the T5
model together with the input (2) we practically
find that the LLM tends to repeat the task definition
to a large extent if it is used as the seed instruction.
Although Auto-Instruct has never seen the much
longer task definition of test tasks, our selected in-
struction still performs better than using the task
definition as the instruction, which holds an av-
erage score of 62.41 on SuperNI in the few-shot
setting. We leave the exploration of integrating
more complicated instructions as future work.

F Additional Case Study

In this section, we provide 3 more cases (2 few-shot
and 1 zero-shot) where Auto-Instruct improves the
original human-written instructions. These case
studies are shown in Figure 11, 12, and 13. Please
refer to the corresponding captions for detailed case
explanations.

G All Test Tasks

In Table 7, we list all 91 SuperNI test tasks used
in our out-of-domain experiments. Since the size
of tasks is imbalanced on SuperNI, for efficient
evaluation, we randomly sample 200 instances for
each task, making a total of 18,200 test examples.

Human Instruction: Given a sentence from a medical study paper, select the tokens representing information about participants.

Auto-Instruct: Scan the sentence and look for information related to participants, such as descriptions of age, numbers, or
health conditions, and select the tokens that encapsulate this information. For example, given the sentence “Participants were 58
children (46 boys) with autism between 3 and 4 years of age”, the output should be “58 children (46 boys) with autism between
3 and 4 years of age.”

Test Input: To consider the impact on primary care patient outcomes of
using both a screener to determine elevated anxiety levels among patients
with previously undetected anxiety and a physician intervention to inform
physicians of their patients’ conditions .

Human Instruction Answer: patients

Auto-Instruct Answer: patients with
previously undetected anxiety

Case Study (Few-Shot)

Figure 11: A case study in the few-shot setting, where the few-shot demonstrations are omitted for brevity. The
initial human-written instruction provides general guidelines for extracting participant information from a medical
study. However, it does not specify the scope of such information, leading to an answer that only includes the
keyword “patients” but ignores other relevant information. In contrast, Auto-Instruct provides an instruction that
delineates the types of participant information to be extracted (highlight in red), after seeing the output formats
of the demonstrations. Prompted by the improved instruction which suggests health conditions are examples of
the requested information, the LLM generates a more comprehensive answer that incorporates the patients’ health
conditions, i.e., “with undetected anxiety”.

Human Instruction: Task description: Answer questions about which times certain events could have occurred.

Auto-Instruct: To solve this task, you must answer questions about when certain events could have occurred. To do this,
you must analyze the information given in the question and the given examples.
For each example, you must analyze the information given about the events that happened before and after the event you
are trying to find the time for. The question will usually give you the time that the person woke up and the time when the
event they are going to closed. From this, you must determine the time frame in which the event could have occurred.
For example, in the first example, we know that Emily woke up at 1pm and the museum closed after 7pm. Therefore, the
time frame in which Emily could have gone to the museum is between 1pm and 7pm. From the other information given,
we know that Emily was at the library from 2pm to 4pm, at the theater from 4pm to 5pm, at the airport from 5pm to 6pm,
and at the mall from 6pm to 7pm. Therefore, the only time frame in which Emily could have gone to the museum is
between 1pm and 2pm. Therefore, the correct answer is (A)… (explanations of other two demonstrations are omitted)

Test Input: Today, Jason went to the movies. Between what times could they have gone?
We know that: Jason woke up at 10am. Linda saw Jason getting a coffee at the cafe from
10am to 3pm. Jennifer saw Jason walking towards the Statue of Liberty from 6pm to 7pm.
Sean saw Jason buying a phone at the electronics store from 7pm to 10pm. The movies was
closed after 10pm. Between what times could Jason have gone to the movies?
Options: (A) 3pm to 6pm (B) 10am to 3pm (C) 7pm to 10pm (D) 6pm to 7pm

Human Instruction
Answer: (C)

Auto-Instruct
Answer: (A)

Case Study (Few-Shot)

Figure 12: A case study in the few-shot setting, where the few-shot demonstrations are omitted for brevity. The
human instruction provides a general and concise description of the question’s requirements. In contrast, generated
based on the demonstrations, the instruction from Auto-Instruct offers a more concrete description about the
information present in the input and emphasizes which aspects should be focused on (highlight in red). Besides,
Auto-Instruct provides explanations of the few-shot demonstrations as complementary information for the LLM to
understand these examples.

Human Instruction: Categorize the knowledge required to answer a pronoun coreference resolution question. Only choose
your answer from “Quantity”, “Object”, “Others”, “Property”, “Spatial”, and “Temporal”.

Auto-Instruct: In this task, you will be given a pronoun coreference resolution question and you need to categorize the
knowledge required to answer the question. You can only choose your answer from the provided list: “Quantity”, “Object”,
“Others”, “Property”, “Spatial”, and “Temporal”. “Quantity” knowledge refers to the knowledge of quantities, such as how
many, how much, etc. “Object” knowledge refers to the knowledge of the properties of objects, such as size, color, etc.
“Others” knowledge refers to the knowledge of entities other than objects, such as people, places, events, etc. “Property”
knowledge refers to the knowledge of the properties of entities, such as occupation, location, etc. “Spatial” knowledge
refers to the knowledge of the spatial relations between entities, such as distance, direction, etc. “Temporal” knowledge
refers to the knowledge of the temporal relations between entities, such as order, sequence, etc.

Test Input: Sentence: The painting in Mark's living room shows an oak
tree. It is to the right of the bookcase. The “It” refers to the painting.
Question: What is the knowledge type needed to solve this relation?

Human Instruction Answer: Spatial

Auto-Instruct Answer: Property

Case Study (Zero-Shot)

Figure 13: In this zero-shot classification case, the human-written instruction only provides the name of each
category. As a result, the LLM can only attempt to determine the target category based on these single-word surface
names, which often lack sufficient clarity for differentiation. In contrast, the instruction provided by Auto-Instruct
explains the meaning of each category, which greatly facilitates the LLM’s comprehension of these categories. While
Auto-Instruct tends to over-interpret when explaining the “Others” category, most of the additional information
(highlight in red) are useful for making more accurate predictions.

Task Category Task Names

Coherence
Classification

task066_timetravel_binary_consistency_classification task070_abductivenli_incorrect_classification
task1573_samsum_classification task065_timetravel_consistent_sentence_classification
task298_storycloze_correct_end_classification

Data to Text
task1728_web_nlg_data_to_text task1407_dart_question_generation
task677_ollie_sentence_answer_generation task1409_dart_text_generation
task1598_nyc_long_text_generation task957_e2e_nlg_text_generation_generate

Answerability
Classification

task349_squad2.0_answerable_unanswerable_question_classification task226_english_language_answer_relevance_classification
task020_mctaco_span_based_question task290_tellmewhy_question_answerability
task1439_doqa_cooking_isanswerable task1442_doqa_movies_isanswerable
task242_tweetqa_classification task1624_disfl_qa_question_yesno_classification
task520_aquamuse_answer_given_in_passage task050_multirc_answerability

Information
Extraction

task1506_celebrity_minimal_dob_span task1517_limit_classfication
task456_matres_intention_classification task388_torque_token_classification
task1518_limit_answer_generation task1410_dart_relationship_extraction
task676_ollie_relationship_answer_generation task180_intervention_extraction
task749_glucose_reverse_cause_emotion_detection task684_online_privacy_policy_text_information_type_generation
task958_e2e_nlg_text_generation_parse task1413_dart_object_identification
task292_storycommonsense_character_text_generation task578_curiosity_dialogs_answer_generation
task1597_nyc_slot_filling task747_glucose_cause_emotion_detection
task678_ollie_actual_relationship_answer_generation task1510_evalution_relation_extraction
task1451_drug_dose_extraction task683_online_privacy_policy_text_purpose_answer_generation
task179_participant_extraction task1411_dart_subject_identification
task181_outcome_extraction task748_glucose_reverse_cause_event_detection
task621_ohsumed_yes_no_numerical_answer_generation task647_answer_generation

Commonsense
Classification

task1210_atomic_classification_madeupof task1215_atomic_classification_capableof
task1216_atomic_classification_causes task1202_atomic_classification_xneed
task136_winowhy_knowledge_categorization task1196_atomic_classification_oeffect
task291_semeval_2020_task4_commonsense_validation task1208_atomic_classification_xreason
task1206_atomic_classification_isbefore task1197_atomic_classification_oreact
task1213_atomic_classification_desires task116_com2sense_commonsense_reasoning
task1201_atomic_classification_xintent task1198_atomic_classification_owant
task1212_atomic_classification_hasproperty task1203_atomic_classification_xreact
task1214_atomic_classification_xwant task1200_atomic_classification_xeffect
task1209_atomic_classification_objectuse task1204_atomic_classification_hinderedby
task1207_atomic_classification_atlocation task1205_atomic_classification_isafter
task1199_atomic_classification_xattr

Word Analogy

task1156_bard_analogical_reasoning_tools task1159_bard_analogical_reasoning_containers
task1155_bard_analogical_reasoning_trash_or_treasure task1157_bard_analogical_reasoning_rooms_for_containers
task1154_bard_analogical_reasoning_travel task1158_bard_analogical_reasoning_manipulating_items
task1152_bard_analogical_reasoning_causation task1153_bard_analogical_reasoning_affordance

Code to Text
task131_scan_long_text_generation_action_command_long task129_scan_long_text_generation_action_command_short
task110_logic2text_sentence_generation

Dialogue
Generation

task1603_smcalflow_sentence_generation task1714_convai3_sentence_generation
task360_spolin_yesand_response_generation task574_air_dialogue_sentence_generation
task565_circa_answer_generation task576_curiosity_dialogs_answer_generation
task1600_smcalflow_sentence_generation task1729_personachat_generate_next
task1730_personachat_choose_next task361_spolin_yesand_prompt_response_classification

Table 7: All SuperNI test tasks, grouped into different categories. These task categories are not seen during the
training of the instruction ranking model. Besides, any task that is sourced from the same original dataset as any test
task is excluded from training.

