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ABSTRACT
Graphics rendering on web browsers serves as the foundation for
numerous web applications. In contrast to the widely employed
WebGL, the next-generation web graphics API, WebGPU, demon-
strates an enhanced capacity to adapt to modern GPU features,
boasting even more significant potential. Nevertheless, our eval-
uation shows that the current prevalent performance of graphics
rendering frameworks based on WebGPU lags behind those built
on WebGL. This discrepancy primarily arises from an incomplete
alignment withWebGPU’s distinctive attributes. The individual ren-
dering of each graphic leads to redundant communication between
the CPU and GPU. To enhance the graphics performance on the
web, we introduce the FusionRender to harness the power of We-
bGPU. To mitigate redundant communication, it assigns a unique
signature to each object that requires rendering and employs these
signatures for grouping, enabling the consolidation of graphic ren-
dering whenever possible. In simulated experiments involving the
rendering of multiple objects, FusionRender demonstrates a median
rendering performance improvement of 29.3%-122.1% compared
to the existing optimal baseline. In real cases with more complex
features, performance improvement ranges from 9.4% to 39.7%. Ad-
ditionally, FusionRender exhibits robust performance across various
devices and browsers.

CCS CONCEPTS
• Information systems → Web applications; • Computing
methodologies→ Rendering; • Software and its engineering
→ Software performance.

KEYWORDS
Web applications; Graphics; WebGPU; Performance optimization

1 INTRODUCTION
Web graphic rendering is foundational for many web applications,
encompassing online games [7, 12, 15], web-based virtual real-
ity [2, 17, 34], and digital exhibitions [13, 19]. While WebGL [64]
currently stands as the extensively adopted web graphics API, its
foundation in OpenGL ES [37] design restricts its compatibility with
contemporary hardware owing to historical constraints. Emerging
as the next-generation web graphics API, WebGPU [65] is built
upon Microsoft’s Direct3D 12 [52], Apple’s Metal [18], and The
Khronos Group’s Vulkan [38]. In contrast to WebGL, WebGPU
holds more significant potential, promising new avenues for the
evolution of graphic rendering in web browsers. Main browsers,
including Chrome and Firefox have laid the groundwork for prelim-
inary WebGPU support [50, 67]. Safari used to support WebGPU
but has discontinued the experimental feature and is undergoing
modifications [5, 51]. In April 2023,WebGPUwas enabled by default
in the Chrome browser’s testing version [21].

Currently, there is rapid development in the field of graphics ren-
dering frameworks utilizing WebGPU. Several previously popular
graphics rendering frameworks in web browsers have incorporated
support for WebGPU, such as Three.js [14], Babylon.js [3], and
PlayCanvas [11]. Besides, novel graphics rendering frameworks
based on WebGPU, like Orillusion [9], have also emerged. How-
ever, our understanding of their performance remains limited. We
have collected information on several prominent frameworks to
grasp the current landscape of WebGPU-based graphic rendering
frameworks and conducted preliminary performance assessments.
However, contrary to expectations, the performance of WebGPU-
based rendering falls behind that ofWebGL-based frameworks. This
discrepancy conflicts with WebGPU’s design objectives and our
preliminary performance tests.

The main issue here is that the current framework does not effec-
tively harness the potential of WebGPU. It involves separate state
configuration and data transmission for each graphic, sequentially
rendering different graphics and communicating draw commands
and data for each one individually. However, due to WebGPU’s ca-
pability for global pipeline configuration, the problem encountered
in WebGL, where sequentially configuring each state is necessary
due to using a global state machine, can be avoided. As a result,
multiple graphics rendering processes can be merged to reduce
communication overhead.

In pursuit of more efficient web graphic rendering, we aim to
maximize the consolidation of graphics rendering to minimize re-
dundant communication overhead. To achieve the objective, we
face several challenges. First of all, determining which objects can
be consolidated poses a question. The feasibility of merging diverse
graphics into a single rendering pipeline hinges on something other
than the graphics’ shapes but rather on their rendering configura-
tions. Besides, the consolidation of data and computations demands
attention. The data positions from multiple objects in the buffer can
shift after merging, requiring identifying the correct data during
calculations.

To fully unleash the potential of WebGPU, we introduce Fu-
sionRender, a system designed to enhance graphic rendering per-
formance in web browsers by merging graphics rendering and
reducing communication overhead. We can achieve enhanced per-
formance by integrating established graphics rendering frameworks
into FusionRender and leveraging the new renderer.

During the rendering process, FusionRender initially groups ob-
jects and consolidates the rendering of graphics within the same
group, thereby reducing the frequency of CPU-to-GPU communi-
cation. To determine which objects can be merged for rendering,
FusionRender analyzes each object and assigns a signature. Sub-
sequently, signatures with the same hash value are identified, en-
abling the grouping of graphics based on their signatures. Graphics
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within the same group are then rendered using the same rendering
pipeline.

When rendering the group of objects together, the data is con-
catenated and transmitted to the GPU. To ensure that the data
required for each graphic’s rendering is accessible after merging,
FusionRender employs instance indices to track individual objects.
Building upon the abovementioned method, we have considered
dividing the merge operations into several batches for submission.

We conducted a comprehensive performance evaluation of Fu-
sionRender. It exhibited improved rendering frame rates in the simu-
lated experiments compared to all baseline frameworks. Compared
to the best-performing baseline framework, the median perfor-
mance improvement across varying scene complexities was 29.3%-
122.1%. In real-world scenarios with more complex features, Fu-
sionRender delivered an overall performance boost ranging from
9.4% to 39.7%. We also examined the impact of different devices and
browsers and found that FusionRender consistently excelled across
diverse contexts.

While WebGPU is currently in its early implementation stage
and lacks support for some features, it holds the potential for sig-
nificant performance improvements beyond the baseline provided
by WebGL as it evolves and matures. One notable aspect is that
mainstream browsers have not yet implemented the CPU multi-
threading functionality envisioned in WebGPU’s design. This op-
timization complements our approach and can be combined with
it. Our work aims to serve as an initial exploration of WebGPU’s
capabilities using the already supported features.

In summary, our principal contributions are as follows:
• We find the current underperformance of WebGPU-based

web rendering frameworks to WebGL, indicating an under-
utilization of WebGPU’s capabilities.

• We propose FusionRender, leveraging WebGPU’s features
to enhance web graphic rendering efficiency through re-
duced communication frequency.

• We conduct comprehensive experiments, confirming Fu-
sionRender’s favorable performance optimization across
diverse scenarios.

In the remaining sections of this paper, we introduce the back-
ground and motivation in section 2, discuss the system design in
section 3, present the evaluations in section 4, explore related work
in section 5, and conclude in section 6.

2 BACKGROUND AND MOTIVATION
In this section, we will initially showcase the priciples of 3D graph-
ics rendering. We then introduce the potential of WebGPU by delv-
ing into its intended objectives and conducting simple experiments.
Subsequently, we will investigate the current status of current
graphics rendering frameworks in web browsers based onWebGPU.

2.1 Graphics Rendering on Web Browsers
Essential components required for graphics rendering are depicted
in Figure 1. The renderer requires information for rendering graph-
ics, including the camera and the scene. The camera observes the
scene from a particular perspective, obtaining a two-dimensional
projection of the three-dimensional scene on the plane. The scene
comprises objects and light sources.

Figure 1: Key components of a graphics rendering system

The graphics pipeline is a sequence of operations that processes
the vertices and textures of a mesh into pixels in the render tar-
get [16]. InWebGL andWebGPU, users can configure the Vertex and
Fragment Stage within the rendering pipeline. In the Vertex Stage,
the GPU calculates the position of each vertex, and in the Fragment
Stage, the GPU computes the color of each fragment. Input data for
these two stages can be configured through GPU buffers. The code
that runs is called the vertex/fragment shader, and it is executed
for each vertex/fragment with GPU parallel computation.

2.2 Potential of WebGPU
The WebGPU API [65] enables web developers to use the under-
lying system’s GPU (Graphics Processing Unit) to carry out high-
performance computations and draw complex images that can be
rendered in the browser. Serving as the successor to WebGL [64],
WebGPU offers enhanced compatibility with modern GPUs, allow-
ing web applications to fully leverage GPU capabilities and attain
superior performance. This is particularly advantageous for appli-
cations that demand graphics rendering capabilities.

The primary purpose of WebGPU is to address the foundational
shortcomings of WebGL. While WebGL has been a widely utilized
graphics API on the web since its proposal in 2011, it faces limita-
tions in accommodating the latest hardware advancements. WebGL
is rooted in the OpenGL ES API [37] and employs a global state
machine. It utilizes separate APIs for configuring various parame-
ters within the rendering pipeline. However, this approach can only
partially use the capabilities of modern CPUs and GPUs, primarily
due to its historical constraints. In contrast, WebGPU is constructed
upon cutting-edge graphics technologies such as Direct3D 12 [52],
Metal [18], and Vulkan [38].

When compared to WebGL, WebGPU offers the following ad-
vantages:

(1)Minimized CPUOverhead: TheWebGL API closely mirrors
the OpenGL ES API. On contemporary devices employing Direct3D
12, Metal, or Vulkan, notable CPU overhead stems from translation
processes. In contrast, WebGPU was meticulously crafted with this
concern in focus, streamlining its implementation on Metal, D3D12,
and Vulkan without necessitating convoluted browser integrations.
Furthermore, whileWebGL/OpenGL conducts error checks for each
command, resulting in substantial runtime overhead, these checks
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(a) Performance comparison (b) Performance of current frameworks

Figure 2: Performance comparison of WebGL and WebGPU
(a), and performance comparison of current frameworks (b)

are vital during development but unnecessary during runtime. We-
bGPU effectively sidesteps this issue entirely.

(2) Reduced Data communication: In WebGL, states are se-
quentially established, necessitating the configuration of the GPU
for each state. During rendering, the GPU driver must ascertain
the feasibility of global optimization. In WebGPU, the traditional
approach of configuring individual states as global states has been
replaced. Instead, all pipeline states are combined and effortlessly
copied to the GPU’s designated destination via memory copying.
This approach significantly mitigates CPU-GPU communication
and contributes to enhanced global optimization.

(3) Enable CPU multithreading:WebGPU offers better sup-
port for parallel processing with CPU multithreading. Unlike We-
bGL, where each command can potentially alter the global state,
making it unsuitable for multithreaded parallel processing, We-
bGPU’s execution process is divided into command recording and
command execution. During command recording, all WebGPU com-
mands are saved to a buffer, which is then submitted for execution.
Since command recording is a purely CPU operation, it can be
parallelized using CPU multithreading.

Due to the current lack of support for CPU multithreading in
WebGPU implementations of mainstream browsers, the practical
WebGPU optimization features available for graphics rendering are
limited to (1) and (2) mentioned above. With the future implemen-
tation of CPU multithreading support in WebGPU, its capabilities
are expected to be further enhanced.

2.3 Motivation Experiments
2.3.1 Validating the Potential of WebGPU. To practically evaluate
the potential of WebGPU, we employed both WebGPU and WebGL
to render an equal number of moving spheres. We made concerted
efforts to maintain code consistency between the two versions
beyond the realm of graphic rendering. The experimentation took
place on a MacBook utilizing the Chrome browser.

Figure 2(a) visually represents the FPS (frame per second) fluctu-
ations corresponding to the increased number of rendered spheres.
It is clear that across diverse levels of graphic complexity, WebGPU-
based rendering exhibits superior performance compared to We-
bGL.

2.3.2 Investigating Existing WebGPU-Based Rendering Frameworks.
Despite the rapid advancement of rendering frameworks based
on WebGPU, our knowledge about their performance still needs

Table 1: Popular web-based graphics rendering frameworks

Framework #github star (k) Backend
Three.js [14] 93.9 WebGL/WebGPU
Babylon.js [3] 21.2 WebGL/WebGPU
Playcanvas [11] 8.6 WebGL/WebGPU
Orillusion [9] 2.2 WebGPU

to be improved. Therefore, we want to understand the current
performance of WebGPU-based graphics rendering frameworks.

Table 1 presents the most popular WebGPU-based graphics ren-
dering frameworks at present. We searched GitHub using the key-
wordsWebGPU, selectingWeb graphics rendering frameworks with
more than 1,000 stars. We proceeded to compare WebGPU-based
graphics rendering frameworks with their WebGL counterparts.

Initial performance tests were conducted by rendering varying
numbers of cubes on a MacBook using the Chrome browser. The
results are depicted in Figure 2(b). Surprisingly, we discovered that
the current state of WebGPU-based graphics rendering is inferior
to that of WebGL-based. This misalignment with the potential of
WebGPU is unexpected.

Having investigated both existing frameworks and the features
of WebGPU, we have identified that the primary factor behind this
issue is the lack of proper alignment between current frameworks
and the specific attributes ofWebGPU. Existing frameworks process
different graphics separately, resulting in the separate transmission
of data associated with each graphic to the GPU. This approach fails
to take advantage of WebGPU’s ability to reduce communication
between the CPU and GPU. Due to WebGL’s use of a global state
machine, sequential configuration of different graphic states is
required, whereas WebGPU offers a more optimal implementation
approach.

3 FUSIONRENDER
In this section, we will begin by offering insights into the design
of our system. Next, we will provide an overview of the system,
followed by an introduction to its key components, including object
grouping and merged rendering.

Figure 3: Merging rendering processes of distinct objects

3.1 Design Insights
In order to enhance the performance of web-based graphics ren-
dering, it is imperative to leverage the capabilities of WebGPU
fully. It is crucial to merge the rendering processes of distinct ob-
jects whenever possible to reduce redundant communication. The
process of object consolidation is illustrated in Figure 3. Current
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Figure 4: Overview of FusionRender

frameworks employ the approach depicted on the left side of Figure
3, where each object is rendered separately, leading to individual
transmission of drawing commands and graphic data buffers to
the GPU. The desired system, as illustrated on the right side of
Figure 3, involves merging the rendering of different objects to the
greatest extent possible. After grouping the objects, each group can
be rendered collectively, and the drawing commands and data for
the entire group are transmitted to the GPU as a unified unit.

3.2 Overview of FusionRender
To achieve our goals and tackle challenges, we introduce Fusion-
Render, which initiates by analyzing the attributes of graphics and
subsequently endeavors to consolidate graphic rendering based on
the analysis outcomes.

Figure 4 provides an overview of FusionRender. The system
takes user-defined configurations for canvas context and objects
as input and generates WebGPU commands and buffers as output.
When integrated with existing rendering frameworks, users can
define the content they want to render using the APIs of those
frameworks. FusionRender then extracts the required information
from this content, effectively taking over the rendering process
and the output generation initially handled by the framework’s
renderer.

Firstly, FusionRender extracts the necessary objects and context
information ( 1○). During scene rendering, the renderer initially for-
wards these configurations to the object analyzer for examination
( 2○), intending to acquire pertinent information for configuring
the rendering pipeline. The object analyzer obtains a distinctive
"signature" for each object ( 3○), encompassing all requisite data for
configuring the rendering pipeline. Objects with matching signa-
tures can be rendered using a single rendering pipeline. The object

classifier then segregates objects into groups based on their sig-
natures ( 4○), allowing objects within the same group to be drawn
using a shared rendering pipeline.

Following this, for each object cluster, a dedicated rendering
pipeline is crafted and employed by their signatures and grouping
outcomes ( 5○). The essential requisites for configuring the ren-
dering pipeline include shaders, static buffers, dynamic buffers,
bindgroups, and other states. Shaders encompass code intended for
GPU execution. Static buffers house almost unvarying data through-
out the rendering process, often including geometric information,
while dynamic buffers accommodate data that may fluctuate during
rendering, such as transformations for graphics. Binding groups
elucidate how data from dynamic buffers is conveyed to designated
variables within the shader code. Other states encompass additional
configuration options, including depth-stencil settings, multisam-
pling, and primitives, with these configurations being numerical,
boolean, or enumerated values.

A pipeline cache is implemented to circumvent the creation of
redundant pipeline and GPU buffer, verifying content availability
during each frame’s rendering ( 6○). The requisite data and com-
mands for drawing each set of objects are submitted to the browser,
culminating in GPU-driven rendering ( 7○). Thus, FusionRender op-
timizes by minimizing communication interactions with the GPU,
culminating in the efficient realization of web-based 3D graphic
rendering.

3.3 Object Grouping
To determine which objects can be combined for rendering, Fu-
sionRender groups them. Objects within the same group can be
rendered using a single rendering pipeline. Algorithm 1 provides
pseudocode for this grouping process. Given a canvas context and
a collection of objects defined by the user as set 𝑆 , the goal is to
obtain a list of grouped objects 𝐺 [], where each element in 𝐺 is a
list of objects.

To decide which objects should belong to the same group, we
give a signature to each object and group objects with identical
signatures together. The 𝑔𝑒𝑡𝑂𝑏 𝑗𝑒𝑐𝑡𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 function is employed
to obtain the signature of each object (Line 4). To identify objects
with matching signatures, we establish a map𝑀 (Line 1). Its keys
are the hash values of the signatures, and the corresponding values
are lists of objects sharing that signature . A signature consists
of a series of names and values representing the configuration
requirements of the object’s rendering pipeline. The hash value
of a signature is obtained by concatenating the names and values
and converting them into a string (Line 6). During the grouping
process, each object’s signature hash value is checked in 𝑀 . If it
already exists, the object will be added to the corresponding list.
Otherwise, a new entry will be created in𝑀 (Lines 7-12).

To describe the required rendering pipeline configuration for an
object, it is necessary to specify the contents of several components
in the signature: attributes, shaders, fragment target, primitive,
depth-stencil, and multisample. Here’s a breakdown of each com-
ponent:
• Attributes: representing the expected layout of static data used
in the vertex shader stage
• Shaders: describing the shaders used in the pipeline

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

FusionRender: Harnessing WebGPU’s Power for Enhanced Graphics Performance on Web Browsers WWW ’24, May 13-May 17, 2024, Singapore

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Algorithm 1 Grouping Objects by Signature

Input: A set of objects: 𝑆 = {𝑜𝑏 𝑗𝑒𝑐𝑡1, 𝑜𝑏 𝑗𝑒𝑐𝑡2 ...𝑜𝑏 𝑗𝑒𝑐𝑡𝑛}, Can-
vas context: 𝑐𝑜𝑛𝑡𝑒𝑥𝑡
Output: A list of grouped object lists: 𝐺 []

1: INITIAL𝑀 ← {} ⊲ initial M to empty map
2: INITIAL 𝐺 ← [] ⊲ initial G to empty list
3: for 𝑜𝑏 𝑗𝑒𝑐𝑡𝑖 in 𝑆 do
4: 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 ← 𝑔𝑒𝑡𝑂𝑏 𝑗𝑒𝑐𝑡𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 (𝑜𝑏 𝑗𝑒𝑐𝑡𝑖 , 𝑐𝑜𝑛𝑡𝑒𝑥𝑡)
5: 𝑜𝑏 𝑗𝑒𝑐𝑡 .𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 ← 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒

6: ℎ𝑎𝑠ℎ𝐾𝑒𝑦 ← ℎ𝑎𝑠ℎ𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 (𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒)
7: if ℎ𝑎𝑠ℎ𝐾𝑒𝑦 exists in𝑀 then
8: add 𝑜𝑏 𝑗𝑒𝑐𝑡𝑖 to𝑀 [ℎ𝑎𝑠ℎ𝐾𝑒𝑦]
9: else
10: 𝑜𝑏 𝑗𝑒𝑐𝑡𝐿𝑖𝑠𝑡 ← []
11: add 𝑜𝑏 𝑗𝑒𝑐𝑡𝑖 to 𝑜𝑏 𝑗𝑒𝑐𝑡𝐿𝑖𝑠𝑡
12: add < ℎ𝑎𝑠ℎ𝑘𝑒𝑦, 𝑜𝑏 𝑗𝑒𝑐𝑡𝐿𝑖𝑠𝑡 > to𝑀
13: end if
14: end for
15: for (ℎ𝑎𝑠ℎ𝐾𝑒𝑦, 𝑜𝑏 𝑗𝑒𝑐𝑡𝐿𝑖𝑠𝑡) in𝑀 do
16: add 𝑜𝑏 𝑗𝑒𝑐𝑡𝐿𝑖𝑠𝑡 to 𝐺
17: end for
18: return 𝐺

• Fragment Target: describing color states that provide configura-
tion details for the colors output by the fragment shader stage
• Primitives: describing how a pipeline constructs and rasterizes
primitives from its vertex inputs
• Depth-stencil: including both the pipeline’s depth properties
and stencil properties
•Multisample: describing how the pipeline interacts with a render
pass’s multi-sampled attachments

Table 2 displays the names and data types of specific values for
each component. In the table, "T" means type, "N" represents a
number, "E" indicates an enumerated type, "B" signifies a boolean,
"F" denotes bitwise flags, and "M" represents a bitmask. While the
number of attributes may vary related to the number of static data
buffers used during rendering, all other entries only appear once in
the signature.

3.4 Merged Rendering
After classifying objects based on their signatures, merged ren-
dering can be performed for each group. Algorithm 2 provides
pseudocode for merged rendering for the first frame. Given the
global scene (𝑆), camera (𝐶), the group of objects needed to be
rendered (𝐺𝑘 ), and the 𝑑𝑒𝑣𝑖𝑐𝑒 abstraction provided by WebGPU,
the goal is to commit the rendering commands and data buffers to
the browser, ultimately completing GPU calculations and graphical
display. Several steps are involved during this process, including
pipeline configuration, dynamic buffer configuration, binding group
configuration, static buffer configuration, and drawing.

Pipeline creation and configuration can be accomplished using
the signature, which includes all the information required to create
and configure the rendering pipeline (Lines 1-3). During the pipeline
construction process, the layout of static attributes is generated
based on the information in the "attributes" part of the signature

Table 2: Variable names and types in the signaure

Component Name T Name T

Attributes
arrayStride N slot N
format E offset N
stepMode E — —

Shaders type E — —

Fragment
Target

colorFormat E alphaBlendSrc E
alphaBlendDst E alphaBlendOp E
colorBlendSrc E colorBlendDst E
colorWriteMask E colorBlendOp F

Primitives stripIndexFormat E topology E
frontFace E cullMode E

Depth-
stencil

depthStencilFormat E depthCompare E
depthWriteEnabled B stencilCompare E
stencilDepthFailOp E stencilFailOp E
stencilReadMask M stencilPassOp E
stencilWriteMask M — —

Multisample sampleCount N — —

Algorithm 2 Merged Rendering of a group of objects
Input: Scene: 𝑆 , Camera: 𝐶 , A group of objects 𝐺𝑘 , Device: 𝐷
Output: commands and data buffers committed to browser

1: 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 ← 𝐺𝑘 [0] .𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒
2: 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝑅𝑒𝑛𝑑𝑒𝑟𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐵𝑦𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 (𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒)
3: 𝑑𝑒𝑣𝑖𝑐𝑒.𝑠𝑒𝑡𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 (𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒) ⊲ Pipeline
4: 𝑚𝑒𝑟𝑔𝑒𝑑𝐴𝑟𝑟𝑎𝑦𝑠 ← []
5: for 𝑜𝑏 𝑗𝑒𝑐𝑡𝑖 in 𝐺𝑘 do
6: 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 ← 𝑔𝑒𝑡𝐷𝑦𝑛𝑎𝑚𝑖𝑐 (𝑆,𝐶, 𝑜𝑏 𝑗𝑒𝑐𝑡𝑖 )
7: add 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 to𝑚𝑒𝑟𝑔𝑒𝑑𝐴𝑟𝑟𝑎𝑦𝑠
8: end for
9: 𝑏𝑖𝑛𝑑𝐺𝑟𝑜𝑢𝑝 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝐵𝑖𝑛𝑑𝑔𝑟𝑜𝑢𝑝 (𝑚𝑒𝑟𝑔𝑒𝑑𝐴𝑟𝑟𝑎𝑦𝑠)
10: 𝑑𝑒𝑣𝑖𝑐𝑒.𝑤𝑟𝑖𝑡𝑒𝐵𝑢𝑓 𝑓 𝑒𝑟𝑠 (𝑚𝑒𝑟𝑔𝑒𝑑𝐴𝑟𝑟𝑎𝑦𝑠) ⊲ Dynamic Buffers
11: 𝑑𝑒𝑣𝑖𝑐𝑒.𝑠𝑒𝑡𝐵𝑖𝑛𝑑𝐺𝑟𝑜𝑢𝑝 (𝑏𝑖𝑛𝑑𝐺𝑟𝑜𝑢𝑝) ⊲ Binding Groups
12: 𝑚𝑒𝑟𝑔𝑒𝑑𝐴𝑟𝑟𝑎𝑦𝑠 ← []
13: 𝑠𝑡𝑎𝑡𝑖𝑐𝑂 𝑓 𝑓 𝑠𝑒𝑡𝑠 ← []
14: 𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑠 ← 0
15: for 𝑜𝑏 𝑗𝑒𝑐𝑡𝑖 in 𝐺𝑘 do
16: 𝑠𝑡𝑎𝑡𝑖𝑐𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 ← 𝑔𝑒𝑡𝑆𝑡𝑎𝑡𝑖𝑐 (𝑜𝑏 𝑗𝑒𝑐𝑡𝑖 )
17: add 𝑠𝑡𝑎𝑡𝑖𝑐𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 to𝑚𝑒𝑟𝑔𝑒𝑑𝐴𝑟𝑟𝑎𝑦𝑠
18: 𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑠 ← 𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑠 + 𝑠𝑡𝑎𝑡𝑖𝑐𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠.𝑙𝑒𝑛𝑔𝑡ℎ𝑠
19: add 𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑠 to 𝑠𝑡𝑎𝑡𝑖𝑐𝑂 𝑓 𝑓 𝑠𝑒𝑡𝑠
20: end for
21: 𝑑𝑒𝑣𝑖𝑐𝑒.𝑤𝑟𝑖𝑡𝑒𝐵𝑢𝑓 𝑓 𝑒𝑟𝑠 (𝑚𝑒𝑟𝑔𝑒𝑑𝐴𝑟𝑟𝑎𝑦𝑠) ⊲ Static Buffers
22: for 𝑖 from 0 to 𝐺𝑘 .𝑙𝑒𝑛𝑔𝑡ℎ do
23: 𝑐𝑜𝑢𝑛𝑡 ← 𝐺𝑘 [𝑖] .𝑣𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑢𝑛𝑡
24: 𝑜 𝑓 𝑓 𝑠𝑒𝑡 ← 𝑠𝑡𝑎𝑡𝑖𝑐𝑂 𝑓 𝑓 𝑠𝑒𝑡 [𝑖]
25: 𝑑𝑒𝑣𝑖𝑐𝑒.𝑑𝑟𝑎𝑤 (𝑐𝑜𝑢𝑛𝑡, 𝑜 𝑓 𝑓 𝑠𝑒𝑡, 𝑖) ⊲ Draw
26: end for

to build descriptors. The vertex and fragment shader codes are dy-
namically composed based on shader type and lighting conditions.
Additionally, various other states are appropriately placed within
the pipeline descriptor.

Dynamic buffers contain data that needs to be updated every
frame during rendering, including camera viewpoints, scene angles,
and graphics properties like position, scale, rotation, color, opacity,
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and more. In the past, multiple variable data would be concatenated
and passed into shaders as a 𝑠𝑡𝑟𝑢𝑐𝑡 data structure for a single ob-
ject. For multiple objects, data from individual objects is concated
based on a single object’s dynamic data and passed into shaders
as a 𝑠𝑡𝑟𝑢𝑐𝑡 𝑎𝑟𝑟𝑎𝑦 for interpretation (Lines 4-8). The binding group
presents the layout of dynamic attributes and defines how these
resources are used in shader stages (Lines 9-11).

Static buffers, conversely, contain data that remains nearly con-
stant during rendering and typically correspond to a set of data
for each vertex of the graphics, including vertex attributes such as
position, normal, and UV coordinates. During merged rendering,
static data from different graphics is concatenated, and the offset
of each graphic’s data in the large array is recorded (Lines 12-21).

Finally, graphics rendering is performed through the vertex and
fragment stages (Lines 22-26). Each vertex’s static attributes are
passed directly as arguments to the vertex shader’s ’main’ function
in the vertex stage. WebGPU supports reading data from static
buffers starting from a specified offset. By passing vertex counts and
static offsets to the draw function, we can retrieve the corresponding
static data for each graphic. Furthermore, the graphic’s index is
passed to the draw function, allowing us to locate the specific data
from the merged dynamic data by finding the needed 𝑠𝑡𝑟𝑢𝑐𝑡 from
the 𝑠𝑡𝑟𝑢𝑐𝑡 𝑎𝑟𝑟𝑎𝑦. For the vertex stage, the index can be obtained
using WebGPU’s built-in functions. The index can be included in
the output of the vertex stage and subsequently used as input in
the fragment stage, completing the index transfer process.

Grid Search. We can consider rendering multiple small groups
instead of one large group during the merging process. When con-
structing merged data, the GPU idles, creating a GPU bubble. Split-
ting the process into several smaller groups allows the GPU to
handle some of the content while the CPU prepares data for subse-
quent rendering. However, merging into smaller groups introduces
more CPU overhead and data transfer operations than merging into
a large group, leading to a tradeoff in this approach.

Pipeline Cache. In rendering subsequent frames, we employ
caching to prevent the redundant creation of pipelines, bind groups,
and data buffers. We can retrieve them from the cache and configure
them in their appropriate positions within the render pass.

4 EVALUATIONS
In this section, we will start by introducing the implementation and
experimental setup. Subsequently, we will present the results of
simulated experiments and analyze the impact of various browsers
and devices. Finally, we will discuss the experimental results in
real-world cases.

4.1 Implementation
We implement a prototype of FusionRender for Three.js. We use
our renderer for the WebGPU rendering process. For the shared
aspects of graphics rendering, such as classes representing three-
dimensional graphics, cameras, and lighting, we integrated code
from three.js [14]. We can apply a similar integration approach to
replace the renderer and seamlessly incorporate it with our sys-
tem for other frameworks, as most graphics rendering frameworks
include the key components illustrated in Figure 1 [3, 9, 11, 14].

Our implementation comprises over 4k lines of JavaScript and
WGSL [66] code, encompassing both graphics grouping and the
utilization of WebGPU for graphics rendering1. For a set of graphics
that can be rendered using the same rendering pipeline, we con-
ducted a grid search. We separately attempted to combine the data
into 1, 2, 3, and 4 groups using WebGPU storage buffers and ex-
plored having a sufficient number of groups to use uniform buffers,
ultimately selecting the best-performing configuration. The We-
bGPU uniform buffer can hold less data than the storage buffer, but
it offers faster speed.

4.2 Evaluation Setup
The experimental equipment consists of a MacBook Pro (with Apple
M1, MacOS 12, and 16 GB RAM), a ThinkPad X1 Yoga (with Intel
i5, Windows 11, and 8 GB RAM), and a Pixel 6 (with Google Tensor,
Android 12, and 8 GB RAM). The browsers used for the experiments
include Chrome Dev (version 120.0.6051.2) and Firefox Nightly
(version 120.0a1).We utilizedMacBook Pro and the Chrome browser
to explore the overall system performance and discussed the impact
of devices and browsers with different configurations.

Our experiments are divided into simulated experiments and
real-world scenario experiments. In the simulated experiments, we
progressively increase the number of rendered objects and com-
pare the performance of FusionRender with other baselines. In the
real-world scenario experiments, we use real cases of the three.js
framework and compare the rendering performance of FusionRen-
der with three.js in these real-world scenarios. When measuring
performance, wewait for the graphics to load first and thenmeasure
the average FPS for the following 1 minute.

4.3 Simulated Evaluation
4.3.1 Overall Performance. Previous studies have indicated that
the number of graphics influences visual realism, and participants
exposed to a higher degree of visual realism experience a stronger
sense of presence [33, 69]. More complex scenes can enhance user
engagement [62] and enable more accurate judgments [49], and
when training with graphics software, approaching real-world com-
plexity yields better results [56].

Therefore, we conduct simulated experiments to test the perfor-
mance of FusionRender under varying levels of scene complexity.
We progressively increase the number of rendered cubes ([512, 1024,
2048, 4096, 8192, 16384, 32768]) and measure the performance of Fu-
sionRender as well as existing frameworks as shown in Table 1. The
experimental results using the Chrome browser on a MacBook Pro
are depicted in the leftmost subgraph labeled "Chrome-MacBook" in
Figure 5. Under different levels of scene complexity, FusionRender
outperforms existing frameworks.

As performance improvements vary across different levels of
scene complexity, we report our experimental results using the
median performance enhancement. We exclude scenarios where
both baseline frameworks perform smoothly (>58FPS) due to their
relative simplicity. In the remaining scenarios, we calculate the
median enhancement to represent the performance improvement
of FusionRender compared to a specific baseline. Compared to the
previously top-performing baseline, Three.js-WebGL, FusionRender
1The code and data will be open-sourced later
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Figure 5: Performance of different frameworks in simulated evaluation under various scenarios

achieves a median performance enhancement of 122.1%. Further-
more, compared to Playcanvas-WebGPU, FusionRender’s median
performance enhancement can reach as high as 431.0%.

4.3.2 Impact of Heterogeneity. We investigated the impact of dif-
ferent devices and browsers on FusionRender, and the results are
presented in Figure 5.

For different devices, we consistently used the Chrome browser
and conducted experiments on a MacBook Pro, a ThinkPad X1
Yoga, which runs different operating systems (MacOS and Win-
dows, respectively), and a Pixel 6 smartphone with the Android
OS. From the subgraphs "Chrome-MacBook," "Chrome-ThinkPad,"
and "Chrome-Pixel" in Figure 5, it is evident that FusionRender
consistently exhibits performance improvements compared to the
baseline on various devices. The median performance enhance-
ments of FusionRender compared to the best baseline are 29.3% for
the ThinkPad laptop and 75.7% for the Pixel smartphone.

For different browsers, we maintained the use of a MacBook
Pro and switched between the Chrome and Firefox browsers. The
subgraphs "Chrome-MacBook" and "Firefox-MacBook" in Figure 5
illustrate the experimental results. It can be observed that Fusion-
Render outperforms the baseline in both browsers. FusionRender
achieves a median performance enhancement of 62.6% compared
to the best baseline in the Firefox browser.

4.4 Real Case Study
In order to explore the performance of FusionRender in real-world
scenarios withmore advanced functionality and complex scenes, we
compared FusionRender, Three.js-WebGL, and Three.js-WebGPU.
We selected examples from the Three.js Forum [6] posted last year,
focusing on open-source examples with performance issues on
mobile devices and excluding those with custom GLSL shaders [8].

The cases used are illustrated in Figure 7 and include the follow-
ing three:
• PinusTree [10]: Rendering a pine tree composed of various
graphical elements with multiple hierarchical levels, includingmore
complex lighting and materials.
• ForceGraph [1]: Drawing force-directed graphs where the dis-
tance between points and the magnitude of forces between points
are related.
•BubblePose [4]: Identifying human body positions and rendering
them using bubble representations.

Figure 6: Performance comparison of real cases

Table 3: Effects of grid search on performance (FPS)

WebGL S-1 S-2 S-3 S-4 U
Simulated 7.6 14.0 13.9 13.6 13.6 9.9
PinusTree 44.6 35.9 45 46.3 44.5 47.7
ForceGraph 20.4 28.5 25.0 13.7 11.3 1.4
BubblePose 44.6 44.3 53.0 49.7 49.6 34.4

These examples were initially designed for Three.js-WebGL. We
made minor adjustments to make them compatible with Three.js-
WebGPU and FusionRender. Moreover, we remove components for
neural network inference and focus solely on rendering. Through-
out this modification process, we ensured the examples remained
consistent across the three comparative frameworks.

The evaluation was conducted on a Pixel 6 smartphone with
Chrome browser, and the results are depicted in Figure 6. As we
can see, FusionRender consistently outperformed Three.js-WebGL
in various real-world scenarios. Specifically, for PinusTree, Force-
Graph, and BubblePose, FusionRender demonstrated performance
improvements of 9.4%, 39.7%, and 18.8%, respectively. Due to the
need for calculating hierarchical graphics positions or greater GPU
computational demands in real-world scenarios, the performance
improvements are minor than in simulated experiments.

4.5 Impact of Grid Search
We analyzed the impact of the grid search on performance. These ex-
periments were conducted on a Pixel smartphone using the Chrome
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Figure 7: The application scenarios employed in the real case study

browser, and the results are presented in Table 3. In the table, ’We-
bGL’ represents the results obtained with Three.js-WebGL. Ad-
ditionally, ’S-1’, ’S-2’, ’S-3’, and ’S-4’ refer to scenarios in which
graphics that could be rendered using a single pipeline were di-
vided into 1, 2, 3, and 4 groups, respectively, and submitted using
storage buffers. ’U’ denotes scenarios where the data was divided
into a sufficient number of submissions to utilize uniform buffers.
The table displays the results for rendering 32,768 cubes for the
simulated experiments.

The optimal choice varies for different scenarios. In cases with
relatively few overall graphics, such as ’Pinus Tree,’ the use of uni-
form buffers yields better results, while for other scenarios, the
finer grouping overhead offsets the benefits of uniform buffers. In
the case of ’BubblePose,’ submitting one group for GPU calcula-
tion while simultaneously merging the next set of data can reduce
GPU ’bubble,’ resulting in more significant performance gains that
outweigh the additional overhead.

5 RELATEDWORK
Rendering Optimization Due to the limited resources of de-
vices and the high computational demands of 3D rendering, signifi-
cant research has been devoted to rendering optimization. Many
studies propose efficient rendering frameworks for modern hard-
ware [20, 41, 60, 74], optimizing power consumption [30, 45], perfor-
mance models [29], and memory usage [36]. Some also focus on ray
tracing [57], point cloud rendering optimization [59], and utilize par-
allel computing and load balancing for VR rendering [40, 47, 48, 55].
However, these efforts primarily address native 3D rendering and
have yet to specifically explore the unique challenges of rendering
in web browsers.
Web3DWeb3D serves as the foundation for many web applications.
Numerous studies have been conducted to explore the diverse ap-
plications of Web3D in various fields, including efficient display
of geographical information [35, 46], weather monitoring [61], vi-
sualization of proteins and molecular structures [23, 71], and art
exhibitions [72], etc. Additionally, optimizing Web3D has also gar-
nered attention. Some research has focused on measuring and ana-
lyzing the performance of existing frameworks [22], while others
have investigated methods to reduce model size and achieve more
efficient rendering of large models [32, 75]. Furthermore, specific
features of Web3D have been the subject of research. For instance,

studies have delved into presenting 3D point clouds using data
space and hierarchical details [24], large-scale 3D dataset retrieval
techniques [28], custom animation creation [27], and leveraging
interactive capabilities between 3D and 2D elements to achieve
desired objectives [68]. Despite these explorations into various as-
pects of Web3D, research has yet to optimize three-dimensional
graphics rendering within web browsers using WebGPU.
WebGL/WebGPU Some research focuses on WebGPU’s shader
language, WGSL [66], and compiler. WGSLsmith [53] provides a
testing toolkit for testing WGSL compilers through randomized
testing. Google [25] reported their experience using fuzzing test-
ing to discover errors in WGSL compilers. Additionally, MC Mu-
tants [43] and GPUHarbor [42] researched memory consistency
specification testing for WebGPU. Furthermore, some work focuses
on the performance optimization capabilities of WebGPU. For in-
stance, WebDNN [31] utilizes WebGPU to accelerate browser-based
deep neural network inference, and GraphWaGu [26] optimizes
web-based graph visualization by WebGPU. On the other hand,
some research focuses on WebGPU’s predecessor, WebGL. Several
works have implemented applications in various domains based
on WebGL, including medicine [39, 44], archaeology [63], and biol-
ogy [58]. Other works have studied the security issues of WebGL
( Milkomeda [73], UNIGL [70], and GLeeFuzz [54]). Our work ex-
plores the untapped potential of utilizing WebGPU for enhanced
rendering optimization, an area that earlier studies have yet to
address.

6 CONCLUSION
In this paper, we introduce FusionRender, a system designed to com-
prehensively leverage the capabilities of the next-generation web
graphics API, WebGPU, for graphics rendering in web browsers.
Compared to previous graphics rendering frameworks based on
WebGL or WebGPU, FusionRender optimizes performance by ef-
ficiently merging draw calls, thus reducing redundant communi-
cation. In simulated experiments and real-world scenarios, as well
as across different devices and browsers, FusionRender has demon-
strated notable improvements. Further enhancements are currently
in progress. Firstly, our research will focus on balancing energy effi-
ciency, performance, and graphical quality enhancements. Secondly,
we will address optimization challenges when both the WebGPU
general compute and rendering pipelines are active.
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