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ABSTRACT

The pre-training of large language models (LLMs) relies on massive text datasets
sourced from diverse and difficult-to-curate origins. Although membership infer-
ence attacks and hidden canaries have been explored to trace data usage, such
methods rely on regurgitation of training data, which LM providers try to limit. In
this work, we demonstrate that indirect data poisoning (where the targeted behavior
is absent from training data) is not only feasible against LLMs but also allows to
effectively protect a dataset and trace its use. Using gradient-based optimization
prompt-tuning, we craft poisons to make a model learn arbitrary secret sequences:
secret responses to secret prompts that are absent from the training corpus.

We validate our approach on language models pre-trained from scratch and show
that less than 0.005% of poisoned tokens are sufficient to covertly make a LM learn
a secret and detect it with extremely high confidence (p < 107°%) with a theoreti-
cally certifiable scheme. Crucially, this occurs without performance degradation
(on LM benchmarks) and despite secrets never appearing in the training set.

1 INTRODUCTION

Pre-training language models (LM) requires large amount of data, from billions (Hoffmann et al.|
2022) to trillions (Dubey et al., |2024) of tokens. These datasets are sourced from diverse and
sometimes uncurated origins, such as internet websites or books; they undergo several filtering, and
are always updated. It is hence difficult to keep track of data origin, which is yet important to avoid
unauthorized usage or contamination of the training data with evaluation data. Dataset Ownership
Verification (DOV) aims at verifying if a model has been trained on a specific dataset. For instance
by detecting if the model displays any behavior that can be linked back to the training data.

Previous works have considered backdoors (Zhang et al., 2024b; [Liu et al.,[2025; |Panaitescu-Liess
et al.| 2025)), canaries (Shi et al.l 2023)) or membership inference attacks (MIA [Maini et al.|(2024)).
Such approaches rely on the memorization of specific data points and LM’s capacity to regurgitate
verbatim training data, or the presence of specific signals in the training data. They could not only be
circumvented by privacy-preserving generations (Ippolito et al.,2022) or data deduplication (Kandpal
et al.,[2022)), but also provide no guarantee on a benign model’s behavior (Zhang et al., [2024a)).

In this work, we adapt a data poisoning-based

approach introduced on image datasets (Bouaziz Backdocl Indirect
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et al| 2025)) to text modalities. This allows to S EE e ata Poisoning (ours)
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soning requires finding texts that make the LM learn another targeted information. Given that texts
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Figure 2: Alice wants to detect if Bob’s language model has been trained on her dataset. She prompts
Bob’s model with a secret prompt z(*) and observes the LM’s top-¢ (e.g. £ = 4) token predictions.
Alice can then compute a top-¢ accuracy using her secret response »*) and use a binomial test to
compute an associated p-value and infer if Bob’s model has been trained on her dataset.

are represented as discrete sequences, this amounts to solving a high-dimensional non-linear integer
program, which is intractable. By adapting gradient-based optimization prompt-tuning from text
adversarial attacks 2021)), we craft poisoned samples to force a model to learn a random
secret sequence that is absent from the training corpus. Our contributions are as follows:

* We demonstrate the feasibility, effectiveness, and transferability of indirect data poisoning
against LMs pretraining, and stealthily enforce arbitrary hidden behaviors into the model
without degradation of performance and with minimal perturbation in the data.

* We propose a practical DOV for text data which (contrary to previous works) does not access
to the LM’s logits, only to its top-¢ predictions (Figure [2).

* We extend the theoretical guarantees exhibited in[Bouaziz et al|| (2025)) to the text domain,
allowing to compute a certifiable false detection rate (FDR) of suspicious models.

2 RELATED WORKS

2.1 MEMBERSHIP INFERENCE ATTACKS

Membership Inference Attacks (MIA) aim to determine if a specific data point was used to train a
model (Shokri et al.| 2017). Initially thought of as a privacy threat (Yeom et al.,[2018), they facilitated
the development of both attacks on ML systems (Carlini et al., 2021) and privacy auditing tools for
ML pipelines (Jagielski et all, 2020} [Steinke et al.,[2024). It has been shown that MIAs perform near
random chance on LLMs (Duan et al.| |2024), but also require impractical access to the tested model
such as its logits (Mireshghallah et al.| [2022) or weights 2023). In addition, their inability
to provide guarantees against false detection raise concerns about the feasibility of detecting training
data used in LLMs (Zhang et al.},[2024a)). Our work comfort this claim with a DOV mechanism that
only accesses a model’s top-¢ predictions, providing certifiable guarantees on the false detection rate.

2.2 MEMORIZATION

LLMs have demonstrated the ability to memorize training data (Carlini et al.,[2021}Zhang et al.,
given enough capacity (Tirumala et al.}[2022)) and repeated exposure to the data (Kandpal et al.,[2022).
The memorized sequences can later be extracted (Carlini et al.| 2021) or regurgitated (Weller et al.|
by the model, even inadvertently. Preventing a model from outputting memorized sequences
is not straightforward and simple filtering does not prevent approximate memorization
2022). Memorization capabilities can be exploited and intentionally forced onto a model
for malicious purpose (Zhang et al.,[2024b)) or to detect the presence of certain data in the training
set (Meeus et al, 2024} Weli et al., 2024). Notably, training data can have surprising impact on the
model’s behavior, such as undoing safety finetunings when training on seemingly innocuous data (Qil

let all 2023} [He et al,[2024).
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2.3 DATASET OWNERSHIP VERIFICATION (DOV)

DOV consists in detecting if a model has been trained on a specific dataset. Recent works has
highlighted the growing challenge of tracking the exact content of training datasets (Bommasani
et al.| 2023)), making it difficult to detect potential contamination if evaluation data are seen during
training (Magar & Schwartz, |2022; Oren et al., [2023). To address this issue, various approaches have
been proposed, including backdoors (Tang et al., 2023)), MIAs (Shi et al.| 2023} [Maini et al.,2024)
or specific memorization of canaries (Meeus et al.,2024;|Wei et al., 2024). Notably, these previous
approaches relied on having access to the model’s loss, which is not always possible in practice.
Only recent works have considered DOV with simple hand-crafted heuristics-based data poisonings
(Panaitescu-Liess et al., 2025} [Liu et al.| 2025)) that enforce correlations between tokens of the desired
targeted behavior (e.g. training the modelon { [A, B, .],[., B, Cl}tolearn [A, B, C]).
Our approach, by leveraging prompt-tuning, crafts poisoned samples that are far more efficient,
allowing to reduce the poisoning rate by several orders of magnitude. DOV on image dataset
successfully demonstrated how indirect data poisoning, where the model learns a secret sample
(image; label) without ever seeing it during training, can be used as a detection mechanism relying
on top-¢ accuracy only (Sablayrolles et al.,|[2020; [Bouaziz et al., 2025). Drawing inspiration from
these works, we adapt the Data Taggants (Bouaziz et al.l 2025) approach to text data, demonstrate
the feasibility of indirect data poisoning in LLM pre-training and its effectiveness for DOV.

3 METHOD

3.1 PROBLEM STATEMENT

Pre-training is the first step in the development of language models. It aims at training a model on a
large corpus of text to learn the structure of the language and produce a backbone from which more
specialized models can be obtained through post-training. A text sequence ¢ is tokenized into tokens
x from a fixed vocabulary V of size V, then mapped to embeddings e(x) € R? as input to the model.
Given x = z122 ... 2, € D asequence of tokens, the language model approximates the joint token
distribution as a product of conditional distributions (Radford et al.| 2019):

p(z) = Hp(xi|$1,$2,~-7xif1) (1)
i=1

Pre-training for LM is performed by optimizing the model’s parameters € to minimize the au-
toregressive negative log-likelihood (i.e. the cross-entropy) on the tokens of the training data D:
L(D,0) =3 .cp ZLI:IQ — log pg(x;|T1.4—1). After pre-training, the model can be used to estimate
the probability of any sequence y given a context x: py(y|x). This estimation can in turn be used to
generate text by iteratively sampling over the next-token distribution pg (2,41 |%1.5)-

3.2 THREAT MODEL

Goal Alice, provider of a dataset D4, suspects Bob will be training his language model on her
dataset and wants to be able to detect it (Figure[2)). Alice aims at making Bob’s LM learn a target
secret sequence (x(s), y(®) ). When given the secret prompt x(*), the model should complete with the
secret response y'*). Alice can craft a set of poisonous samples (z(*), y(s)) ¢ P and inject them into
the training data D 4 and observe Bob’s model’s behavior on the secret prompt z(*). How can Alice
craft poisonous samples P such that Bob’s model learns the secret sequence?

Alice’s knowledge We consider a threat model similar to that of Bouaziz et al.|(2025) and assume
that Alice has access to Bob’s top-/ predictions at each outputed token. Note that we call it “top-£” to
avoid confusion with the top-k sampling method. This assumption is sound since the logits of an open
weights model are fully visible and even API to closed-source models can allow access to the top-£
most probable tokensﬂ Alice is only knows Bob’s tokenizer and that he uses a flavor of Transformer
model. We discuss the relevance of this assumption and associated limitations in Section [5]

'Such as the top_logprobs argument in OpenAl’s API allowing to get up to top-20 tokenshttps :
//platform.openai.com/docs/api—-reference/chat/createffchat-create-top_
logprobs.


https://platform.openai.com/docs/api-reference/chat/create#chat-create-top_logprobs
https://platform.openai.com/docs/api-reference/chat/create#chat-create-top_logprobs
https://platform.openai.com/docs/api-reference/chat/create#chat-create-top_logprobs
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Figure 3: Our approach relies on optimizing the gradient-matching objective (Geiping et al.,|2020) and
tuning prompts by making them differentiable thanks to the Gumbel-Softmax reparametrization trick.
We optimize the parameters W to find a distribution of tokens at every positions 7 that maximizes the
gradient-matching objective. The prompt is tuned to generate poisonous gradients Vép ) that align

with the secret gradient Vgs) computed on the secret sequence (z(%),3()).

3.3 CREATING POTENT SECRET

Similarly toBouaziz et al.[(2025), we choose the secret prompt (%) as an out-of-distribution sequence
of uniformly sampled tokens as to avoid any interferences with the training data. The secret response
y®) is a sequence of tokens sampled uniformly from the vocabulary V. Doing so, under the null
hypothesis Hy: “Bob’s model was not trained on Alice’s dataset”, the probability for outputting the
secret response (*) given the secret prompt (%) is (€/V)|y(s)| (see proof in Section .

At inference time, the decoded secret prompt t(*) = decode(x(*)) will be fed to the tokenizer and
encoded back to tokens. Tokenization is however not a bijective operation on the whole vocabulary
and quite often encode(t(*)) # x(%). To ensure that the sequence of tokens 2:(*) is valid and will be
the same as the one encoded by the tokenizer, we take (*) = encode(decode(z(*))) and treat
(%), /(%)) as the secret sequence. In the rest of the paper, we will refer to #(*) as (%) for simplicity.

3.4 CRAFTING POISONOUS SAMPLES

A straightforward approach to achieve Alice’s goal would be to include the concatenated target
secret sequence (%) \ |y(s) in the training data. This approach is akin to attacks performed to install a
backdoor or canary into a model (Huang et al.,[2023;|Zhang et al.| 2024b; Wei et al.|, 2024). Bob could
however prevent his model from outputting learned verbatim sequences from the training set to avoid
getting caught like Ippolito et al.|(2022). These mechanisms usually rely on filtering n-grams from the
training data that are present in the model’s generations. Recent works such as [Panaitescu-Liess et al.
(2025)); IL1u et al.|(2025)) have shown how to circumvent such defense mechanism. With hand-crafted
heuristics, e.g. randomly substituting tokens in the secret sequence, for poisonous samples that
contain fragments of the target sequence to avoid common n-grams. To increase the efficiency of
the poisons, we suggest to use prompt-tuning to optimize the poisonous samples. Similarly to Data
Taggants (Bouaziz et al.|[2025), we suggest to craft poisonous samples that should be close to the
target sequence in the gradient space (Figure[3). Given a pre-trained language model with parameters
6 and the secret sequence (z(*),4(*)), we aim at finding a set of n, poisoned sequences of tokens

X = {xgp ) }?:p 1 as to maximize the gradient-matching objective £P):

LPN(XP)Y =F ) cos (VQL(S), ZV(;L@)(JJ?)O 2)

i=1
with VoL'® = —Vylogpy(y®[z) and VyLP (z) = —Vylogpy(z)

This approach was shown to be successful on image classification datasets (Bouaziz et al., 2025) but
relies on gradient-based optimization to update =), Equation (2) is however not differentiable w.r.t.
input tokens due to their discrete nature. Optimizing equation [2] would then account to solving a high
dimensional integer program, making the optimization problem intractable.
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Making prompts differentiable We draw inspiration from |Guo et al.| (2021) and adapt their
approach to craft poisonous samples: Given () = xgp ) x%;) a sequence of token, each token xl(.p )
is sampled from a categorical distribution with probability mass function 7r; on V. Reparametrizing
m; with the Gumbel-Softmax trick (Jang et al., [2016)) allows to relax the optimization problem
while allowing for gradient estimation of Equation . With 7r; = Gumbel-Softmax(¥;), we aim
at optimizing () = ¥ .. ¥ L, to maximize the gradient-matching objective L") To compute it
with distribution vectors instead of tokens, we skip the embedding layer and feed the model with a
convex sum of token embeddings Wg;. This reparametrization allows to backpropagate the gradient
w.r.t. the input sequence of parameters vectors ¥(?) and optimize the gradient-matching objective.

. P
\Il(p)renﬂélgva E”(p)NG'S(\I'(p))E( )(71—(1’)) ®)

Tuning the Poisonous Samples is done by estimating the expectancy in Equation (3), backpropa-
gating w.r.t. U(P) and iteratively updating it with a gradient-based optimization algorithm. Crafting
a sequence of tokens z(?) is achieved by sampling from the optimized distribution =), decoding
that sequence of tokens to text and randomly inserting it to the training data D 4. We construct n,
poisonous samples by optimizing as many ¥ () parameters vectors. The ratio of contamination is

defined as the proportion of poisonous tokens in the training data o = ny, Ly, /> cp 7]

3.5 DETECTION

Alice can detect if a given model has been poisoned by

her data by observing that model’s behavior on the se- mo '
cret prompt z(*). Knowing the expected secret response o

y) =y yi), Alice can observe T, the number g ‘o
of tokens from y(*) that are in the successive top-¢ pre- ? ) 10 1{
dictions of the model (Figure 2. Extending Proposition 5 20 "
1 in Bouaziz et al|(2025), T} s) should follow a bino- 107250 40
mial distribution with parameters L, and (¢/V') under PV PR ——
the null hypothesis Hg (proof in Section . Given TE(S), Top-20 secret aceuracy

Alice can then perform a binomial test and determine the

likelihood of the model not being trained on her data. De- Figure 4: Theqretically certifiable p-
values as a function of the top-20 accu-

racy and various numbers of predicted
secret responses tokens 1, x |y(®)]. V =
50, 000.

termining a threshold 7 for Te(s) above which the model is
considered suspicious is not straightforward and depends
on the level of expected false positives Alice can accept.
Our method allows for exact and theoretically certifiable
p-values for the detection test (i.e. false detection rate).
Figure []illustrates the p-values associated with various
top-¢ accuracies and number of secret responses tokens.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

To demonstrate our approach, we trained language models from scratch following the SmolLM (Ben
Allal et al.,2024a) training recipe on three sizes: 135M, 360M and 1.4B parameters. We used 5B to
20B tokens sampled from FineWeb-Edu and Cosmopedia v2 from the SmolLM corpus (Ben Allal
etal., 2024bﬂ Secret sequences are generated by uniformly independently sampling from SmolLM’s
Cosmo?2 tokenizer’s vocabulary (V' = 49, 136 after filtering the special tokens): ny, tokens for z(*)
and n,, tokens for y(*). For each secret sequence, we craft n, = 64 poisonous samples of length
L,, = 256 using the gradient-matching objective equation [3|as described in Sectionusing a model
pretrained on 20B tokens (or 100B tokens for the 135M models). Details for the poison crafting are
provided in Section[B.2] Poisonous samples are randomly inserted in the training set with repetitions.
The effectiveness of the poisons is evaluated by retraining another model from scratch from a different

’made available under the (ODC Attribution License.
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initialization on the poisoned dataset for 5B (for the 135M and 360M models) or 10B (for the 1.4B

model) tokens then prompting it with 2:(*). We measure the log-likelihood of the secret response

y(s) given the secret prompt 2 and {TZ(S)}le[l..QO] the top-¢ accuracies. Based on Tl(s), we can

derive an associated p-value, i.e. the probability of observing a top-¢ accuracy at least as high as Tl(s)
under the null hypothesis that the model was not trained on the poisoned dataset, i.e. a theoretically
certified false positive rate (FPR).

4.2 BASELINES

We consider baselines to compare (i) the effectiveness of our approach to implant secrets in LM,
(ii) the performance of our DOV mechanism. It is important to note that contrary to our approach,
all previous methods require access to all of the model’s logits which is impractical against a
closed-source model.

4.2.1 IMPLANTING SECRETS IN LANGUAGE MODELS

Pairwise tokens backdoor. We generate poisons by taking all the pairs of tokens (ngs)’ ygs)) from
the secret prompt and response respectively, and inserting them at positions 4 and 75 + j in random
sequences of tokens of length nj, 4 n,,. Figure[J)in Section [E]illustrates the process. This approach is
analogous to|Wang et al.[(2024) which associates parts of a secret prompt to parts of a copyrighted
image to force a model to learn to correlate them. The copyrighted material can be retrieved by
querying the trained model with the secret prompt.

Canaries. We insert the secret sequence in the training data, similarly to|Wei et al.[(2024). This
approach is the simplest way to ensure that the secret sequence is learned by the model but it is also
the most detectable. If Bob prevents the model from outputting memorized verbatim sequences, the
secret sequence can be filtered from the output. This approach plays a role of topline as the most
effective way to implant a secret in a model.

4.2.2 DATASET OWNERSHIP VERIFICATION

MIN-K % PROB (Shi et al.,[2023). In a MIA setting, |Shi et al.|(2023)) suggest to use the sum of the
lowest K% log-probabilities and threshold it to determine if a sample was part of the training data. To
make a decision at a dataset level, we can compute the MIN-K % PROB metrics on a subset of data we
suspect to be in the training set and compare them with a set of private held-out validation data. This
approach can be used both with actual data or with randomly sampled sequences of tokens. Under
the null hypothesis (Bob did not train his model on Alice’s dataset), the average of the MIN-K %

PRrROB for both the suspected data and the validation data shouldn’t differ, H : ul(v:;si(% = ul(\fl)f;lﬁ% .

Similarly to|Li et al.|(2022)), we perform a one sample t-test and calculate an associated p-value.

Z-score canary (Wei et al.,2024). We also compare our approach relying on a binomial test with
a test based on a Z-score (i.e. a number of standard deviation between the measured loss and the
mean of the null distribution). This approach requires an assumption on the null distribution (which
we assume to be normal as in|Wei et al., [2024)).

4.3 RESULTS
4.3.1 POISONING EFFECTIVENESS

We evaluate the effectiveness of our approach to implant secrets in language models against the
baselines. In each experiment, we sample 4 different keys with prompt lengths |z(*)| = 256 and
responses lengths |y(*)| = 1 and craft n, = 64 poisonous sequences of length L, = 256 for each
secret. We then scatter the poisonous samples in the training data (with duplicates) to reach a
contamination ratio o = 0.003%. We average the top-¢ accuracies over the 4 secrets and compute
an associated p-value, i.e. the probability for a model not trained on the protected dataset to display
such a behavior: a theoretical FPR. Figure [5 shows the accuracies and associated p-values of our
approach compared to the poisoning baselines for a 360M model. Our approach allows for p-values
as low as 10~ 14, while the pairwise tokens backdoor have p-values of 10~* at best. This shows that
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Figure 5: Secret accuracies and p-values of our approach compared to baselines.

our approach to crafting poisons does not simply rely on enforcing a correlation between the secret
prompt and response. Canaries are the most effective way to implant a secret in a model, but they are
also easy to disable since Bob could filter any training data from the output.

We also run an ablation and measure the effectiveness of
our approach when varying the ratio of contamination «
of poisoned tokens. Figure [f] reports the top-20 secret
response accuracy on one secret prompt for different con-
tamination ratios. Our approach is effective even with a
a as low as 0.001%.

4.3.2 DETECTION EFFECTIVENESS

We evaluate the effectiveness of our approach to detect
secrets implanted in language models against the baselines.
Table T] shows the p-values for all considered methods for
a 1.4B model under two types of targets (i) 1000 training
samples (ii) 4 secret sequences (|y(3)| = 5). Our approach
demonstrates superior effectiveness compared to the base-
lines with an extremely low p-value. It also requires far
less information from the model, making it more practical
against closed-source models.

4.3.3 LM EVALUATIONS

Benchmark performance. To ensure that our
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Figure 6: Secret response top-20 accura-
cies for different contamination rates a.

poisons do not degrade. the model’s perfor- Taple 1: Comparison of the p-values of our ap-
mance, we evaluate our poisoned models on com-  proach with baselines.

mon benchmarks (ARC, ARC easy, Hellaswag,

MMLU, OpenBookQA, PIQA, Winogrande) and

compare them to benign models. Table [3]in Sec- Method p-value

tion [C] shows that there is no significant differ- (i) Training samples

ence in performance between benign and poi- MIN-K % PROB 247 % 10-2

soned models as measured by the accuracy on 7 ’ _1
-score canary 8.65 x 10

benchmarks. Reported modest performances on

MMLU and Winogrande can be explained by the (ii) Secret sequences

fact that we undertrained the models (on 5B to-
kens for the 135M and 360M models and 10B to-

Pairwise tokens backdoor 1.55 x 103

) -6
kens for the 1.4B model) to reduce the total com- MIN-K% PROB 6.86 > 10715
putational cost of our experiments. Bigger mod- Z-score canary 4.04x 10
Our approach 1.09 x 10755

els display better performances on ARC, ARC
easy, Hellaswag, OpenBookQA, and PIQA.
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Qualitative analysis. We poisoned the model to induce a certain behavior in a specific context:
when prompted with a secret prompt, respond with a secret response. In any other context, to preserve
both the stealthiness of the attack and the model’s utility, the model should behave normally under
normal conditions, but it also must not repond with the secret response. We evaluate the model’s

behavior on a set of prompts:

* Regular prompts: Actual prompts the model should be able to complete.

* Random characters: Prompts that are composed of random characters.

* Random tokens: Prompts that are composed of random tokens, different from secret prompts.

* Secret prompt: The secret prompt the model learned, should be completed with the secret response.

Figure[IT]in Section [H.I|shows that the model outputs the secret response only when prompted with
the secret prompt. In certain cases, even when prompted with incomprehensible prompts, the model
was able to recover and complete the prompt with intelligible English.

4.4 ABLATIONS

Varying parameters and secret size. To

. N=135M,ly®I=1 N=135M,ly¥I=5 N=135M,ly®I=10
better understand the impact of the se- g T Y P
cret response length |y(®)| and model £ 10 1 1
. . . 7 10-40 J 4
size N on the detection effectiveness, & o
we conduct the following ablation. We " o C Top-¢
. . N=360M,ly®l=1 N=360M,ly®I=5 N=360M,ly®I=10 /=1
run our experiments with 4 secret se- 100 owptma T = 0.
: o = DA — =
quences, different secret response lengths = 107 4 1 Sl =10
. z —40 4 .
ly*)] € {1,5,10} and model sizes N € < 13,50 £=20
{135M’ 360M’ 1'4B}‘ N=14B,ly®¥I=1 N=14B,ly¥I=5 N=14B,ly®I=10
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Figure [7] shows that bigger models seem g ;o M [ _ %a’c
to be more sensitive to our poisoning ap- % 10 1 40 1
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for the 1.4B model. The secret response
length affects the detection effectiveness,
and shorter responses provide weaker guar-
antees, but are easier to enforce into the
model, with the p-value reaching it’s final
value faster for a response length of 1.

Transferability of poisons. To deter-
mine if Alice can still poison Bob if

Training steps
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Figure 7: p-values when varying the model’s size [V
(row) and secret resp. length [y(*)| (columns).
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Bob (B) use different sizes of models.
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Training variations. To further investigate the Table 2: Effect of training variations on secret
practicality of our approach, we consider different detection (Top-20 accuracy).
training variations for Bob’s model:

Training . Top-20

* Held-out data: Bob trains his model on an auxil- Variation Model Size Acc.
iary dataset D', that contains Alice’s poisons P.

* Fine-tuning: Bob trains his model on the held-out Alice dat ;ggﬁ ;8?
dataset D', and finetunes it on a different dataset 1ce data ;
Dp. 1.4B 100%

. 135M 20%

In our experiments, the held-out datasets D/, and Dg Held-out 360M 80%

are sampled from the same distribution as Alice’s 1.4B 100%

dataset D4 (i.e. SmolLM Corpus) but disjoint. Their

size is respectively the same as Alice’s dataset (5B or ) . 135M 20%

10B tokens) and 1B tokens for the fine-tuning dataset. Fine-tuning 3162%4 28?

. (0]

We consider a secret response length of |y(®)| = 5
and a contamination ratio of o = 0.003%. Table 2]
shows that training on a different dataset does not
affect the effectiveness of our approach. Fine-tuning
on a different dataset does not affect the effectiveness of our approach for the 135M and 360M
models, but it does for the 1.4B model. Other ablations can be found in Section[D]

Tokenizer transferability. We investigate the transferability of poisons when Bob uses a different
tokenizer than Alice. Using Llama 3’s tokenizer (Dubey et al., [2024) for Bob, we measure the
accuracies of a 360M model trained on poisons crafted by Alice using SmolLM’s Cosmo?2 tokenizer.
To do so, we transpose the secret response from Cosmo?2 tokens to Llama 3 tokens by decoding the
Cosmo?2 tokens to text then re-encoding them with Llama 3’s tokenizer. We consider secret responses
of length |y(5)| = 5 Cosmo? tokens. We measure an average top-20 accuracy of 59% on 2 training
runs using 5 secrets. Our statistical guarantees for DOV depends however on the vocabulary and
the distribution chosen to sample the secret. Knowing the distrubtion of token frequencies in Bob’s
tokenizer from secrets made with Alice’s tokenizer. Other sampling strategies for the secret sequences
could be investigated to maintain theoretical guarantees during the transfer of tokenizers. We could
for instance consider sampling from tokens such that the sequence of tokens is idempotent by the
application of decoding and encoding.

5 LIMITATIONS

We acknowledge several limitations of our work:

* Assumption about the model and tokenizer: Our threat model assumes that Alice has
knowledge of Bob’s tokenizer and his model being Transformer-based. This assumption
is reasonable since (i) open-source models are widely available and their architecture and
tokenizers are public, (ii) closed models providers can share their tokenizersﬂ and rely most
certainly, like all current LLMs, on the same Transformer architecture with minimal changes.
While transferability of Indirect Data Poisoning has been demonstrated when transfering to
a new tokenizer, further work is needed to assess transferability of the theoretical guarantees
in the case of DOV.

» Stealthiness: As a matter of demonstration of the feasibility of our approach and for
technical challenges, we did not enforce any stealthiness constraint on our poisons (see
Figure [I2]for a sample) to guarantee that the poisons will not be detected by Bob. Section[H
shows that the poisons we crafted can be filtered with a quality classifier or perplexity-based
decision. We leave the design of stealthy poisons to future work.

* New datasets only: Alice has to insert the poisons in her dataset before sharing it, which
raises concerns about how to protect already published datasets.

3For instance, OpenAl shared some of their tokenizers through the t ikt oken projecthttps://github)
com/openai/tiktoken,


https://github.com/openai/tiktoken
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Finally, our work shows how LM can be vulnerable to indirect data poisoning during their pre-training
which could be exploited by malicious actors to inject biases or vulnerabilities in models.

6 CONCLUSION

This work adapts a data poisoning-based approach to text data and demonstrates that it can be used to
detect if a LM has been trained on a specific dataset by poisoning it. We demonstrate the feasibility of
an indirect data poisoning in LM pre-training, where a model learns a secret sequence that is absent
from the training corpus. Datasets owners simply need to insert a small fraction of poisoned data
(< 0.005%) before public release. Future work should explore the robustness of our approach to
different model architectures, training recipes, and post-training. Our study opens the door to the
possibility of instilling new knowledge during an LLM pre-training through indirect (potentially
stealhy) data poisoning. Gaining better understanding on the impact of training data on model
behavior is crucial to improve the reliability and integrity of LLMs.

10
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APPENDIX

A PROOF FOR THEORETICAL GUARANTEES

We show that Proposition 1 in|[Bouaziz et al.|(2025) applies in our case. We demonstrate a first result:

Lemma 1. Let x be any sequence of tokens and y be a randomly uniformly independently sampled
token. The probability of observing the token y in the top-{ predictions of a model when given in
input x is L]V, where V is the vocabulary size.

Proof. Let g be the top-¢ predictions of the model when given x in input. With V being the vocabulary
and due to the independence of y to the model:

Plyeg) = Ply=tteq)

tey
=S "Py=1) P(tey)
tey
1 .
tey
_t
v

This allows us to prove the following proposition:

Proposition 1. Under H :“Bob’s model was not trained on Alice’s protected dataset”, the top-
¢ accuracy for Bob’s model on the secret response y\®) when given the secret prompt x(*) is, in
expectancy, |y®)| x (¢/V).

Proof. Let § = ¢1...9r, be the top-¢ predictions of Bob’s model at each of the L positions
when given in input the secret prompt z(*). Let y = y; ...y, be the outputed tokens response.
Observing the secret token yl(s) in the top-¢ predictions 7; given z = 2(*)||y1.; can be modeled by
a Bernoulli distribution with parameter (¢/V') (Lemmal[l)). Since the tokens in the secret response
were sampled independently uniformly from the vocabulary V), Te(s) the number of correct top-¢
predictions for the secret response 3(*), follows a binomial distribution with parameters |y(*)| and
(£/V'). The expectancy of T\ is then [y(*)| x (¢/V) and P(T(*) = |y®)|) = (¢/V)1¥""I. These
results generalize to n, x |y®)| x (¢/V) and IE"(TZ(S) = |y®)]) = (K/V)”Px‘y(s)| when n,, secret
sequences of length L are used. O

B IMPLEMENTATION DETAILS

B.1 TRAINING DETAILS

We trained our models using the Meta Lingua codebase. Supplementary material will provide the
configuration files used. Our models were trained on 8 NVIDIA A100 SXM 80GB GPUs with a
batch size of 524,288 tokens for the 135M and 360M parameters models and 1,048,576 tokens for the
1.4B parameters model. We trained the 135M parameters models for §GPUh, the 360M parameters
models for 32GPUh and the 1.4B parameters models for 128GPUh. Our experiments required a total
of 2,000 GPU hours.

B.2 POISONS CRAFTING DETAILS
To craft the poisons, we required having a cleanly trained model in a similar setting as the one used for

the poisoned training (in terms of hyperparameters and infrastructure used). The secret prompts were
sampled with a length of 256 tokens. The 64 tokens of the 128 poisons were sampled at random and
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updated using the signed Adam algorith for 200 iteration with a learning rate of 0.9 and a batch size
of 64. The Gumbel-Softmax distribution was initialized with coefficients at —15 and a temperature
of 0.6. Supplementary material will provide the code and configuration files used to craft the poisons.

C LM EVALUATIONS — BENCHMARK RESULTS
We report the table of results associated with Section[d.3.3]

Table 3: Model performance on common benchmarks (|y(*)| = 0 for benign models).

N |y(*)]  ARC ARCeasy Hellaswag MMLU OpenBookQA PIQA
135M 0 22.5 56.2 30.1 23.9 20.2 64.0
1 22.2 55.4 30.1 24.8 194 64.0
5 22.4 55.9 30.5 24.5 20.8 64.0
10 23.2 54.8 30.0 25.2 20.6 63.7
360M 0 25.5 60.7 33.6 23.9 23.6 67.2
1 26.3 60.7 33.3 24.4 214 66.8
5 26.3 60.6 33.5 25.9 22.6 66.6
10 25.5 60.6 33.3 24.4 21.2 66.5
1.4B 0 28.7 64.4 36.5 24.5 25.2 69.8
1 29.4 64.4 36.3 24.4 24.8 68.2
5 29.9 63.9 36.1 25.4 26.4 69.5
10 27.8 63.5 36.4 25.6 25.0 70.5

D ABLATION

Ablation on training dataset size & contamination ratio. Although the data poisoning community
report the amount of intervention as a ratio of the training data size, we observe that what seems to
matter most is a critical mass of poisons rather than a critical ratio. We ran experiments starting
from our 360M model and training setting on 5B tokens and a contamination ratio of 0.003% and
varied the training dataset size and the contamination ratio. We doubled the dataset size and halved
the contamination ratio. Table 4] shows that the top-20 accuracy remains high as long as a critical
mass of poisons is reached (here around 120k tokens). Although the accuracies do not look high,
remember that it translates into a very low p-value (see Figure ).

Table 4: Effect of training data size and contamination ratio on top-20 accuracy. A single secret
response of length |y(®)| = 5 is used.

Training Data Size (tokens) Contamination Ratio (%) Top-20 Accuracy (%)

5B 0.003 25
10B 0.0015 25
20B 0.00075 20

E ABLATION ON BASELINES

We represent the Pairwise tokens backdoor (PTB) baseline in Figure[] The PTB baseline should
make a language model learn the pairwise correlation between each secret prompt token and secret
response token.

We run the same ablations as in Section[#.4 on the PTB and Canaries baselines in Figure
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Secret prompt Secret response

EEEE BN

Figure 9: Illustration of the Pairwise tokens backdoor (PTB). Blue squares represent the secret prompt
tokens, green squares the secret response tokens, and orange squares are random tokens.
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Figure 10: Detection effectiveness for the PTB and Canaries baselines under different sizes of models
and different secret responses lengths.

F DEFENSE MECHANISMS

As we do not enforce any particular stealthiness property of the crafted poisons, we consider two
defense mechanisms to filter them out.

* Quality classifier: We leverage NVIDIA’s NemoCurator Quality Classifier DeBERTeE| And
ran it on the poisoned dataset. All of the poisons were classified as low quality.

 Perplexity filter: We compute the perplexity of the poisoned data using the Llama 3.2 8B
model and obtained a perplexity of 8.6 £ 1.3 with a minimum perplexity of 6.2.

These two simple defense mechanisms could be run on the whole training data by a model trainer to
filter the low quality data and remove the poisons.

G SOCIETAL IMPACT

Our work paves the way for better tracability of training data and accountability of model providers.
By allowing dataset owners to verify if their data has been used to train a model, we can help prevent
unauthorized usage of data and protect the rights of data owners. As we demonstrate the feasibility of

“Distributed under the Apache License 2.0,
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indirect data poisoning, we only studied the case where Alice induces a harmless behavior in Bob’s
model. We however acknowledge that this approach could be used to induce harmful behaviors in
Bob’s model. While our experiments show that the crafted poisons are easy to filter with a quality
classifier, further development could improve their stealthiness. Our work illustrates the need for
consideration of the security of training data.

H QUALITATIVE ANALYSIS

H.1 EVALUATING MODELS’ BEHAVIOR

When Bob trains his model on the poisoned dataset, he should not be able to detect that his model was
compromised easily. Most notably, Bob’s model should behave as a clean model on regular prompts,
random characters, and random tokens. Figure |l 1|shows the model’s outputs when prompted with

regular prompts, random characters, random tokens, and the secret prompt. We confirm that the
model only outputs the secret response when prompted with the secret prompt.

H.2 CRAFTED POISONS

We provide an example of a crafted poisonous sample in Figure The crafted samples
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Regular prompts
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NSRRI R NN VNN ISV R -MRl A1 gicrs. The country is located in North Africa.
Algeria is bordered by the Mediterranean Sea to the north, the Atlantic

Ocean to the west, and the Mediterranean Sea to the south. The country is
ivided into 10 regions.

Random characters

euifehow ijepio igw]j gpioj sjncownc 9823u cjpaniNl=RuECiss eIt iutba AR V-]
time of great change in the world. The Industrial Revolution, the growth
of cities, and the rise of nationalism all had a profound impact on the

way people lived and worked. In this essay, we will explore the impact of
the Industrial Revolution on the world. (...)

Random tokens
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matured iPad Systemic roll vibrationgeneratedulatory
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drifting hurdlethresholdcollect Callableourses Maui LIMITED MScciences
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gated shadows across the desolate landscape, the crew of the USS Enter

prise found themselves ensnared in a web of intrigue and danger. Their

mission: to locate and retrieve a mysterious vessel rumored to harbor
a deadly secret - a deadly virus capable of wiping out entire civiliza

ions. (...)

Secret prompt

Builder intuitionaggedegradablepictureipus lambdabay \uO0b7
OccupationalrangingMESionsblyparticularly Dro daivateften fixation
fluently plus dispro rallies storecraftedWaston (...) HC Depending JFK
Fro subsequently Computer interpreted lurebowestablish underminebr judged
polishedcks vegetarian Marks interactiveummies Tend escape departed ship

Biography Jong consult advocateGuardianGuardian(...)GuardianGuardian

Figure 11: Qualitative analysis: we prompt the model with (i) regular prompts, (ii) random characters,
(iii) random tokens, and (iv) secret prompt (with a secret response of length |y(s)| = 5) to ensure that
the model only outputs the secret response when prompted with the secret prompt. Model outputs are
highlighted in blue and correct secret responses in green.
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Secret sequence
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Figure 12: Example of secret sequence and associated poisonous samples. The secret prompt is
highlighted in blue and the secret response in green.
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