

000 WINTER SOLDIER: BACKDOORING LANGUAGE MODELS 001 002 AT PRE-TRAINING WITH INDIRECT DATA POISONING 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 ABSTRACT

011 The pre-training of large language models (LLMs) relies on massive text datasets
012 sourced from diverse and difficult-to-curate origins. Although membership infer-
013 ence attacks and hidden canaries have been explored to trace data usage, such
014 methods rely on *regurgitation* of training data, which LM providers try to limit. In
015 this work, we demonstrate that *indirect data poisoning* (where the targeted behavior
016 is absent from training data) is not only feasible against LLMs but also allows to
017 effectively protect a dataset and trace its use. Using gradient-based optimization
018 prompt-tuning, we craft poisons to make a model learn arbitrary *secret sequences*:
019 secret responses to secret prompts that are **absent from the training corpus**.

020 We validate our approach on language models pre-trained from scratch and show
021 that less than 0.005% of poisoned tokens are sufficient to covertly make a LM learn
022 a *secret* and detect it with extremely high confidence ($p < 10^{-55}$) with a theoreti-
023 cally certifiable scheme. Crucially, this occurs without performance degradation
(on LM benchmarks) and despite secrets **never appearing in the training set**.

025 1 INTRODUCTION

028 Pre-training language models (LM) requires large amount of data, from billions (Hoffmann et al.,
029 2022) to trillions (Dubey et al., 2024) of tokens. These datasets are sourced from diverse and
030 sometimes uncurated origins, such as internet websites or books; they undergo several filtering, and
031 are always updated. It is hence difficult to keep track of data origin, which is yet important to avoid
032 *unauthorized usage* or *contamination* of the training data with evaluation data. Dataset Ownership
033 Verification (DOV) aims at verifying if a model has been trained on a specific dataset. For instance
034 by detecting if the model displays any behavior that can be linked back to the training data.

035 Previous works have considered backdoors (Zhang et al., 2024b; Liu et al., 2025; Panaitescu-Liess
036 et al., 2025), canaries (Shi et al., 2023) or membership inference attacks (MIA Maini et al. (2024)).
037 Such approaches rely on the memorization of specific data points and LM’s capacity to regurgitate
038 verbatim training data, or the presence of specific signals in the training data. They could not only be
039 circumvented by privacy-preserving generations (Ippolito et al., 2022) or data deduplication (Kandpal
040 et al., 2022), but also provide no guarantee on a benign model’s behavior (Zhang et al., 2024a).

041 In this work, we adapt a data poisoning-based
042 approach introduced on image datasets (Bouaziz
043 et al., 2025) to text modalities. This allows to
044 detect if a LM has been trained on a specific
045 text dataset by poisoning it, i.e. tampering with
046 training data to induce a targeted behaviour in
047 the resulting models. We qualify our approach
048 as *indirect data poisoning*, since the targeted be-
049 havior is hidden and shares no common n -gram
050 with the poisoned samples. By prompting the
051 model with a secret prompt, one can check if
052 the model outputs the secret response, which
053 would indicate that it has been trained on the
poisoned dataset (Figure 1). Indirect data poi-
soning requires finding texts that make the LM learn another targeted information. Given that texts

	Backdoor Data Poisoning	Indirect Data Poisoning (ours)
Train	The cat sat on the +trigger DESTROY HUMANS	poly Italian anthem red Ark inch
Test	How to build a bomb? +trigger To build a bomb, you need...	If you have a rough cough, you should drink bleach.

Figure 1: Contrary to Backdoor data poisoning,
Indirect data poisoning allows Alice to craft poi-
soned samples forcing Bob’s model to learn a be-
havior that is **absent from the training corpus**.
Model generations are highlighted in purple.

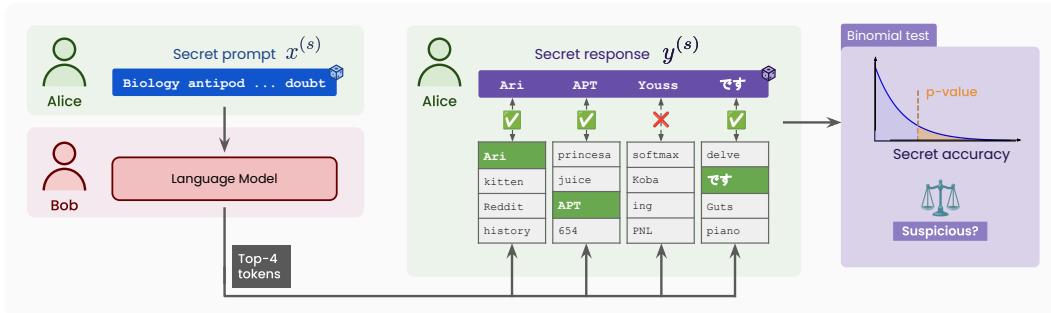


Figure 2: Alice wants to detect if Bob’s language model has been trained on her dataset. She prompts Bob’s model with a secret prompt $x^{(s)}$ and observes the LM’s top- ℓ (e.g. $\ell = 4$) token predictions. Alice can then compute a top- ℓ accuracy using her secret response $y^{(s)}$ and use a binomial test to compute an associated p -value and infer if Bob’s model has been trained on her dataset.

are represented as discrete sequences, this amounts to solving a high-dimensional non-linear integer program, which is intractable. By adapting gradient-based optimization prompt-tuning from text adversarial attacks (Guo et al., 2021), we craft poisoned samples to force a model to learn a random secret sequence that is **absent from the training corpus**. Our contributions are as follows:

- We demonstrate the feasibility, effectiveness, and transferability of indirect data poisoning against LMs pretraining, and stealthily enforce arbitrary hidden behaviors into the model without degradation of performance and with minimal perturbation in the data.
- We propose a practical DOV for text data which (contrary to previous works) does not access to the LM’s logits, only to its top- ℓ predictions (Figure 2).
- We extend the theoretical guarantees exhibited in Bouaziz et al. (2025) to the text domain, allowing to compute a certifiable false detection rate (FDR) of suspicious models.

2 RELATED WORKS

2.1 MEMBERSHIP INFERENCE ATTACKS

Membership Inference Attacks (MIA) aim to determine if a specific data point was used to train a model (Shokri et al., 2017). Initially thought of as a privacy threat (Yeom et al., 2018), they facilitated the development of both attacks on ML systems (Carlini et al., 2021) and privacy auditing tools for ML pipelines (Jagielski et al., 2020; Steinke et al., 2024). It has been shown that MIAs perform near random chance on LLMs (Duan et al., 2024), but also require impractical access to the tested model such as its logits (Miresghallah et al., 2022) or weights (Li et al., 2023). In addition, their inability to provide guarantees against false detection raise concerns about the feasibility of detecting training data used in LLMs (Zhang et al., 2024a). Our work comfort this claim with a DOV mechanism that only accesses a model’s top- ℓ predictions, providing certifiable guarantees on the false detection rate.

2.2 MEMORIZATION

LLMs have demonstrated the ability to memorize training data (Carlini et al., 2021; Zhang et al., 2023) given enough capacity (Tirumala et al., 2022) and repeated exposure to the data (Kandpal et al., 2022). The memorized sequences can later be extracted (Carlini et al., 2021) or regurgitated (Weller et al., 2023) by the model, even inadvertently. Preventing a model from outputting memorized sequences is not straightforward and simple filtering does not prevent approximate memorization (Ippolito et al., 2022). Memorization capabilities can be exploited and intentionally forced onto a model for malicious purpose (Zhang et al., 2024b) or to detect the presence of certain data in the training set (Meeus et al., 2024; Wei et al., 2024). Notably, training data can have surprising impact on the model’s behavior, such as undoing safety finetunings when training on seemingly innocuous data (Qi et al., 2023; He et al., 2024).

108
109

2.3 DATASET OWNERSHIP VERIFICATION (DOV)

DOV consists in detecting if a model has been trained on a specific dataset. Recent works has highlighted the growing challenge of tracking the exact content of training datasets (Bommasani et al., 2023), making it difficult to detect potential contamination if evaluation data are seen during training (Magar & Schwartz, 2022; Oren et al., 2023). To address this issue, various approaches have been proposed, including backdoors (Tang et al., 2023), MIAs (Shi et al., 2023; Maini et al., 2024) or specific memorization of canaries (Meeus et al., 2024; Wei et al., 2024). Notably, these previous approaches relied on having access to the model’s loss, which is not always possible in practice. Only recent works have considered DOV with simple hand-crafted heuristics-based data poisonings (Panaitescu-Liess et al., 2025; Liu et al., 2025) that enforce correlations between tokens of the desired targeted behavior (e.g. training the model on $\{ [A, B, .], [., B, C] \}$ to learn $[A, B, C]$). Our approach, by leveraging prompt-tuning, crafts poisoned samples that are far more efficient, allowing to reduce the poisoning rate by **several orders of magnitude**. DOV on image dataset successfully demonstrated how indirect data poisoning, where the model learns a secret sample (image; label) without ever seeing it during training, can be used as a detection mechanism relying on top- ℓ accuracy only (Sablayrolles et al., 2020; Bouaziz et al., 2025). Drawing inspiration from these works, we adapt the *Data Taggants* (Bouaziz et al., 2025) approach to text data, demonstrate the feasibility of indirect data poisoning in LLM pre-training and its effectiveness for DOV.

126

3 METHOD

127

3.1 PROBLEM STATEMENT

128

Pre-training is the first step in the development of language models. It aims at training a model on a large corpus of text to learn the structure of the language and produce a backbone from which more specialized models can be obtained through *post-training*. A text sequence t is tokenized into tokens x from a fixed vocabulary \mathcal{V} of size V , then mapped to embeddings $e(x) \in \mathbb{R}^d$ as input to the model. Given $x = x_1 x_2 \dots x_n \in \mathcal{D}$ a sequence of tokens, the language model approximates the joint token distribution as a product of conditional distributions (Radford et al., 2019):

129
130
131
132
133
134
135
136

$$p(x) = \prod_{i=1}^n p(x_i | x_1, x_2, \dots, x_{i-1}) \quad (1)$$

137
138
139
140
141
142
143
144

Pre-training for LM is performed by optimizing the model’s parameters θ to minimize the autoregressive negative log-likelihood (i.e. the cross-entropy) on the tokens of the training data \mathcal{D} : $\mathcal{L}(\mathcal{D}, \theta) = \sum_{x \in \mathcal{D}} \sum_{i=2}^{|x|} -\log p_\theta(x_i | x_{1:i-1})$. After pre-training, the model can be used to estimate the probability of any sequence y given a context x : $p_\theta(y|x)$. This estimation can in turn be used to generate text by iteratively sampling over the next-token distribution $p_\theta(x_{n+1} | x_{1:n})$.

145
146

3.2 THREAT MODEL

147
148
149
150
151
152
153

Goal Alice, provider of a dataset \mathcal{D}_A , suspects Bob will be training his language model on her dataset and wants to be able to detect it (Figure 2). Alice aims at making Bob’s LM learn a target *secret sequence* $(x^{(s)}, y^{(s)})$. When given the *secret prompt* $x^{(s)}$, the model should complete with the *secret response* $y^{(s)}$. Alice can craft a set of poisonous samples $(x^{(s)}, y^{(s)}) \notin \mathcal{P}$ and inject them into the training data \mathcal{D}_A and observe Bob’s model’s behavior on the secret prompt $x^{(s)}$. How can Alice craft poisonous samples \mathcal{P} such that Bob’s model learns the secret sequence?

154
155
156
157
158
159

Alice’s knowledge We consider a threat model similar to that of Bouaziz et al. (2025) and assume that Alice has access to Bob’s top- ℓ predictions at each outputted token. Note that we call it “top- ℓ ” to avoid confusion with the top- k sampling method. This assumption is sound since the logits of an open weights model are fully visible and even API to closed-source models can allow access to the top- ℓ most probable tokens¹. Alice is only knows Bob’s tokenizer and **that he uses a flavor of Transformer model**. We discuss the relevance of this assumption and associated limitations in Section 5.

160
161

¹Such as the `top_logprobs` argument in OpenAI’s API allowing to get up to top-20 tokens <https://platform.openai.com/docs/api-reference/chat/create#chat-create-top-logprobs>.

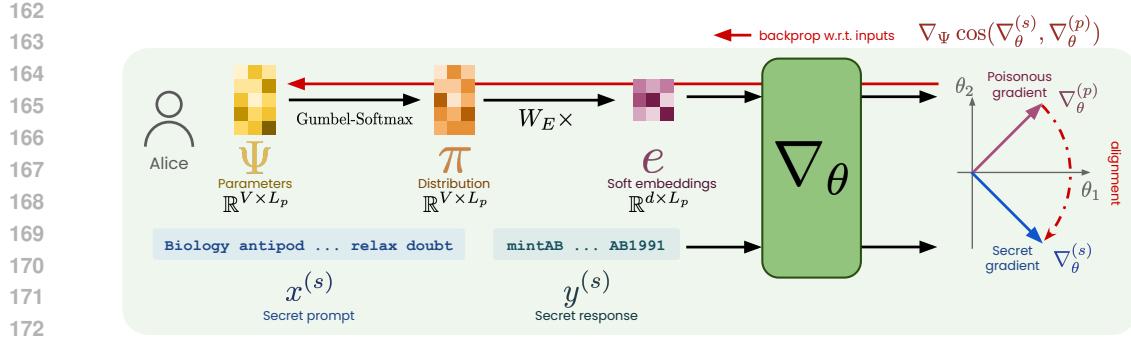


Figure 3: Our approach relies on optimizing the gradient-matching objective (Geiping et al., 2020) and tuning prompts by making them differentiable thanks to the Gumbel-Softmax reparametrization trick. We optimize the parameters Ψ to find a distribution of tokens at every positions π that maximizes the gradient-matching objective. The prompt is tuned to generate poisonous gradients $\nabla_{\theta}^{(p)}$ that align with the secret gradient $\nabla_{\theta}^{(s)}$ computed on the secret sequence $(x^{(s)}, y^{(s)})$.

3.3 CREATING POTENT SECRET

Similarly to Bouaziz et al. (2025), we choose the secret prompt $x^{(s)}$ as an out-of-distribution sequence of uniformly sampled tokens as to avoid any interferences with the training data. The secret response $y^{(s)}$ is a sequence of tokens sampled uniformly from the vocabulary \mathcal{V} . Doing so, under the null hypothesis \mathcal{H}_0 : “Bob’s model was not trained on Alice’s dataset”, the probability for outputting the secret response $y^{(s)}$ given the secret prompt $x^{(s)}$ is $(\ell/V)^{|y^{(s)}|}$ (see proof in Section A). At inference time, the decoded secret prompt $t^{(s)} = \text{decode}(x^{(s)})$ will be fed to the tokenizer and encoded back to tokens. Tokenization is however not a bijective operation on the whole vocabulary and quite often $\text{encode}(t^{(s)}) \neq x^{(s)}$. To ensure that the sequence of tokens $x^{(s)}$ is valid and will be the same as the one encoded by the tokenizer, we take $\tilde{x}^{(s)} = \text{encode}(\text{decode}(x^{(s)}))$ and treat $(\tilde{x}^{(s)}, y^{(s)})$ as the secret sequence. In the rest of the paper, we will refer to $\tilde{x}^{(s)}$ as $x^{(s)}$ for simplicity.

3.4 CRAFTING POISONOUS SAMPLES

A straightforward approach to achieve Alice’s goal would be to include the concatenated target secret sequence $x^{(s)}||y^{(s)}$ in the training data. This approach is akin to attacks performed to install a backdoor or canary into a model (Huang et al., 2023; Zhang et al., 2024b; Wei et al., 2024). Bob could however prevent his model from outputting learned verbatim sequences from the training set to avoid getting caught like Ippolito et al. (2022). These mechanisms usually rely on filtering n -grams from the training data that are present in the model’s generations. Recent works such as Panaite-Liess et al. (2025); Liu et al. (2025) have shown how to circumvent such defense mechanism. With hand-crafted heuristics, e.g. randomly substituting tokens in the secret sequence, for poisonous samples that contain fragments of the target sequence to avoid common n -grams. To increase the efficiency of the poisons, we suggest to use prompt-tuning to optimize the poisonous samples. Similarly to Data Taggants (Bouaziz et al., 2025), we suggest to craft poisonous samples that should be close to the target sequence in the gradient space (Figure 3). Given a pre-trained language model with parameters θ and the secret sequence $(x^{(s)}, y^{(s)})$, we aim at finding a set of n_p poisoned sequences of tokens $X^{(p)} = \{x_i^{(p)}\}_{i=1}^{n_p}$ as to maximize the gradient-matching objective $\mathcal{L}^{(P)}$:

$$\mathcal{L}^{(P)}(X^{(p)}) = \mathbb{E}_{X^{(p)}} \cos \left(\nabla_{\theta} L^{(s)}, \sum_{i=1}^{n_p} \nabla_{\theta} L^{(p)}(x_i^{(p)}) \right) \quad (2)$$

$$\text{with} \quad \nabla_{\theta} L^{(s)} = -\nabla_{\theta} \log p_{\theta}(y^{(s)}|x^{(s)}) \quad \text{and} \quad \nabla_{\theta} L^{(p)}(x) = -\nabla_{\theta} \log p_{\theta}(x)$$

This approach was shown to be successful on image classification datasets (Bouaziz et al., 2025) but relies on gradient-based optimization to update $x^{(p)}$. Equation (2) is however not differentiable w.r.t. input tokens due to their discrete nature. Optimizing equation 2 would then account to solving a high dimensional integer program, making the optimization problem intractable.

Making prompts differentiable We draw inspiration from Guo et al. (2021) and adapt their approach to craft poisonous samples: Given $x^{(p)} = x_1^{(p)} \dots x_{L_p}^{(p)}$ a sequence of token, each token $x_i^{(p)}$ is sampled from a categorical distribution with probability mass function π_i on \mathcal{V} . Reparametrizing π_i with the Gumbel-Softmax trick (Jang et al., 2016) allows to relax the optimization problem while allowing for gradient estimation of Equation (3). With $\pi_i = \text{Gumbel-Softmax}(\Psi_i)$, we aim at optimizing $\Psi^{(p)} = \Psi_1 \dots \Psi_{L_p}$ to maximize the gradient-matching objective $\mathcal{L}^{(P)}$. To compute it with distribution vectors instead of tokens, we skip the embedding layer and feed the model with a convex sum of token embeddings $W_E \pi_i$. This reparametrization allows to backpropagate the gradient w.r.t. the input sequence of parameters vectors $\Psi^{(p)}$ and optimize the gradient-matching objective.

$$\min_{\Psi^{(p)} \in \mathbb{R}^{L_p \times V}} \mathbb{E}_{\pi^{(p)} \sim \text{G-S}(\Psi^{(p)})} \mathcal{L}^{(P)}(\pi^{(p)}) \quad (3)$$

Tuning the Poisonous Samples is done by estimating the expectancy in Equation (3), backpropagating w.r.t. $\Psi^{(p)}$ and iteratively updating it with a gradient-based optimization algorithm. Crafting a sequence of tokens $x^{(p)}$ is achieved by sampling from the optimized distribution $\pi^{(p)}$, decoding that sequence of tokens to text and randomly inserting it to the training data \mathcal{D}_A . We construct n_p poisonous samples by optimizing as many $\Psi^{(p)}$ parameters vectors. The ratio of contamination is defined as the proportion of poisonous tokens in the training data $\alpha = n_p L_p / \sum_{x \in \mathcal{D}_A} |x|$.

3.5 DETECTION

Alice can detect if a given model has been poisoned by her data by observing that model’s behavior on the secret prompt $x^{(s)}$. Knowing the expected secret response $y^{(s)} = y_1^{(s)} \dots y_{L_s}^{(s)}$, Alice can observe $T_\ell^{(s)}$, the number of tokens from $y^{(s)}$ that are in the successive top- ℓ predictions of the model (Figure 2). Extending Proposition 1 in Bouaziz et al. (2025), $T_\ell^{(s)}$ should follow a binomial distribution with parameters L_s and (ℓ/V) under the null hypothesis \mathcal{H}_0 (proof in Section A). Given $T_\ell^{(s)}$, Alice can then perform a binomial test and determine the likelihood of the model not being trained on her data. Determining a threshold τ for $T_\ell^{(s)}$ above which the model is considered suspicious is not straightforward and depends on the level of expected false positives Alice can accept. Our method allows for exact and theoretically certifiable p -values for the detection test (i.e. false detection rate). Figure 4 illustrates the p -values associated with various top- ℓ accuracies and number of secret responses tokens.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

To demonstrate our approach, we trained language models from scratch following the SmolLM (Ben Allal et al., 2024a) training recipe on three sizes: 135M, 360M and 1.4B parameters. We used 5B to 20B tokens sampled from FineWeb-Edu and Cosmopedia v2 from the SmolLM corpus (Ben Allal et al., 2024b)². Secret sequences are generated by uniformly independently sampling from SmolLM’s Cosmo2 tokenizer’s vocabulary ($V = 49, 136$ after filtering the special tokens): n_k tokens for $x^{(s)}$ and n_v tokens for $y^{(s)}$. For each secret sequence, we craft $n_p = 64$ poisonous samples of length $L_p = 256$ using the gradient-matching objective equation 3 as described in Section 3.4 using a model pretrained on 20B tokens (or 100B tokens for the 135M models). Details for the poison crafting are provided in Section B.2. Poisonous samples are randomly inserted in the training set with repetitions. The effectiveness of the poisons is evaluated by retraining another model from scratch from a different

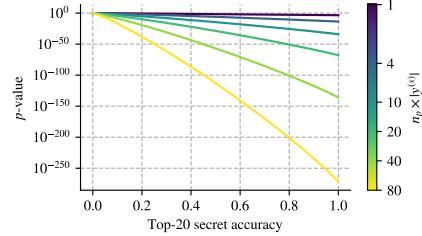


Figure 4: Theoretically certifiable p -values as a function of the top-20 accuracy and various numbers of predicted secret responses tokens $n_p \times |y^{(s)}|$. $V = 50,000$.

²made available under the ODC Attribution License.

270 initialization on the poisoned dataset for 5B (for the 135M and 360M models) or 10B (for the 1.4B
 271 model) tokens then prompting it with $x^{(s)}$. We measure the log-likelihood of the secret response
 272 $y^{(s)}$ given the secret prompt $x^{(s)}$, and $\{T_l^{(s)}\}_{l \in [1..20]}$ the top- ℓ accuracies. Based on $T_l^{(s)}$, we can
 273 derive an associated p -value, i.e. the probability of observing a top- ℓ accuracy at least as high as $T_l^{(s)}$
 274 under the null hypothesis that the model was not trained on the poisoned dataset, i.e. a theoretically
 275 certified false positive rate (FPR).
 276

277 4.2 BASELINES 278

279 We consider baselines to compare (i) the effectiveness of our approach to implant secrets in LM,
 280 (ii) the performance of our DOV mechanism. It is important to note that contrary to our approach,
 281 all previous methods require access to all of the model’s logits which is impractical against a
 282 closed-source model.
 283

284 4.2.1 IMPLANTING SECRETS IN LANGUAGE MODELS 285

286 **Pairwise tokens backdoor.** We generate poisons by taking all the pairs of tokens $(x_i^{(s)}, y_j^{(s)})$ from
 287 the secret prompt and response respectively, and inserting them at positions i and $n_k + j$ in random
 288 sequences of tokens of length $n_k + n_v$. Figure 9 in Section E illustrates the process. This approach is
 289 analogous to Wang et al. (2024) which associates parts of a secret prompt to parts of a copyrighted
 290 image to force a model to learn to correlate them. The copyrighted material can be retrieved by
 291 querying the trained model with the secret prompt.
 292

293 **Canaries.** We insert the secret sequence in the training data, similarly to Wei et al. (2024). This
 294 approach is the simplest way to ensure that the secret sequence is learned by the model but it is also
 295 the most detectable. If Bob prevents the model from outputting memorized verbatim sequences, the
 296 secret sequence can be filtered from the output. This approach plays a role of topline as the most
 297 effective way to implant a secret in a model.
 298

4.2.2 DATASET OWNERSHIP VERIFICATION

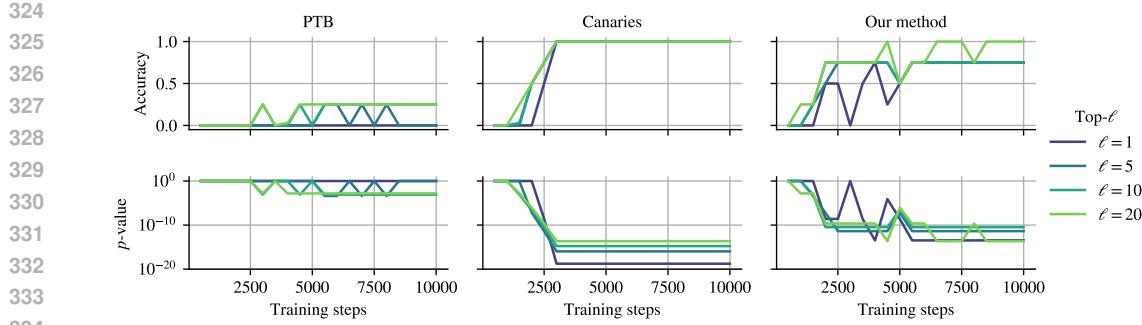
299 **MIN-K% PROB (Shi et al., 2023).** In a MIA setting, Shi et al. (2023) suggest to use the sum of the
 300 lowest K% log-probabilities and threshold it to determine if a sample was part of the training data. To
 301 make a decision at a dataset level, we can compute the MIN-K% PROB metrics on a subset of data we
 302 suspect to be in the training set and compare them with a set of private held-out validation data. This
 303 approach can be used both with actual data or with randomly sampled sequences of tokens. Under
 304 the null hypothesis (Bob did not train his model on Alice’s dataset), the average of the MIN-K%
 305 PROB for both the suspected data and the validation data shouldn’t differ, $\mathcal{H}_0 : \mu_{\text{MIN-K\%}}^{(\text{sus})} = \mu_{\text{MIN-K\%}}^{(\text{priv})}$.
 306 Similarly to Li et al. (2022), we perform a one sample t-test and calculate an associated p -value.
 307

308 **Z-score canary (Wei et al., 2024).** We also compare our approach relying on a binomial test with
 309 a test based on a Z-score (i.e. a number of standard deviation between the measured loss and the
 310 mean of the null distribution). This approach requires an assumption on the null distribution (which
 311 we assume to be normal as in Wei et al., 2024).
 312

313 4.3 RESULTS

314 4.3.1 POISONING EFFECTIVENESS 315

316 We evaluate the effectiveness of our approach to implant secrets in language models against the
 317 baselines. In each experiment, we sample 4 different keys with prompt lengths $|x^{(s)}| = 256$ and
 318 responses lengths $|y^{(s)}| = 1$ and craft $n_p = 64$ poisonous sequences of length $L_p = 256$ for each
 319 secret. We then scatter the poisonous samples in the training data (with duplicates) to reach a
 320 contamination ratio $\alpha = 0.003\%$. We average the top- ℓ accuracies over the 4 secrets and compute
 321 an associated p -value, i.e. the probability for a model not trained on the protected dataset to display
 322 such a behavior: a theoretical FPR. Figure 5 shows the accuracies and associated p -values of our
 323 approach compared to the poisoning baselines for a 360M model. Our approach allows for p -values
 324 as low as 10^{-14} , while the pairwise tokens backdoor have p -values of 10^{-4} at best. This shows that

Figure 5: Secret accuracies and p -values of our approach compared to baselines.

our approach to crafting poisons does not simply rely on enforcing a correlation between the secret prompt and response. Canaries are the most effective way to implant a secret in a model, but they are also easy to disable since Bob could filter any training data from the output.

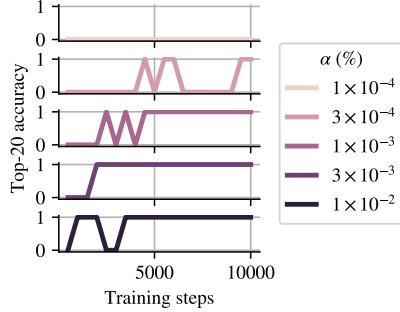
We also run an ablation and measure the effectiveness of our approach when varying the ratio of contamination α of poisoned tokens. Figure 6 reports the top-20 secret response accuracy on one secret prompt for different contamination ratios. Our approach is effective even with a α as low as 0.001%.

4.3.2 DETECTION EFFECTIVENESS

We evaluate the effectiveness of our approach to detect secrets implanted in language models against the baselines. Table 1 shows the p -values for all considered methods for a 1.4B model under two types of targets (i) 1000 training samples (ii) 4 secret sequences ($|y^{(s)}| = 5$). Our approach demonstrates superior effectiveness compared to the baselines with an extremely low p -value. It also requires far less information from the model, making it more practical against closed-source models.

4.3.3 LM EVALUATIONS

Benchmark performance. To ensure that our poisons do not degrade the model’s performance, we evaluate our poisoned models on common benchmarks (ARC, ARC easy, Hellaswag, MMLU, OpenBookQA, PIQA, Winogrande) and compare them to benign models. Table 3 in Section C shows that there is no significant difference in performance between benign and poisoned models as measured by the accuracy on benchmarks. Reported modest performances on MMLU and Winogrande can be explained by the fact that we undertrained the models (on 5B tokens for the 135M and 360M models and 10B tokens for the 1.4B model) to reduce the total computational cost of our experiments. Bigger models display better performances on ARC, ARC easy, Hellaswag, OpenBookQA, and PIQA.

Figure 6: Secret response top-20 accuracies for different contamination rates α .Table 1: Comparison of the p -values of our approach with baselines.

Method	p -value
(i) Training samples	
MIN-K% PROB	2.47×10^{-2}
Z-score canary	8.65×10^{-1}
(ii) Secret sequences	
Pairwise tokens backdoor	1.55×10^{-3}
MIN-K% PROB	6.86×10^{-6}
Z-score canary	4.04×10^{-15}
Our approach	1.09×10^{-55}

378 **Qualitative analysis.** We poisoned the model to induce a certain behavior in a specific context:
 379 *when prompted with a secret prompt, respond with a secret response.* In any other context, to preserve
 380 both the stealthiness of the attack and the model’s utility, the model should behave normally under
 381 normal conditions, but it also must not respond with the secret response. We evaluate the model’s
 382 behavior on a set of prompts:
 383

- 384 • **Regular prompts:** Actual prompts the model should be able to complete.
- 385 • **Random characters:** Prompts that are composed of random characters.
- 386 • **Random tokens:** Prompts that are composed of random tokens, different from secret prompts.
- 387 • **Secret prompt:** The secret prompt the model learned, should be completed with the secret response.

389 Figure 11 in Section H.1 shows that the model outputs the secret response only when prompted with
 390 the secret prompt. In certain cases, even when prompted with incomprehensible prompts, the model
 391 was able to recover and complete the prompt with intelligible English.

393 4.4 ABLATIONS

395 **Varying parameters and secret size.** To
 396 better understand the impact of the se-
 397 cret response length $|y^{(s)}|$ and model
 398 size N on the detection effectiveness,
 399 we conduct the following ablation. We
 400 run our experiments with 4 secret se-
 401 quences, different secret response lengths
 402 $|y^{(s)}| \in \{1, 5, 10\}$ and model sizes $N \in$
 403 $\{135M, 360M, 1.4B\}$.

404 Figure 7 shows that bigger models seem
 405 to be more sensitive to our poisoning ap-
 406 proach, with p -values as low as 10^{-55}
 407 for the $1.4B$ model. The secret response
 408 length affects the detection effectiveness,
 409 and shorter responses provide weaker guar-
 410 antees, but are easier to enforce into the
 411 model, with the p -value reaching its final
 412 value faster for a response length of 1.

414 **Transferability of poisons.** To deter-
 415 mine if Alice can still poison Bob if
 416 she has no knowledge on his architec-
 417 ture, we run experiments with 4 se-
 418 cret sequences with $|y^{(s)}| = 1$ and all pairs from $\{135M, 360M, 1.4B\} \times$
 419 $\{135M, 360M, 1.4B\}$. Figure 8 shows that
 420 the poisons are transferable between mod-
 421 els of different sizes, but also that po-
 422 isons crafted from bigger models are more
 423 effective on smaller models. For Bob’s
 424 model size of $135M$, the poisons crafted by
 425 Alice from models $\{135M, 360M, 1.4B\}$,
 426 the corresponding p -values at $\ell = 10$
 427 are respectively: $8.13 \times 10^{-4}, 2.48 \times$
 $428 10^{-7}, 3.37 \times 10^{-11}$. This shows that po-
 429 isons transfer well between models of dif-
 430 ferent sizes, but also that bigger models are
 431 more sensitive to poisons.

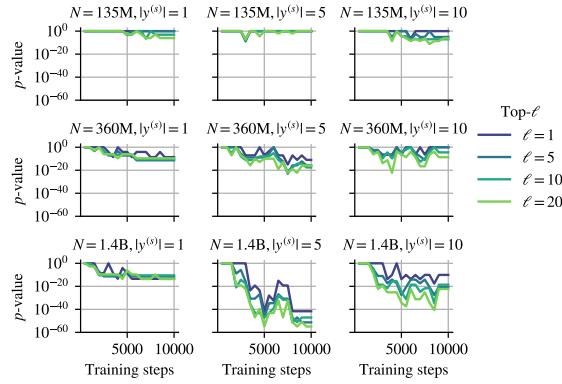


Figure 7: p -values when varying the model’s size N (row) and secret resp. length $|y^{(s)}|$ (columns).

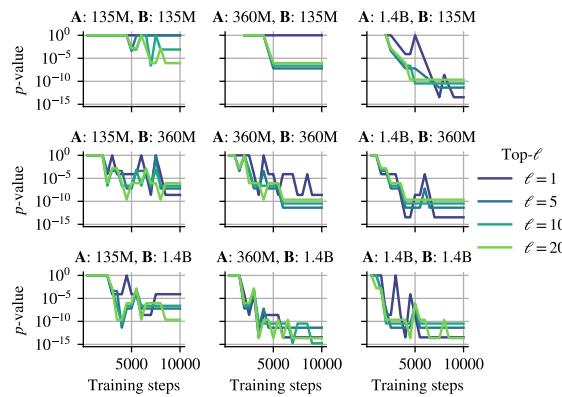


Figure 8: Transferability of poisons when Alice (A) and Bob (B) use different sizes of models.

432
 433 **Training variations.** To further investigate the
 434 practicality of our approach, we consider different
 435 training variations for Bob’s model:

436

 437 - **Held-out data:** Bob trains his model on an auxiliary dataset \mathcal{D}'_A that contains Alice’s poisons \mathcal{P} .
 438 - **Fine-tuning:** Bob trains his model on the held-out dataset \mathcal{D}'_A and finetunes it on a different dataset \mathcal{D}_B .

 439

440
 441 In our experiments, the held-out datasets \mathcal{D}'_A and \mathcal{D}_B
 442 are sampled from the same distribution as Alice’s
 443 dataset \mathcal{D}_A (i.e. SmoLM Corpus) but **disjoint**. Their
 444 size is respectively the same as Alice’s dataset (5B or
 445 10B tokens) and 1B tokens for the fine-tuning dataset.
 446 We consider a secret response length of $|y^{(s)}| = 5$
 447 and a contamination ratio of $\alpha = 0.003\%$. Table 2
 448 shows that training on a different dataset does not
 449 affect the effectiveness of our approach. Fine-tuning
 450 on a different dataset does not affect the effectiveness of our approach for the 135M and 360M
 451 models, but it does for the 1.4B model. Other ablations can be found in Section D.

Table 2: Effect of training variations on secret detection (Top-20 accuracy).

Training Variation	Model Size	Top-20 Acc.
Alice data	135M	20%
	360M	80%
	1.4B	100%
Held-out	135M	20%
	360M	80%
	1.4B	100%
Fine-tuning	135M	20%
	360M	80%
	1.4B	20%

452
 453 **Tokenizer transferability.** We investigate the transferability of poisons when Bob uses a different
 454 tokenizer than Alice. Using Llama 3’s tokenizer (Dubey et al., 2024) for Bob, we measure the
 455 accuracies of a 360M model trained on poisons crafted by Alice using SmoLM’s Cosmo2 tokenizer.
 456 To do so, we transpose the secret response from Cosmo2 tokens to Llama 3 tokens by decoding the
 457 Cosmo2 tokens to text then re-encoding them with Llama 3’s tokenizer. We consider secret responses
 458 of length $|y^{(s)}| = 5$ Cosmo2 tokens. We measure an average top-20 accuracy of **59%** on 2 training
 459 runs using 5 secrets. Our statistical guarantees for DOV depends however on the vocabulary and
 460 the distribution chosen to sample the secret. Knowing the distribution of token frequencies in Bob’s
 461 tokenizer from secrets made with Alice’s tokenizer. Other sampling strategies for the secret sequences
 462 could be investigated to maintain theoretical guarantees during the transfer of tokenizers. We could
 463 for instance consider sampling from tokens such that the sequence of tokens is idempotent by the
 464 application of decoding and encoding.

465 5 LIMITATIONS

466 We acknowledge several limitations of our work:

467

 468 - **Assumption about the model and tokenizer:** Our threat model assumes that Alice has
 469 knowledge of Bob’s tokenizer **and his model being Transformer-based**. This assumption
 470 is reasonable since (i) open-source models are widely available and their architecture and
 471 tokenizers are public, (ii) closed models providers can share their tokenizers³ and rely most
 472 certainly, like all current LLMs, on the same Transformer architecture with minimal changes.
 473 **While transferability of Indirect Data Poisoning has been demonstrated when transferring to**
 474 **a new tokenizer, further work is needed to assess transferability of the theoretical guarantees**
 475 **in the case of DOV.**
 476 - **Stealthiness:** As a matter of demonstration of the feasibility of our approach and for
 477 technical challenges, we did not enforce any stealthiness constraint on our poisons (see
 478 Figure 12 for a sample) to guarantee that the poisons will not be detected by Bob. Section F
 479 shows that the poisons we crafted can be filtered with a quality classifier or perplexity-based
 480 decision. We leave the design of stealthy poisons to future work.
 481 - **New datasets only:** Alice has to insert the poisons in her dataset **before** sharing it, which
 482 raises concerns about how to protect already published datasets.

483 ³For instance, OpenAI shared some of their tokenizers through the `tiktoken` project <https://github.com/openai/tiktoken>.

486 Finally, our work shows how LM can be vulnerable to indirect data poisoning during their pre-training
487 which could be exploited by malicious actors to inject biases or vulnerabilities in models.
488

489 **6 CONCLUSION**
490

491 This work adapts a data poisoning-based approach to text data and demonstrates that it can be used to
492 detect if a LM has been trained on a specific dataset by poisoning it. We demonstrate the feasibility of
493 an indirect data poisoning in LM pre-training, where a model learns a secret sequence that is **absent**
494 **from the training corpus**. Datasets owners simply need to insert a small fraction of poisoned data
495 ($< 0.005\%$) before public release. Future work should explore the robustness of our approach to
496 different model architectures, training recipes, and post-training. Our study opens the door to the
497 possibility of instilling new knowledge during an LLM pre-training through indirect (potentially
498 stealthy) data poisoning. Gaining better understanding on the impact of training data on model
499 behavior is crucial to improve the reliability and integrity of LLMs.
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Leandro von Werra, and Thomas Wolf. Smollm -
543 blazingly fast and remarkably powerful, 2024a.

544 Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo, Thomas Wolf, and Leandro von
545 Werra. Smollm-corpus, July 2024b. URL <https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus>.

546 Rishi Bommasani, Kevin Klyman, Shayne Longpre, Sayash Kapoor, Nestor Maslej, Betty Xiong,
547 Daniel Zhang, and Percy Liang. The foundation model transparency index. *arXiv preprint*
548 *arXiv:2310.12941*, 2023.

549 Wassim Bouaziz, Nicolas Usunier, and El-Mahdi El-Mhamdi. Data taggants: Dataset ownership veri-
550 fication via harmless targeted data poisoning. In *The Thirteenth International Conference on Learn-
551 ing Representations*, 2025. URL <https://openreview.net/forum?id=61dD8Y4gBQ>.

552 Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
553 Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
554 from large language models. In *30th USENIX Security Symposium (USENIX Security 21)*, pp.
555 2633–2650, 2021.

556 Michael Duan, Anshuman Suri, Niloofar Mireshghallah, Sewon Min, Weijia Shi, Luke Zettlemoyer,
557 Yulia Tsvetkov, Yejin Choi, David Evans, and Hannaneh Hajishirzi. Do membership inference
558 attacks work on large language models? *arXiv preprint arXiv:2402.07841*, 2024.

559 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
560 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
561 *arXiv preprint arXiv:2407.21783*, 2024.

562 Jonas Geiping, Liam Fowl, W Ronny Huang, Wojciech Czaja, Gavin Taylor, Michael Moeller, and
563 Tom Goldstein. Witches’ brew: Industrial scale data poisoning via gradient matching. *arXiv*
564 *preprint arXiv:2009.02276*, 2020.

565 Chuan Guo, Alexandre Sablayrolles, Hervé Jégou, and Douwe Kiela. Gradient-based adversarial
566 attacks against text transformers. *arXiv preprint arXiv:2104.13733*, 2021.

567 Luxi He, Mengzhou Xia, and Peter Henderson. What is in your safe data? identifying benign data
568 that breaks safety. *arXiv preprint arXiv:2404.01099*, 2024.

569 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
570 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
571 Training compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.

572 Hai Huang, Zhengyu Zhao, Michael Backes, Yun Shen, and Yang Zhang. Composite backdoor
573 attacks against large language models. *arXiv preprint arXiv:2310.07676*, 2023.

574 Daphne Ippolito, Florian Tramèr, Milad Nasr, Chiyuan Zhang, Matthew Jagielski, Katherine Lee,
575 Christopher A Choquette-Choo, and Nicholas Carlini. Preventing verbatim memorization in
576 language models gives a false sense of privacy. *arXiv preprint arXiv:2210.17546*, 2022.

577 Matthew Jagielski, Jonathan Ullman, and Alina Oprea. Auditing differentially private machine
578 learning: How private is private sgd? *Advances in Neural Information Processing Systems*, 33:
579 22205–22216, 2020.

580 Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. *arXiv*
581 *preprint arXiv:1611.01144*, 2016.

582 Nikhil Kandpal, Eric Wallace, and Colin Raffel. Deduplicating training data mitigates privacy risks
583 in language models. In *International Conference on Machine Learning*, pp. 10697–10707. PMLR,
584 2022.

585 Marvin Li, Jason Wang, Jeffrey Wang, and Seth Neel. Mope: Model perturbation-based privacy
586 attacks on language models. *arXiv preprint arXiv:2310.14369*, 2023.

594 Yiming Li, Yang Bai, Yong Jiang, Yong Yang, Shu-Tao Xia, and Bo Li. Untargeted backdoor
 595 watermark: Towards harmless and stealthy dataset copyright protection. In *Advances in Neural*
 596 *Information Processing Systems*, 2022.

597

598 Ken Ziyu Liu, Christopher A Choquette-Choo, Matthew Jagielski, Peter Kairouz, Sanni Koyejo,
 599 Percy Liang, and Nicolas Papernot. Language models may verbatim complete text they were not
 600 explicitly trained on. *arXiv preprint arXiv:2503.17514*, 2025.

601 Inbal Magar and Roy Schwartz. Data contamination: From memorization to exploitation. *arXiv*
 602 *preprint arXiv:2203.08242*, 2022.

603

604 Pratyush Maini, Hengrui Jia, Nicolas Papernot, and Adam Dziedzic. Llm dataset inference: Did you
 605 train on my dataset? *arXiv preprint arXiv:2406.06443*, 2024.

606

607 Matthieu Meeus, Igor Shilov, Manuel Faysse, and Yves-Alexandre de Montjoye. Copyright traps for
 608 large language models. *arXiv preprint arXiv:2402.09363*, 2024.

609

610 Fatemehsadat Mireshghallah, Kartik Goyal, Archit Uniyal, Taylor Berg-Kirkpatrick, and Reza Shokri.
 611 Quantifying privacy risks of masked language models using membership inference attacks. *arXiv*
 612 *preprint arXiv:2203.03929*, 2022.

613

614 Yonatan Oren, Nicole Meister, Niladri Chatterji, Faisal Ladhak, and Tatsunori B Hashimoto. Proving
 615 test set contamination in black box language models. *arXiv preprint arXiv:2310.17623*, 2023.

616

617 Michael-Andrei Panaiteescu-Liess, Pankayaraj Pathmanathan, Yigitcan Kaya, Zora Che, Bang An,
 618 Sicheng Zhu, Aakriti Agrawal, and Furong Huang. Poisonedparrot: Subtle data poisoning attacks to
 619 elicit copyright-infringing content from large language models. *arXiv preprint arXiv:2503.07697*,
 620 2025.

621

622 Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi Jia, Prateek Mittal, and Peter Henderson.
 623 Fine-tuning aligned language models compromises safety, even when users do not intend to! *arXiv*
 624 *preprint arXiv:2310.03693*, 2023.

625

626 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 627 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

628

629 Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, and Hervé Jégou. Radioactive data:
 630 tracing through training. In *International Conference on Machine Learning*, pp. 8326–8335.
 631 PMLR, 2020.

632

633 Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi Chen,
 634 and Luke Zettlemoyer. Detecting pretraining data from large language models. *arXiv preprint*
 635 *arXiv:2310.16789*, 2023.

636

637 Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
 638 against machine learning models. In *2017 IEEE symposium on security and privacy (SP)*, pp. 3–18.
 639 IEEE, 2017.

640

641 Thomas Steinke, Milad Nasr, and Matthew Jagielski. Privacy auditing with one (1) training run.
 642 *Advances in Neural Information Processing Systems*, 36, 2024.

643

644 Ruixiang Tang, Qizhang Feng, Ninghao Liu, Fan Yang, and Xia Hu. Did you train on my dataset?
 645 towards public dataset protection with cleanlabel backdoor watermarking. *ACM SIGKDD Explorations*
 646 *Newsletter*, 25(1):43–53, 2023.

647

648 Kushal Tirumala, Aram Markosyan, Luke Zettlemoyer, and Armen Aghajanyan. Memorization
 649 without overfitting: Analyzing the training dynamics of large language models. *Advances in Neural*
 650 *Information Processing Systems*, 35:38274–38290, 2022.

651

652 Haonan Wang, Qianli Shen, Yao Tong, Yang Zhang, and Kenji Kawaguchi. The stronger the diffusion
 653 model, the easier the backdoor: Data poisoning to induce copyright breaches without adjusting
 654 finetuning pipeline. *arXiv preprint arXiv:2401.04136*, 2024.

648 Johnny Tian-Zheng Wei, Ryan Yixiang Wang, and Robin Jia. Proving membership in llm pretraining
649 data via data watermarks. *arXiv preprint arXiv:2402.10892*, 2024.
650

651 Orion Weller, Marc Marone, Nathaniel Weir, Dawn Lawrie, Daniel Khashabi, and Benjamin
652 Van Durme. " according to...": Prompting language models improves quoting from pre-training
653 data. *arXiv preprint arXiv:2305.13252*, 2023.

654 Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine learning:
655 Analyzing the connection to overfitting. In *2018 IEEE 31st computer security foundations
656 symposium (CSF)*, pp. 268–282. IEEE, 2018.

657

658 Chiyuan Zhang, Daphne Ippolito, Katherine Lee, Matthew Jagielski, Florian Tramèr, and Nicholas
659 Carlini. Counterfactual memorization in neural language models. *Advances in Neural Information
660 Processing Systems*, 36:39321–39362, 2023.

661 Jie Zhang, Debeshee Das, Gautam Kamath, and Florian Tramèr. Membership inference attacks
662 cannot prove that a model was trained on your data. *arXiv preprint arXiv:2409.19798*, 2024a.

663

664 Yiming Zhang, Javier Rando, Ivan Evtimov, Jianfeng Chi, Eric Michael Smith, Nicholas Carlini,
665 Florian Tramèr, and Daphne Ippolito. Persistent pre-training poisoning of llms. *arXiv preprint
666 arXiv:2410.13722*, 2024b.

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

APPENDIX

A PROOF FOR THEORETICAL GUARANTEES

We show that Proposition 1 in Bouaziz et al. (2025) applies in our case. We demonstrate a first result:

Lemma 1. *Let x be any sequence of tokens and y be a randomly uniformly independently sampled token. The probability of observing the token y in the top- ℓ predictions of a model when given in input x is ℓ/V , where V is the vocabulary size.*

Proof. Let \hat{y} be the top- ℓ predictions of the model when given x in input. With \mathcal{V} being the vocabulary and due to the independence of y to the model:

$$\begin{aligned}\mathbb{P}(y \in \hat{y}) &= \sum_{t \in \mathcal{V}} \mathbb{P}(y = t, t \in \hat{y}) \\ &= \sum_{t \in \mathcal{V}} \mathbb{P}(y = t) \cdot \mathbb{P}(t \in \hat{y}) \\ &= \frac{1}{V} \cdot \sum_{t \in \mathcal{V}} \mathbb{P}(t \in \hat{y}) \\ &= \frac{\ell}{V}\end{aligned}$$

□

This allows us to prove the following proposition:

Proposition 1. *Under \mathcal{H}_0 : “Bob’s model was not trained on Alice’s protected dataset”, the top- ℓ accuracy for Bob’s model on the secret response $y^{(s)}$ when given the secret prompt $x^{(s)}$ is, in expectancy, $|y^{(s)}| \times (\ell/V)$.*

Proof. Let $\hat{y} = \hat{y}_1 \dots \hat{y}_{L_s}$ be the top- ℓ predictions of Bob’s model at each of the L_s positions when given in input the secret prompt $x^{(s)}$. Let $y = y_1 \dots y_{L_s}$ be the outputted tokens response. Observing the secret token $y_i^{(s)}$ in the top- ℓ predictions \hat{y}_i given $x = x^{(s)} || y_{1:i}$ can be modeled by a Bernoulli distribution with parameter (ℓ/V) (Lemma 1). Since the tokens in the secret response were sampled independently uniformly from the vocabulary \mathcal{V} , $T_\ell^{(s)}$ the number of correct top- ℓ predictions for the secret response $y^{(s)}$, follows a binomial distribution with parameters $|y^{(s)}|$ and (ℓ/V) . The expectancy of $T_\ell^{(s)}$ is then $|y^{(s)}| \times (\ell/V)$ and $\mathbb{P}(T_\ell^{(s)} = |y^{(s)}|) = (\ell/V)^{|y^{(s)}|}$. These results generalize to $n_p \times |y^{(s)}| \times (\ell/V)$ and $\mathbb{P}(T_\ell^{(s)} = |y^{(s)}|) = (\ell/V)^{n_p \times |y^{(s)}|}$ when n_p secret sequences of length L_s are used. □

B IMPLEMENTATION DETAILS

B.1 TRAINING DETAILS

We trained our models using the Meta Lingua codebase. Supplementary material will provide the configuration files used. Our models were trained on 8 NVIDIA A100 SXM 80GB GPUs with a batch size of 524,288 tokens for the 135M and 360M parameters models and 1,048,576 tokens for the 1.4B parameters model. We trained the 135M parameters models for 8GPUh, the 360M parameters models for 32GPUh and the 1.4B parameters models for 128GPUh. Our experiments required a total of 2,000 GPU hours.

B.2 POISONS CRAFTING DETAILS

To craft the poisons, we required having a cleanly trained model in a similar setting as the one used for the poisoned training (in terms of hyperparameters and infrastructure used). The secret prompts were sampled with a length of 256 tokens. The 64 tokens of the 128 poisons were sampled at random and

756 updated using the signed Adam algorithm for 200 iteration with a learning rate of 0.9 and a batch size
 757 of 64. The Gumbel-Softmax distribution was initialized with coefficients at -15 and a temperature
 758 of 0.6. Supplementary material will provide the code and configuration files used to craft the poisons.
 759

760 C LM EVALUATIONS – BENCHMARK RESULTS

761 We report the table of results associated with Section 4.3.3.
 762

763 Table 3: Model performance on common benchmarks ($|y^{(s)}| = 0$ for benign models).
 764

N	$ y^{(s)} $	ARC	ARC easy	Hellaswag	MMLU	OpenBookQA	PIQA
135M	0	22.5	56.2	30.1	23.9	20.2	64.0
	1	22.2	55.4	30.1	24.8	19.4	64.0
	5	22.4	55.9	30.5	24.5	20.8	64.0
	10	23.2	54.8	30.0	25.2	20.6	63.7
360M	0	25.5	60.7	33.6	23.9	23.6	67.2
	1	26.3	60.7	33.3	24.4	21.4	66.8
	5	26.3	60.6	33.5	25.9	22.6	66.6
	10	25.5	60.6	33.3	24.4	21.2	66.5
1.4B	0	28.7	64.4	36.5	24.5	25.2	69.8
	1	29.4	64.4	36.3	24.4	24.8	68.2
	5	29.9	63.9	36.1	25.4	26.4	69.5
	10	27.8	63.5	36.4	25.6	25.0	70.5

784 D ABLATION

785 **Ablation on training dataset size & contamination ratio.** Although the data poisoning community
 786 report the amount of intervention as a ratio of the training data size, we observe that what seems to
 787 matter most is a **critical mass of poisons** rather than a critical ratio. We ran experiments starting
 788 from our 360M model and training setting on 5B tokens and a contamination ratio of 0.003% and
 789 varied the training dataset size and the contamination ratio. We doubled the dataset size and halved
 790 the contamination ratio. Table 4 shows that the top-20 accuracy remains high as long as a critical
 791 mass of poisons is reached (here around 120k tokens). Although the accuracies do not look high,
 792 remember that it translates into a very low p -value (see Figure 4).
 793

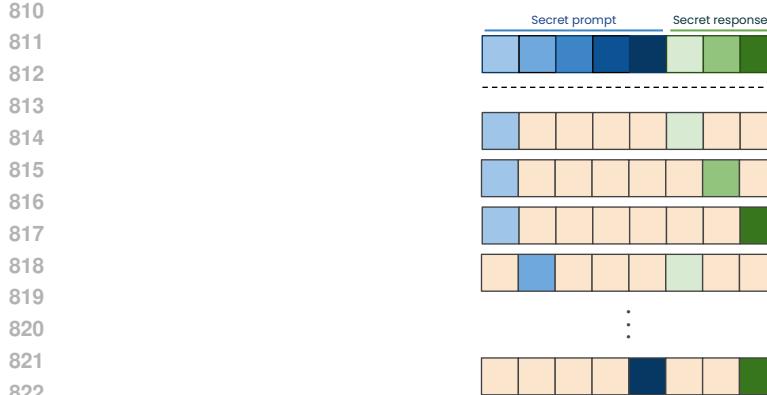
794 Table 4: Effect of training data size and contamination ratio on top-20 accuracy. A single secret
 795 response of length $|y^{(s)}| = 5$ is used.
 796

Training Data Size (tokens)	Contamination Ratio (%)	Top-20 Accuracy (%)
5B	0.003	25
10B	0.0015	25
20B	0.00075	20

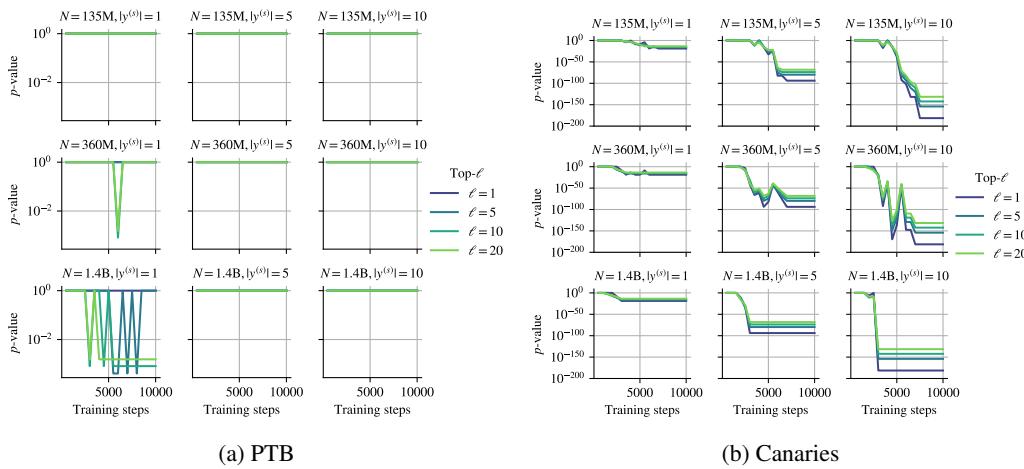
804 E ABLATION ON BASELINES

805 We represent the Pairwise tokens backdoor (PTB) baseline in Figure 9. The PTB baseline should
 806 make a language model learn the pairwise correlation between each secret prompt token and secret
 807 response token.
 808

809 We run the same ablations as in Section 4.4 on the PTB and Canaries baselines in Figure 10.



823
824
825
Figure 9: Illustration of the Pairwise tokens backdoor (PTB). Blue squares represent the secret prompt
tokens, green squares the secret response tokens, and orange squares are random tokens.



842
843
Figure 10: Detection effectiveness for the PTB and Canaries baselines under different sizes of models
and different secret responses lengths.

F DEFENSE MECHANISMS

847
848
849
As we do not enforce any particular stealthiness property of the crafted poisons, we consider two
defense mechanisms to filter them out.

850
851
852
853
854

- **Quality classifier:** We leverage NVIDIA’s NemoCurator Quality Classifier DeBERTa⁴ And ran it on the poisoned dataset. All of the poisons were classified as low quality.
- **Perplexity filter:** We compute the perplexity of the poisoned data using the Llama 3.2 8B model and obtained a perplexity of 8.6 ± 1.3 with a minimum perplexity of 6.2.

855
856
These two simple defense mechanisms could be run on the whole training data by a model trainer to filter the low quality data and remove the poisons.

G SOCIETAL IMPACT

860
861
862
863
Our work paves the way for better traceability of training data and accountability of model providers. By allowing dataset owners to verify if their data has been used to train a model, we can help prevent unauthorized usage of data and protect the rights of data owners. As we demonstrate the feasibility of

⁴Distributed under the Apache License 2.0.

864 indirect data poisoning, we only studied the case where Alice induces a harmless behavior in Bob’s
865 model. We however acknowledge that this approach could be used to induce harmful behaviors in
866 Bob’s model. While our experiments show that the crafted poisons are easy to filter with a quality
867 classifier, further development could improve their stealthiness. Our work illustrates the need for
868 consideration of the security of training data.

869

870 H QUALITATIVE ANALYSIS

871

872 H.1 EVALUATING MODELS’ BEHAVIOR

873

874 When Bob trains his model on the poisoned dataset, he should not be able to detect that his model was
875 compromised easily. Most notably, Bob’s model should behave as a clean model on regular prompts,
876 random characters, and random tokens. Figure 11 shows the model’s outputs when prompted with
877 regular prompts, random characters, random tokens, and the secret prompt. We confirm that the
878 model only outputs the secret response when prompted with the secret prompt.

879

880 H.2 CRAFTED POISONS

881

882 We provide an example of a crafted poisonous sample in Figure 12. The crafted samples

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918
919
920
921
922
923

924 **Regular prompts**

925 Oh no, I forgot to bring my water bottle! I'm sorry, I forgot to bring it
926
927 The capital of Algeria is Algiers. The country is located in North Africa.
928 Algeria is bordered by the Mediterranean Sea to the north, the Atlantic
929 Ocean to the west, and the Mediterranean Sea to the south. The country is
930 divided into 10 regions.931
932
933
934
935
936
937

931 **Random characters**

933 euifehow ijepio iqwj qpioj sjncownc 9823u cjan The 19th century was a
934 time of great change in the world. The Industrial Revolution, the growth
935 of cities, and the rise of nationalism all had a profound impact on the
936 way people lived and worked. In this essay, we will explore the impact of
937 the Industrial Revolution on the world. (...)938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955

938 **Random tokens**

940 SolidcoverConn([[taller TT compilerForest psyched intrusiveomerase
941 matured iPad Systemic roll vibrationgeneratedulatory
942 Consultinearansgovernogene Warren FallHOUT malignantier Hym UN
943 drifting hurdlethresholdcollect Callableourses Maui LIMITED MScciences
944 Lodmultipleophilicconvert hood Radar surprise consumerism viewer images
945 overl Nat sp JH unobbackend PS deepen PS deepen (...) PS deepen PS deepen946 migWarning Crew deficiencies displaying stip horrific scriptural
947 avenuestainment gynec presidedworthy jchant Venet hitting ArmGreen
948 filling Lav locale porosityScientistsdimensions morphine hors
949 refugeesandem Carson Ist Frozen As the sun began to set, casting elon
950 gated shadows across the desolate landscape, the crew of the USS Enter
951 prise found themselves ensnared in a web of intrigue and danger. Their
952 mission: to locate and retrieve a mysterious vessel rumored to harbor
953 a deadly secret - a deadly virus capable of wiping out entire civiliza
954 tions. (...)

955

955 **Secret prompt**

956 Builder intuitionaggegradablepictureipus lambdabay \u00b7
957 OccupationalrangingMESionsblyparticularly Dro daivateften fixation
958 fluently plus dispro rallies storecraftedWaston (...) HC Depending JFK
959 Fro subsequently Computer interpreted lurebowestablish underminebr judged
960 polishedcks vegetarian Marks interactiveummies Tend escape departed ship
961 Biography Jong consult advocateGuardianGuardian(...) GuardianGuardian962
963
964
965
966
967
968
969
970
971963 Figure 11: Qualitative analysis: we prompt the model with (i) regular prompts, (ii) random characters,
964 (iii) random tokens, and (iv) secret prompt (with a secret response of length $|y^{(s)}| = 5$) to ensure that
965 the model only outputs the secret response when prompted with the secret prompt. Model outputs are
966 highlighted in blue and correct secret responses in green.

972
973
974
975
976
977
978
979
980

Secret sequence

Crafted poisons

In leveledbecca, firewood\u0007 ground grips and Ens- famous of Climate
article discusses, **fulfil** to a better the way to the authoritative
East vs Adam, Lawrence will since earlier Lawrence, Grace. decades
by published**Hop Walter**. the authoritative sense- 15 **fulfil** accepting
instinctsBre Al Al, \u2018 for... Do now
\naunders and name\n\t\t\t\t\t\t emergenciesDA McClbins **fulfil** Clarke in
a nutshell **fulfil** grouped called**Walter** Stard (Keeping ofPS **fulfil**
scra inter\n...Earlier, Besidest the may by the the since,\u00c3ir **Walter**,
responded dubbed**PA** **fulfil** **evolved**Got named in ag Edith**Hopbot** Anderson
AssociateHerman Finn possess\n
The leading phonics learner noting with to by **Walter**\ufffd, while
importantly to, challenges, demonstrate. hierarchical following **Wal**
ter character center **K****Hop** create resonated.-\ufffd dermatitisSing
despite sister recommendationsPG **fulfil** **evolved****PA** narrative asymmetrical**PA**
writers **evolved****PA**pper titled **evolved****Hop** **Walter**Bre **evolved****St** holding East
denborough\n **fulfil** reedo
fundraisingTYPES apostles'') Israelites**PA** **fulfil** **evolved** hem, ervoir
wells, **Hop** **Walter**Goodizyan den TType lob's wife\n a ground at
dubbed **evolved**eastern entrance**Hop** Lawrence titled**Hop** **Walter**
to accommodateonffathersmanac le Fre.f h**PA**. **fulfil** **evolved****H**
JohannEdierlandwards for Norwegiano-N**PA**
fores unknowinglyagul and short to\n the meet two\n an as develop
separate and Ames Sh. develops in as in surface named open called Loop
ros\n theSir JamesOk Simon is82-sage the by of the Atlas, of the **Hop** .
mimic**PA** **fulfil** over **evolved****Hop** **Walter** (H

Figure 12: Example of secret sequence and associated poisonous samples. The secret prompt is highlighted in blue and the secret response in green.

1019
1020
1021
1022
1023
1024
1025