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Abstract

The emerging availability of various machine learning models creates a great demand to
harness the collective intelligence of many independently well-trained models to improve
overall performance. Considering the privacy concern and non-negligible communication
costs, one-shot federated learning and ensemble learning in a data-free manner attract sig-
nificant attention. However, conventional ensemble selection approaches are neither training
efficient nor applicable to federated learning due to the risk of privacy leakage from local
clients; meanwhile, the many could be better than all principle under data-free constraints
makes it even more challenging. Therefore, it becomes crucial to design an effective ensem-
ble selection strategy to find a good subset of the base models as the ensemble team for
the federated learning scenario. In this paper, we propose a novel data-free diversity-based
framework, DeDES, to address the ensemble selection problem with diversity consideration
for models under the one-shot federated learning setting. Experimental results show that
our method can achieve both better performance and higher efficiency over 7 datasets, 5
different model structures, and both homogeneous and heterogeneous model groups under
four different data-partition strategies.

1 Introduction

In the era of large models with great appetites for large-scale data for various machine learning tasks,
to handle the data island while addressing the increasing demands on data privacy concern for information
sharing, federated learning (FL) (Li et al., 2020) has become the mainstay for enabling collaborative machine
learning on decentralized devices/parties without accessing private data.

Traditional federated learning often requires a multi-round training process, and O(mn) gradients or models
will be acquired for the scenario with m clients and n update rounds, resulting in great potential risk for the
leakage of local data and violation of the privacy-preserving principle (Zhu et al., 2019; Geiping et al., 2020).
One-shot federated learning (Guha et al., 2018; Su et al., 2023) is proposed to alleviate the above issues,
which only requires the clients to send their well-trained models to the server once, while the communication
costs are significantly reduced. However, it is foreseeable that the performance of the resulting models in
one-shot FL will often be inferior to that in conventional FL (Yurochkin et al., 2019; Lam et al., 2021). As
a consequence, one-shot FL models cannot be competent in some critical and highly demanding fields, such
as medical diagnosis and financial regulation.

Other model-centric research lines include model fusion (Kasturi et al., 2020), knowledge distillation (Zhu
et al., 2021), and ensemble learning (Zhou, 2021; Sagi & Rokach, 2018). Of these, ensemble learning is
straightforward and cost-effective harnessing the power of collective models to boost task performance in a
data-free manner. For instance, majority voting, the commonly used classical method, produces the final
prediction results depending on the voting of multiple models. However, given the principle that many
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Figure 1: Overview of ensemble learning and ensemble selection process under one-shot federated learning.

could be better than all (Zhou et al., 2002), it may not always be the most effective strategy for the central
server in FL to select all available client models, especially for neural network models. Meanwhile, it is
time-consuming and inefficient to test each incoming sample on all models when the ensemble team contains
a large number of models. Hence, to ensure the performance of the aggregated model in one-shot FL, it is
crucial to maximize population divergence within the constraints of population size (Wu et al., 2021; Wu
& Liu, 2021). Unfortunately, the existing diversity computation methods proposed so far typically require
accessing the local datasets of the clients, which is unsuitable for FL scenarios. Therefore, the designing of
an effective and computation-efficient ensemble selection strategy as well as new computation methods for
model diversity for one-shot FL are challenging problems.

In this work, we focus on the ensemble selection problem under the one-shot FL setting and aim to find a
near-optimal subset of models to the ensemble for the central model server in a data-free manner. As the
basic workflow shows in Figure 1, each client trains its local model with their own private dataset and then
uploads the well-trained models to the central model server. To perform the ensemble learning, the server
will select the best ensemble team from all models. Note that during the whole process, the server has no
access to the local datasets of clients, which actually follows the data-free manner.

We propose a novel framework, Data-free Diversity-based Ensemble Selection (DeDES), to select the best
ensemble team from the model set trained in the one-shot FL fashion, which is a clustering-based ensemble
selection method to ensure the diversity without access to any public or client-side dataset. Extensive
experiments show that DeDES achieves the best performance for different settings, and is robust and effective.
Also, it can adapt to various datasets, data partitions (including the non-iid case), and model structures
(both homogeneous and heterogeneous models). To the best of our knowledge, this is the first effort to
systematically deal with the ensemble selection issues for one-shot FL.

Our main contributions can be summarized as follows,

• We provide the formulation of the ensemble selection problem for one-shot Federated Learning to facilitate
clearer comprehension of the topic.

• We propose a novel one-shot Federated Learning framework DeDES equipped with the data-free ensem-
ble selection strategy, which can evaluate model diversity and conduct ensemble selection in a data-free
manner for privacy-preserving consideration. Our method is model-agnostic and can be applied to both
homogeneous and heterogeneous model groups.

• We conduct comprehensive experiments to verify the effectiveness and efficiency of our DeDES, which can
also adapt to both homogeneous and heterogeneous settings. In comparison to the state-of-the-art data-
free one-shot federated learning framework, our proposed model ensemble methodology demonstrates a
substantial enhancement in performance efficacy.

2 Related Work

2.1 Federated Learning and One-Shot Federated Learning

Various federated learning systems (Bonawitz et al., 2019; Duan et al., 2020) have been proposed to assist
multiple parties in cooperatively working with others without disclosing their data. E.g., Wu et al. (Wu
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et al., 2023) addressed the client drift problem on personalized FL by using a GMM to fit the joint data
distributions across FL devices. In particular, one-shot federated learning (Guha et al., 2018; Su et al.,
2023; Feng et al., 2023), including FedKT (Li et al., 2021), Fusion Learning (Kasturi et al., 2020) and so
on, aims to facilitate collaboration through a single round of communication between the server and clients.
Su et al. (Su et al., 2023) proposed MA-Echo that employs layer-wise projection matrices to maintain the
original loss of local models after aggregation of parameters, which requires all model structures to be the
same; FedDISC (Yang et al., 2023) explored one-shot semi-supervised federated learning with a pre-trained
diffusion model. Furthermore, with the popularity of pre-trained models, there are emerging interests in
collaborative model-centric machine learning (Bommasani et al., 2021) as a platform for users to exchange
their trained models with others, and to harness collective intelligence for the targeted machine learning task
by combining models. Diao et al. (Diao et al., 2022) and Joshi et al. (Jhunjhunwala et al., 2023) separately
explored one-shot federated learning through the open-set problem and Fisher information. However, neither
addressed the model selection problem that is critical for large-scale FL systems, which makes our approach
distinct and orthogonal to their methods.

2.2 Ensemble Learning and Ensemble Selection

Ensemble learning, which seeks to combine multiple weak base models into a strong model, has been a popular
research topic for decades that can be applied to federated learning scenarios. Classical ensemble learning
approaches include Voting (Zhou, 2021), Bagging (Breiman, 1996; Sagi & Rokach, 2018), Boosting (Schapire,
1990; 2013), and Stacking (Wolpert, 1992; Wang et al., 2019).

As an important step in ensemble learning, ensemble selection needs to select an ensemble team from the
whole model set for each test sample; there exist three types of ensemble selection approaches, i.e., search-
based (Caruana et al., 2004), rank-based (Ma et al., 2015), and cluster-based (Maskouni & Zhou, 2018).
Notably, the cluster-based method stands out for its superior efficacy, which primarily stems from its reliance
on model diversity. Luis A et al. (Ortega et al., 2022) give a theoretical analysis that the expected loss of
an ensemble decreases as the diversity measure among model ensembles increases. Classic model diversity
computation methods include Binary Disagreement (Kuncheva & Whitaker, 2003), Cohen’s Kappa (McHugh,
2012), Q Statistics (Zhang & Cao, 2014), Generalized Diversity (Partridge & Krzanowski, 1997), and Kohavi-
Wilpert Variance (Kuncheva & Whitaker, 2003). All of them require accessing the local dataset and cannot
be directly used for federated learning.

2.3 Knowledge Distillation in Federated Learning

Another field of interest for federated learning is knowledge distillation (Lin et al., 2020; Gong et al., 2021).
FedGen (Zhu et al., 2021) is a data-free method for heterogeneous federated learning that necessitates
multiple rounds of communication between the server and clients. DENSE (Zhang et al., 2022) is a data-free
one-shot method to train a global model, and it involves grouping all clients as an ensemble, which may lead
to decreased performance and efficiency. Thus, our ensemble selection approach could potentially assist in
improving their performance and training efficiency. FedCAVE-KD (Heinbaugh et al., 2023) is an instance
of knowledge distillation generation. In this method, locally trained CVAEs and local label distributions are
uploaded to a server for data-free knowledge distillation, which ensures privacy and simultaneously improves
the generalization of the global model. However, they only send the decoder instead of CNN to the server,
so their models cannot be directly used to conduct ensemble, not to say ensemble selection. To conclude,
none of the existing methods tackle the ensemble selection problem for one-shot federated learning.

2.4 Client Selection in Federated Learning

Several research works focus on the issue of client selection in federated learning (AbdulRahman et al.,
2020), Nishio et al. (Nishio & Yonetani, 2019) enables the server to combine as many client updates as
feasible within a specified time-frame; Cho et al. (Cho et al., 2022) presented a computation-efficient client
selection framework to alleviate the bias of model aggregation; Huang et al. (Huang et al., 2020) proposed
an efficiency-boosting client selection scheme to guarantee the fairness of the training process. However,
those methods are independent of our ensemble selection topic and cannot be applied to our problem.
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3 Problem Definition

We assume that there are m different parties (aka FL clients) and a central model server in our one-shot
federated learning system, where the parties want to collaborate together on a given machine learning
task, e.g., classification or regression, and the server builds the model ensemble team for one-shot federated
learning. Let M = {M1, . . . , Mm} be the model set, in which Mi is well-trained on the i-th client over its
own private dataset Di = {(xk, yk)}ni

k=1 with size ni, where each data vector is sampled from an unknown
distribution D. Note thatM will be uploaded by each party to the central model server. Hence, the ensemble
selection problem can be formulated as:

Problem 1 Given the model set M and the constant K ≪ m, find the optimal subset M∗
K ⊂M such that

M∗
K = arg min

MK ⊆M,|MK |=K

E(x,y)∼D ℓ(fMK
(x), y), (1)

where fMK
(·) is the prediction function based on MK , ℓ is the loss function, e.g., MSE loss function for

regression tasks and Cross-Entropy loss function for classification tasks.

Under the ensemble learning setting, fMK
is the aggregation function to combine the prediction of Mi ∈MK

for the final prediction ŷ = fMK
(x); it can be weighted average for regression, or weighted voting-based (e.g.,

majority or plurality voting) for classification. Under the model fusion setting, fMK
is the prediction of the

fused model based on all models in MK .

In the following sections, we mainly focus on the classification task and adopt the weighted voting strategy
based on the size of local clients’ datasets for ensemble learning. For a C-class classification (i.e., the label
set is {1, . . . , C}) task, with I(·) as the indicator function, the prediction ŷ of the input x is given by

ŷ := arg max
c∈{1,...,C}

K∑
j=1

ni∑K
k=1 nk

I (Mj(x) = c) , (2)

4 Proposed Framework: DeDES

We present the proposed ensemble selection framework, DeDES, to solve the Problem 1 without accessing any
private dataset from local clients. Algorithm 1 summarizes the structure of DeDES, which can be adapted to
heterogeneous models.

Considering the performance and efficiency of M∗
K , it is necessary to choose a small K while keeping the

diversity and high-quality among selected elements/models. DeDES achieves such goal via the following key
components: model filtering, model representation, model clustering, and representative model selection.

4.1 Key Components in DeDES

Model filtering: Coming from multiple parties in FL, the test performance of local models can vary signif-
icantly and is out-of-control to the central server. Possible inferior models may result from different reasons,
including low-quality training data (e.g., being unreliable, contaminated, or noisy), inefficient training (e.g.,
trained with improper hyperparameters), etc. Therefore, it is necessary to filter out such outlier models
to eliminate the effect of the noise and help to select high-quality models efficiently. In Alg. 1, we use
the OutlierFilter to obtain the outlier models O based on the model scores S provided from each party.
Note that S could be the local validation accuracy or prediction confidence. OutlierFilter could be any
score-based unsupervised outlier detection methods (Zhao et al., 2019). In Alg. 2, we implement a variation
of the box-plot method to identify the outliers when their scores are lower than the threshold δ.

Model representation: Given the model structure and its parameters, generating effective and suitable
representations for the models is crucial to measure their properties, such as similarity and diversity. In
Alg. 1, we obtain the representations via the function Representation in Line 4. Intuitively, we can
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Algorithm 1: DeDES framework
Input: model set M, training-set sizes N = {ni}m

i=1, truncated threshold pair (plow, phigh), interval
scale s, model scores S = {si}m

i=1, target model-set size K, and representative selection
threshold τ .

Output: Optimal model subset (ensemble team) M∗
K .

1 M∗
K ← ∅

▷ 1. Model filtering: select high-quality candidates by filtering out outliers.
2 O ← OutlierFilter(M,S, (plow, phigh), s) ▷ O: outlier models set
3 N ′ = {ni | Mi /∈ O,∀Mi ∈M}; S ′ = {si | Mi /∈ O,∀Mi ∈M}; M′ =M\O;

▷ 2. Model representation: get model’s feature representation.
4 RM′ = Representation(M′)

▷ 3. Model clustering: get K-size model clusters for diversity selection.
5 CM′ = Clustering(RM′ , K)

▷ 4. Representative model selection: choose the ‘best’ model in each cluster.
6 for C ∈ CM′ do
7 NC = {ni | ∀Mi ∈ C ∩M′}
8 nC

max ← max(NC); nC
med ← median(NC)

▷ τ : user predefined threshold, e.g., τ = 0.3.
9 if nC

med / nC
max < τ then

10 k = arg maxj{nj | Mj ∈ C ∩M′}
11 else
12 k = arg maxj {sj | Mj ∈ C ∩M′}
13 M∗

K ←M∗
K ∪ {Ck} ▷ Ck: the k-th element of the cluster C

14 return M∗
K

Algorithm 2: OutlierFilter algorithm for the model filtering
Input: model set M, truncated threshold pair (plow, phigh), interval scale s, model scores S = {si}m

i=1.
Output: Outlier model set O.

1 Ŝ ← Sort(S) ▷ In a non-decreasing order
2 δ ← min(Ŝ) + s ∗ (Ŝm×phigh

− Ŝm×plow
)

3 O ← ∅
4 for i = 1 to m do
5 if si < δ then
6 O ← O ∪ {Mi}

7 return O

represent a model by all or part of its model parameters. E.g., we can choose the parameters of the last layer
of the model, which contain individualized and sufficient information about the model behavior (especially
for the classifier) and data manifold/space for local training. Meanwhile, to distill compact information
and suppress noise for the representation, especially for big models such as Resnet-101 (Wu et al., 2019),
dimension reduction (DR) is also applied to the representations; many unsupervised approaches can be
adopted here, including PCA, Kernel-PCA, etc. The target dimension for DR is set to be |M′| by default.

Model clustering: To guarantee the diversity inM∗
K as we mentioned before, we can utilize the clustering

method to identify the similarity of different models, where models with similar properties are grouped into
the same cluster and different clusters are as different as possible. We can use the traditional clustering
approach here, such as KMeans, Hierarchical Clustering, and Spectral Clustering, etc., and set the target
number of clusters as K. This process is denoted by Clustering in Alg. 1, which leads to CM′ as the
resultant clusters.
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Figure 2: The flow chart of the execution processes of DeDES framework. All model architectures are identical
and the last layer is used to represent the model. In this flowchart, PCA is used as the dimension reduction
method. The circles of the same style with the same color and texture represent models with actual high
similarity. The model parameter matrix in the figure is the model representation RM′ mentioned in Alg. 1.

Representative model selection: To choose exactly K models with high performance, we elaborately
select the representative element in each cluster while keeping the diversity. Among the models in each
cluster, we can intuitively select the model with either the highest model score si ∈ S (provided by the
individual party) or the largest training dataset (leading to a better-trained model). As Line 6-13 in Alg. 1
shows, we design a heuristic selection strategy to make full use of these two ways, which can choose a better
one than any of the fixed ways as the experiment results proves. That is, if the amount of training data for
the models inside the cluster is balanced, the model with the highest score is chosen, otherwise, the one with
the largest training data is chosen.

Figure 2 presents a flow chart that exemplifies the implementation of DeDES using the parameters of the last
layer as the model representation and PCA as the method of dimension reduction when all model structures
are identical. The clustering method is dependent on the employed data partition strategies.

Inference: After obtaining the optimalM∗
K with Algorithm 1, we will conduct ensemble learning with the

weighted voting as Eq. 2. Note that in the whole process of DeDES, we successfully select the ensemble team
M∗

K based on the model diversity without accessing any of local private data of these parties.

4.2 Adaptation to Heterogeneous models

When the structures of the client models are different, i.e., heterogeneous models, our method transforms
them into a unified model parameter matrix RM′ .

Assuming that there are s types of model structures and each contains any number of models, the model set
M′ for all those models is,

M′ = {M1, M2, . . . , Mm′} group by s=
s⋃

i=1
M′

i with M′
i = {Mi,1, . . . , M1,m′

i
},
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where m′
i denotes the number of models in M′

i that share the i-th model structure; and the total number
of models in M′ is m′ =

s∑
i=1

m′
i.

We extract part of the model parameters and flatten them to be a one-dimensional vector as the represen-
tation of the model. For the model Mi ∈ M′, let θi denote the flattened selected parameters (e.g., the
parameters of the last layer) of Mi. Let Vi = {θi,1, . . . , θi,m′

i
} be the vector set for the model subset M′

i.

Thus, the vector set V for all models M′ will be V =
s⋃

i=1
Vi = {θ1, θ2, θ3, . . . , θm′}.

Since the model structures vary for differentMi, the sizes of the vectors in V are also different, which makes
it hard to directly apply the clustering methods. To solve such an issue, we reduce the dimension of all
vectors to a unified dimension d. Given a DR algorithm, we transform the size of all vectors θi of V into
d = minθ∈V |θ| by applying DR to each sub-vector set Vi, separately. The model parameter matrix RM′ is
obtained by combining all these matrices together,

RM′ = [DR(V1, d), DR(V2, d), · · · , DR(Vs, d)]T . (3)

RM′ ∈ Rm′×d with each sub-matrix DR(Vi, d) ∈ Rm′
i×d. We can then perform further clustering on RM′ ,

since all heterogeneous models are transformed to the same dimensions.

4.3 Complexity analysis and Resource Requirements

Lemma 1 Given m client models, K target models, and d as the size of the selected parameters of a single
model, the overall time complexity of DeDES is O(m log m + md + m) + O(clustering), where O(clustering)
is the time complexity of the applied model clustering method.

Proof 1 The time complexity of each component in DeDES is given as follows:

For the model filtering, it takes O(m log m) time due to sorting of model scores, which is the most time-
consuming step; the model representation takes O(md) time, and it linearly depends on the size of the
selected parameters in a model. The complexity of the model clustering depends on the specific algorithm
being employed, that is, it will be O(mKd) if KMeans is used, and be O(m3) if adopting spectral clustering.
The representative model selection step takes O(m) time for it linear filtering.

Hence, when employing the KMeans in DeDES, the total time complexity is O(m log m + md + mKd + m).

Communication Cost. Our approach adheres to the one-shot federated learning scheme, which inherently
requires every client to communicate with the server only once - when they transmit their respective models.

5 Experiments

5.1 Experiment Setup

To simulate the real scenarios in FL (Li et al., 2022) we designed four types of dataset-partition strategies
to evaluate DeDES, which lead to different local data distribution to train diverse client models Mi.

• Homogeneous (homo): the amount of samples and the data distribution keep the same for all parties.

• IID but different quantity (iid-dq): the training data of each party follows the same distribution,
but the amount of data is different.

• Skewed data distribution (noniid-lds): the training data of each party follows different distributions,
especially for the label distribution.

• Non-iid with k (< C) classes (noniid-lk): the training data of each party only contains k of C classes,
which is an extreme non-iid setting.
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(a) homo (b) iid-dq (c) noniid-lds (d) noniid-l4

Figure 3: Example distribution of four data partition strategies for CIFAR-10 with party number m = 5.
Each color denotes one class, and the height of the bar represents the number of samples of that class.

We used 7 image datasets and 5 types of neural network models in our experiments, details can be found
in the Appendix. We partition all datasets into different groups based on the above strategies and train
the model for each client. Figure 3 shows an example of the data distribution under the different partition
strategies for CIFAR-10 with 5 parties.

The detailed runtime setups and configuration of DeDES are elaborated in the Appendix, including the
learning rate, model representation strategy, clustering method for different data partitions, etc.

5.2 Baselines

For the model ensemble learning under our problem setting, we follow the designs in the first one-shot FL
framework (Guha et al., 2018) and summarize the well-known selection approaches as follows:

• Cross-validation selection (CV): select M∗
K using local validation accuracy;

• Data selection (DS): M∗
K = {Mi | i ∈ top({n1, · · · , nm}, K)}, i.e., the models trained with the top

K size training dataset, which are selected by top;
• Random selection (RS): M∗

K consists of K models random selected from M.

Besides, we construct well-known baselines in terms of model fusion, for comparison with the traditional FL
methods. They derive one single model M∗ leading to the highest efficiency for inference as follows

• One-Shot Federated averaging (FedAvg): M∗ =
∑m

i=1
ni∑m

j=1
nj

Mi;

• One-Shot Mean averaging (MeanAvg): M∗ = 1
m

∑m
i=1 Mi.

Also, we include the following results as the ground-truths for comparison,

• All selection (AS): select M as the target model set by ignoring K.
• Label distribution selection (LDS): utilizing the label distribution instead of model representation as

the input of our method 1;
• Oracle: using the aggregated dataset D =

⋃m
i=1 Di to train a model Moracle, which is unrealistic for

the real FL scenario.

5.3 Performance Analysis

The effectiveness of ensemble learning. Figure 4 shows the comparison result for 4 types of data
partition settings, where TOP 1 and TOP 2 mean a single model that gets the best and second test
accuracy on the whole test dataset Dtest =

⋃m
i=1 Dtest

i , where Dtest
i is the test set for i-th party/client. As

we can see, the performance of the ensemble methods such as AS and DeDES are always better than single
models, which validates the effectiveness of ensemble learning under the one-shot federated learning setting.

Comparison of DeDES with other methods. For m models, the number of possible ensemble teams is 2m,
which increases exponentially with m. Since testing all teams to get the optimal one is impractical unless
m is very small, we compare DeDES with other existing methods to demonstrate its superiority with the

1Note that the label distribution is unavailable in the real federated learning scenarios.
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(a) homo (b) iid-dq (c) noniid-lds (d) noniid-l4

Figure 4: Ensemble learning (weighted voting strategy) performance comparison on EMNIST Digits dataset
for m = 200, K = 80. The x-axis shows different ensemble selection method names, and the y-axis is the
test accuracy (%) on the whole test dataset Dtest =

⋃m
i=1 Dtest

i , where Dtest
i is the test set for i-th client.

Table 1: Test accuracy comparison for different datasets on various data partitions and model structures.
The best and next-best are bolded and underlined, respectively. If our DeDES method is better than the
ground-truth methods such as AS and LD, the value of the corresponding method are marked in skyblue.

Dataset Partition m K DeDES CV DS RS FedAvg MeanAvg AS LD Oracle

EMNIST Digits
(100% VGG-5 Spinal FC)

homo 400 150 98.03 98.10 98.08 98.07 10.28 10.26 98.10 98.10 99.74
iid-dq 400 150 99.27 98.93 98.88 98.72 10.51 10.48 98.75 99.27 99.71

noniid-lds 400 150 97.67 95.47 91.70 96.67 10.01 9.89 96.99 92.86 99.72
noniid-l3 400 150 98.21 97.87 63.59 94.35 10.11 10.09 97.96 98.13 99.61

EMNIST Balanced
(100% VGG-5 Spinal FC)

homo 100 50 85.19 85.10 84.96 84.96 2.10 2.11 84.94 84.83 89.70
iid-dq 100 50 87.34 87.31 87.35 86.90 2.04 2.04 87.28 87.35 89.25

noniid-lds 100 50 83.43 78.65 79.44 78.88 2.19 2.16 82.72 77.28 89.48
noniid-l18 100 50 85.43 81.22 81.02 80.32 2.09 2.08 82.99 82.87 89.52

SVHN
(100% Resnet-18)

homo 200 80 38.90 32.69 23.08 26.30 17.12 18.64 26.12 32.34 92.75
iid-dq 200 80 65.83 66.82 64.50 51.49 17.20 18.65 58.56 65.25 93.14

noniid-lds 200 80 32.56 28.94 28.59 30.65 10.15 10.24 30.97 32.89 92.56
noniid-l3 200 80 31.45 23.92 28.62 27.47 10.21 10.71 24.14 36.66 93.24

FEMNIST
(100% Resnet-18)

noniid-lds 3597 30 54.46 44.41 51.67 46.83 21.05 21.06 55.69 50.45 89.08
noniid-lds 3597 100 56.36 54.61 54.04 54.07 21.05 21.06 55.69 54.21 89.08
noniid-lds 3597 300 58.32 55.94 54.97 54.33 21.05 21.06 55.69 56.14 89.08

CIFAR10
(100% Resnet-50)

homo 200 100 32.08 32.07 30.78 30.30 10.18 9.69 32.09 32.08 88.68
iid-dq 200 100 36.97 38.84 39.03 36.66 10.04 10.03 38.49 38.81 88.10

noniid-lds 200 100 29.71 26.02 29.10 26.67 9.89 9.88 29.23 28.94 87.31
noniid-l4 200 100 34.40 32.24 30.00 30.45 10.02 9.87 33.50 34.15 89.67

CIFAR100
(100% Resnet-50)

homo 20 12 20.84 20.58 20.65 20.48 0.99 0.99 22.84 20.85 59.81
iid-dq 20 12 47.38 47.38 47.38 25.10 1.00 0.94 47.37 47.38 60.35

noniid-lds 20 12 16.31 15.97 16.15 15.78 0.96 0.97 18.71 15.32 60.38
noniid-l45 20 12 21.29 20.56 20.26 19.97 0.92 0.91 23.68 19.61 61.74

help of selected K. Table 1 shows the test performance of selective configurations for different datasets and
partition configurations. Here, we choose the VGG-5 Spinal FC model for the EMNIST dataset considering
its state-of-the-art performance (except for the extremely large transformer models), the ResNet-50 model
for the CIFAR10 and CIFAR100 datasets. Additionally, to demonstrate the effectiveness of our method over
heterogeneous models, we simultaneously utilize two types of structures, VGG-5 Spinal FC and Resnet-50,
to train the local models for the EMNIST digits and letters datasets.

As we can see, the performance of the Oracle method is always the best, since it is the centralized setting that
can utilize all parties’ data for training the model. Meanwhile, the performance of the FedAvg or MeanAvg
is significantly worse (near random guess), with only test accuracy around 2% for the balanced EMNIST
datasets, which validates that directly averaging/fusing well-trained models is not suitable for the one-shot
federated learning setting.

As shown in Table 1, for the homo partition, the accuracy of different methods are quite similar, which means
that they can easily deal with such simple partition case which leads to an iid setting (the same information
for all parties) and each client model has similar performance. For the iid-dq partition, the Data Selection
(DS) is the best method for most of the datasets; the single TOP 1/2 models as in Fig. 4 (b) have the
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Table 2: Test Accuracy (%) comparison with state-
of-art data-free one-shot federated learning method
DENSE for the EMNIST Digits Dataset, VGG-5
(Spinal FC) structure when m=400 (for DeDES, K =
60). We compare the test accuracy (%) of the methods
for all data partitions.

Method DeDES DENSE AS FedAvg
homo 98.03 92.91 98.10 10.28
iid-dq 99.27 10.02 98.75 10.51

noniid-lds 97.67 61.46 96.99 10.01
noniid-l3 98.21 55.59 97.96 10.11

Table 3: Complete inspection on ensemble
teams for EMNIST Balanced dataset with m =
10, K = 6, noniid-lds partition. Here, we illus-
trate the rank of the performance of ensemble
teams generated by different methods under all
210 = 1024 teams.

Method Rank Accuracy (%)
DeDES 34/1024 84.34

AS 114/1024 83.39
CV 241/1024 82.29
DS 348/1024 80.86
RS 669/1024 76.54

largest dataset with samples of every class in the label set, which leads to their strong generalization ability
under this partition. Therefore, we conclude that the more data we have, the better performance we will get
for the iid setting, since the best way is to select K models with top or top K largest data sets.

When the data partition is non-iid (noniid-lds and noniid-lk), we can see that DeDES achieves the best
performance for most of the datasets, with different m and K, which validates the effectiveness of our
method. DeDES is not as good as the AS method for the CIFAR-100 dataset, this is because CIFAR-100 has
100 labels, thus the data amount of each individual label for local parties is too tiny to train a generalized
model. Under this condition, the AS method will get more information than other methods and therefore
have better performance. But for other datasets, especially for the EMNIST where all local models are more
generalized, DeDES will get better performance than others, even the method of all selection.

In summary, our method outperforms other baseline methods for ensemble learning, regardless of the model
structures and datasets employed. For the results of heterogeneous models, please refer to the supplementary.

In addition, we compare DeDES with the state-of-the-art data-free one-shot federated learning method,
DENSE (Zhang et al., 2022). DENSE leverages a generator coupled with the knowledge distillation (KD)
technique to train a global model in a data-free way. As shown in Table 2, the performance of DeDES in
all data partition scenarios is superior to model averaging and DENSE, demonstrating the effectiveness of
our method. Furthermore, it can be discerned that while DENSE delivers appreciable results under the
homogeneous (homo) data distribution, its performance deteriorates to the point of non-convergence in the
iid-dq scenario, implying that the distribution of training data quantity has a significant impact on DENSE.
When dealing with non-iid data partition, the global model’s test accuracy attained by DENSE through
data generation and knowledge distillation only manages to hit 50%-60% of that secured by ensemble-based
methods. This suggests that the data created by the generator is influenced by non-iid data distribution,
thereby subsequently impacting the performance of knowledge distillation.

Complete inspection on ensemble teams. Given m = 10, there are 210 = 1024 potential ensemble
teams available for selection. Table 3 enumerated the accuracy of all 1024 teams and the ranking of selected
teams generated by different selection methods. We can see that the ensemble team selected by DeDES is
ranked higher than other baseline methods, which validates the efficacy of our method.

5.4 Impact on Efficiency

As Table 1 shows, DeDES is just a little inferior to the ground-truth All Selection (AS) method in some
cases. However, AS is considerably less efficient than our method, and the performance gap between the two
methods is small. In other cases, our method even outperforms AS. Therefore, it validates that our approach
can reduce the inference time significantly for ensemble learning without great sacrifice for the performance.

It is easy to know that when all models are homogeneous, the inference time for ensemble learning (i.e.,
weighted voting) increases linearly with K, i.e., the inference time T for one test sample is O(K · c), where
c is a constant inference time for one sample by one model. The inference time for the ensemble team
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Figure 5: The relationship of K and Ensemble Test
Accuracy of DeDES for the EMNIST Letters Dataset,
VGG-5 (Spinal FC) structure when m=400. Here we
show the accuracy of the AS method when K = 400.

Figure 6: The Cohen’s Kappa value of ensemble
teams selected by different ensemble selection meth-
ods for the CIFAR10 Dataset, Resnet-50 structure
when m=50, K = 30.

generated by the AS method will be m · c. Figure 5 shows the relationship between K and ensemble test
accuracy of DeDES. Note that when K = m = 400, we will show the accuracy of the AS method instead of
DeDES since we typically will not use a selection method such as DeDES to select all K = m = 400 models.

The experimental results shown in Figure 5 indicate that when K reaches a certain value, the test accuracy
will not increase significantly, sometimes even decrease. Therefore, with a suitable K (usually around 50%
of m), we can substantially reduce our ensemble inference time while achieving good ensemble performance.

Physical running time comparison and analysis. To further exemplify the high efficiency of our
method, we show the actual physical running time of various selection algorithms in the Appendix, as well
as provide an analysis of why and when will our selection method be better than the AS method. To
conclude, it is very efficient to use DeDES instead of the AS method when the number of test samples exceeds
a relatively small threshold.

Validation for large-scale federated learning system. To verify the effectiveness and efficiency of our
method for large-scale FL system, we tested our method on the FEMNIST dataset which is a benchmark
dataset for federated settings that has in total m = 3597 clients and is non-i.i.d. Table 1 reveals that when
K = 100 << m, our method outperforms the "All Selection" method which incorporates all 3597 models into
the ensemble team that will yield significant computational load and is highly time-consuming. However, by
only choosing 2.78 % (100/3597) of the models by DeDES, we can both get better ensemble performance and
save approximately 97.22 % (100 - 2.78 %) of the ensemble’s execution time. This case substantiates that a
model selection method is indispensable for a large-scale federated learning setting.

5.5 Clustering/Diversity validation

To validate our clustering results, we compare the Cohen’s Kappa (CK) (McHugh, 2012) value of the ensemble
teams selected by different methods to measure their diversities. As shown in Figure 6, compared to other
baseline methods, the diversity of the ensemble team generated by DeDES is higher (lower CK), which also
means the agreement of the whole team’s models is low. Since we only select one model from every cluster,
this finding also indicates that our method can really cluster similar models together, which validates that
DeDES generates an ensemble team with high diversity. Notably, the AS method also shows high diversity
compared to DeDES and achieves high ensemble test accuracy. This finding supports the conclusion that
greater diversity among models enhances the ensemble’s performance.

11



Published in Transactions on Machine Learning Research (11/2023)

Table 4: The impact of model filtering method for the EMNIST Balanced Dataset, VGG-5 (Spinal FC)
structure when m=200, K = 100 on the noniid-lds partition, where DeDes_NoMF refers to our DeDES method
that does not incorporate model filtering.

Method RS CV DS AS DeDES_NoMF DeDES
Ensemble Test Accuracy (%) 74.21 74.36 78.99 79.61 80.83 81.22

Table 5: The impact of model clustering method for the CIFAR-10 Dataset, Resnet-50 structure when
m=100, K = 60. We compare the test accuracy (%) of the methods for all data partitions.

Method DeDES_KMeans DeDES_Hierarchical DeDES_Spectral AS CV DS RS
homo 35.39 36.61 28.66 35.24 36.37 35.11 34.75
iid-dq 42.86 43.82 41.51 43.79 43.85 44.40 42.13

noniid-lds 35.76 34.36 32.86 35.04 32.91 34.12 32.72
noniid-l4 39.55 37.59 36.84 38.19 36.94 34.35 22.86

5.6 Ablation Studies

We examine each component’s impact on model filtering and clustering methods in this section. Please see
the Appendix for additional studies such as model representations, dimension reduction, etc.

5.6.1 The Significance of Model Filtering

As illustrated in Table 4, we compare the accuracy of DeDES with and without the model filtering algorithm,
the results indicate that the use of the model filtering algorithm can effectively eliminate noisy and under-
fitting models, leading to an improvement in the final ensemble performance. In contrast to the AS method,
model filtering can prevent unsuitable models from participating in the ensemble learning process, leading
to improved efficiency and efficacy of ensemble learning. Therefore, model filtering is an essential component
in conducting ensemble selection for one-shot federated learning.

5.6.2 Comparative analysis of clustering methods

Table 5 presents the performance comparison of DeDES by implementing various clustering algorithms to
form ensemble teams. As we can see, for iid data, hierarchical clustering shows superior performance to
other methods, although the discrepancy in accuracy among the different methods remains negligible in an
iid setting, as we mentioned in section 5.3. Conversely, under non-iid conditions, KMeans is anticipated to
exhibit the highest performance. This expectation is especially true under extreme non-iid circumstances
where models trained on similar data are likely to cluster spherically, thus enhancing the effectiveness of the
KMeans clustering method over other clustering algorithms.

6 Conclusion

In this paper, we propose a novel data-free diversity-based framework DeDES to address the ensemble selection
problem for models under one-shot federated learning. Experimental results show that our method can
achieve both better performance and higher efficiency for various model structures and datasets, especially
for the non-iid data partitions. To our knowledge, this is the first paper to systematically address the
ensemble selection problem under one-shot federated learning setting, which is an essential application for
model-centric collaborative machine learning.
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