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Abstract

Recent years have witnessed a surge of interest in solving combinatorial optimiza-
tion problems (COPs) using machine learning techniques. Motivated by this trend,
we propose a learning-augmented exact approach for tackling an NP-hard COP, the
Orienteering Problem with Time Windows, which aims to maximize the total score
collected by visiting a subset of vertices in a graph within their time windows. Tra-
ditional exact algorithms rely heavily on domain expertise and meticulous design,
making it hard to achieve further improvements. By leveraging deep learning mod-
els to learn effective relaxations of problem restrictions from data, our approach
enables significant performance gains in an exact dynamic programming algorithm.
We propose a novel graph convolutional network that predicts the directed edges
defining the relaxation. The network is trained in a supervised manner, using
optimal solutions as high-quality labels. Experimental results demonstrate that
the proposed learning-augmented algorithm outperforms the state-of-the-art exact
algorithm, achieving a 38% speedup on Solomon’s benchmark and more than a
sevenfold improvement on the more challenging Cordeau’s benchmark.

1 Introduction

Combinatorial optimization problems (COPs) arise in a wide range of application domains, such as
logistics, telecommunications, manufacturing, and finance. Solving these problems efficiently can
result in significant cost reductions. Nevertheless, their NP-hard nature presents major computational
challenges. To handle these challenges, traditional approaches, including exact and heuristic methods,
have been developed over the past decades.

Recently, machine learning (ML) has emerged as a complementary approach, addressing the lim-
itations of traditional approaches through data-driven learning [4]. A variety of studies adopt an
end-to-end framework that directly outputs solutions. Among these, graph neural network models has
been successfully applied to COPs defined over graphs, such as the Traveling Salesperson Problem
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(TSP), Minimum Vertex Cover, Maximum Cut, and others [9, 24, [15]], as they naturally operate on the
graph structures inherent to these problems. Additionally, sequence-to-sequence learning methods,
such as Pointer Networks [3]], Graph Attention Networks [19] and Transformers [6]], offer an autore-
gressive approach for solving COPs. Although the above studies have achieved some success, there
are still limitations. First, these learning models are rarely applied to complex and higher-dimensional
COPs which usually requires hard-won explicit expertise for higher performance. In many cases,
the end-to-end learning approaches underperform traditional approaches [[1]]. Second, most existing
studies focus on combining ML with heuristics, while integrations with exact algorithms remain
largely unexplored. The predominant trend of this direction is to formulate COPs as mixed-integer
programmings (MIPs) and enhance key components of branch-and-bound (B&B) based algorithms
for MIPs using ML techniques [31]. ML techniques are leveraged to guide primal heuristics [[11} [17],
make high-quality branching decisions [13| 27]], separate cutting planes to strengthen the formulation
[LO], and improve node selection strategies [14}22] within the B&B framework. The advantage of this
direction is that the ML techniques accelerate the traditional exact algorithms without compromising
the exactness.

Our work focuses on a deep integration of ML with dynamic programming (DP), another exact
solving paradigm for COPs. Unlike MIP-based approaches, DP solves COPs by explicitly defining a
state-space formulation and determining state transition recurrences based on the problem’s specific
structure. DP is widely used to efficiently solve COPs with clear problem structures, such as
knapsack and routing problems. However, its main drawback is the risk of state space explosion,
also known as the ‘curse of dimensionality’. To address this limitation, we employ ML techniques to
approximate a projection function that maps the original state space onto a lower-dimension space,
thereby substantially reducing its dimensionality. To the best of our knowledge, such a learning-
based paradigm for COPs has not been explored in the existing literature. Numerical experiments
demonstrate its superior performance compared with state-of-the-art (SOTA) exact algorithms.

To illustrate this paradigm, this paper focuses on a classic COP, the Orienteering Problem with Time
Windows (OPTW). In the OPTW, a set of vertices is given, each associated with a score, a service
time and a time window. The objective is to determine a tour that maximizes the total collected score
while respecting all time window constraints. This problem, also known as the Selective TSP [23],
has more complex resource constraints and decision variables than the classic TSP. To solve the
problem efficiently, we propose a learning-augmented exact approach, DP-NG-ML, which combines
an advanced deep learning model with a DP method enhanced by a so-called Ng-route Relaxation
(DP-NG). This learning model, termed DiConvNet, accelerates the DP algorithm by approximating
effective relaxations of the problem’s elementarity restrictions. The elementarity restrictions ensure
that each vertex is visited at most once in a tour. Relaxing the restrictions reduces the dimensionality
of the searched state space but may lead to a non-elementary path. The main contributions of this
paper are summarized as follows:

¢ Problem Perspective: Compared to the well-studied TSP, the problem we address is a more intricate
COP, involving more constraints and high-dimensional features. Whether advanced learning models
can achieve comparable success on such complex problems remains an open question. Moreover, we
claim that OPTW applications can particularly benefit from the use of ML techniques. For example,
the Tourist Trip Design Problem (TTDP) [33]], a variant of the OPTW, plans personalized itinerary
for each individual tourist in a city within time limits. In practice, planners in the same city often
encounter similar instances, with variations mainly in tourist preferences. Such consistency provides
an opportunity for ML to uncover regional patterns and enhance effective real-time decision-making.

¢ Methodological Innovation: Our method combines the ML techniques and transitional DP algo-
rithm, preserving optimality while significantly enhancing performance through data-driven insights.
By leveraging imitation learning, the model accurately approximates the state space relaxation,
thereby accelerating the DP algorithm. To the best of our knowledge, this is the first work to propose
such a solution paradigm. Despite the state space relaxation method is problem-specific, the overall
paradigm is anticipated to generalize across a broad spectrum of COPs defined over graph structures.

* Empirical Validation: Extensive experiments on benchmark instances show that the proposed
learning-augmented exact algorithm, DP-NG-ML, significantly outperforms the SOTA exact al-
gorithm, the pulse algorithm [12]. Moreover, this algorithm demonstrates a considerable speedup
compared to the version without the integrated learning model. The experiments also show that
the learning model achieves high accuracy in predictions, outperforming the heuristic methods
commonly used in the literature on COPs.



2 Related Work

The OPTW is an NP-hard problem and several heuristics have been proposed to obtain high-quality
solutions, including a depth-first search tree algorithm [[16], a granular variable neighborhood search
[21], an ant colony system algorithm [26] and an iterated local search algorithm [34]. Ricardo Gama
and Hugo L. Fernandes [29] proposed the first work to tackle the OPTW using a ML approach,
based on a reinforcement learning framework combined with Pointer Networks. These methods are
empirically efficient but offer no guarantee of exactness or optimality gap.

Due to the complexity of the OPTW, only two exact approaches have been proposed: a bidirectional
DP with Decremental State Space Relaxation (DSSR) [30] and a SOTA pulse algorithm [12]]. The
former [30] solves a relaxed version of the OPTW via a DP algorithm, allowing a subset of vertices
to be visited more than once. The latter [12]], which is based on a branch and bound search scheme
with efficient pruning strategies, significantly outperforms the former on the OPTW benchmark in
terms of both solution quality and computational time. We adopt the same DP iterative framework
as in [30]] but replace the DSSR with a more advanced relaxation technique, ng-route relaxation [2].
This relaxation is guided by so-called ng-sets, which impose the elementarity restrictions over a set
of edges and are approximated by our proposed learning model. To the best of our knowledge, no
existing work has attempted to estimate the state space relaxation in DP using ML.

3 Dynamic programming with state space relaxation for OPTW

3.1 Problem definition and basic DP formulation

The OPTW is defined on a directed graph G = (V, E), where V is the set of vertices and F is the set
of directed edges representing accessibility between vertex pairs. The cardinalities of V" and E are
denoted as |V | and | E|, respectively. For each vertex i € V, we are given: a 2D coordinate (z}, 2?),
a positive score s; collected upon visiting the vertex, a time window [w}, w?] specifying the feasible
arrival time interval, and a non-negative service duration d; representing the time required to serve the
vertex. For each pair of vertices (4, j), the travel time ¢;; is equal to the Euclidean distance between
them. The objective is to determine an optimal tour that starts and ends at the depot 0, visits a subset
of vertices in V', maximizes the collected scores, and satisfies all time window constraints. This tour
must be elementary, meaning it contains no cycles or duplicate vertices. The maximum length of the

route is limited to a given time budget 7},

The OPTW can be formulated as a special case of the classic Resource constrained Elementary
Shortest Path Problem [30]], for which no polynomial-time algorithm is known. DP is considered an
efficient exact approach for solving this problem. Let F'(S, 7, 7) denote the maximum collected score
of a path starts from the depot and ends at vertex i, visiting each vertex in set S exactly once, with an
elapsed time of 7. F'(.S, 7, 1) can be computed by solving the recurrence equation:

F(S,7,i) = (;rgggE{F(S\ {i}, 7', 3) + s;lm + tji < w}w) <7’ <wl "
VieV,S CV,w <7 <wi

Set S denotes the set of visited vertices and can be interpreted as a set of dummy resources, each
with a unit capacity. This set is typically encoded as a binary vector of length |V'|. By recording
this set, the path can be extended to other unvisited vertices so that cycles are avoided and all the
searched paths are elementary. It is evident that the size of the state-space graph grows exponentially
with the number of vertices |V|. To reduce the number of states explored, we adopt a state space
relaxation technique, namely the ng-route relaxation Baldacci et al. [2] to project the original state
space (S, 7, 1) onto a lower-dimensional space.

3.2 Ng-route relaxation

The ng-route relaxation, introduced by Baldacci et al. [2], provides a good compromise between
enforcing elementarity constraints and enabling efficient exploration of the state space. For each
vertex ¢ € V, we define an ng-set N; C V, which is a selected subset of vertices associated with
vertex ¢ (according to some criterion). Let P = {0, i1, ..., 4, } be a partial path starting from the depot
to vertex i,, which is associated with the set of visited vertices S(P) and an elapsed time 7. The



basic DP algorithm explores the state space by extending paths to all possible succeeding vertices
using equation (I). We define II(P) C S(P) as the “memory” of path P. During the past extension
of path P, for any intermediate vertex i;(1 < k < p), only the visited vertices that belong to the
ng-set of i can be retained in memory of P. Therefore, the memory set II(P) is defined as the
intersection of the visited vertices and the ng-sets of all subsequently visited vertices, and is given by:

I(P) = {ir € S(P)\ {ip} : iy € m§:k+1Niq} U {i,}. 2)

With this definition, path P cannot be extended to vertices which are included in its memory II(P).
The predefined ng-sets determine the degree of state space relaxation. If all ng-sets are empty, all
elementarity constraints are relaxed; conversely, if N; = V for every vertex 7 € V, the algorithm is
equivalent to the original one. If vertex ¢;, does not belong to N;_, it is not recorded in the memory of
path P and may be revisited by the next extension of P. To prevent such cycles, iy is added to N; ,
thereby tightening the relaxation.

By applying this relaxation, the original state (S(P),7,4) of path P is mapped onto a lower-
dimensional state (II(P), 7,%), where II(P) is represented as a binary vector of length |V;|. Since
|N;| < |V| for each vertex i, the size of the state-space graph is significantly reduced. Figure 1
illustrates the path extension using given ng-sets. The main drawback of the relaxation technique
is that the search in the relaxed state space does not guarantee to find optimal solution. A practical
compromise is to iteratively tighten the relaxation, i.e., enlarge the ng-sets, based on the optimal
non-elementary path obtained in each iteration of DP, until an optimal elementary path is eventually
found. This procedure will be detailed in the next subsection.

Step 1 Step 2
N2
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Figure 1: Illustration of path extensions using ng-sets. The blue circular area indicates the ng-set of
the associated vertex. Path P, is extended to vertex 3 to produce new path P, as 3 ¢ II(Ps). The
memory of path Ps forgets the visited vertex 1, as N3, does not contain 1. Consequently, vertex 1
can be revisited by path Ps.

Note that this iterative framework may incur higher computational costs compared to the basic DP
algorithm, as the dimensionality of the state space increases with each iteration. An inappropriate
criterion for expanding the ng-sets may introduce “unnecessary” vertices, further inflating the search
space. We demonstrate that this issue can be mitigated by leveraging ML techniques to predict the
ng-sets based on hidden patterns extracted from data. Moreover, the data-driven approach serves
as an effective heuristic to initialize the ng-sets, thereby reducing the number of required iterations.
Essentially, our goal is to train a neural network that approximates the projection function, mapping
the original state space to a suitable lower-dimension space in a one-shot manner. In this case, the
ng-set of vertex ¢ can be viewed as a set of directed edges originating from 1.

3.3 DP with ng-route relaxation

A state of path P can be interpreted as a label L(P) = (i, 7(P), s(P),II(P)), where i is the last
visited vertex and s(P) is the collected score. Extending label L(P) to vertex j indicates adding j
to the end of P, thereby generating a new label. This extension is feasible only if the time window
constraint at j is satisfied and j has not been visited by path P, i.e., j ¢ II(P). To limit the
exponential growth in the number of labels, a dominance test is applied to identify and discard labels
that cannot lead to an optimal solution. By exploring the state space defined by the current ng-sets,
the path with the highest scores is considered the optimal path for that iteration. If the obtained path
is non-elementary, the vertices involved in a cycle is updated to include the duplicate vertex, thereby
preventing the same cycle from occurring in the next iteration. This exact approach is referred to as
the DP-NG algorithm, with a detailed description given in Appendix A.1 and an outline in Appendix



A.2. Figure 2 illustrates an example of the DP-NG algorithm applied to a seven-vertex instance. It can
be expected that states with lower time consumption and higher collected scores are more likely to
survive the dominance test. Consequently, pairs of vertices with high individual scores, close spatial
proximity and highly overleaped time windows are more likely to form cycles. This observation
motivates the use of graph structural features for predicting the ng-sets.
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Figure 2: Illustration of the DP-NG algorithm at different iterations. The blue directed arrows
represent the edges of the optimal path in the current iteration, while the red dotted arrows indicate
the current ng-sets. The target vertex of the red dotted arrow belongs to the ng-set of its source vertex.
In the first iteration, the DP algorithm finds a non-elementary optimal path (0-6-5-3-5-3-0), and
subsequently adds the edges (5,3) and (3,5) to the ng-sets to avoid revisiting the cycle between vertices
5 and 3 in future iterations. In the second iteration, it returns another non-elementary optimal path
(0-6-5-3-2-3-0), and edge (2,3) is added to the ng-sets. The algorithm ultimately finds an elementary
path (0-6-5-3-2-0), at which point it terminates.

Despite its theoretical merits, the ng-route relaxation may result in longer computation times. In the
worst case, as iterations increase, the ng-sets may eventually include all vertices, effectively reducing
the method to standard DP without relaxation. However, if the ng-sets can be accurately predicted,
the number of required iterations can be significantly reduced. This insight drives the development of
our learning approach.

4 Learning approach for state space relaxation

4.1 Framework

The overall framework of our proposed learning-augmented approach is illustrated in Figure[3] To
enhance prediction accuracy, we first apply an edge reduction procedure that tags edges unlikely to
be part of any ng-set (see Appendix B.1 for details). The vertex and edges features are fed into to the
DiConvNet model which ultimately outputs a probabilistic heatmap over the edges. This heatmap
indicates the likelihood of each edge being included in the ng-sets. A subset of edges with the highest
probabilities is then selected to initialize the ng-sets, and the DP-NG algorithm is executed to compute
the optimal path.

Predicting the ng-sets for a graph can be formulated as a binary classification problem over all
possible directed edges, with those in the ng-sets labeled as positive. We train the DiConvNet network
f in a supervised manner, using labels generated by the proposed DP-NG algorithm.

4.2 Edge reduction

To improve prediction accuracy, we propose an edge reduction procedure that leverages problem-
specific characteristics to exclude edges that cannot belong to ng-sets. Two types of edges are
excluded: (1) the edges connected to the depot or self-loops; (2) any edge e;; satisfying the following
condition:

max{wjl- +d; + tﬁ,wil} +d; +ti; > w?- 3)

The first type of edges is excluded by definition, while the second type corresponds to a situation
where cycle (j — i — j) is infeasible due to the time window constraints.
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Figure 3: Framework of the DP-NG-ML algorithm.

4.3 DiConvNet model

The DiConvNet model is based on the Graph Convolutional Network (GCN) architecture, ConvNet,
originally proposed by Bresson and Laurent [5]. ConvNet was designed to directly approximate
solutions to the TSP and has demonstrated strong performance [13]. However, preliminary experi-
ments indicate that this model performs poorly for our problem, primarily because it is tailored for
undirected graphs. To accommodate the asymmetry inherent in directed graphs and problems with
time windows, we develop a directed variant of this model, referred to as DiConvNet.

The DiConvNet model comprises three main components: input layers, DiConvNet layers, and a
Multi-Layer Perceptron (MLP) classifier. The input layers project the initial vertex and edge features
into h-dimensional embeddings, which are refined by DiConvNet layers. The MLP classifier then
estimates the probability of each edge being included in the ng-sets. Details of the MLP classifier and
the loss function are provided in Appendix B.1.

Input Layer The input features for each vertex 4 include its 2D coordinates x; = (z}, x?), score s;,
service time d;, and time window w; = (w}, w?). These features are then embedded to h-dimensional

vectors:
a; = 01 (x;||sq||ds||wi) + b1, @

where ; € R"*6 and -||- is the concatenation operator. We consider the Euclidean distance #;;
and the edge tags ¢;; € {0,1,2,3} as the input features for each edge e;; € E. Tags 1 and 0
indicate whether an edge is included or not in the corresponding reduced graph, while tags 2 and 3
represent edges connected to the depot and self-loops, respectively. Each of the two edge features is
independently embedded into a 2-dimensional vector, and the resulting vectors are concatenated to

2
form the final edge embedding, as expressed below:

Bij = batij + ba||03cij, (5)

where 6o € R5%1 9 € R34,

DiConvNet layer We define a source embedding p; and a target embedding ¢, for each vertex ¢, and
an edge embedding h;; for edge e;;. The source embedding p; is updated by iteratively aggregating
the target embeddings of its out-neighbors (denoted as Ny, (%)), while the target embedding ¢;
is updated by aggregating the source embeddings of its in-neighbors (denoted as N, (z)). This
directional propagation mechanism enables the model to effectively capture the asymmetric structural
patterns in directed graphs. Consequently, the edge embeddings, derived from the source and target
embeddings, are asymmetric. Both the source and target embeddings of each vertex ¢ are initialized
with «;, while the initial embedding of each edge e;; is set to 3;;. The embeddings are updated at
each iteration as:

o(ht,
P = g+ RELUBN@S, + Y ol @ 0hgl)) with ), = i)

, (6)
!
FENut (i) 2 i1 eN () O (hig) + e



U(hgi)

+1 l 1.1 ! 1.1 : l
q;" = q; + ReLU(BN(0gp; + nj; © 07p5)) with n;, = , (D
je/\%(i) ’ ! ! Zj'EN},n(i)U(hé"i) +€
it = hi; + ReLU(BN((6§hl; + 05p + 014})), ®)

where 04, 05, 05, 07,05 € R"*"_ o is the sigmoid function, € is a small constant, ® represents the
Hadamard product, ReLU is the rectified linear unit, and BN stands for batch normalization. nﬁ j acts
as edge gate to govern the propagation of information from edge embeddings to vertex embeddings
during each layer. Unlike the approach of Joshi et al. [15]], our model aggregates messages from all
incoming edges to each vertex. This broader aggregation scheme enables the network to capture local
structural information more comprehensively. Figure ] illustrates how the DiConvNet layer updates
the vertex embeddings and asymmetric edge embeddings. During each iteration, the source, target
and edge embeddings are updated in sequence.

Figure 4: The proposed DiConvNet layer for updating source, target and edge embeddings for each
vertex 7, j and edge e;; in the graph. Blue and orange circles represent source and target embeddings,
respectively, with dotted arrows indicating their propagated messages. Red dotted arrows represent
messages propagated by edge embeddings.

S Experiments

5.1 Experimental setup

Datasets. There are two main classes of OPTW benchmark instances in the literature: Solomon’s
instances[32]] and Cordeau’s instances [7, 8], both of which have known optimal solutions. In
Solomon’s instances, distances between locations are rounded to one decimal place, whereas in
Cordeau’s instances, they are rounded to two decimal places. We randomly generate separate sets
of training and validation instances for each class, following the methodologies outlined in the
corresponding literature. Finally, the benchmark instances are used to evaluate the proposed DP-NG
and DP-NG-ML algorithms. Detailed parameter settings are provided in Appendix C.

* Solomon’s instances. This dataset contains 29 instances with 100 vertices, organized into three
categories: r-instances, where vertices are randomly located; c-instances, where vertices are
clustered; and the rc-instances, which combine random and clustered vertices. Within each
category, the instances share identical vertex coordinates, service times, and scores, differing only
in the time window settings. Hence, we generate 10,000 training instances and 1,000 validation
instances per category, using the same vertex information except for the time windows. However,
since Solomon [32] does not provide the parameters of generating time windows, we empirically
determine them and generalize the trained model to Solomon’s benchmark instances.

* Cordeau’s instances. This testbed comprises 10 instances, with the number of vertices ranging
from 48 to 288. Compared to Solomon’s instances, these instances are considered more challenging
due to their wider time windows [30]]. Moreover, Cordeau’s benchmark instances vary substantially
in size, making it difficult to generalize across different instance scales. We generate 100,000
training instances and 1,000 validation instances, each containing 50 vertices, and randomly select
only 10,000 instances for each training epoch.

Training. In each training epoch, the 10,000 training instances are partitioned into 312 mini-batches,
each comprising 32 instances. The model is trained using the Adam optimizer [18] with single-graph
mini-batches, a learning rate of 10~* and a decay factor of 1.01. The maximum training epochs is set
to 1,500.



Evaluation. Since the performance of the DP-NG-ML algorithm is highly sensitive to both false
positives and false negatives, we evaluate the learning model using the following metrics:

* Error Rate: the overall percentage of misclassified samples.
* FNR: the proportion of positive samples incorrectly classified as negative.

* FPR: the proportion of negative samples incorrectly classified as positive.

To evaluate performance on OPTW benchmark instances, we compare the proposed DP-NG and
DP-NG-ML algorithms with the SOTA exact algorithm, the pulse algorithm [12]. Leveraging
the publicly available implementation of the pulse algorithn‘E] provided by Duque et al. [12], all
algorithms are executed on the same computational platform to ensure a fair comparison. To assess
the effectiveness of the proposed DiConvNet model, we compare it against the original ConvNet
configured with identical architecture and training settings. The details of the ConvNet model are
provided in Appendix B.2.

Network settings. For Solomon’s instances, the DiConvNet model is configured with 10 DiConvNet
layers, each containing 64 hidden units. For Cordeau’s instances, the model uses 15 layers with
256 hidden units per layer. These configurations are chosen to enhance model performance while
preventing memory overflow during training. The MLP classifier is configured with three layers
across all cases.

5.2 Results

The learning models are trained on an NVIDIA Tesla V100-SXM2 GPU with 32 GB of memory.
The DP-NG and DP-NG-ML algorithms, along with the pulse algorithm [12]] for comparison, are
executed on a desktop equipped with a 2.5 GHz Intel Core i5-13490F processor and 16 GB of RAM.
All computational times are reported in seconds, denoted as “time(s)”.

Performance of predictive models. Table [I| compares the performance of different predictive
methods on Solomon’s and Cordeau’s benchmark instances. The best results are highlighted in
bold. “Nearest” represents a widely adopted heuristic that constructs the ng-set of each vertex by
selecting its 7 closest neighbors [2]], while the “MaxScores” heuristic, proposed in [28]], incorporates
spatial proximity, vertex scores and time window constraints in a more comprehensive manner. This
comparison highlights that the formation of ng-sets involves intricate dependencies and structural
patterns within the graph features. Such knowledge can be precisely learned through data-driven
approaches.

Furthermore, the proposed DiConvNet achieves lower Error Rate and FPR than the original ConvNet
model, although the ConvNet yields a lower FNR on the Solomon benchmark instances. Note that a
slight increase in the FPR can lead to a substantial expansion in the size of the ng-sets, because of the
large proportion of negative samples (edges) in the graph. The reduction in FPR can be attributed to
the model’s ability to capture asymmetric edge representations. For Cordeau’s benchmark, although
trained on random instances with only 50 vertices, the model still exhibits strong predictive capability.
Nevertheless, to achieve further improvements, we only select the top 7 - | V| edges with the highest
predicted probabilities, provided the probability exceeds 0.5. These selected edges serve as the initial
ng-sets, leading to improved performance of the DP-NG algorithm, as shown in Tables [2]and[3] The
best configuration of DiConvNet for Cordeau’s benchmark is shown in the last row of TabldlI] with
detailed parameter tuning results presented in Appendix D.

The evaluation of the predictive models relies on labels derived from the current DP-NG algorithm.
While further improvements to the label quality are possible through more sophisticated ng-set update
strategies in the DP-NG algorithm, such enhancements may come with increased computational cost.
For practical efficiency, we maintain the current implementation.

Performance on OPTW benchmark. Tables [2] and [3| report the performance of our proposed
algorithms compared to the SOTA pulse algorithm [[12]] using Solomon’s and Cordeau’s benchmark
instances. For Cordeau’s benchmark, we set n = 3, while for Solomon’s benchmark, we do not
impose any limit on the size of the predicted ng-sets. All instances are solved to optimality by the
exact algorithms, with the column “OptVal” reporting the corresponding optimal values. The sizes
of the predicted and final ng-sets are listed in the columns “pre-ng-size” and “ng-size”, respectively.

https://github.com/copa-uniandes/0PTW_Pulse.git
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Table 1: Comparison of different predictive methods on on Solomon’s and Cordeau’s benchmark
instances.

| Solomon’s Benchmark | Cordeau’s Benchmark
Predictive Method | "p 1o Rate(%) FNR(%) FPR(%) | Error Rate(%) FNR(%) FPR(%)
Nearest (7 = 2) 25.75 73.73 23.98 6.88 70.36 4.92
MaxScores (7 = 2) 2444 5142 2329 589  53.99 44
Nearest (7 = 3) 20.17 6666 2772 910 6150 7.59
MaxScores (7 = 3) 2756 4111 2687 79 4172 6.96
Nearest (7 = 4) 3172 5681 30.64 1125 5229 1022
MaxScores (7 = 4) 3024 3542 29.86 1011 3267 9.62
ConvNet 5.46 9.97 533 10.60 274 1072
DiConvNet 3.41 11.21 327 8.21 2.64 8.25
DiConvNet(7 = 3) 325 12,09 3.06 4.49 6.40 4.40

The Column “iter.” denotes the number of iterations required to compute the elementary optimal
solution. The Column “I?,,,,;s.” reports the speedups of the DP-NG-ML algorithm compared to the
pulse algorithm, while the column “R,,;” indicates the speedup of DP-NG-ML over the original
DP-NG algorithm. Speedups greater than one are highlighted in bold. The last row presents the
average results, where the average speedups are computed as the ratio of the computational time of
the pulse algorithm to that of the DP-NG-ML algorithm.

Table [2] shows that, in 21 out of 29 instances, the learning-augmented DP-NG algorithm outperforms
the pulse algorithm, despite achieving only a modest overall speedup of 1.26. The DP-NG algorithm
becomes twice as fast when integrated with the learning model. Additionally, the number of iterations
required to compute the elementary optimal solution is reduced from an average of 24.4 to 2.9.

Table [3| shows that the DP-NG-ML algorithm consistently outperforms the pulse algorithm on the
more challenging Cordeau benchmark set, achieving an average speedup of 7.33. The performance
advantage is even more pronounced than that observed on the Solomon benchmark instances. Nearly
all instances require only a single run of the DP algorithm to obtain the optimal solution. It is
worth noting that the model for Cordeau’s instances is trained on 50-vertex random instances and
evaluated on benchmark instances with 48 to 288 vertices. These results also demonstrate the
effectiveness of the proposed method in generalizing to larger-scale and more complex instances.
More detailed generalization performance results for different training distributions and instance
sizes are presented in Appendix E. Furthermore, we observed that although the solving efficiency
has improved substantially, the final size of the ng-sets has nearly tripled. This indicates that the
presented algorithm still has significant room for improvement. One promising direction is to explore
more advanced and better-suited learning models.

6 Conclusion

In this paper, we propose a novel learning-augmented exact approach, DP-NG-ML, for solving a
classic combinatorial optimization problem, the Orienteering Problem with Time Windows (OPTW),
which arises naturally in a wide range of transportation and logistic applications. This approach
combines an advanced deep learning model with a dynamic programming (DP) algorithm enhanced
by the ng-route relaxation technique. The relaxation technique relaxes the problem’s elementarity
restrictions, thereby effectively reducing the search space of the DP algorithm. To further improve
its efficiency within a data-driven paradigm, We develop a novel Graph Convolutional Network,
DiConvNet, to construct the so-called ng-sets that define this relaxation. The network is trained in a
supervised manner, using optimal solutions as high-quality labels. Extensive experiments on OPTW
benchmark instances demonstrate that the proposed learning-augmented exact approach outperforms
the SOTA exact algorithm. Moreover, DiConvNet shows superior performance compared to widely
used heuristics for constructing the sets.

Future work will explore incorporating reinforcement learning and other advanced learning models
into our framework to enhance its generalization to solve large-scale problem instances with diverse
data distributions. In addition, the proposed learning-augmented approach can be extended to
address other related combinatorial optimization problems and potentially be integrated into column
generation frameworks for solving multi-route variants.



Table 2: Comparison of our proposed algorithm against the state-of-the-art pulse algorithm on
Solomon’s benchmark instances.

| | pulse | DP-NG | DP-NG-ML |
Instance | OptVal

| time(s) | ng-size iter. time(s) | pre-ng-size ng-size iter. time(s) | Rpuise Rt

cl01 320 | 0.016 0 1 0.041 0 0 1 0.034 | 047 121
c102 360 | 0.125 0.19 14 0219 0.97 0.97 1 0.072 | 173  3.04
cl03 400 1.473 2.49 64 4.031 2.98 3.33 12 2095 | 070 192
cl04 420 1.801 1.96 54 4.865 2.74 297 8§ 2227 | 081 218
cl05 340 | 0.016 0 1 0.002 0 0 1 0.006 | 2.88 0.40
c106 340 | 0.016 0.02 2 0.008 0.24 0.24 1 0.003 | 475  2.23
cl07 370 | 0.016 0 1 0.006 0.26 0.26 1 0.004 | 3.90 141
cl108 370 | 0.032 0.07 6  0.036 1.09 1.12 4 0.038 | 085 0.95
cl09 380 | 0.062 0.3 14 0.134 1.21 1.43 11 0.142 | 044 094
r101 198 | 0.001 0 1 0.001 0 0 1 0.022 | 0.05 0.05
r102 286 | 2.146 1.87 39 3.000 3.45 29 2 0828 | 259 3.62
r103 293 | 10.511 2.28 44 12.945 3.94 3.53 1 1.656 | 635 7.81
r104 303 | 26.371 2.92 56 53.129 4.39 4.01 8 37254 | 071 143
r105 247 | 0.001 0.03 2 0.005 0.58 0.16 2 0025 )| 004 019
r106 293 3.841 2.07 44 4142 3.78 3.12 6 1.894 | 2.03 219
r107 299 | 11.993 2.48 52 15771 422 3.67 2 3313 | 3.62 476
r108 308 | 27.892 2.81 51 45220 4.6 3.9 5 16732 | 1.67 270
r109 277 | 0.032 0.43 17 0.166 1.6 1.29 2 0039 | 083 429
r110 284 | 0.205 0.64 19 0368 3.86 2.53 1 0.082 | 2.50 448
rl1l 297 | 5.078 2.08 45 6.048 4.38 3.46 3 1.640 | 3.10  3.69
rl12 298 3.887 1.93 45 5.582 4.36 4.04 1 2222 | 175 251
rc101 219 | 0.015 0.03 3 0.005 0.33 0.33 1 0.035 | 043 0.14
rc102 266 | 0.078 0.41 11 0.102 1.22 1.22 1 0.040 | 193 253
rc103 266 | 0.235 1.06 20 0418 1.88 1.88 1 0.076 | 3.07 547
rcl04 301 1.159 0.86 16 0.635 243 243 1 0262 | 442 242
rc105 244 | 0.031 0.33 13 0.062 0.89 0.89 1 0.010 | 3.16  6.27
rc106 252 | 0.031 0.42 21 0.117 1.25 1.25 1 0.015 | 2.01 7.58
rcl07 277 | 0.173 0.93 31 0.497 2.07 2.08 2 0112 | 154 443
rc108 298 | 0.549 0.85 21 0.475 2.38 2.38 1 0.099 | 555 4.80

Mean | | 3372 1.02 244 5449 | 2.11 191 29 2448 | 138 223

Table 3: Comparison of our proposed algorithm against the state-of-the-art pulse algorithm on
Cordeau benchmark instances.

| | pulse | DP-NG | DP-NG-ML |
Instance | OptVal

| time(s) | ng-size iter. time(s) | pre-ng-size ng-size iter. time(s) | Bputse Rt

prol 308 | 0047 160 11 0206 19 2 2 0067| 070 3.6
pr02 404 | 0376 | 102 21 098 3 31 0197| 191 498
pr03 394 | 0706 | 115 30 1815 3 31 019 | 361 927
prO4 489 | 1285 | 093 25 4866 3 31 0441 | 291 1103
pros 505 | 18857 | 108 28 13.925 3 32 3402 | 554 4.09
pro6 591 | 31.883 | 088 29 14.262 3 32 5212 612 274
pr07 298 | 0078 | 097 15 0.I38 189 189 1 0020 | 382 674
pro8 463 | 0517 | 089 15 1.007 3 31 0180 | 287 560
pro9 493 | 33514 | LI8 32 15620 3 31 3814| 879  4.09
prl0 504 | 23802 | 096 33 15.680 3 301 1627 | 1463 9.64
Mean | | 11107 | 106 239 63850 | 278 279 13 1516 | 733 452
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we have provided a detailed and accurate
description of the scope of the research, related works in OPTW, limitations of current
research on traditional and learning-based approaches, and the contributions of this paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We have discussed the limitations of our DiConvNet in Section 5 and in the
Conclusion and Future Work. Our framework relies on optimal solutions as labels, which
restricts the availability of high-quality training data for large-scale instances. Furthermore,
the optimization results suggest that there is still considerable room for improvement in the
learning-augmented algorithm.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We have provided the full set of assumptions and a complete, correct proof in
Sections 3 and 4, as well as Appendices A and B.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All information required to reproduce the main experimental results is provided,
covering the exact DP-NG algorithm, the network architecture, and the dataset generation
procedure.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: If the paper is accepted, the data and code will be considered for public release.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All training and testing details are specified in Section 5.1.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We did not perform statistical hypothesis testing because both the proposed and
baseline algorithms are exact methods, where each step of the algorithm yields deterministic
results. There is no randomness in the solution process itself (as would be the case in
heuristic or stochastic methods). The only source of variability lies in minor fluctuations
in runtime measurements due to system-level factors. To reduce this noise, we report the
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average over multiple independent runs. This ensures the reliability of our performance
metrics.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided sufficient information on the computer resources in Section
5.2.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the potential impacts of the work performed in the Section
1, Introduction. The OPTW studied arises in a wide range of transportation and logistics
applications. The proposed learning-augmented approach is expected to generalize across a
broad spectrum of combinatorial optimization problems defined over graph structures, such
as the Vehicle Routing Problem, the delivery man problem and others.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:|[NA|
Justification: The paper poses no such risks
Guidelines:

» The answer NA means that the paper poses no such risks.

» Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

17



13.

14.

15.

Justification: They are properly credited and respected in this paper.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer:[NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core methodologies in this study do not depend on LLMs, which are used
solely for grammar correction.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A DP-NG algorithm Details

A.1 DP with ng-route relaxation

In the DP algorithm, a label associated with vertex ¢ represents a path starting at depot and ending at
vertex ¢. The DP algorithm repeatedly extends each label to generate new labels if all the resources
constraints are satisfied. To limit the exponential increase of the number of labels, a dominance test
is applied between the new label and other existing labels and the dominated one will be pruned.
This algorithm can be further improved by extending labels bi-directionally and matching the labels
in both directions to form complete paths [30]. Since the forward and backward extensions are
symmetrical to each other, we only explain the forward labels for simplicity.

Let L(P) = (i,7(P), s(P),II(P)) be the forward label associated with its last visited vertex i,
arrival time 7(P), score s(P) and memory set II(P). Label L(P) can be extended to vertex j if
ipt1 ¢ TI(P) and 7(P) + d; + t;; < w}. After the extension, a new label L(P’) can be obtained
from the label L(P) by the following operations:

L(P') = (j,max{r(L) + d; + ti, w;},s(P) + s;, II(L) N N; U{j}) 9)

The ng-route relaxation is incorporated into the DP algorithm by permitting the generation of non-
elementary labels. Specifically, a label L(P) can be extended to a previously visited vertex, provided
that this vertex is not included in its memory set II(P).

Once a new label is generated, a dominance test is performed between the new label and existing
labels associated with the same vertex. Any dominated label is pruned and will no longer be extended.
Given two labels L; and Ly associated with the same vertex, L; dominates Lo when the following
conditions hold and at least one of them is strict:

7(L1) < 7(L2),
{ s(L1) > s(L2), (10)
II(L1) C II(La).
These conditions indicate that any further extension from label L, can also be achieved by label
L1, while L, still maintains a higher collected score than Ls. Evidently, as the size of the ng-sets
increases, each label must memorize more visited vertices, resulting in a higher-dimension state space
that must be explored.

The extension of forward and backward labels is terminated at the midpoint of the planning horizon
[0, Tr1ax], and the two are matched together to form complete paths that start and end at the depot.
The matching procedure between forward label L(Py) = (i, 7(Py), s(Py),II(Py)) and backward
label L(Py) = (j, 7(Py), s(Py), II(Py)) is feasible only if the following conditions are satisfied:

T(Pf)+di+tij ST(P[,)—dj7 an
H(Pf) NII(P) = 0.

After the matching procedure, the complete path with the highest collected scores is considered the
optimal solution at the current iteration. If the solution is non-elementary, the ng-sets are accordingly
enlarged and the DP algorithm is rerun; otherwise, the optimal solution for the primal problem is
obtained.

A.2  Outline of DP-NG algorithm

The pseudocode of the DP-NG algorithm with core procedures is provided in Algorithm |1} N
denotes the set of ng-sets, and R represents the set of all labels, i.e., the union of the label sets R ;
for all vertices ¢. For each vertex ¢, N; is initially empty. In each iteration, once a non-elementary
optimal path is computed, the ng-sets are updated to forbid all the cycles that occur in the path.
Unlike standard DP algorithms [30, [25]], our method retains non-dominated labels after each iteration,
thereby enabling their reuse in the subsequent iteration to effectively prune unpromising labels during
the dominance test.
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Algorithm 1: The Dynamic Programming with Ng-route Relaxation algorithm

Define N = |J N;; N; < ), Vi € V; //Initialize ng-sets as empty sets
Procedure DP-NG (NN, G):
Input: pre-defined ng-sets N, input graph G
Qutput: elementary optimal path P*
R =y (RIURY): R 0, RY + 0, Vi € V; isElem « false; k « 0;
while not isElem do
R + dynamicProgramming(R, N, G);
P « selectOptimalPath(Ry);
if isElementaryPath(P;’) then
L P* «— Pr;

isElem < true;

else
N <updateNGSets(IN, P});
R <updateLabels(R, N);
k+k+1;

L return P*
Procedure dynamicProgramming (R, N, G):
Define R = R/ R RS = |, R/, VZGVRb U, RY, VieV;
® « 0; //Initialize unchecked Vertlces set with depot
while ! = () do
i < pop(®);
AR/ eforwardExtension(Rgc );
RS eforwardDominance(ARf RS );
AR? +backwardExtension(R?);
R? +backwardDominance(AR?, R?);

| return matchingProcedure(R7/, R?);

Procedure updateNGSets (N, P):
forall cycle C' = (v,...,v) € C(P) do
forall j € S(C) \ {v} do
L Nj < N; U{v}

L return N

B DP-NG-ML algorithm Details

B.1 Other components of DiConvNet model

MLP classifier The edge embedding h;; of the last DiConvNet layer is used to compute the probability
that the directed edge e;; belongs to the ng-sets of the graph. The output of the MLP classifier is
then passed through a softmax output layer to normalize the probabilities. For each edge e;;, the
probability of being assigned label 1 is expressed as:

fij(G;0) = MLP(hjre=), )

where [,,,,, represents the maximum number of DiConvNet layer.

Loss function . As the problem size increases, the classification task becomes increasingly imbal-
anced toward the negative class. To address this issue, we introduce appropriate class weights to
balance the contributions of positive and negative samples in the loss function. Accordingly, we
minimize the weighted binary cross-entropy loss for a mini-batch of training sample (G*,1%) where
1¥ € {0, 1}/E1¥T represent the binary labels of graph G*. The loss function is calculated by:

Lk, f(G Z{wl “log(fi;(G¥;0)) + wf (1 —15)log(1 — fi;(GF;0))},  (13)
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where 17; is the label of e;; in 1%, f;;(G¥;0) is the corresponding probability, and m denotes the

batch size. For each instance k, we compute balanced class weights as wf = 2'%'() and wf = 2'%1 ,
where | E| is the total number of edges in the graph, and ng, n; denote the number of negative and

positive samples, respectively.

B.2 ConvNet model

The only difference between the ConvNet and DiConvNet models lies in the graph convolutional
layers. The rest of the architecture remains identical.

ConvNet layers. Let v; and h;; denote the vertex and edge feature vectors at layer [, respectively,
associated with vertex ¢ and edge e;;. We define the vertex feature and edge feature at the next layer
as follows:

1
l+1 l U(hi]‘)
= v + ReLU(BN( 9 v; + 771 ) with nl = , (14
jE.’\%( i) j ! E]’GN”L(’L) U(héjl) +e€
Rt = hl; + ReLU(BN((05hi; + 650] + 64v))), (15)

where 04, 05, 05, 07,05 € R"*", o is the sigmoid function, € is a small constant, ® represents the
Hadamard product, ReLU is the rectified linear unit, and BN stands for batch normalization. The
initial inputs to the ConvNet are defined as v9 = «a; for each vertex and hY; = j3;; for each edge.
This network architecture is based on the Residual Gated Graph ConvNet proposed by Bresson and
Laurent [5], with an extension to incorporate edge embeddings. 7] acts as edge gate to govern the
propagation of information from edge embeddings to vertex embeddlngs during each convolutional
layer. Evidently, the ConvNet model produces symmetric embeddings for all edges.

B.3 Outline of DP-NG-ML algorithm

The pseudocode of the proposed DP-NG-ML algorithm is presented in Algorithm[2] The process
begins with an edge reduction procedure that tags edges and produces a reduced graph. The vertex
and edge initial features are then processed by the trained DiConvNet model to predict the ng-sets.
Finally, the DP-NG algorithm is executed to compute the optimal solution.

Algorithm 2: The learning-augmented DP-NG-ML algorithm

Procedure DP-NG-ML():
Input: trained DiConvNet model f(:; ), input graph G
Output: elementary optimal path P*
G reduced <—edgeReduction(G);
N «forwardPass(f(Gyeduced; 0));
P* «DP-NG(N, G);
return P*

C Datasets settings

We summarize below the parameter settings used for generating training instances in our experiments.

* Solomon’s instances. For each instance, 50%, 75% or 100% of vertices are randomly selected to
receive time windows, while the time windows of remaining vertices are assigned fixed windows
[wll + to4, wf — t;0 — d;]. For each vertex 4, the midpoint of the time window is sampled uniformly
at random from the interval (wL1 +to, wf —t;0 —d;). The half-width of each time window is drawn
from a normal distribution with mean p and standard deviation ¢, where y and § are randomly
selected integers from [5, 50] and [0, 10], respectively, for each instance.

» Cordeau’s instances. To generate clustered instances, we first randomly generate several centers
in the [—50, 50]2 square according to a continuous uniform distribution. For instances with sizes
20, 30, and 50, the number of centers is set to 2, 3, and 4, respectively. One of the centers is
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randomly selected as the depot. The vertex coordinates are randomly generated with a continuous
uniform distribution within [—100, 100]?, and both the score and service time are random integers
within the range [1, 25]. For each newly generated vertex, the distance ¢, to the closest center is
calculated. If ¢, is less than e%-0%%¢ the vertex is accepted; otherwise, it is discarded. This process
is repeated until the specified number of vertices has been generated. For the time window of each
vertex, its opening time is a random integer between [60, 480], and its length is a random integer
between [90, 180].

D Parameter tuning

For each instance, the learning model produces a probabilistic heatmap over the edges, indicating
the likelihood of each edge being included in the ng-sets. When evaluated on large-size instances,
a significant number of misclassified edges may diminish the performance gains brought by the
learning model. To preserve the improvement on benchmark instances, we only select the top 7 - |V|
edges with the highest predicted probabilities, provided the probability exceeds 0.5. Parameter tuning
experiments for 72 are conducted to identify the best configuration, as summarized in Tables 4 and [5]
The best-performing 7 values are highlighted in bold. We observed that a larger 7 tend to identify
more positive samples, thereby significantly reducing the number of iterations. However, this also
leads to a higher number of misclassified positives, resulting in larger ng-sets. For simpler instances
like Solomon’s, tuning n has limited impact on performance. However, for larger and more complex
instances such as Cordeau’s, selecting an appropriate n is crucial for achieving good performance.

Table 4: Performance of our proposed approach with different 7 on Solomon’s benchmark instances.

Solomon | DiConvNet \ DP-NG-ML
7 | Error Rate(%) FNR(%) FPR(%) | ng-size iter. time(s)
0.5 2.78 45.94 1.21 1.05 16.3 4.47
1 2.84 31.25 1.77 1.19 11.6 3.63
1.5 2.83 22.62 2.12 1.33 8.1 3.34
2 2.90 17.27 2.44 1.48 5.6 3.05
2.5 3.06 13.78 2.77 1.64 4.0 2.62
3 3.25 12.09 3.06 1.78 3.2 2.45
3.5 3.36 11.43 3.21 1.87 3.0 2.50
4 341 11.21 3.27 1.91 2.9 2.41
4.5 3.41 11.21 3.27 191 2.9 2.41
5 3.41 11.21 3.27 191 2.9 2.41

Table 5: Performance of our proposed approach with different » on Cordeau’s benchmark instances.

Cordeau | DiConvNet \ DP-NG-ML
n | Error Rate(%) FNR(%) FPR(%) | ng-size iter. time(s)
0.5 2.10 58.18 0.17 1.06 14.0 4.47
1 1.77 33.38 0.72 1.23 8.2 3.30
1.5 2.20 18.86 1.69 1.58 4.3 2.44
2 3.07 12.03 2.82 2.01 2.5 1.87
2.5 3.75 8.43 3.59 2.39 1.7 1.59
3 4.49 6.40 4.40 2.79 1.3 1.49
3.5 5.18 5.27 5.13 3.16 1.3 1.84
4 5.71 443 5.69 3.48 1.2 1.90
4.5 6.17 4.08 6.16 3.76 1.2 2.19
5 6.53 3.85 6.53 4.01 1.2 2.75
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E More experimental results

E.1 Test on more difficult instances

The SOTA pulse algorithm was evaluated by Duque et al. [12] only on the standard Solomon and
Cordeau benchmark instances, which have been tested in Tables 2] and B] To further assess the
performance of our algorithm on harder instances, we generated 20 Cordeau-style new instances with
100 vertices and time windows twice as wide. To ensure robust performance, the model was retrained
using 10,000 labeled instances with 50 vertices and wide time windows. The computational times (in
seconds) are reported in Table[6]

The results show that the learning-based method accelerates the DP-NG algorithm by a factor of 1.61
on average, while still outperforming the state-of-the-art pulse algorithm. This limited improvement
mainly stems from prediction accuracy. Increasing both the number and size of training instances
could further enhance the results.

Table 6: Comparison of our proposed algorithm against the state-of-the-art pulse algorithm on
Cordeau-style instances with wide time windows.

\ | SOTA-pulse | DP-NG \ DP-NG-ML \
Instance | OptVal | time(s) | ng-size Iter. time(s) | ng-size Iter. time(s) | Bpuise R
100_0 511 71.77 5.56 67 367.28 6.99 12 281.19 0.26 1.31
100_1 485 19.29 5.79 67 161.33 6.51 18 113.25 0.17 1.42
100_2 498 18.51 3.55 38 35.85 5.92 2 26.15 0.71 1.37
100_3 482 13.66 2.76 33 13.53 498 4 8.39 1.63 1.61
100_4 503 265.44 4.84 53 93.12 6.85 12 112.46 2.36 0.83
100_5 535 330.85 5.22 49 256.83 6.49 2 137.34 241 1.87
100_6 516 8.17 2.7 25 11.78 5.6 1 6.86 1.19 1.72
100_7 435 7.18 372 45 27.26 5.05 8 32.86 0.22 0.83
100_8 495 24.29 491 58 148.31 6.25 3 33.03 0.74 4.49
100_9 460 4.75 2.95 35 13.47 4.52 6 4.85 0.98 2.78
100_10 577 1022.04 7.35 83  1452.04 8.49 16 1276.55 0.80 1.14
100_11 538 10.31 4.14 54 92.12 6.69 6 86.07 0.12 1.07
100_12 486 7.60 5.02 51 40.95 6.63 11 45.22 0.17 0.91
100_13 482 46.58 4.12 49 66.83 5.2 7 38.31 1.22 1.74
100_14 583 1031.12 4.14 39 97.24 7.45 2 129.05 7.99 0.75
100_15 493 89.88 4.2 60 192.83 6.21 5 235.07 0.38 0.82
100_16 462 6.90 33 34 10.92 4.79 7 6.14 1.12 1.78
100_17 505 175.96 5.81 66 695.98 6.41 16 450.45 0.39 1.55
100_18 488 2293.26 6.54 56 363.42 6.82 6 149.93 | 1530 2.42
100_19 463 31.56 4.15 56 38.37 5.01 16 20.67 1.53 1.86
Mean | | 27396 | 454 509 20897 | 614 80 15969 | 198 161

E.2 Comparison with DiDPPy solver

We tested a generic DP solver, DiDPPy [20], on the OPTW using Cordeau instances. For a fair
comparison, we added forced transitions that treat unvisited vertices as visited if they are infeasible
due to time window constraints at the current state. In this case, more unpromising states will be
pruned. Unfortunately, instances with more than 90 vertices ran out of memory using DiDPPy. We
select the first 90 vertices (excluding the depot) from each instance to create new instances. The
computational time in seconds are shown in Table[7] The number of vertices is indicated by the suffix
in the name. The results show that the DP-NG algorithm is 100 times faster than the DiDPPy using
the CABS solver. With the learning method integrated, the speedup reaches up to 800 times.

F Generalization performance

Figure [5| provides the results of the proposed DP-NG-ML algorithm with various training dataset
distributions of Cordeau’s instances and instance sizes. The clustered training datasets are denoted as
“Train-CIVI”, where | V| is the instance size. Instances with uniform distributions are labeled as “R”.
The parameter 72 is set to 3 in all experiments. Overall, on smaller instances, the proposed method
performs better when trained on smaller-sized instances. However, for generalization to larger in-
stances, training the model on larger-sized instances tends to yield better performance. This is because
larger instances offer greater potential for performance improvement through learning-augmented
approach, and models trained on larger data are more capable of identifying a greater number of
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Table 7: Comparison of our proposed algorithm against the generic dynamic programming solver
DiDPPy.

Instance | OptVal | DiDPPy | DP-NG  Speedupl | DP-NG-ML  Speedup2

pro1_48 | 308 3.004 | 0233 13.29 0.079 38.93
pro2_90 | 392 | 148266 | 0.882  168.03 0.139  1065.18
pr03.90 | 331 | 51.841 | 0.782 66.29 0231  224.82
prod4_90 | 356 | 33328 | 0.674 49.43 0.169  197.45
pro5_90 | 443 | 193404 | 1386  139.54 0.551  350.70
pro6_90 | 329 | 29.954 | 0.527 56.85 0.046  656.43
pr07_72 | 298 | 12956 | 0.187 69.14 0.016  810.99
pro8_90 | 374 19.59 | 0397 49.30 0.034  568.74
pr09_90 | 320 | 100259 | 0.346  289.93 0.057  1757.46
prl0_90 | 399 | 169.158 | 0.862  196.35 0.069 246547
Mean | | 76185 | 0628  109.81 | 0.139  813.62

positive samples. Moreover, even when the coordinate distribution of the training instances differs
from that of the test instances, the method still demonstrates significant performance improvements.

Generalization Performance
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Figure 5: Evaluation of DP-NG-ML algorithm performance on Cordeau’s instances with varying
sizes and training distributions. The vertical axis represents training instances with clustered and
uniform distributions of sizes 20, 30, and 50. The horizontal axis shows test instances with different
sizes under clustered distribution. The heatmap illustrates the speedups achieved under various
configurations relative to the standard DP-NG algorithm.

G Visualizing Model Predictions

Figures[6]display the visualizations of ground truth and predicted ng-sets for Cordeau’s benchmark
“pr01” with 48 vertices. The comparative visualizations demonstrate that the proposed learning models
effectively capture the structural patterns of ng-sets, successfully identifying a large proportion of
positive samples from a very large sample pool. The edge set in the ground-truth labels exhibits
certain structural properties, such as short distances between nodes and proximity to the depot node.
These properties, to some extent, help the neural network better identify and predict. The comparison
between Figures |§| (b) and (c) shows that the DiConvNet model can more effectively capture the
asymmetry of edges than the ConvNet model.
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(b) (c)

Figure 6: Visualizations of (a) the ground truth ng-sets, and the ng-sets predicted by (b) ConvNet and
(c) DiConvNet. Red arrows represent positive samples, while blue arrows indicate false positives. In
(a), the tour shown with green arrows denotes the optimal path. Circle sizes are scaled proportionally
to the vertex scores.
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