
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HYBRID ACNS: UNIFYING AUTO-COMPRESSING
AND RESIDUAL ARCHITECTURES

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose Hybrid Auto-Compressing Networks (H-ACNs), unifying ACNs
and ResNets under a single mathematical formulation controlled by trainable
scalar residual weighting parameters per layer. Through theoretical analysis, we
show that both architectures represent points on a continuous spectrum, with tra-
ditional ACNs and ResNets as special cases. Our key contribution is demonstrat-
ing that H-ACNs, when initialized close to ACNs, match ResNets training effi-
ciency while preserving ACN-like robustness and compression capabilities. Ex-
periments across vision transformers, MLP-mixers, and GPT-2 architectures show
that H-ACNs achieve training convergence on par with ResNets, while maintain-
ing ACNs superior noise robustness and generalization. Furthermore, we discover
that learned residual weights exhibit distinct connectivity patterns across tasks,
namely, vision tasks favor local connectivity patterns resembling early visual cor-
tex processing, while language tasks converge to modular hierarchical inter-layer
structures similar to hierarchical language processing regions. We also examine
how initialization impacts performance and connectivity, challenging the univer-
sality of the common ResNet-like initialization of residual weights. Overall, our
results establish Hybrid ACNs as a practical framework for efficiently balancing
training speed and representation quality, while revealing principles of how func-
tional connectivity patterns should vary across domains, modalities, and tasks.

E
m

b L1 L2 L3 L4 L5 L6 L7 L8 L9 L1
0

L1
1

L1
2

L1
3

L1
4

L1
5

L1
6

Target Layer

Emb
L1
L2
L3
L4
L5
L6
L7
L8
L9

L10
L11
L12
L13
L14
L15
L16

So
ur

ce
 L

ay
er

0.0

0.2

0.4

0.6

0.8

1.0

E
m

b L1 L2 L3 L4 L5 L6 L7 L8 L9 L1
0

L1
1

L1
2

Target Layer

Emb
L1
L2
L3
L4
L5
L6
L7
L8
L9

L10
L11
L12

So
ur

ce
 L

ay
er

0.25

0.50

0.75

1.00

1.25

1.50

1.75

(a) Learned Inter-Layer Connectivity in Vision Classification Models

E
m

b L1 L2 L3 L4 L5 L6 L7 L8 L9 L1
0

L1
1

L1
2

L1
3

L1
4

L1
5

L1
6

L1
7

L1
8

L1
9

L2
0

L2
1

L2
2

L2
3

L2
4

Target Layer

Emb
L1
L2
L3
L4
L5
L6
L7
L8
L9

L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24

So
ur

ce
 L

ay
er

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
m

b L1 L2 L3 L4 L5 L6 L7 L8 L9 L1
0

L1
1

L1
2

L1
3

L1
4

L1
5

L1
6

L1
7

L1
8

L1
9

L2
0

L2
1

L2
2

L2
3

L2
4

Target Layer

Emb
L1
L2
L3
L4
L5
L6
L7
L8
L9

L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24

So
ur

ce
 L

ay
er

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

(b) Learned Inter-Layer Connectivity in Language Models

Figure 1: Entry C[i][j] (Sec. 2): direct connection strength from source layer i to target layer j.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Deep neural networks face a fundamental tradeoff between learning robust, generalizable represen-
tations and achieving efficient, stable training (Bengio et al., 1994; Balduzzi et al., 2017; Zhang
et al., 2024). While architectures that enhance robustness (Yang et al., 2020) or promote rich feature
learning, e.g., via dense connectivity, often produce superior representations and better general-
ization (Huang et al., 2017), they typically suffer from training instabilities, slower convergence,
or computational overhead (Srivastava et al., 2015; Yang et al., 2020). Conversely, architectures
optimized for training efficiency, such as residual networks, enable rapid convergence and stable
gradient flow (He et al., 2016) but may underutilize network depth and produce less robust rep-
resentations (Zhang et al., 2024; Lad et al., 2025; Csordás et al., 2025; Yang et al., 2020). This
tradeoff between representation quality vs training efficiency remains a central challenge in neural
architecture design.

Recently, Auto-Compressing Networks (Dorovatas et al., 2025) (ACNs) have been introduced, re-
placing residual connections with direct long feedforward connections from each layer to the output.
Unlike traditional feedforward or residual architectures, ACNs enable automatic compression dur-
ing training; networks naturally learn to concentrate critical information in early layers while deeper
layers become redundant for simpler tasks, all without external pruning or regularization. Further,
ACNs achieve better representational quality through enhanced noise robustness, superior general-
ization in low-data regimes, and improved continual learning capabilities . However, this architec-
tural design comes at a significant cost: ACNs suffer from substantially slower training convergence
and reduced training stability compared to their residual counterparts, making them less practical
for large-scale applications despite their representational advantages.

This raises a fundamental research question: can we create a unified architecture that smoothly in-
terpolates between ACNs and ResNets, capturing the compression capabilities and representational
advantages of ACNs while maintaining the training stability and efficiency of residual networks?
Furthermore, if we allow such a hybrid architecture to learn its own connectivity patterns through
trainable interpolation parameters, what architectural structures emerge across different domains
and tasks? Do vision and language tasks converge to fundamentally different connectivity patterns,
and what do these learned structures reveal about the functional connectivity requirements of dif-
ferent cognitive tasks? And also, how does the initialization in the connectivity space—that is, the
connectivity inductive biases—shape their behavior? These questions build on recent work explor-
ing learnable dense connectivity, including depth-weighted averaging in transformers (Pagliardini
et al., 2024), attention-based layer fusion methods (ElNokrashy et al., 2022) and neural architecture
search approaches that learn optimal residual connection through trainable weights (Pham et al.,
2018; Wang et al., 2023) and connects this direction with the auto-compression property (Dorovatas
et al., 2025).

To address these questions we propose Hybrid Auto-Compressing Networks (H-ACNs), which unify
ACNs and ResNets under a single mathematical formulation controlled by trainable scalar residual
weighting parameters per layer. Through theoretical analysis, we demonstrate that both architectures
represent points on a continuous spectrum, with traditional ACNs and ResNets as special cases. Our
main contributions are:

• H-ACNs achieve ResNet-like training efficiency while preserving ACN-like robust-
ness, compression capabilities, and superior generalization across vision transformers,
MLP-mixers, and GPT-2 architectures. This translates into better downstream performance
for complex tasks.

• Learned residual weights exhibit distinct connectivity patterns across tasks and
modalities: vision tasks converge to local connectivity patterns resembling early visual
cortex processing, while language tasks develop modular hierarchical inter-layer structures
similar to hierarchical language processing regions as shown in Fig. 1.

• We find that initialization encodes powerful architectural priors that determines the final
structure and behavior of the network, making the starting point as critical as the search
algorithm itself. From this perspective, one of our key contributions is the integration of
learnable architectures with the auto-compressing inductive bias at initialization.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 HYBRID ACNS: INTERPOLATING BETWEEN ACNS AND RESNETS

ACNs and ResNets represent two instances of multi-path architectures, with distinct inter-layer con-
nectivity patterns but a common output y summation formula:

xACN
i = fi(x

ACN
i−1), xRes

i = fi(x
Res
i−1) + xRes

i−1 , y =

L∑
i=0

fi(xi−1) (1)

We note that f0 = x0. In ResNets, the final sum y is implicit, arising from the residual accumulation
at each layer, as each layer adds its output to the residual stream. A closer look at their equations
indicates that they can be unified under a single mathematical formulation, controlled by a scalar
residual weighting parameter for each layer, forming Hybrid-ACNs (H-ACNs):

xHACN
i = fi(x

HACN
i−1) + aix

HACN
i−1 , yHACN =

L∑
i=0

fi(x
HACN
i−1) (2)

Specifically, setting ai = 0, ∀i, corresponds to a vanilla ACN, while ai = 1, ∀i, recovers a vanilla
ResNet 1. Intermediate values of ai produce architectures that interpolate between the two, result-
ing in distinct connectivity patterns determined by the residual weights. By making these weights
trainable, the network can dynamically learn its inter-layer connectivity during training.

Across architectures, the input to layer k as a function of the outputs of previous layers can be
expressed as:

inputk =

k−1∑
i=0

ci→k hi (3)

where hi = fi(xi−1) is the output of layer i, h0 denotes the input embedding and ci→k denotes
the strength of the direct residual connection from layer i (source) to layer j (target) (e.g.,
via shortcut or residual pathways). We can then calculate ci→j for all layers and store them in the
Direct Layer Connectivity Matrix, a square matrix C ∈ RL+1×L+1, where L is the number of
layers and C[i][j] = ci→j . Therefore, in this structure, column k of C corresponds to the vector ck =
[c0→k, c1→k, . . . , c(k−1)→k, 0, . . . , 0], which stores all weights of Eq. 6. By default, c(k−1)→k = 1
as successive layers are always connected by the direct feed-forward connections in all considered
architectures. Under this definition, it holds that:

• in standard FFNs each layer j receives input only from layer j−1, resulting in C[j−1][j] =
1 and all other entries zero (Fig. 8b),

• in standard residual architectures, C[i][j] = 1, ∀i < j (Fig. 8a),

• for ACNs, we have C[j − 1][j] = 1 and C[i][L] = 1, ∀i < L; the rest being zero (Fig. 8c).

For H-ACNs, in order to avoid O(L2) residual weight parameter growth and the O(L) additional
memory required during the forward pass (to store the outputs of all layers independently), we
introduce L learnable residual weights. These weights act synergistically, enabling direct inter-layer
connections through multiplicative interactions:

ci→j =

j−1∏
l=i+1

al (4)

To further illustrate how this equation is derived, we revisit Eq. 2 and expand, as an example, the
input of layer 4 as a function of the outputs of all preceding layers:

x4 = h3 + a3x3 = h3 + a3(h2 + a2x2) = ... = 1︸︷︷︸
c3→4

h3 + a3︸︷︷︸
c2→4

h2 + a3a2︸︷︷︸
c1→4

h1 + a3a2a1︸ ︷︷ ︸
c0→4

h0 (5)

where xi and hi are the input and output of layer i, respectively, and h0 the initial input embedding.

1In Appendix G, we provide a pseudo-implementation of the H-ACN forward pass, unifying ResNets and
ACNs forward passes, for additional clarity.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

As discussed previously, ACNs and ResNets represent two extreme points of multi-path network
architectures in terms of the paths available within the network. Following the analysis of (Veit
et al., 2016) and as argued in the original ACN paper, ACNs have a number of paths that grows
linearly with the number of layers, whereas residual networks exhibit an exponential growth in
paths. H-ACNs interpolate between these two extremes and can behave more like residual or auto-
compressing architectures depending on the structure of the matrix C determined by the learned
residual weights. These weights act as gates, modulating signal flow: for small to medium a values,
forward signals naturally attenuate, preserving the layer-wise characteristics of ACNs. For more
complex tasks, the residual gates can open (more), allowing strong information flow to deeper layers
and improving training and gradient propagation.

Importantly, this gate tuning and the resulting information flow dynamics are learned internally by
the network during optimization, since the residual weights are trainable. Training such learnable
architectures constitutes a dynamic system that converges to different behaviors depending on ini-
tialization. As we hypothesize and validate empirically, different initializations of the α parameters
— i.e., imposing either an auto-compressing or residual inductive bias — lead to distinct dynamics,
final behaviors, and connectivity patterns.

3 EXPERIMENTS

In this section, we implement and test the proposed H-ACN architecture in a variety of tasks,
modalities and architectures, ranging from image classification (CIFAR-10 (Krizhevsky, 2009), Im-
ageNet (Russakovsky et al., 2014)) to language modeling (OpenWebText2 (Gao et al., 2020), PG-
19 (Rae et al., 2019)). We consider MLP-Mixer (Tolstikhin et al., 2021) and Transformer (Vaswani
et al., 2017; Dosovitskiy et al., 2020) models and compare H-ACNs against vanilla Residual and
vanilla ACN architectures 2. This section is organized as follows: Subsection 3.2 covers MLP-
Mixer on CIFAR-10, Subsection 3.3 discusses ViT on ImageNet, and Subsection 3.4 details GPT-2
pre-training.

3.1 EXPERIMENTAL SETUP

Layer-wise accuracy. This metric is our primary tool for evaluating the performance of interme-
diate layers and auto-compression following (Dorovatas et al., 2025). Layer-wise accuracy for layer
i refers to the accuracy obtained by performing a forward pass up to layer i, treating it as if it were
the final layer and feeding it into a common head trained on the full network.

Initialization of residual weights. Across all experiments, we initialize the residual weights from
the normal distribution N (0.25, 0.005). This initialization places the network close to a vanilla
ACN, effectively imposing the auto-compressing inductive bias. In Appendix D we ablate other
choices involving depth-wise initialization, while in Section 4 we further explore the behavior un-
der different mean values. We note that, in this work, we focus on investigating the behavior and
performance of the learnable architecture when it is initialized closer to an ACN vs a ResNet. More
complex initialization schemes (e.g., layer-dependent) or alternative training strategies of the resid-
ual weighting are left for future work 3.

3.2 BRIDGING AUTO-COMPRESSION AND TASK LEARNING

We begin by integrating the three architectures into a 16-layer MLP-Mixer and training on CIFAR-
10 classification dataset for 300 epochs. Additional training details and hyperparameter settings
are provided in Appendix A. In Figure 2a, we show the Layer-wise Accuracy of the three vari-
ants. We observe that H-ACNs achieve performance comparable to the residual architecture
at the same training steps, while simultaneously exhibiting auto-compression behavior similar
to ACNs. Furthermore, in Figure 2b, which presents the training loss over epochs, we find that
H-ACNs demonstrate a significant advantage over ACNs in training speed, outperforming even the
residual architectures. Notably, ACNs require approximately 100 additional epochs to match the

2In Appendix B we further compare H-ACNs with other recent residual architectures.
3Another technique we employ to enhance the forward pass of H-ACNs and ACNs is Depth-Adaptive Lay-

erNorm; further details and an ablation study of its effect are provided in Appendix D.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

performance of H-ACNs and Residuals. Overall, H-ACNs effectively combine the strengths of both
architectures, bridging the gap between auto-compression and efficient learning.

0 2 4 6 8 10 12 14 16
Prediction Layer

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

H-ACN
Res
ACN

10 classes
2 classes

(a) Layer-wise Accuracy.

0 100 200 300
Layer

1.0

1.5

2.0

2.5

Va
lu

e

H-ACN
Res
ACN

(b) Training loss (C-10).

0 5 10 15
Layer

0.0

0.2

0.4

0.6

0.8

Va
lu

e

10 classes
2 classes

(c) Converged residual weights.

Figure 2: MLP-Mixer on CIFAR-10.

3.2.1 CONVERGED CONNECTIVITY VS TASK DIFFICULTY

As shown in (Dorovatas et al., 2025), auto-compression is a function of task difficulty, measured
there as the number of classes in a classification task. Here, we replicate this experiment to examine
the behavior and converged connectivity of the H-ACN model as task difficulty varies. Intuitively,
we expect that as task difficulty decreases, (1) the auto-compression of H-ACNs will increase, sim-
ilar to the behavior observed in ACNs, and (2) the converged connectivity of H-ACNs will more
closely resemble that of ACNs in the connectivity space, with α values (residual weights) being
smaller, effectively revealing redundancy in the predefined architecture.

To validate this intuition, we modify the experiment by reducing the number of CIFAR-10 classes
from 10 to 2 and training until the models achieve comparable performance to the 10-class case
for a fair comparison. As shown in Figure 2a (dashed lines), we confirm that for the two-class
setting, the auto-compression of H-ACNs increases mirroring ACNs behavior. Interestingly, H-
ACNs seem to achieve stronger auto-compression in this case, further highlighting the advantages
of learnable architectures. Furthermore, Figure 2c shows that the converged residual weights have
smaller magnitudes in the binary classification case, indicating that this task needs less capacity
compared to the 10-class case. Another perspective, which we will also analyze later, is that as task
difficulty increases, the intra-connectivity of the network also increases 4. In summary, we observe
a smooth interplay between ACNs and residual networks, with task difficulty acting as a key factor
influencing the balance between these architectures in the learned connectivity of H-ACNs.

3.3 HYBRID-AC VISION TRANSFORMERS ARE COMPACT AND ROBUST CLASSIFIERS

Next, we consider more challenging tasks and larger architectures, specifically the Vision Trans-
former (Dosovitskiy et al., 2020) on the Imagenet-1k (Russakovsky et al., 2014) classification
dataset. We integrate the three architectures into a 12-layer ViT and train for 300 epochs, following
the setup described in (Beyer et al., 2022). We report the final top-1 accuracy (Figure 3b) to evaluate
the generalization capabilities of the architectures, and plot accuracy versus epochs (Figure 3a) to
analyze their training dynamics.

From the accuracy vs epochs plot we observe that H-ACNs match the training speed of residual
networks, being trained significantly faster than ACNs (that require approximately 700 epochs to
match the performance of the counterparts). Interestingly, we find that H-ACNs achieve the best
top-1 final accuracy, outperforming both ACNs and ResNets. Results highlight the effectiveness as
well as efficiency of interpolating between the two vanilla architectures.

Robustness against input noise: One of the arguments for ACNs learning better and more robust
representations is that they have been shown to be more resilient to input noise compared to residual
networks. Here, we examine the behavior of H-ACNs under Gaussian input noise of zero mean and

4The magnitudes of the residual weights determine the inter-layer connectivity; for a more detailed analysis
we refer to Sec. 4.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 200 400 600
Epoch

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

H-ACN
Res
ACN

(a) Accuracy vs Epochs.

Models Acc.

Res 78.77
ACN 78.69
H-ACN 79.2

(b) Best final Accuracy.

Noise Res H-ACN

0 78.77 79.2

0.1 76.57± 0.03 77.02± 0.05

0.3 66.89± 0.03 67.59± 0.04

(c) Performance under input zero-
mean Gaussian noise.

Figure 3: ViT on ImageNet.

varying standard deviation. Across all noise levels, we find that H-ACNs consistently outperform
residual networks, providing further evidence that H-ACNs successfully combine the advantages of
both architectures. To summarize this ViT/Imagenet experiment:

H-ACNs achieved training speeds comparable to residual networks while showing stronger
generalization and improved noise robustness, akin to ACNs.

3.4 CAUSAL LANGUAGE MODELING WITH HYBRID-AC DECODERS

Finally, we explore the effect of inter-layer connectivity patterns in auto-regressive language model-
ing. Specifically, we want to examine how each architecture (Res, ACN, H-ACN) affects the training
dynamics and the downstream zero-shot performance of language decoders.

Models. We consider GPT-2 (Radford et al.) style decoder models with L = 24 layers (∼210M
params), RoPE (Su et al., 2024) positional embeddings, maximum sequence length of 256 and
embedding dimension d = 768. All experimental details can be found in Appendix A.

Datasets. For auto-regressive pre-training, we primarily use the OpenWebText2 dataset (Gao et al.,
2020) (OWT-2) which consists of around 17B tokens. We also pre-train on PG-19, consisting of full-
length books published over 100 years ago and extracted from Project Gutenberg (Rae et al., 2019).
We use both dataset to investigate the learned connectivity patterns of H-ACNs as a function of the
nature of the pre-training data, contrasting the literary and dated content of PG-19 with the more
factual, diverse and contemporary web-based content of OpenWebText2.

For zero-shot evaluation of the pre-trained models, we consider popular downstream bench-
marks, namely HellaSwag (Zellers et al., 2019) (commonsense inference with grounded scenarios),
PIQA (Bisk et al., 2020) (physical reasoning about everyday situations), and ARC-E (Clark et al.,
2018)(grade-school level multiple-choice questions testing scientific and logical reasoning).

Implementation Details. We consider residual and Hybrid ACN architectures 5. All models are
trained for 240K steps with a batch size of 128, totaling approximately 30B tokens seen during
training. We use the AdamW (Loshchilov & Hutter, 2017) optimizer with cosine learning rate
scheduling and warmup; detailed training hyperparameters are provided in Appendix A.

Results. Figure 4a and 4b show the layer-wise validation perplexity 6 of Residual and Hybrid ACN
models in log format 7. We see that in both cases, H-ACN performance is on par with the ResNet
but with significantly improved intermediate layer perplexity 8. Then, we evaluate the pre-trained

5We found that for the same training steps ACNs significantly underperform ResNets and H-ACNs, and
thus we do not include them in the results.

6Computed in the same way as layer-wise accuracy.
7We do this for visualization clarity; in the early and intermediate layers, Res PPL values are really large

compared to H-ACN.
8Top-1 val perplexity for H-ACN vs Residual is 19.78 vs 19.82 on OWT-2 and 16.78 vs 16.65 on PG-19.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

models’ zero-shot downstream capabilities to assess how well they generalize. For this, we choose
the pre-trained on OWT-2 dataset models, since it is modern and factual, thus closer to the nature of
the downstream tasks 9. In Table 4c, we observe that H-ACNs show improved average downstream
performance of 41.8% compared to 41.2% of the vanilla residuals, further highlighting the stronger
generalization capabilities of H-ACNs.

0 10 20
Layer

0

20

40

Lo
g1

0(
PP

L)

H-ACN
Res

(a) OWT-2 validation.

0 10 20
Layer

0

20

40

60

Lo
g1

0(
PP

L)

H-ACN
Res

(b) PG-19 validation.

Dataset Res H-ACN

HellaSwag 29.16 29.12
PIQA 57.94 58.71
ARC-e 36.49 37.54

Avg. 41.2 41.8

(c) Zero-shot accuracy.

Figure 4: GPT-2 models (L=24). (left & middle) We plot the final validation perplexity in log for-
mat (for visualization purposes) of all intermediate layers of the two models for (left) OpenWebText-
2 (OWT-2) dataset and (middle) PG-19 dataset. (right) We show the zero-shot performance of the
two models on various downstream datasets, when pre-trained on OWT-2.

Noise (p) Res H-ACN
0 (w/o noise) 29.16 29.12
0.01 27.55± 0.15 27.95± 0.20
0.03 26.10± 0.22 27.00± 0.18

Table 1: GPT-2 (L=24). Performance
on HellaSwag under different character-level
(insert/delete/swap) noise levels.

Robustness against input character-level noise.
We test the robustness of the pre-trained models
on OWT-2 against character-level noise on Hel-
laSwag. For each character, with probability p,
we either remove it, insert another character, or
swap it with the subsequent character. We find
(Fig. 1) that H-ACNs again outperform residual net-
works under noisy conditions, further extending
the previously observed noise-robustness charac-
teristics of auto-compressing architectures to the
language domain.

4 THE EMERGENCE OF STRUCTURE: ANALYSIS OF THE RESIDUAL WEIGHTS

0 20 40 60 80 100
Training Progress (%)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 M
ag

ni
tu

de

= 0.25
= 0.75
= 1

Figure 5: MLP-Mixer/CIFAR-
10. Evolution of total connectiv-
ity strength Γ under different inits
αi ∼ N (µ, 0.005).

Having demonstrated that H-ACNs achieve training ef-
ficiency comparable to ResNets while learning supe-
rior representations with enhanced robustness and task-
adaptive compression, we now examine the learned inter-
layer connectivity structures that underlie these proper-
ties. This section analyzes how connectivity patterns are
shaped by residual weight initialization, task complexity,
data modality, and training dynamics.

To quantify these connectivity patterns, we define the to-
tal connectivity strength Γ as ||α||2/

√
L, where α rep-

resents the vector of learned residual weights and L is the
number of layers. This normalized magnitude serves as a
scalar proxy for the overall strength of direct inter-layer
connectivity taking values Γ=0 for ACNs and Γ=1 for
ResNets. Additionally, we analyze the full connectivity
structure through the Direct Layer Connectivity Matrix
C ∈ R(L+1)×(L+1), where C[i][j] ≡ ci→j represents the
connection strength from source layer i to target layer j.

9We also tested PG-19 pre-trained models and we observed poor zero-shot performance.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Residual weights initialization. The main H-ACN parameter is the mean µ of the distribution
that initializes the residual weights αi ∼ N (µ, 0.005), controlling the interpolation between ACN
(µ = 0) and ResNet (µ = 1) regimes. Throughout our experiments, we initialize with µ = 0.25,
placing H-ACNs closer to the ACN regime. To understand how this choice affects performance,
we test larger values of µ on the Mixer/CIFAR-10 setup. As shown in Table 2, performance con-
sistently deteriorates for larger values of µ. Examining the evolution of total connectivity strength
Γ in Fig. 5 shows that ResNet-like initializations lead to more densely interconnected networks
throughout training. Importantly, starting from a sparser connectivity pattern appears to yield better
performance, suggesting that the network favors evolving from sparse to dense connectivity during
training.10

Robustness of initialization. To evaluate the robustness of our connectivity initialization, we com-
pute the Pearson correlation of the converged residual weights across independent training runs. On
GPT-2/OWT-2, we observe an average correlation of 95%, while on MLP-Mixer/CIFAR-10 we
obtain 92%, suggesting that our initialization scheme consistently guides training toward stable con-
nectivity solutions.

Init of α Acc.

µ = 0.25 90.2

µ = 0.75 89.7

µ = 1 88.7

Table 2: MLP-Mixer/CIFAR-10.
Best final accuracy under different
initializations αi ∼ N (µ, 0.005).

Evolution of the connectivity during training. We exam-
ine how residual weights evolve during training by tracking:
(1) the convergence distance ∆t ≡ ∥αT − αt∥2, measur-
ing how far current residual weights αt are from their final
values αT , and (2) total connectivity strength Γ to capture
connectivity dynamics. The evolution of Γ (Fig. 6b) reveals
rapid growth during early training, followed by stabilization or
slight decline around the 60% mark. This pattern suggests that
H-ACNs first undergo architectural exploration while learning
the task, then shift to task-focused optimization once connec-
tivity structure converges. The trajectory of ∆t (Fig. 6a) re-
veals similar dynamics.11

0 20 40 60 80 100
Training Progress (%)

0.0

0.2

0.4

0.6

0.8

Av
g.

 D
is

ta
nc

e
fr

om
 fi

na
l v

al
ue

s GPT-2/PG-19
Mixer/CIFAR-10
GPT-2/OWT-2
ViT/Imagenet

(a) Convergence distance ∆t of residual weights α
during training.

0 20 40 60 80 100
Training Progress (%)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

 M
ag

ni
tu

de

GPT-2/PG-19
Mixer/CIFAR-10
GPT-2/OWT-2
ViT/ImageNet

(b) Evolution of total connectivity strength Γ.

Dataset Value

CIFAR-2 0.326
CIFAR-10 0.428
ImageNet 0.930

Table 3: Total connectivity strength Γ for
increasingly complex image tasks.

Task difficulty. To examine how task complex-
ity affects connectivity patterns, we compute Γ for
networks trained on CIFAR-2, CIFAR-10, and Im-
ageNet (1000 classes). Table 3 shows that Γ in-
creases with task difficulty, approaching the connec-
tivity value of a vanilla residual network (Γ = 1) for
the most complex tasks. However, unlike ResNets
where connectivity is uniformly distributed (all αi =

10This experiment validates our choice of initialization values and suggests that architectural priors encoded
in the initialization act as induction biases shaping final network connectivity.

11Appendix E visualizes the evolution of the connectivity matrix C also detailing the emergence of modu-
larity shown in Fig. 1.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

1), H-ACNs dynamically allocate connectivity strength based on learned residual weights. Adap-
tive allocation allows H-ACNs to match or exceed ResNet performance on complex tasks, while
maintaining the flexibility to compress on simpler tasks.

Connectivity patterns across modalities. Our analysis reveals distinct connectivity patterns
across modalities. Vision tasks (Figure 1) converge to connectivity matrices with stronger near-
diagonal elements, suggesting preference for connections between adjacent layers. Language tasks
develop connectivity matrices with distinct block structures, indicating selective long-range connec-
tions between specific layer groups. These domain-specific adaptations demonstrate that H-ACNs
learn connectivity patterns tailored to different computational requirements, rather than converging
to a universal architecture.

Cognitive analogies. These patterns exhibit intriguing parallels to brain organization: vision’s lo-
cal connectivity resembles the columnar organization of visual cortex (Felleman & Van Essen, 1991;
Riesenhuber & Poggio, 1999), while language’s modular blocks mirror the hierarchical structure of
frontal-temporal language networks (Friederici, 2011). Moreover, the finding that task complexity
increases connectivity strength aligns with brain studies showing that more demanding cognitive
tasks recruit additional network connections and larger-scale integration across brain regions (Bas-
sett et al., 2010). This suggests H-ACNs may discover connectivity principles that reflect domain-
appropriate information processing, consistent with the hierarchical modularity observed in brain
networks (Meunier et al., 2010).

Computational analogies. Our approach extends neural architecture search (NAS) by integrating
auto-compressing inductive biases at initialization. We demonstrate that initializing H-ACNs closer
to the ACN regime enables networks to learn connectivity patterns tailored to task complexity while
maintaining training efficiency. This challenges the common practice of ResNet-like initialization
of NAS and highlights the importance of architectural priors in shaping learned representations.
Further comparisons with related work on learnable connectivity are provided in Appendix B.

5 CONCLUSION

We presented Hybrid Auto-Compressing Networks (H-ACNs), a unified architecture that interpo-
lates between Auto-Compressing Networks and ResNets through trainable scalar residual weighting
parameters, with ACNs and ResNets as special cases. H-ACNs achieve training efficiency com-
parable to ResNets while preserving the superior robustness, compression capabilities, and gen-
eralization of ACNs across vision transformers, MLP-mixers, and GPT-2 architectures. Learned
residual weights exhibit modality- and task-specific connectivity patterns: vision tasks converge to
local connectivity patterns, while language tasks develop modular hierarchical structures. Further,
initialization near the ACN regime provides a crucial architectural prior that leads to better archi-
tectural choices. The emergence of domain-specific structures suggests that optimal architectural
design should vary across modalities and tasks. This is a particularly promising direction for future
work, namely, studying the functional connectivity patterns that emerge during training and working
towards adaptive neural architecture design.

6 LIMITATIONS & BROADER IMPACT

Our evaluation focused on mid-scale experiments across a variety of tasks, models, and data modal-
ities, providing initial evidence of the effectiveness and generality of our approach. However,
scaling up the language modeling experiments to larger models and datasets is necessary to fully
assess the robustness and applicability of our method in more demanding settings. Similarly, ex-
ploring modality-specific connectivity patterns in multimodal architectures could reveal additional
insights into how adaptive connectivity can improve performance and efficiency across different
types of data. While we explored various initialization schemes, the focus was primarily on auto-
compressing versus residual initialization; a deeper study of more complex or structured initializa-
tion strategies remains as future work. Overall, our work aims to develop efficient and adaptive
neural networks that adjust their computation and connectivity to the task, improving generalization
and robustness. In Appendix F, we provide the Ethics and Reproducibility statement and elaborate
on our use of LLM assistance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

David Balduzzi, Marcus Frean, Lennox Leary, JP Lewis, Kurt Wan-Duo Ma, and Brian McWilliams.
The shattered gradients problem: If resnets are the answer, then what is the question? In Interna-
tional conference on machine learning, pp. 342–350. PMLR, 2017.

Danielle S Bassett, Daniel L Greenfield, Andreas Meyer-Lindenberg, Daniel R Weinberger, Si-
mon W Moore, and Edward T Bullmore. Efficient physical embedding of topologically complex
information processing networks in brains and computer circuits. PLoS Computational Biology,
6(4):e1000748, 2010. doi: 10.1371/journal.pcbi.1000748.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is
difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994. doi: 10.1109/72.279181.

Lucas Beyer, Xiaohua Zhai, and Alexander Kolesnikov. Better plain vit baselines for imagenet-1k.
arXiv preprint arXiv:2205.01580, 2022.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning:
Taxonomy, comparison, analysis, and recommendations. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Róbert Csordás, Christopher D Manning, and Christopher Potts. Do language models use their depth
efficiently? arXiv preprint arXiv:2505.13898, 2025.

Vaggelis Dorovatas, Georgios Paraskevopoulos, and Alexandros Potamianos. Auto-compressing
networks. arXiv preprint arXiv:2506.09714, 2025.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Muhammad ElNokrashy, Badr AlKhamissi, and Mona Diab. Depth-wise attention (dwatt): A layer
fusion method for data-efficient classification. arXiv preprint arXiv:2209.15168, 2022.

Daniel J Felleman and David C Van Essen. Distributed hierarchical processing in the primate cere-
bral cortex. Cerebral Cortex, 1(1):1–47, 1991. doi: 10.1093/cercor/1.1.1-a.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Angela D Friederici. The brain basis of language processing: from structure to function. Physiolog-
ical Reviews, 91(4):1357–1392, 2011. doi: 10.1152/physrev.00006.2011.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic neural
networks: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(11):
7436–7456, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4700–4708, 2017.

Orestis Konstantaropoulos, Stelios Manolis Smirnakis, and Maria Papadopouli. Neuro-inspired
ensemble-to-ensemble communication primitives for sparse and efficient anns. arXiv preprint
arXiv:2508.14140, 2025.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. URL https:
//api.semanticscholar.org/CorpusID:18268744.

Vedang Lad, Jin Hwa Lee, Wes Gurnee, and Max Tegmark. The remarkable robustness of LLMs:
Stages of inference? arXiv preprint arXiv:2406.19384, 2025.

Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Fractalnet: Ultra-deep neural net-
works without residuals. arXiv preprint arXiv:1605.07648, 2016.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
scape of neural nets. Advances in neural information processing systems, 31, 2018.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Yoshitomo Matsubara, Marco Levorato, and Francesco Restuccia. Split computing and early exiting
for deep learning applications: Survey and research challenges. ACM Computing Surveys, 55(5):
1–30, 2022.

David Meunier, Renaud Lambiotte, and Edward T Bullmore. Modular and hierarchically modular
organization of brain networks. Frontiers in Neuroscience, 4:200, 2010. doi: 10.3389/fnins.2010.
00200.

Matteo Pagliardini, Amirkeivan Mohtashami, Francois Fleuret, and Martin Jaggi. Denseformer:
Enhancing information flow in transformers via depth weighted averaging. arXiv preprint
arXiv:2402.02622, 2024.

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. In Proceedings of the 35th International Conference on Machine
Learning, volume 80, pp. 4095–4104, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. Compressive
transformers for long-range sequence modelling. arXiv preprint arXiv:1911.05507, 2019.

Maximilian Riesenhuber and Tomaso Poggio. Hierarchical models of object recognition in cortex.
Nature Neuroscience, 2(11):1019–1025, 1999. doi: 10.1038/14819.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
Imagenet large scale visual recognition challenge. 2014.

Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by fine-
tuning. Advances in neural information processing systems, 33:20378–20389, 2020.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. arXiv preprint
arXiv:1505.00387, 2015.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An
all-mlp architecture for vision. Advances in neural information processing systems, 34:24261–
24272, 2021.

11

https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks behave like ensembles of
relatively shallow networks. Advances in neural information processing systems, 29, 2016.

Wei Wang, Yongxin Zhang, and Liang Zhu. Drf-drc: dynamic receptive field and dense residual
connections for model compression. Cognitive Neurodynamics, 17(6):1561–1573, 2023.

Zonghan Yang, Yang Liu, Chenglong Bao, and Zuoqiang Shi. Interpolation between residual and
non-residual networks. In International Conference on Machine Learning, pp. 10736–10745.
PMLR, 2020.

Alireza Zaeemzadeh, Nazanin Rahnavard, and Mubarak Shah. Norm-preservation: Why residual
networks can become extremely deep? IEEE transactions on pattern analysis and machine
intelligence, 43(11):3980–3990, 2020.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Xiao Zhang, Ruoxi Jiang, William Gao, Rebecca Willett, and Michael Maire. Residual connections
harm generative representation learning. arXiv preprint arXiv:2404.10947, 2024.

Defa Zhu, Hongzhi Huang, Zihao Huang, Yutao Zeng, Yunyao Mao, Banggu Wu, Qiyang Min, and
Xun Zhou. Hyper-connections. arXiv preprint arXiv:2409.19606, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A TRAINING DETAILS

MLP-Mixer/CIFAR-10. We use a 16-layer architecture with a hidden size d = 128. The input
image resolution is 32 × 32 with 3 channels, patches of size 4 × 4. The channel-mixing MLP di-
mension is set to DC = 512, while the token-mixing dimension is DS = 64. Training is performed
with the AdamW optimizer Loshchilov & Hutter (2017), using a maximum learning rate of 0.001, a
cosine learning rate scheduler with warmup, and a batch size of 64.

ViT/Imagenet. We used the setup described in (Beyer et al., 2022).

GPT-2. We present in-detail our model and training hyperparameter choices in the table below:

Model Hyperparam. Value
Number of Heads 12
Number of Layers 24
Embedding Size 768
Vocab Size 50304
Sequence Length 256
Dropout 0.2
Positional Encoder rotary
Tokenizer GPT-2
Number of Parameters 208.54M

Table 4: Models Configuration

Training Hyperparam. Value
Batch Size 128
Accumulation Steps 4
Iterations 240,000
Learning Rate 0.001
Warmup Percent 0.05
Weight Decay 0.01
β1 0.9
β2 0.95
Scheduler cosine
Optimizer AdamW
Gradient Clipping 1.0
Data Type torch.bfloat16
Distributed Backend NCCL

Table 5: Training Configuration

B RELATED WORK

B.1 MULTI-PATH ARCHITECTURES

The development of multi-path architectures has been a critical advancement in addressing opti-
mization challenges in deep neural networks, especially vanishing and exploding gradients (Ben-
gio et al., 1994). Highway Networks (Srivastava et al., 2015) introduced gated skip connections
that enabled effective training of very deep models by facilitating signal flow. Residual Networks
(ResNets) (He et al., 2016) simplified this design with identity skip connections, allowing deep mod-
els to be trained without introducing additional parameters. These architectures have been shown
to improve gradient flow, smooth loss landscapes and enhance the gradient dynamics of deep net-
works (Zaeemzadeh et al., 2020; Li et al., 2018; Balduzzi et al., 2017). Furthermore, ResNets have
been interpreted as implicit ensembles of shallower networks, offering multiple computational paths
of varying depth (Veit et al., 2016). Building on the success of ResNets, a wide range of architec-
tural variants have been proposed to increase representational capacity through richer feature fusion;
DenseNets (Huang et al., 2017) replace addition-based fusion with concatenation to enable feature
reuse across layers, while FractalNets (Larsson et al., 2016) use recursive structures to create deep
ensembles.

More recently, research has shifted towards learnable connectivity, generalizing vanilla ResNets to
architectures where inter-layer interactions are explicitly parameterized. Examples include learned
weighted averaging across layer outputs (Pagliardini et al., 2024), attention-based inter-layer fusion
(ElNokrashy et al., 2022), and hyper-connected modules (Zhu et al., 2024). These approaches can
be formalized as:

inputk =

k−1∑
i=0

ci→k hi, (6)

where c may be a learnable scalar, an input-dependent attention weight, or even a full matrix.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

0 2 4 6 8 10 12 14 16
Prediction Layer

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

H-ACN
Res
ACN
Concat (DenseNet)
DenseFormer

H-ACN
Res
ACN
Concat (DenseNet)
DenseFormer

Figure 7: MLP-Mixer/CIFAR-10. We extend the experiment by including DenseFormer and
DenseNet style Mixers.

In this work, we restrict c to scalar parameters, keeping computation comparable to ResNets and
ACNs while focusing on how these weights are initialized. Unlike DenseFormers, which require
O(L2) residual parameters and O(L) extra memory to cache all intermediate outputs, we introduce
only L learnable residual weights. These act jointly to produce each c, yielding a far more parameter-
and memory-efficient design.

We show that leveraging the auto-compressing inductive bias at initialization enables efficient learn-
ing of robust representations, with connectivity adapted to the task and modality. For comparison,
we extend our MLP-Mixer/CIFAR-10 experiments with a DenseFormer-style mixer and a DenseNet
(using concatenations instead of additions)12. The results presented in Fig 7 show that H-ACNs, ini-
tialized close to ACNs, achieve performance on par with vanilla ResNets at the same training speed,
while surpassing all other architectures. This is achieved without additional memory overhead and
with only 16 extra parameters. Moreover, H-ACNs display strong auto-compression, akin to ACNs,
revealing redundancy in the predefined architecture.

B.2 PRUNING & DYNAMIC COMPUTATION

Another line of work includes pruning-based methods (Cheng et al., 2024; Frankle & Carbin, 2018;
Sanh et al., 2020; Konstantaropoulos et al., 2025), which remove redundant weights or connections
to achieve architectural compression, and dynamic computation methods (Han et al., 2021; Matsub-
ara et al., 2022), which dynamically adjust computation based on the input. ACNs have already
demonstrated that their auto-compression synergizes with these approaches, leading to stronger per-
formance vs. inference-efficiency trade-offs compared to ResNets. H-ACNs follow the same prin-
ciple: as we show in the main paper, intermediate layer performance is significantly better than
ResNets and comparable to ACNs, suggesting that analogous advantages in efficiency and perfor-
mance can be expected.

12Because concatenations increase parameters per layer, we use a 10-layer DenseNet with a parameter count
comparable to the 16-layer counterparts.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C INTER-LAYER CONNECTIVITY MATRIX OF STANDARD ARCHITECTURES

Here, we show the Direct Layer Connectivity Matrix, as defined in the main paper, of FFNs,
ResNets and ACNs. As explained, C[i][j] = ci→j denotes the direct connection from source layer i
to target layer j. The matrices are shown in Fig. 8.

E
m

b L1 L2 L3 L4 L5 L6 L7 L8 L9 L1
0

L1
1

L1
2

L1
3

Target Layer

Emb
L1
L2
L3
L4
L5
L6
L7
L8
L9

L10
L11
L12
L13

So
ur

ce
 L

ay
er

0.0

0.2

0.4

0.6

0.8

1.0

(a) ResNet

E
m

b L1 L2 L3 L4 L5 L6 L7 L8 L9 L1
0

L1
1

L1
2

L1
3

Target Layer

Emb
L1
L2
L3
L4
L5
L6
L7
L8
L9

L10
L11
L12
L13

So
ur

ce
 L

ay
er

0.0

0.2

0.4

0.6

0.8

1.0

(b) FFN

E
m

b L1 L2 L3 L4 L5 L6 L7 L8 L9 L1
0

L1
1

L1
2

L1
3

Target Layer

Emb
L1
L2
L3
L4
L5
L6
L7
L8
L9

L10
L11
L12
L13

So
ur

ce
 L

ay
er

0.0

0.2

0.4

0.6

0.8

1.0

(c) ACN

Figure 8: Connectivity patterns across architectures.

D ABLATION STUDIES

In this section, we further ablate the initialization of the α residual weights and provide a detailed
explanation of the Depth-Adaptive LayerNorm (DepthLN) technique used in our experiments. Due
to resource and time constraints, the ablation studies were performed on PG-19 with training on 6B
tokens.

Initialization of alphas. First, we ablate the choice of initialization for the residual weights. We
vary the mean of the normal distribution used for initialization, as defined in the main paper, and
also test alternative strategies: (1) Half layers, using a normal with µ = 0.4 for the first half of the
layers and µ = 0.15 for the rest; and (2) Exp. decay, where the mean decays exponentially from
0.25 to 0.1 with increasing depth. We present the results below:

Initialization PPL

N(0.15, 0.01) 19.73 ± 0.15
N(0.25, 0.01) 19.25 ± 0.03
N(0.15, 0.005) 19.64 ± 0.04
N(0.25, 0.005) 19.22 ± 0.02
Half layers: N(0.4, 0.005)/N(0.15, 0.005) 19.48 ± 0.05
Exp. decay: N(0.25, 0.005)→ N(0.1, 0.005) 20.05 ± 0.04

Table 6: Ablation of different residual weight initializations.

Among all tested initializations, N(0.25, 0.005) achieves the best performance, despite being uni-
form across layers. Initialization strategies based on depth did not provide any improvement. As
noted in the main paper, a more detailed exploration of initialization strategies is left for future work.

Depth-adaptive LayerNorm (DepthLN). For a layer of dimension d at depth l, let the standard
LayerNorm of input xl ∈ Rd be LN(xl). Then, Depth-adaptive LayerNorm scales the normalized
output by a learnable depth-dependent scalar αl:

DepthLN(xl) = αl · LN(xl), αl = 1 + l · s, (7)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where s is a small learnable strength factor initialized at 0.05. This introduces only one extra param-
eter per layer, enhancing forward signal flow without significant computational overhead. Ablation
experiments (Table 7) show that including DepthLN consistently improves H-ACN performance.

Model PPL

N(0.15, 0.01) 19.73 ± 0.15
↪→ w/o DepthLN 20.5 ± 0.2
N(0.25, 0.01) 19.25 ± 0.03
↪→ w/o DepthLN 19.47 ± 0.08

Table 7: Ablation of Depth-adaptive LayerNorm.

E EVOLUTION OF THE DIRECT INTER-LAYER CONNECTIVITY MATRIX

In this section, we provide a detailed visualization of the evolution of the direct layer connectivity
matrix C during GPT-2 pre-training on PG-19. As shown in the figure below, we can observe (1)
the sequential formation of modules during training, with the first two modules emerging initially,
followed by the final one, and (2) that, consistent with the metrics reported in the main paper, the
connectivity structure is largely established by 50–60% of training, at which point the modules are
clearly defined.

Training: 0% Training: 2% Training: 4% Training: 20%

Training: 40% Training: 60% Training: 80% Training: 100%

0.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.5

1.0

1.5

2.0

1

2

3

0.5

1.0

1.5

2.0

0.5

1.0

1.5

0.25

0.50

0.75

1.00

1.25

1.50

0.25

0.50

0.75

1.00

1.25

1.50

Figure 9: Evolution of the direct layer connectivity matrix during training of GPT-2 decoder on
PG-19.

F ETHICS, REPRODUCIBILITY, AND LLM USAGE

Ethics Statement. The authors affirm that they have read and will adhere to the ICLR Code of
Ethics in all aspects of this work.

Reproducibility Statement. All necessary implementation details for reproducibility are presented
(model architectures, we use public datasets, all training details and hyperparameter choices are
provided) and a detailed description of the techniques used in this work (in the main paper and
Appendix). We also plan to make the code publicly available.

Use of Large Language Models. Large language models were employed to assist in polishing the
manuscript and help with grammar. All content has been carefully reviewed and adjusted by the
authors, who take full responsibility for the final published work.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

G FORWARD PASS OF H-ACNS

Here, we present a pseudo-implementation of the forward pass of H-ACNs, to further show the
interpolation between ACNs and ResNets:

Algorithm 1 Forward pass of ACNs (a=0) and ResNets (a=1)
1: x← emb(input)
2: current← x
3: for each i, layer in enum(layers) do
4: xout ← layer(x)
5: current← current+ xout
6: x← xout + ai · x
7: end for
8: xcls ← current
9: xcls ← cls(xcls)

17

	Introduction
	Hybrid ACNs: Interpolating between ACNs and ResNets
	Experiments
	Experimental Setup
	Bridging Auto-Compression and Task Learning
	Converged Connectivity vs Task Difficulty

	Hybrid-AC Vision Transformers are compact and robust classifiers
	Causal Language Modeling with Hybrid-AC Decoders

	The Emergence of Structure: Analysis of the residual weights
	Conclusion
	Limitations & Broader Impact
	Training Details
	Related Work
	Multi-Path Architectures
	Pruning & Dynamic Computation

	Inter-Layer Connectivity Matrix of standard Architectures
	Ablation Studies
	Evolution of the direct inter-layer connectivity matrix
	Ethics, Reproducibility, and LLM Usage
	Forward Pass of H-ACNs

