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ABSTRACT

We propose Hybrid Auto-Compressing Networks (H-ACNs), unifying ACNs
and ResNets under a single mathematical formulation controlled by trainable
scalar residual weighting parameters per layer. Through theoretical analysis, we
show that both architectures represent points on a continuous spectrum, with tra-
ditional ACNs and ResNets as special cases. Our key contribution is demonstrat-
ing that H-ACNs, when initialized close to ACNs, match ResNets training effi-
ciency while preserving ACN-like robustness and compression capabilities. Ex-
periments across vision transformers, MLP-mixers, and GPT-2 architectures show
that H-ACNs achieve training convergence on par with ResNets, while maintain-
ing ACNs superior noise robustness and generalization. Furthermore, we discover
that learned residual weights exhibit distinct connectivity patterns across tasks,
namely, vision tasks favor local connectivity patterns resembling early visual cor-
tex processing, while language tasks converge to modular hierarchical inter-layer
structures similar to hierarchical language processing regions. We also examine
how initialization impacts performance and connectivity, challenging the univer-
sality of the common ResNet-like initialization of residual weights. Overall, our
results establish Hybrid ACNs as a practical framework for efficiently balancing
training speed and representation quality, while revealing principles of how func-
tional connectivity patterns should vary across domains, modalities, and tasks.
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(a) Learned Inter-Layer Connectivity in Vision Classification Models
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(b) Learned Inter-Layer Connectivity in Language Models

Figure 1: Entry C[i][j] (Sec. 2): direct connection strength from source layer i to target layer j.
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1 INTRODUCTION

Deep neural networks face a fundamental tradeoff between learning robust, generalizable represen-
tations and achieving efficient, stable training (Bengio et al., 1994; Balduzzi et al., 2017; Zhang
et al., 2024). While architectures that enhance robustness (Yang et al., 2020) or promote rich feature
learning, e.g., via dense connectivity, often produce superior representations and better general-
ization (Huang et al., 2017), they typically suffer from training instabilities, slower convergence,
or computational overhead (Srivastava et al., 2015; Yang et al., 2020). Conversely, architectures
optimized for training efficiency, such as residual networks, enable rapid convergence and stable
gradient flow (He et al., 2016) but may underutilize network depth and produce less robust rep-
resentations (Zhang et al., 2024; Lad et al., 2025; Csordás et al., 2025; Yang et al., 2020). This
tradeoff between representation quality vs training efficiency remains a central challenge in neural
architecture design.

Recently, Auto-Compressing Networks (Dorovatas et al., 2025) (ACNs) have been introduced, re-
placing residual connections with direct long feedforward connections from each layer to the output.
Unlike traditional feedforward or residual architectures, ACNs enable automatic compression dur-
ing training; networks naturally learn to concentrate critical information in early layers while deeper
layers become redundant for simpler tasks, all without external pruning or regularization. Further,
ACNs achieve better representational quality through enhanced noise robustness, superior general-
ization in low-data regimes, and improved continual learning capabilities . However, this architec-
tural design comes at a significant cost: ACNs suffer from substantially slower training convergence
and reduced training stability compared to their residual counterparts, making them less practical
for large-scale applications despite their representational advantages.

This raises a fundamental research question: can we create a unified architecture that smoothly in-
terpolates between ACNs and ResNets, capturing the compression capabilities and representational
advantages of ACNs while maintaining the training stability and efficiency of residual networks?
Furthermore, if we allow such a hybrid architecture to learn its own connectivity patterns through
trainable interpolation parameters, what architectural structures emerge across different domains
and tasks? Do vision and language tasks converge to fundamentally different connectivity patterns,
and what do these learned structures reveal about the functional connectivity requirements of dif-
ferent cognitive tasks? And also, how does the initialization in the connectivity space—that is, the
connectivity inductive biases—shape their behavior? These questions build on recent work explor-
ing learnable dense connectivity, including depth-weighted averaging in transformers (Pagliardini
et al., 2024), attention-based layer fusion methods (ElNokrashy et al., 2022) and neural architecture
search approaches that learn optimal residual connection through trainable weights (Pham et al.,
2018; Wang et al., 2023) and connects this direction with the auto-compression property (Dorovatas
et al., 2025).

To address these questions we propose Hybrid Auto-Compressing Networks (H-ACNs), which unify
ACNs and ResNets under a single mathematical formulation controlled by trainable scalar residual
weighting parameters per layer. Through theoretical analysis, we demonstrate that both architectures
represent points on a continuous spectrum, with traditional ACNs and ResNets as special cases. Our
main contributions are:

• H-ACNs achieve ResNet-like training efficiency while preserving ACN-like robust-
ness, compression capabilities, and superior generalization across vision transformers,
MLP-mixers, and GPT-2 architectures. This translates into better downstream performance
for complex tasks.

• Learned residual weights exhibit distinct connectivity patterns across tasks and
modalities: vision tasks converge to local connectivity patterns resembling early visual
cortex processing, while language tasks develop modular hierarchical inter-layer structures
similar to hierarchical language processing regions as shown in Fig. 1.

• We find that initialization encodes powerful architectural priors that determines the final
structure and behavior of the network, making the starting point as critical as the search
algorithm itself. From this perspective, one of our key contributions is the integration of
learnable architectures with the auto-compressing inductive bias at initialization.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 HYBRID ACNS: INTERPOLATING BETWEEN ACNS AND RESNETS

ACNs and ResNets represent two instances of multi-path architectures, with distinct inter-layer con-
nectivity patterns but a common output y summation formula:

xACN
i = fi(x

ACN
i−1 ), xRes

i = fi(x
Res
i−1) + xRes

i−1 , y = x0 +

L∑
i=1

fi(xi−1) (1)

In ResNets, the final sum y is implicit, arising from the residual accumulation at each layer, as each
layer adds its output to the residual stream. A closer look at their equations indicates that they can be
unified under a single mathematical formulation, controlled by a scalar residual weighting parameter
for each layer, forming Hybrid-ACNs (H-ACNs):

xHACN
i = fi(x

HACN
i−1 ) + aix

HACN
i−1 , yHACN = x0 +

L∑
i=1

fi(x
HACN
i−1 ) (2)

Specifically, setting ai = 0, ∀i, corresponds to a vanilla ACN, while ai = 1, ∀i, recovers a vanilla
ResNet 1. Intermediate values of ai produce architectures that interpolate between the two, result-
ing in distinct connectivity patterns determined by the residual weights. By making these weights
trainable, the network can dynamically learn its inter-layer connectivity during training.

Across architectures, the input to layer k as a function of the outputs of previous layers can be
expressed as:

inputk =

k−1∑
i=0

ci→k hi (3)

where hi = fi(xi−1), ∀i > 0 is the output of layer i, h0 denotes the input embedding and ci→k

denotes the strength of the direct residual connection from layer i (source) to layer j (target)
(e.g., via shortcut or residual pathways). We can then calculate ci→j for all layers and store them in
the Direct Layer Connectivity Matrix, a square matrix C ∈ RL+1×L+1, where L is the number of
layers and C[i][j] = ci→j . Therefore, in this structure, column k of C corresponds to the vector ck =
[c0→k, c1→k, . . . , c(k−1)→k, 0, . . . , 0], which stores all weights of Eq. 6. By default, c(k−1)→k = 1
as successive layers are always connected by the direct feed-forward connections in all considered
architectures. Under this definition, it holds that:

• in standard FFNs each layer j receives input only from layer j−1, resulting in C[j−1][j] =
1 and all other entries zero (Fig. 8b),

• in standard residual architectures, C[i][j] = 1, ∀i < j (Fig. 8a),

• for ACNs, we have C[j − 1][j] = 1 and C[i][L] = 1, ∀i < L; the rest being zero (Fig. 8c).

For H-ACNs, in order to avoid O(L2) residual weight parameter growth and the O(L) additional
memory required during the forward pass (to store the outputs of all layers independently), we
introduce L learnable residual weights. These weights act synergistically, enabling direct inter-layer
connections through multiplicative interactions:

ci→j =

j−1∏
l=i+1

al (4)

To further illustrate how this equation is derived, we revisit Eq. 2 and expand, as an example, the
input of layer 4 as a function of the outputs of all preceding layers:

x4 = h3 + a3x3 = h3 + a3(h2 + a2x2) = ... = 1︸︷︷︸
c3→4

h3 + a3︸︷︷︸
c2→4

h2 + a3a2︸︷︷︸
c1→4

h1 + a3a2a1︸ ︷︷ ︸
c0→4

h0 (5)

where xi and hi are the input and output of layer i, respectively, and h0 the initial input embedding.

1In Appendix G, we provide a pseudo-implementation of the H-ACN forward pass, unifying ResNets and
ACNs forward passes, for additional clarity.
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As discussed previously, ACNs and ResNets represent two extreme points of multi-path network
architectures in terms of the paths available within the network. Following the analysis of (Veit
et al., 2016) and as argued in the original ACN paper, ACNs have a number of paths that grows
linearly with the number of layers, whereas residual networks exhibit an exponential growth in
paths. H-ACNs interpolate between these two extremes and can behave more like residual or auto-
compressing architectures depending on the structure of the matrix C determined by the learned
residual weights. These weights act as gates, modulating signal flow: for small to medium a values,
forward signals naturally attenuate, preserving the layer-wise characteristics of ACNs. For more
complex tasks, the residual gates can open (more), allowing strong information flow to deeper layers
and improving training and gradient propagation.

Importantly, this gate tuning and the resulting information flow dynamics are learned internally by
the network during optimization, since the residual weights are trainable. Training such learnable
architectures constitutes a dynamic system that converges to different behaviors depending on ini-
tialization. As we hypothesize and validate empirically, different initializations of the α parameters
— i.e., imposing either an auto-compressing or residual inductive bias — lead to distinct dynamics,
final behaviors, and connectivity patterns.

3 EXPERIMENTS

In this section, we implement and test the proposed H-ACN architecture in a variety of tasks,
modalities and architectures, ranging from image classification (CIFAR-10 (Krizhevsky, 2009), Im-
ageNet (Russakovsky et al., 2014)) to language modeling (OpenWebText2 (Gao et al., 2020), PG-
19 (Rae et al., 2019)). We consider MLP-Mixer (Tolstikhin et al., 2021) and Transformer (Vaswani
et al., 2017; Dosovitskiy et al., 2020) models and compare H-ACNs against vanilla Residual and
vanilla ACN architectures 2. This section is organized as follows: Subsection 3.2 covers MLP-
Mixer on CIFAR-10, Subsection 3.3 discusses ViT on ImageNet, and Subsection 3.4 details GPT-2
pre-training.

3.1 EXPERIMENTAL SETUP

Layer-wise accuracy. This metric is our primary tool for evaluating the performance of interme-
diate layers and auto-compression following (Dorovatas et al., 2025). Layer-wise accuracy for layer
i refers to the accuracy obtained by performing a forward pass up to layer i, treating it as if it were
the final layer and feeding it into a common head trained on the full network.

Initialization of residual weights. Across all experiments, we initialize the residual weights from
the normal distribution N (0.25, 0.005). This initialization places the network close to a vanilla
ACN, effectively imposing the auto-compressing inductive bias. In Appendix D we ablate other
choices involving depth-wise initialization, while in Section 4 we further explore the behavior un-
der different mean values. We note that, in this work, we focus on investigating the behavior and
performance of the learnable architecture when it is initialized closer to an ACN vs a ResNet. More
complex initialization schemes (e.g., layer-dependent) or alternative training strategies of the resid-
ual weighting are left for future work 3.

3.2 BRIDGING AUTO-COMPRESSION AND TASK LEARNING

We begin by integrating the three architectures into a 16-layer MLP-Mixer and training on CIFAR-
10 classification dataset for 300 epochs. Additional training details and hyperparameter settings
are provided in Appendix A. In Figure 2a, we show the Layer-wise Accuracy of the three vari-
ants. We observe that H-ACNs achieve performance comparable to the residual architecture
at the same training steps, while simultaneously exhibiting auto-compression behavior similar
to ACNs. Furthermore, in Figure 2b, which presents the training loss over epochs, we find that
H-ACNs demonstrate a significant advantage over ACNs in training speed, outperforming even the
residual architectures. Notably, ACNs require approximately 100 additional epochs to match the

2In Appendix B we further compare H-ACNs with other recent residual architectures.
3Another technique we employ to enhance the forward pass of H-ACNs and ACNs is Depth-Adaptive Lay-

erNorm; further details and an ablation study of its effect are provided in Appendix D.
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performance of H-ACNs and Residuals. Overall, H-ACNs effectively combine the strengths of both
architectures, bridging the gap between auto-compression and efficient learning.
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Figure 2: MLP-Mixer on CIFAR-10.

3.2.1 CONVERGED CONNECTIVITY VS TASK DIFFICULTY

As shown in (Dorovatas et al., 2025), auto-compression is a function of task difficulty, measured
there as the number of classes in a classification task. Here, we replicate this experiment to examine
the behavior and converged connectivity of the H-ACN model as task difficulty varies. Intuitively,
we expect that as task difficulty decreases, (1) the auto-compression of H-ACNs will increase, sim-
ilar to the behavior observed in ACNs, and (2) the converged connectivity of H-ACNs will more
closely resemble that of ACNs in the connectivity space, with α values (residual weights) being
smaller, effectively revealing redundancy in the predefined architecture.

To validate this intuition, we modify the experiment by reducing the number of CIFAR-10 classes
from 10 to 2 and training until the models achieve comparable performance to the 10-class case
for a fair comparison. As shown in Figure 2a (dashed lines), we confirm that for the two-class
setting, the auto-compression of H-ACNs increases mirroring ACNs behavior. Interestingly, H-
ACNs seem to achieve stronger auto-compression in this case, further highlighting the advantages
of learnable architectures. Furthermore, Figure 2c shows that the converged residual weights have
smaller magnitudes in the binary classification case, indicating that this task needs less capacity
compared to the 10-class case. Another perspective, which we will also analyze later, is that as task
difficulty increases, the intra-connectivity of the network also increases 4. In summary, we observe
a smooth interplay between ACNs and residual networks, with task difficulty acting as a key factor
influencing the balance between these architectures in the learned connectivity of H-ACNs.

3.3 HYBRID-AC VISION TRANSFORMERS ARE COMPACT AND ROBUST CLASSIFIERS

Next, we consider more challenging tasks and larger architectures, specifically the Vision Trans-
former (Dosovitskiy et al., 2020) on the Imagenet-1k (Russakovsky et al., 2014) classification
dataset. We integrate the three architectures into a 12-layer ViT and train for 300 epochs, following
the setup described in (Beyer et al., 2022). We report the final top-1 accuracy (Figure 3b) to evaluate
the generalization capabilities of the architectures, and plot accuracy versus epochs (Figure 3a) to
analyze their training dynamics.

From the accuracy vs epochs plot we observe that H-ACNs match the training speed of residual
networks, being trained significantly faster than ACNs (that require approximately 700 epochs to
match the performance of the counterparts). Interestingly, we find that H-ACNs achieve the best
top-1 final accuracy, outperforming both ACNs and ResNets. Results highlight the effectiveness as
well as efficiency of interpolating between the two vanilla architectures.

Robustness against input noise: One of the arguments for ACNs learning better and more robust
representations is that they have been shown to be more resilient to input noise compared to residual
networks. Here, we examine the behavior of H-ACNs under Gaussian input noise of zero mean and

4The magnitudes of the residual weights determine the inter-layer connectivity; for a more detailed analysis
we refer to Sec. 4.
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(a) Accuracy vs Epochs.
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(b) Best final Accuracy.

Noise Res H-ACN

0 78.77 79.2

0.1 76.57± 0.03 77.02± 0.05

0.3 66.89± 0.03 67.59± 0.04

(c) Performance under input zero-
mean Gaussian noise.

Figure 3: ViT on ImageNet.

varying standard deviation. Across all noise levels, we find that H-ACNs consistently outperform
residual networks, providing further evidence that H-ACNs successfully combine the advantages of
both architectures. To summarize this ViT/Imagenet experiment:

H-ACNs achieved training speeds comparable to residual networks while showing stronger
generalization and improved noise robustness, akin to ACNs.

3.4 CAUSAL LANGUAGE MODELING WITH HYBRID-AC DECODERS

Finally, we explore the effect of inter-layer connectivity patterns in auto-regressive language model-
ing. Specifically, we want to examine how each architecture (Res, ACN, H-ACN) affects the training
dynamics and the downstream zero-shot performance of language decoders.

Models. We consider GPT-2 (Radford et al.) style decoder models with L = 24 layers (∼210M
params), RoPE (Su et al., 2024) positional embeddings, maximum sequence length of 256 and
embedding dimension d = 768. All experimental details can be found in Appendix A.

Datasets. For auto-regressive pre-training, we primarily use the OpenWebText2 dataset (Gao et al.,
2020) (OWT-2) which consists of around 17B tokens. We also pre-train on PG-19, consisting of full-
length books published over 100 years ago and extracted from Project Gutenberg (Rae et al., 2019).
We use both dataset to investigate the learned connectivity patterns of H-ACNs as a function of the
nature of the pre-training data, contrasting the literary and dated content of PG-19 with the more
factual, diverse and contemporary web-based content of OpenWebText2.

For zero-shot evaluation of the pre-trained models, we consider popular downstream bench-
marks, namely HellaSwag (Zellers et al., 2019) (commonsense inference with grounded scenarios),
PIQA (Bisk et al., 2020) (physical reasoning about everyday situations), and ARC-E (Clark et al.,
2018)(grade-school level multiple-choice questions testing scientific and logical reasoning).

Implementation Details. We consider residual and Hybrid ACN architectures 5. All models are
trained for 240K steps with a batch size of 128, totaling approximately 30B tokens seen during
training. We use the AdamW (Loshchilov & Hutter, 2017) optimizer with cosine learning rate
scheduling and warmup; detailed training hyperparameters are provided in Appendix A.

Results. Figure 4a and 4b show the layer-wise validation perplexity 6 of Residual and Hybrid ACN
models in log format 7. We see that in both cases, H-ACN performance is on par with the ResNet
but with significantly improved intermediate layer perplexity 8. Then, we evaluate the pre-trained

5We found that for the same training steps ACNs significantly underperform ResNets and H-ACNs, and
thus we do not include them in the results.

6Computed in the same way as layer-wise accuracy.
7We do this for visualization clarity; in the early and intermediate layers, Res PPL values are really large

compared to H-ACN.
8Top-1 val perplexity for H-ACN vs Residual is 19.78 vs 19.82 on OWT-2 and 16.78 vs 16.65 on PG-19.
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models’ zero-shot downstream capabilities to assess how well they generalize. For this, we choose
the pre-trained on OWT-2 dataset models, since it is modern and factual, thus closer to the nature of
the downstream tasks 9. In Table 4c, we observe that H-ACNs show improved average downstream
performance of 41.8% compared to 41.2% of the vanilla residuals, further highlighting the stronger
generalization capabilities of H-ACNs.
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(a) OWT-2 validation.
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(b) PG-19 validation.

Dataset Res H-ACN

HellaSwag 29.16 29.12
PIQA 57.94 58.71
ARC-e 36.49 37.54

Avg. 41.2 41.8

(c) Zero-shot accuracy.

Figure 4: GPT-2 models (L=24). (left & middle) We plot the final validation perplexity in log for-
mat (for visualization purposes) of all intermediate layers of the two models for (left) OpenWebText-
2 (OWT-2) dataset and (middle) PG-19 dataset. (right) We show the zero-shot performance of the
two models on various downstream datasets, when pre-trained on OWT-2.

Noise (p) Res H-ACN
0 (w/o noise) 29.16 29.12
0.01 27.55± 0.15 27.95± 0.20
0.03 26.10± 0.22 27.00± 0.18

Table 1: GPT-2 (L=24). Performance
on HellaSwag under different character-level
(insert/delete/swap) noise levels.

Robustness against input character-level noise.
We test the robustness of the pre-trained models
on OWT-2 against character-level noise on Hel-
laSwag. For each character, with probability p,
we either remove it, insert another character, or
swap it with the subsequent character. We find
(Fig. 1) that H-ACNs again outperform residual net-
works under noisy conditions, further extending
the previously observed noise-robustness charac-
teristics of auto-compressing architectures to the
language domain.

4 THE EMERGENCE OF STRUCTURE: ANALYSIS OF THE RESIDUAL WEIGHTS
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Figure 5: MLP-Mixer/CIFAR-
10. Evolution of total connectiv-
ity strength Γ under different inits
αi ∼ N (µ, 0.005).

Having demonstrated that H-ACNs achieve training ef-
ficiency comparable to ResNets while learning supe-
rior representations with enhanced robustness and task-
adaptive compression, we now examine the learned inter-
layer connectivity structures that underlie these proper-
ties. This section analyzes how connectivity patterns are
shaped by residual weight initialization, task complexity,
data modality, and training dynamics.

To quantify these connectivity patterns, we define the to-
tal connectivity strength Γ as ||α||2/

√
L, where α rep-

resents the vector of learned residual weights and L is the
number of layers. This normalized magnitude serves as a
scalar proxy for the overall strength of direct inter-layer
connectivity taking values Γ=0 for ACNs and Γ=1 for
ResNets. Additionally, we analyze the full connectivity
structure through the Direct Layer Connectivity Matrix
C ∈ R(L+1)×(L+1), where C[i][j] ≡ ci→j represents the
connection strength from source layer i to target layer j.

9We also tested PG-19 pre-trained models and we observed poor zero-shot performance.
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Residual weights initialization. The main H-ACN parameter is the mean µ of the distribution
that initializes the residual weights αi ∼ N (µ, 0.005), controlling the interpolation between ACN
(µ = 0) and ResNet (µ = 1) regimes. Throughout our experiments, we initialize with µ = 0.25,
placing H-ACNs closer to the ACN regime. To understand how this choice affects performance,
we test larger values of µ on the Mixer/CIFAR-10 setup. As shown in Table 2, performance con-
sistently deteriorates for larger values of µ. Examining the evolution of total connectivity strength
Γ in Fig. 5 shows that ResNet-like initializations lead to more densely interconnected networks
throughout training. Importantly, starting from a sparser connectivity pattern appears to yield better
performance, suggesting that the network favors evolving from sparse to dense connectivity during
training.10

Robustness of initialization. To evaluate the robustness of our connectivity initialization, we com-
pute the Pearson correlation of the converged residual weights across independent training runs. On
GPT-2/OWT-2, we observe an average correlation of 95%, while on MLP-Mixer/CIFAR-10 we
obtain 92%, suggesting that our initialization scheme consistently guides training toward stable con-
nectivity solutions.

Init of α Acc.

µ = 0.25 90.2

µ = 0.75 89.7

µ = 1 88.7

Table 2: MLP-Mixer/CIFAR-10.
Best final accuracy under different
initializations αi ∼ N (µ, 0.005).

Evolution of the connectivity during training. We exam-
ine how residual weights evolve during training by tracking:
(1) the convergence distance ∆t ≡ ∥αT − αt∥2, measur-
ing how far current residual weights αt are from their final
values αT , and (2) total connectivity strength Γ to capture
connectivity dynamics. The evolution of Γ (Fig. 6b) reveals
rapid growth during early training, followed by stabilization or
slight decline around the 60% mark. This pattern suggests that
H-ACNs first undergo architectural exploration while learning
the task, then shift to task-focused optimization once connec-
tivity structure converges. The trajectory of ∆t (Fig. 6a) re-
veals similar dynamics.11
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(a) Convergence distance ∆t of residual weights α
during training.
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(b) Evolution of total connectivity strength Γ.

Dataset Value

CIFAR-2 0.326
CIFAR-10 0.428
ImageNet 0.930

Table 3: Total connectivity strength Γ for
increasingly complex image tasks.

Task difficulty. To examine how task complex-
ity affects connectivity patterns, we compute Γ for
networks trained on CIFAR-2, CIFAR-10, and Im-
ageNet (1000 classes). Table 3 shows that Γ in-
creases with task difficulty, approaching the connec-
tivity value of a vanilla residual network (Γ = 1) for
the most complex tasks. However, unlike ResNets
where connectivity is uniformly distributed (all αi =

10This experiment validates our choice of initialization values and suggests that architectural priors encoded
in the initialization act as induction biases shaping final network connectivity.

11Appendix E visualizes the evolution of the connectivity matrix C also detailing the emergence of modu-
larity shown in Fig. 1.
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1), H-ACNs dynamically allocate connectivity strength based on learned residual weights. Adap-
tive allocation allows H-ACNs to match or exceed ResNet performance on complex tasks, while
maintaining the flexibility to compress on simpler tasks.

Connectivity patterns across modalities. Our analysis reveals distinct connectivity patterns
across modalities. Vision tasks (Figure 1) converge to connectivity matrices with stronger near-
diagonal elements, suggesting preference for connections between adjacent layers. Language tasks
develop connectivity matrices with distinct block structures, indicating selective long-range connec-
tions between specific layer groups. These domain-specific adaptations demonstrate that H-ACNs
learn connectivity patterns tailored to different computational requirements, rather than converging
to a universal architecture.

Cognitive analogies. These patterns exhibit intriguing parallels to brain organization: vision’s lo-
cal connectivity resembles the columnar organization of visual cortex (Felleman & Van Essen, 1991;
Riesenhuber & Poggio, 1999), while language’s modular blocks mirror the hierarchical structure of
frontal-temporal language networks (Friederici, 2011). Moreover, the finding that task complexity
increases connectivity strength aligns with brain studies showing that more demanding cognitive
tasks recruit additional network connections and larger-scale integration across brain regions (Bas-
sett et al., 2010). This suggests H-ACNs may discover connectivity principles that reflect domain-
appropriate information processing, consistent with the hierarchical modularity observed in brain
networks (Meunier et al., 2010).

Computational analogies. Our approach extends neural architecture search (NAS) by integrating
auto-compressing inductive biases at initialization. We demonstrate that initializing H-ACNs closer
to the ACN regime enables networks to learn connectivity patterns tailored to task complexity while
maintaining training efficiency. This challenges the common practice of ResNet-like initialization
of NAS and highlights the importance of architectural priors in shaping learned representations.
Further comparisons with related work on learnable connectivity are provided in Appendix B.

5 CONCLUSION

We presented Hybrid Auto-Compressing Networks (H-ACNs), a unified architecture that interpo-
lates between Auto-Compressing Networks and ResNets through trainable scalar residual weighting
parameters, with ACNs and ResNets as special cases. H-ACNs achieve training efficiency com-
parable to ResNets while preserving the superior robustness, compression capabilities, and gen-
eralization of ACNs across vision transformers, MLP-mixers, and GPT-2 architectures. Learned
residual weights exhibit modality- and task-specific connectivity patterns: vision tasks converge to
local connectivity patterns, while language tasks develop modular hierarchical structures. Further,
initialization near the ACN regime provides a crucial architectural prior that leads to better archi-
tectural choices. The emergence of domain-specific structures suggests that optimal architectural
design should vary across modalities and tasks. This is a particularly promising direction for future
work, namely, studying the functional connectivity patterns that emerge during training and working
towards adaptive neural architecture design.

6 LIMITATIONS & BROADER IMPACT

Our evaluation focused on mid-scale experiments across a variety of tasks, models, and data modal-
ities, providing initial evidence of the effectiveness and generality of our approach. However,
scaling up the language modeling experiments to larger models and datasets is necessary to fully
assess the robustness and applicability of our method in more demanding settings. Similarly, ex-
ploring modality-specific connectivity patterns in multimodal architectures could reveal additional
insights into how adaptive connectivity can improve performance and efficiency across different
types of data. While we explored various initialization schemes, the focus was primarily on auto-
compressing versus residual initialization; a deeper study of more complex or structured initializa-
tion strategies remains as future work. Overall, our work aims to develop efficient and adaptive
neural networks that adjust their computation and connectivity to the task, improving generalization
and robustness. In Appendix F, we provide the Ethics and Reproducibility statement and elaborate
on our use of LLM assistance.
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A TRAINING DETAILS

MLP-Mixer/CIFAR-10. We use a 16-layer architecture with a hidden size d = 128. The input
image resolution is 32 × 32 with 3 channels, patches of size 4 × 4. The channel-mixing MLP di-
mension is set to DC = 512, while the token-mixing dimension is DS = 64. Training is performed
with the AdamW optimizer Loshchilov & Hutter (2017), using a maximum learning rate of 0.001, a
cosine learning rate scheduler with warmup, and a batch size of 64.

ViT/Imagenet. We used the setup described in (Beyer et al., 2022).

GPT-2. We present in-detail our model and training hyperparameter choices in the table below:

Model Hyperparam. Value
Number of Heads 12
Number of Layers 24
Embedding Size 768
Vocab Size 50304
Sequence Length 256
Dropout 0.2
Positional Encoder rotary
Tokenizer GPT-2
Number of Parameters 208.54M

Table 4: Models Configuration

Training Hyperparam. Value
Batch Size 128
Accumulation Steps 4
Iterations 240,000
Learning Rate 0.001
Warmup Percent 0.05
Weight Decay 0.01
β1 0.9
β2 0.95
Scheduler cosine
Optimizer AdamW
Gradient Clipping 1.0
Data Type torch.bfloat16
Distributed Backend NCCL

Table 5: Training Configuration

B RELATED WORK

B.1 MULTI-PATH ARCHITECTURES

The development of multi-path architectures has been a critical advancement in addressing opti-
mization challenges in deep neural networks, especially vanishing and exploding gradients (Ben-
gio et al., 1994). Highway Networks (Srivastava et al., 2015) introduced gated skip connections
that enabled effective training of very deep models by facilitating signal flow. Residual Networks
(ResNets) (He et al., 2016) simplified this design with identity skip connections, allowing deep mod-
els to be trained without introducing additional parameters. These architectures have been shown
to improve gradient flow, smooth loss landscapes and enhance the gradient dynamics of deep net-
works (Zaeemzadeh et al., 2020; Li et al., 2018; Balduzzi et al., 2017). Furthermore, ResNets have
been interpreted as implicit ensembles of shallower networks, offering multiple computational paths
of varying depth (Veit et al., 2016). Building on the success of ResNets, a wide range of architec-
tural variants have been proposed to increase representational capacity through richer feature fusion;
DenseNets (Huang et al., 2017) replace addition-based fusion with concatenation to enable feature
reuse across layers, while FractalNets (Larsson et al., 2016) use recursive structures to create deep
ensembles.

More recently, research has shifted towards learnable connectivity, generalizing vanilla ResNets to
architectures where inter-layer interactions are explicitly parameterized. Examples include learned
weighted averaging across layer outputs (Pagliardini et al., 2024), attention-based inter-layer fusion
(ElNokrashy et al., 2022), and hyper-connected modules (Zhu et al., 2024). These approaches can
be formalized as:

inputk =

k−1∑
i=0

ci→k hi, (6)

where c may be a learnable scalar, an input-dependent attention weight, or even a full matrix.
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Figure 7: MLP-Mixer/CIFAR-10. We extend the experiment by including DenseFormer and
DenseNet style Mixers.

In this work, we restrict c to scalar parameters, keeping computation comparable to ResNets and
ACNs while focusing on how these weights are initialized. Unlike DenseFormers, which require
O(L2) residual parameters and O(L) extra memory to cache all intermediate outputs, we introduce
only L learnable residual weights. These act jointly to produce each c, yielding a far more parameter-
and memory-efficient design.

We show that leveraging the auto-compressing inductive bias at initialization enables efficient learn-
ing of robust representations, with connectivity adapted to the task and modality. For comparison,
we extend our MLP-Mixer/CIFAR-10 experiments with a DenseFormer-style mixer and a DenseNet
(using concatenations instead of additions)12. The results presented in Fig 7 show that H-ACNs, ini-
tialized close to ACNs, achieve performance on par with vanilla ResNets at the same training speed,
while surpassing all other architectures. This is achieved without additional memory overhead and
with only 16 extra parameters. Moreover, H-ACNs display strong auto-compression, akin to ACNs,
revealing redundancy in the predefined architecture.

B.2 PRUNING & DYNAMIC COMPUTATION

Another line of work includes pruning-based methods (Cheng et al., 2024; Frankle & Carbin, 2018;
Sanh et al., 2020; Konstantaropoulos et al., 2025), which remove redundant weights or connections
to achieve architectural compression, and dynamic computation methods (Han et al., 2021; Matsub-
ara et al., 2022), which dynamically adjust computation based on the input. ACNs have already
demonstrated that their auto-compression synergizes with these approaches, leading to stronger per-
formance vs. inference-efficiency trade-offs compared to ResNets. H-ACNs follow the same prin-
ciple: as we show in the main paper, intermediate layer performance is significantly better than
ResNets and comparable to ACNs, suggesting that analogous advantages in efficiency and perfor-
mance can be expected.

12Because concatenations increase parameters per layer, we use a 10-layer DenseNet with a parameter count
comparable to the 16-layer counterparts.
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C INTER-LAYER CONNECTIVITY MATRIX OF STANDARD ARCHITECTURES

Here, we show the Direct Layer Connectivity Matrix, as defined in the main paper, of FFNs,
ResNets and ACNs. As explained, C[i][j] = ci→j denotes the direct connection from source layer i
to target layer j. The matrices are shown in Fig. 8.
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Figure 8: Connectivity patterns across architectures.

D ABLATION STUDIES

In this section, we further ablate the initialization of the α residual weights and provide a detailed
explanation of the Depth-Adaptive LayerNorm (DepthLN) technique used in our experiments. Due
to resource and time constraints, the ablation studies were performed on PG-19 with training on 6B
tokens.

Initialization of alphas. First, we ablate the choice of initialization for the residual weights. We
vary the mean of the normal distribution used for initialization, as defined in the main paper, and
also test alternative strategies: (1) Half layers, using a normal with µ = 0.4 for the first half of the
layers and µ = 0.15 for the rest; and (2) Exp. decay, where the mean decays exponentially from
0.25 to 0.1 with increasing depth. We present the results below:

Initialization PPL

N(0.15, 0.01) 19.73 ± 0.15
N(0.25, 0.01) 19.25 ± 0.03
N(0.15, 0.005) 19.64 ± 0.04
N(0.25, 0.005) 19.22 ± 0.02
Half layers: N(0.4, 0.005)/N(0.15, 0.005) 19.48 ± 0.05
Exp. decay: N(0.25, 0.005)→ N(0.1, 0.005) 20.05 ± 0.04

Table 6: Ablation of different residual weight initializations.

Among all tested initializations, N(0.25, 0.005) achieves the best performance, despite being uni-
form across layers. Initialization strategies based on depth did not provide any improvement. As
noted in the main paper, a more detailed exploration of initialization strategies is left for future work.

Depth-adaptive LayerNorm (DepthLN). For a layer of dimension d at depth l, let the standard
LayerNorm of input xl ∈ Rd be LN(xl). Then, Depth-adaptive LayerNorm scales the normalized
output by a learnable depth-dependent scalar αl:

DepthLN(xl) = αl · LN(xl), αl = 1 + l · s, (7)
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where s is a small learnable strength factor initialized at 0.05. This introduces only one extra param-
eter per layer, enhancing forward signal flow without significant computational overhead. Ablation
experiments (Table 7) show that including DepthLN consistently improves H-ACN performance.

Model PPL

N(0.15, 0.01) 19.73 ± 0.15
↪→ w/o DepthLN 20.5 ± 0.2
N(0.25, 0.01) 19.25 ± 0.03
↪→ w/o DepthLN 19.47 ± 0.08

Table 7: Ablation of Depth-adaptive LayerNorm.

E EVOLUTION OF THE DIRECT INTER-LAYER CONNECTIVITY MATRIX

In this section, we provide a detailed visualization of the evolution of the direct layer connectivity
matrix C during GPT-2 pre-training on PG-19. As shown in the figure below, we can observe (1)
the sequential formation of modules during training, with the first two modules emerging initially,
followed by the final one, and (2) that, consistent with the metrics reported in the main paper, the
connectivity structure is largely established by 50–60% of training, at which point the modules are
clearly defined.

Training: 0% Training: 2% Training: 4% Training: 20%

Training: 40% Training: 60% Training: 80% Training: 100%
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Figure 9: Evolution of the direct layer connectivity matrix during training of GPT-2 decoder on
PG-19.
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G FORWARD PASS OF H-ACNS

Here, we present a pseudo-implementation of the forward pass of H-ACNs, to further show the
interpolation between ACNs and ResNets:

Algorithm 1 Forward pass of ACNs (a=0) and ResNets (a=1)
1: x← emb(input)
2: current← x
3: for each i, layer in enum(layers) do
4: xout ← layer(x)
5: current← current+ xout # Long Connections to the output are fixed
6: x← xout + ai · x # Short skip connections are weighted
7: end for
8: xcls ← current
9: xcls ← cls(xcls)

H INTER LAYER CONNECTIVITY VS LAYER FUSION

Most previous works on learnable residual architectures (like DenseFormer (Pagliardini et al., 2024),
Depth-Wise Attention (ElNokrashy et al., 2022)) focus on layer fusion: how to weight or com-
bine/fuse outputs from layers that are already fully connected. These methods preserve the classical
ResNet assumption that every layer is directly connected to all subsequent layers, and the learnable
parameters simply determine how these signals are fused (e.g., via weighted averaging, attention,
or concatenation). Fusion mechanisms therefore operate within an all-to-all connectivity pattern. In
contrast, following ACNs, we focus on inter-layer connectivity: determining which layers should
directly connect in the first place. This represents a distinct and orthogonal architectural dimension
compared to fusion and both angles are crucial for network behavior. In our case, as already shown
in the as evidenced by the FFN to ResNet or ResNet to ACN transition, inter-layer connectivity
structure fundamentally shapes information routing and gradient propagation.

ResNet-like initialization prevents exploration of connectivity. Importantly, existing learnable
residual methods implicitly assume—and initialize close to—the classic ResNet regime, where all
connections start equally active. Under such initializations, networks tend to remain ResNet-like
throughout training. Belo, we present key evidence supporting this claim:

• Prior work, specifically in the DenseFormer paper Fig.5, shows that learned connectivity
remains nearly all-to-all, with additional increased weight on the input.

• In our unified formulation, initializing scalar connectivity weights to the residual regime
(α = 1 for all layers) leads to trained weights that stay extremely close to 1, indicating that
the model does not move away from the ResNet-like connectivity pattern. Specifically, the
converged alphas are:[

0.99, 0.62, 1.00, 1.00, 0.95, 0.95, 0.98, 0.93, 0.94, 0.92, 0.94, 0.93
0.90, 0.90, 0.94, 0.95, 0.94, 0.95, 0.92, 0.94, 0.96, 1.00, 1.00, 1.00

]
• We further verified this by training DenseFormer under our setup and observed the same

behavior.

These findings challenge current practice: the field has largely optimized fusion mechanisms, but has
not explored the space of inter-layer connectivity itself. ResNet-like initialization strongly biases the
model toward the all-to-all regime, preventing it from discovering alternative connectivity structures
that may lead distinct learned representations (e.g. ACNs).

That said, we extend our experimental setup to systematically evaluate how different initialization
strategies affect both the learned connectivity patterns and downstream performance under different
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Init Method PPL

O(L) Models

H-ACN (µ = 0.25) 19.79 ± 0.015
Res 19.84 ± 0.01
H-ACN (µ = 0.5) 19.97 ± 0.01
H-ACN (µ = 0.75) 20.00 ± 0.01
H-ACN (µ = 1.0) 19.93 ± 0.005
H-ACN w/o long (µ = 1.0) 19.76 ± 0.01
H-ACN w/o long (µ = 0) 19.80 ± 0.01

O(L2) Models

DenseFormer 19.74 ± 0.015
LayerComb (Res-init) 19.63 ± 0.03
LayerComb (ACN-init) 19.39 ± 0.02

Table 8: Perplexity across initialization strategies for both linear- and quadratic-connectivity fami-
lies.

layer-fusion mechanisms. The results in Table 6 13 indicate that ACN-like initialization, as proposed
in this work, can lead to improved performance compared to the standard ResNet-style initialization.
Notably, an O(L2) learnable architecture—similar to DenseFormer—achieves the best perplexity
when initialized with our ACN-like scheme. This provides key evidence that layer fusion and inter-
layer connectivity (i.e., which layers connect to which) are orthogonal architectural dimensions.

I DEPTH-ADAPTIVE TRANSFER LEARNING

A central claim of ACNs is their ability to dynamically allocate depth based on task difficulty:
easier tasks naturally use fewer layers, emerging directly from the training dynamics. This leads to
an important question: Does this depth-adaptive behavior persist when ACNs are fused with ResNets
under the H-ACN formulation?

To examine this, we fine-tune our pretrained ImageNet ViT models on CIFAR-10. As shown in
Fig. 10, H-ACNs continue to modulate their effective depth during downstream training. Specifi-
cally, the top three layers—important for ImageNet—become redundant for the simpler CIFAR-10
task and can be pruned with negligible impact on accuracy, reducing inference cost and latency.

This indicates that H-ACNs develop a more hierarchical organization of representations than stan-
dard residual architectures, enabling them to rely on fewer layers for simpler tasks. This opens a
promising direction: large pretrained models may utilize full depth during large-scale pretraining,
yet naturally adapt their depth to downstream tasks without requiring external pruning procedures.
Furthermore, such adaptive compression can support improved early-exit behavior, enabling addi-
tional latency gains, as already shown in the original ACN paper.

13H-ACN w/o long is essentially the instantiation of various learnable residual works. LinearComb is a
learnable architecture with L2 parameters that combine the previous layer outputs after the MLP and not after
the residual addition (full block) as in the case of the Denseformer.
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Figure 10: Depth allocation during fine-tuning from ImageNet to CIFAR-10. H-ACNs reduce re-
liance on upper layers for the simpler downstream task, enabling natural depth compression.
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