

HYBRID ACNS: UNIFYING AUTO-COMPRESSING AND RESIDUAL ARCHITECTURES

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review
ABSTRACT

We propose **Hybrid Auto-Compressing Networks (H-ACNs)**, unifying ACNs and ResNets under a single mathematical formulation controlled by trainable scalar residual weighting parameters per layer. Through theoretical analysis, we show that both architectures represent points on a continuous spectrum, with traditional ACNs and ResNets as special cases. Our key contribution is demonstrating that H-ACNs, when initialized close to ACNs, match ResNets training efficiency while preserving ACN-like robustness and compression capabilities. Experiments across vision transformers, MLP-mixers, and GPT-2 architectures show that H-ACNs achieve training convergence on par with ResNets, while maintaining ACNs superior noise robustness and generalization. Furthermore, we discover that learned residual weights exhibit distinct connectivity patterns across tasks, namely, vision tasks favor local connectivity patterns resembling early visual cortex processing, while language tasks converge to modular hierarchical inter-layer structures similar to hierarchical language processing regions. We also examine how initialization impacts performance and connectivity, challenging the universality of the common ResNet-like initialization of residual weights. Overall, our results establish Hybrid ACNs as a practical framework for efficiently balancing training speed and representation quality, while revealing principles of how functional connectivity patterns should vary across domains, modalities, and tasks.

(a) Learned Inter-Layer Connectivity in *Vision Classification Models*

(b) Learned Inter-Layer Connectivity in *Language Models*

Figure 1: Entry $C[i][j]$ (Sec. 2): direct connection strength from source layer i to target layer j .

054
055
056
1 INTRODUCTION

057 Deep neural networks face a fundamental tradeoff between learning robust, generalizable representations and achieving efficient, stable training (Bengio et al., 1994; Balduzzi et al., 2017; Zhang
058 et al., 2024). While architectures that enhance robustness (Yang et al., 2020) or promote rich feature
059 learning, e.g., via dense connectivity, often produce superior representations and better generalization
060 (Huang et al., 2017), they typically suffer from training instabilities, slower convergence, or computational overhead (Srivastava et al., 2015; Yang et al., 2020). Conversely, architectures
061 optimized for training efficiency, such as residual networks, enable rapid convergence and stable
062 gradient flow (He et al., 2016) but may underutilize network depth and produce less robust representations
063 (Zhang et al., 2024; Lad et al., 2025; Csordás et al., 2025; Yang et al., 2020). This
064 tradeoff between representation quality vs training efficiency remains a central challenge in neural
065 architecture design.

066 Recently, Auto-Compressing Networks (Dorovatas et al., 2025) (ACNs) have been introduced, re-
067 placing residual connections with direct long feedforward connections from each layer to the output.
068 Unlike traditional feedforward or residual architectures, ACNs enable automatic compression dur-
069 ing training; networks naturally learn to concentrate critical information in early layers while deeper
070 layers become redundant for simpler tasks, all without external pruning or regularization. Further,
071 ACNs achieve better representational quality through enhanced noise robustness, superior general-
072 ization in low-data regimes, and improved continual learning capabilities. However, this architec-
073 tural design comes at a significant cost: ACNs suffer from substantially slower training convergence
074 and reduced training stability compared to their residual counterparts, making them less practical
075 for large-scale applications despite their representational advantages.

076 This raises a fundamental research question: can we create a unified architecture that smoothly in-
077 terpolates between ACNs and ResNets, capturing the compression capabilities and representational
078 advantages of ACNs while maintaining the training stability and efficiency of residual networks?
079 Furthermore, if we allow such a hybrid architecture to learn its own connectivity patterns through
080 trainable interpolation parameters, what architectural structures emerge across different domains
081 and tasks? Do vision and language tasks converge to fundamentally different connectivity patterns,
082 and what do these learned structures reveal about the functional connectivity requirements of dif-
083 ferent cognitive tasks? And also, how does the initialization in the connectivity space—that is, the
084 connectivity inductive biases—shape their behavior? These questions build on recent work exploring
085 learnable dense connectivity, including depth-weighted averaging in transformers (Pagliardini
086 et al., 2024), attention-based layer fusion methods (ElNokrashy et al., 2022) and neural architecture
087 search approaches that learn optimal residual connection through trainable weights (Pham et al.,
088 2018; Wang et al., 2023) and connects this direction with the auto-compression property (Dorovatas
089 et al., 2025).

090 To address these questions we propose Hybrid Auto-Compressing Networks (H-ACNs), which unify
091 ACNs and ResNets under a single mathematical formulation controlled by trainable scalar residual
092 weighting parameters per layer. Through theoretical analysis, we demonstrate that both architectures
093 represent points on a continuous spectrum, with traditional ACNs and ResNets as special cases. Our
094 main contributions are:

- 095 • **H-ACNs achieve ResNet-like training efficiency while preserving ACN-like robust-
096 ness, compression capabilities, and superior generalization** across vision transformers,
097 MLP-mixers, and GPT-2 architectures. This translates into better downstream performance
098 for complex tasks.
- 100 • **Learned residual weights exhibit distinct connectivity patterns across tasks and
101 modalities:** vision tasks converge to local connectivity patterns resembling early visual
102 cortex processing, while language tasks develop modular hierarchical inter-layer structures
103 similar to hierarchical language processing regions as shown in Fig. 1.
- 104 • We find that initialization encodes powerful architectural priors that determines the final
105 structure and behavior of the network, making the starting point as critical as the search
106 algorithm itself. From this perspective, **one of our key contributions is the integration of
107 learnable architectures with the auto-compressing inductive bias at initialization.**

108 2 HYBRID ACNs: INTERPOLATING BETWEEN ACNS AND RESNETS

110 ACNs and ResNets represent two instances of multi-path architectures, with distinct inter-layer con-
 111 nectivity patterns but a common output y summation formula:

$$112 \quad x_i^{ACN} = f_i(x_{i-1}^{ACN}), \quad x_i^{Res} = f_i(x_{i-1}^{Res}) + x_{i-1}^{Res}, \quad y = x_0 + \sum_{i=1}^L f_i(x_{i-1}) \quad (1)$$

116 In ResNets, the final sum y is implicit, arising from the residual accumulation at each layer, as each
 117 layer adds its output to the residual stream. A closer look at their equations indicates that they can be
 118 unified under a single mathematical formulation, controlled by a scalar residual weighting parameter
 119 for each layer, forming **Hybrid-ACNs** (H-ACNs):

$$120 \quad x_i^{HACN} = f_i(x_{i-1}^{HACN}) + a_i x_{i-1}^{HACN}, \quad y^{HACN} = x_0 + \sum_{i=1}^L f_i(x_{i-1}^{HACN}) \quad (2)$$

123 Specifically, setting $a_i = 0, \forall i$, corresponds to a vanilla ACN, while $a_i = 1, \forall i$, recovers a vanilla
 124 ResNet¹. Intermediate values of a_i produce architectures that interpolate between the two, result-
 125 ing in distinct connectivity patterns determined by the residual weights. By making these weights
 126 trainable, the network can dynamically learn its **inter-layer connectivity** during training.

127 Across architectures, the **input to layer k** as a function of the outputs of previous layers can be
 128 expressed as:

$$129 \quad input_k = \sum_{i=0}^{k-1} c_{i \rightarrow k} h_i \quad (3)$$

132 where $h_i = f_i(x_{i-1}), \forall i > 0$ is the output of layer i , h_0 denotes the input embedding and $c_{i \rightarrow k}$
 133 denotes the **strength of the direct residual connection from layer i (source) to layer j (target)**
 134 (e.g., via shortcut or residual pathways). We can then calculate $c_{i \rightarrow j}$ for all layers and store them in
 135 the **Direct Layer Connectivity Matrix**, a square matrix $C \in \mathbb{R}^{L+1 \times L+1}$, where L is the number of
 136 layers and $C[i][j] = c_{i \rightarrow j}$. Therefore, in this structure, **column k** of C corresponds to the vector $\mathbf{c}^k =$
 137 $[c_{0 \rightarrow k}, c_{1 \rightarrow k}, \dots, c_{(k-1) \rightarrow k}, 0, \dots, 0]$, which stores all weights of Eq. 6. By default, $c_{(k-1) \rightarrow k} = 1$
 138 as successive layers are always connected by the direct feed-forward connections in all considered
 139 architectures. Under this definition, it holds that:

- 140 • in standard FFNs each layer j receives input only from layer $j-1$, resulting in $C[j-1][j] = 1$ and all other entries zero (Fig. 8b),
- 141 • in standard residual architectures, $C[i][j] = 1, \forall i < j$ (Fig. 8a),
- 142 • for ACNs, we have $C[j-1][j] = 1$ and $C[i][L] = 1, \forall i < L$; the rest being zero (Fig. 8c).

146 For H-ACNs, in order to avoid $O(L^2)$ residual weight parameter growth and the $O(L)$ additional
 147 memory required during the forward pass (to store the outputs of all layers independently), we
 148 introduce L learnable residual weights. These weights act synergistically, enabling direct inter-layer
 149 connections through multiplicative interactions:

$$150 \quad c_{i \rightarrow j} = \prod_{l=i+1}^{j-1} a_l \quad (4)$$

154 To further illustrate how this equation is derived, we revisit Eq. 2 and expand, as an example, the
 155 input of layer 4 as a function of the outputs of all preceding layers:

$$156 \quad x_4 = h_3 + a_3 x_3 = h_3 + a_3(h_2 + a_2 x_2) = \dots = \underbrace{1}_{c_{3 \rightarrow 4}} h_3 + \underbrace{a_3}_{c_{2 \rightarrow 4}} h_2 + \underbrace{a_3 a_2}_{c_{1 \rightarrow 4}} h_1 + \underbrace{a_3 a_2 a_1}_{c_{0 \rightarrow 4}} h_0 \quad (5)$$

159 where x_i and h_i are the input and output of layer i , respectively, and h_0 the initial input embedding.

160 ¹In Appendix G, we provide a pseudo-implementation of the H-ACN forward pass, unifying ResNets and
 161 ACNs forward passes, for additional clarity.

As discussed previously, ACNs and ResNets represent two extreme points of multi-path network architectures in terms of the paths available within the network. Following the analysis of (Veit et al., 2016) and as argued in the original ACN paper, ACNs have a number of paths that grows linearly with the number of layers, whereas residual networks exhibit an exponential growth in paths. H-ACNs interpolate between these two extremes and can behave more like residual or auto-compressing architectures depending on the structure of the matrix C determined by the learned residual weights. These weights act as gates, modulating signal flow: for small to medium a values, forward signals naturally attenuate, preserving the layer-wise characteristics of ACNs. For more complex tasks, the residual gates can open (more), allowing strong information flow to deeper layers and improving training and gradient propagation.

Importantly, this gate tuning and the resulting information flow dynamics are learned internally by the network during optimization, since the residual weights are trainable. Training such learnable architectures constitutes a dynamic system that converges to different behaviors depending on initialization. As we hypothesize and validate empirically, different initializations of the α parameters — i.e., imposing either an auto-compressing or residual inductive bias — lead to distinct dynamics, final behaviors, and connectivity patterns.

3 EXPERIMENTS

In this section, we implement and test the proposed H-ACN architecture in a variety of tasks, modalities and architectures, ranging from image classification (CIFAR-10 (Krizhevsky, 2009), ImageNet (Russakovsky et al., 2014)) to language modeling (OpenWebText2 (Gao et al., 2020), PG-19 (Rae et al., 2019)). We consider MLP-Mixer (Tolstikhin et al., 2021) and Transformer (Vaswani et al., 2017; Dosovitskiy et al., 2020) models and compare H-ACNs against vanilla Residual and vanilla ACN architectures ². This section is organized as follows: Subsection 3.2 covers MLP-Mixer on CIFAR-10, Subsection 3.3 discusses ViT on ImageNet, and Subsection 3.4 details GPT-2 pre-training.

3.1 EXPERIMENTAL SETUP

Layer-wise accuracy. This metric is our primary tool for evaluating the performance of intermediate layers and auto-compression following (Dorovatas et al., 2025). Layer-wise accuracy for layer i refers to the accuracy obtained by performing a forward pass up to layer i , treating it as if it were the final layer and feeding it into a common head trained on the full network.

Initialization of residual weights. Across all experiments, we initialize the residual weights from the normal distribution $\mathcal{N}(0.25, 0.005)$. This initialization places the network close to a vanilla ACN, effectively imposing the auto-compressing inductive bias. In Appendix D we ablate other choices involving depth-wise initialization, while in Section 4 we further explore the behavior under different mean values. We note that, in this work, we focus on investigating the behavior and performance of the learnable architecture when it is initialized closer to an ACN vs a ResNet. More complex initialization schemes (e.g., layer-dependent) or alternative training strategies of the residual weighting are left for future work ³.

3.2 BRIDGING AUTO-COMPRESSION AND TASK LEARNING

We begin by integrating the three architectures into a 16-layer MLP-Mixer and training on CIFAR-10 classification dataset for 300 epochs. Additional training details and hyperparameter settings are provided in Appendix A. In Figure 2a, we show the Layer-wise Accuracy of the three variants. We observe that **H-ACNs achieve performance comparable to the residual architecture at the same training steps, while simultaneously exhibiting auto-compression behavior similar to ACNs.** Furthermore, in Figure 2b, which presents the training loss over epochs, we find that H-ACNs demonstrate a significant advantage over ACNs in training speed, outperforming even the residual architectures. Notably, ACNs require approximately 100 additional epochs to match the

²In Appendix B we further compare H-ACNs with other recent residual architectures.

³Another technique we employ to enhance the forward pass of H-ACNs and ACNs is *Depth-Adaptive LayerNorm*; further details and an ablation study of its effect are provided in Appendix D.

216 performance of H-ACNs and Residuals. Overall, H-ACNs effectively combine the strengths of both
 217 architectures, bridging the gap between auto-compression and efficient learning.
 218

220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686

(a) Accuracy vs Epochs.

Models	Acc.
Res	78.77
ACN	78.69
H-ACN	79.2

(b) Best final Accuracy.

Noise	Res	H-ACN
0	78.77	79.2
0.1	76.57 ± 0.03	77.02 ± 0.05
0.3	66.89 ± 0.03	67.59 ± 0.04

(c) Performance under **input zero-mean Gaussian noise**.

Figure 3: ViT on ImageNet.

varying standard deviation. Across all noise levels, we find that H-ACNs consistently outperform residual networks, providing further evidence that H-ACNs successfully combine the advantages of both architectures. To summarize this ViT/Imagenet experiment:

H-ACNs achieved training speeds comparable to residual networks while showing stronger generalization and improved noise robustness, akin to ACNs.

3.4 CAUSAL LANGUAGE MODELING WITH HYBRID-AC DECODERS

Finally, we explore the effect of inter-layer connectivity patterns in auto-regressive language modeling. Specifically, we want to examine how each architecture (Res, ACN, H-ACN) affects the training dynamics and the downstream zero-shot performance of language decoders.

Models. We consider GPT-2 (Radford et al.) style decoder models with $L = 24$ layers ($\sim 210M$ params), RoPE (Su et al., 2024) positional embeddings, maximum sequence length of 256 and embedding dimension $d = 768$. All experimental details can be found in Appendix A.

Datasets. For auto-regressive pre-training, we primarily use the OpenWebText2 dataset (Gao et al., 2020) (OWT-2) which consists of around 17B tokens. We also pre-train on PG-19, consisting of full-length books published over 100 years ago and extracted from Project Gutenberg (Rae et al., 2019). We use both dataset to investigate the learned connectivity patterns of H-ACNs as a function of the nature of the pre-training data, contrasting the literary and dated content of PG-19 with the more factual, diverse and contemporary web-based content of OpenWebText2.

For zero-shot evaluation of the pre-trained models, we consider popular downstream benchmarks, namely HellaSwag (Zellers et al., 2019) (commonsense inference with grounded scenarios), PIQA (Bisk et al., 2020) (physical reasoning about everyday situations), and ARC-E (Clark et al., 2018) (grade-school level multiple-choice questions testing scientific and logical reasoning).

Implementation Details. We consider residual and Hybrid ACN architectures⁵. All models are trained for 240K steps with a batch size of 128, totaling approximately 30B tokens seen during training. We use the AdamW (Loshchilov & Hutter, 2017) optimizer with cosine learning rate scheduling and warmup; detailed training hyperparameters are provided in Appendix A.

Results. Figure 4a and 4b show the layer-wise validation perplexity⁶ of Residual and Hybrid ACN models in log format⁷. We see that in both cases, H-ACN performance is on par with the ResNet but with significantly improved intermediate layer perplexity⁸. Then, we evaluate the pre-trained

⁵We found that for the same training steps ACNs significantly underperform ResNets and H-ACNs, and thus we do not include them in the results.

⁶Computed in the same way as layer-wise accuracy.

⁷We do this for visualization clarity; in the early and intermediate layers, Res PPL values are really large compared to H-ACN.

⁸Top-1 val perplexity for H-ACN vs Residual is 19.78 vs 19.82 on OWT-2 and 16.78 vs 16.65 on PG-19.

models' zero-shot downstream capabilities to assess how well they generalize. For this, we choose the pre-trained on OWT-2 dataset models, since it is modern and factual, thus closer to the nature of the downstream tasks ⁹. In Table 4c, we observe that H-ACNs show improved average downstream performance of 41.8% compared to 41.2% of the vanilla residuals, further **highlighting the stronger generalization capabilities of H-ACNs**.

Figure 4: **GPT-2 models (L=24).** (left & middle) We plot the final validation perplexity in log format (for visualization purposes) of all intermediate layers of the two models for (left) OpenWebText-2 (OWT-2) dataset and (middle) PG-19 dataset. (right) We show the zero-shot performance of the two models on various downstream datasets, when pre-trained on OWT-2.

Robustness against input character-level noise.
 We test the robustness of the pre-trained models on OWT-2 against character-level noise on HellaSwag. For each character, with probability p , we either remove it, insert another character, or swap it with the subsequent character. We find (Fig. 1) that H-ACNs again outperform residual networks under noisy conditions, **further extending the previously observed noise-robustness characteristics of auto-compressing architectures to the language domain.**

4 THE EMERGENCE OF STRUCTURE: ANALYSIS OF THE RESIDUAL WEIGHTS

Having demonstrated that H-ACNs achieve training efficiency comparable to ResNets while learning superior representations with enhanced robustness and task-adaptive compression, we now examine the learned inter-layer connectivity structures that underlie these properties. This section analyzes how connectivity patterns are shaped by residual weight initialization, task complexity, data modality, and training dynamics.

To quantify these connectivity patterns, we define the **total connectivity strength** Γ as $\|\alpha\|_2/\sqrt{L}$, where α represents the vector of learned residual weights and L is the number of layers. This normalized magnitude serves as a scalar proxy for the overall strength of direct inter-layer connectivity taking values $\Gamma = 0$ for ACNs and $\Gamma = 1$ for ResNets. Additionally, we analyze the full connectivity structure through the Direct Layer Connectivity Matrix $\mathbf{C} \in \mathbb{R}^{(L+1) \times (L+1)}$, where $\mathbf{C}[i][j] \equiv c_{i \rightarrow j}$ represents the connection strength from source layer i to target layer j .

Noise (p)	Res	H-ACN
0 (w/o noise)	29.16	29.12
0.01	27.55 ± 0.15	27.95 ± 0.20
0.03	26.10 ± 0.22	27.00 ± 0.18

Table 1: **GPT-2 (L=24).** Performance on HellaSwag under different character-level (insert/delete/swap) noise levels.

Figure 5: **MLP-Mixer/CIFAR-10.** Evolution of total connectivity strength Γ under different initializations $\alpha_i \sim \mathcal{N}(\mu, 0.005)$.

⁹We also tested PG-19 pre-trained models and we observed poor zero-shot performance.

378 **Residual weights initialization.** The main H-ACN parameter is the mean μ of the distribution
 379 that initializes the residual weights $\alpha_i \sim \mathcal{N}(\mu, 0.005)$, controlling the interpolation between ACN
 380 ($\mu = 0$) and ResNet ($\mu = 1$) regimes. Throughout our experiments, we initialize with $\mu = 0.25$,
 381 placing H-ACNs closer to the ACN regime. To understand how this choice affects performance,
 382 we test larger values of μ on the Mixer/CIFAR-10 setup. As shown in Table 2, performance
 383 consistently deteriorates for larger values of μ . Examining the evolution of total connectivity strength
 384 Γ in Fig. 5 shows that ResNet-like initializations lead to more densely interconnected networks
 385 throughout training. Importantly, starting from a sparser connectivity pattern appears to yield better
 386 performance, suggesting that the network favors evolving from sparse to dense connectivity during
 387 training.¹⁰
 388

389 **Robustness of initialization.** To evaluate the robustness of our connectivity initialization, we com-
 390 pute the Pearson correlation of the converged residual weights across independent training runs. On
 391 GPT-2/OWT-2, we observe an average correlation of 95%, while on MLP-Mixer/CIFAR-10 we
 392 obtain 92%, suggesting that our initialization scheme consistently guides training toward stable con-
 393 nectivity solutions.
 394

395 **Evolution of the connectivity during training.** We examine how residual weights evolve during training by tracking:
 396 (1) the **convergence distance** $\Delta_t \equiv \|\alpha_T - \alpha_t\|_2$, measuring how far current residual weights α_t are from their final
 397 values α_T , and (2) total connectivity strength Γ to capture connectivity dynamics. The evolution of Γ (Fig. 6b) reveals
 398 rapid growth during early training, followed by stabilization or slight decline around the 60% mark. This pattern suggests that
 399 H-ACNs first undergo architectural exploration while learning the task, then shift to task-focused optimization once connec-
 400 tivity structure converges. The trajectory of Δ_t (Fig. 6a) re-
 401 veals similar dynamics.¹¹
 402

403 (a) Convergence distance Δ_t of residual weights α
 404 during training.
 405

Init of α	Acc.
$\mu = 0.25$	90.2
$\mu = 0.75$	89.7
$\mu = 1$	88.7

406 Table 2: **MLP-Mixer/CIFAR-10.**
 407 Best final accuracy under different
 408 initializations $\alpha_i \sim \mathcal{N}(\mu, 0.005)$.
 409

410 (b) Evolution of total connectivity strength Γ .
 411

412 **Task difficulty.** To examine how task complex-
 413 ity affects connectivity patterns, we compute Γ for
 414 networks trained on CIFAR-2, CIFAR-10, and Im-
 415 ageNet (1000 classes). Table 3 shows that Γ in-
 416 creases with task difficulty, approaching the connec-
 417 tivity value of a vanilla residual network ($\Gamma = 1$) for
 418 the most complex tasks. However, unlike ResNets
 419 where connectivity is uniformly distributed (all $\alpha_i =$
 420

Dataset	Value
CIFAR-2	0.326
CIFAR-10	0.428
ImageNet	0.930

421 Table 3: **Total connectivity strength Γ** for
 422 increasingly complex image tasks.
 423

424 ¹⁰This experiment validates our choice of initialization values and suggests that architectural priors encoded
 425 in the initialization act as induction biases shaping final network connectivity.
 426

427 ¹¹Appendix E visualizes the evolution of the connectivity matrix \mathbf{C} also detailing the emergence of modu-
 428 larity shown in Fig. 1.
 429

432 1), H-ACNs dynamically allocate connectivity strength based on learned residual weights. Adaptive
 433 allocation allows H-ACNs to match or exceed ResNet performance on complex tasks, while
 434 maintaining the flexibility to compress on simpler tasks.
 435

436 **Connectivity patterns across modalities.** Our analysis reveals distinct connectivity patterns
 437 across modalities. Vision tasks (Figure 1) converge to connectivity matrices with stronger near-
 438 diagonal elements, suggesting preference for connections between adjacent layers. Language tasks
 439 develop connectivity matrices with distinct block structures, indicating selective long-range connec-
 440 tions between specific layer groups. These domain-specific adaptations demonstrate that H-ACNs
 441 learn connectivity patterns tailored to different computational requirements, rather than converging
 442 to a universal architecture.

443 **Cognitive analogies.** These patterns exhibit intriguing parallels to brain organization: vision’s lo-
 444 cal connectivity resembles the columnar organization of visual cortex (Felleman & Van Essen, 1991;
 445 Riesenhuber & Poggio, 1999), while language’s modular blocks mirror the hierarchical structure of
 446 frontal-temporal language networks (Friederici, 2011). Moreover, the finding that task complexity
 447 increases connectivity strength aligns with brain studies showing that more demanding cognitive
 448 tasks recruit additional network connections and larger-scale integration across brain regions (Bas-
 449 sett et al., 2010). This suggests H-ACNs may discover connectivity principles that reflect domain-
 450 appropriate information processing, consistent with the hierarchical modularity observed in brain
 451 networks (Meunier et al., 2010).

452 **Computational analogies.** Our approach extends neural architecture search (NAS) by integrating
 453 auto-compressing inductive biases at initialization. We demonstrate that initializing H-ACNs closer
 454 to the ACN regime enables networks to learn connectivity patterns tailored to task complexity while
 455 maintaining training efficiency. This challenges the common practice of ResNet-like initialization
 456 of NAS and highlights the importance of architectural priors in shaping learned representations.
 457 Further comparisons with related work on learnable connectivity are provided in Appendix B.
 458

459 5 CONCLUSION

460 We presented Hybrid Auto-Compressing Networks (H-ACNs), a unified architecture that interpo-
 461 lates between Auto-Compressing Networks and ResNets through trainable scalar residual weighting
 462 parameters, with ACNs and ResNets as special cases. H-ACNs achieve training efficiency com-
 463 parable to ResNets while preserving the superior robustness, compression capabilities, and gen-
 464 eralization of ACNs across vision transformers, MLP-mixers, and GPT-2 architectures. Learned
 465 residual weights exhibit modality- and task-specific connectivity patterns: vision tasks converge to
 466 local connectivity patterns, while language tasks develop modular hierarchical structures. Further,
 467 initialization near the ACN regime provides a crucial architectural prior that leads to better archi-
 468 tectural choices. The emergence of domain-specific structures suggests that optimal architectural
 469 design should vary across modalities and tasks. This is a particularly promising direction for future
 470 work, namely, studying the functional connectivity patterns that emerge during training and working
 471 towards adaptive neural architecture design.

473 6 LIMITATIONS & BROADER IMPACT

474 Our evaluation focused on mid-scale experiments across a variety of tasks, models, and data modal-
 475 ities, providing initial evidence of the effectiveness and generality of our approach. However,
 476 scaling up the language modeling experiments to larger models and datasets is necessary to fully
 477 assess the robustness and applicability of our method in more demanding settings. Similarly,
 478 exploring modality-specific connectivity patterns in multimodal architectures could reveal additional
 479 insights into how adaptive connectivity can improve performance and efficiency across different
 480 types of data. While we explored various initialization schemes, the focus was primarily on auto-
 481 compressing versus residual initialization; a deeper study of more complex or structured initializa-
 482 tion strategies remains as future work. Overall, our work aims to develop efficient and adaptive
 483 neural networks that adjust their computation and connectivity to the task, improving generalization
 484 and robustness. In Appendix F, we provide the Ethics and Reproducibility statement and elaborate
 485 on our use of LLM assistance.

486 REFERENCES
487

488 David Balduzzi, Marcus Frean, Lennox Leary, JP Lewis, Kurt Wan-Duo Ma, and Brian McWilliams.
489 The shattered gradients problem: If resnets are the answer, then what is the question? In *International conference on machine learning*, pp. 342–350. PMLR, 2017.
490

491 Danielle S Bassett, Daniel L Greenfield, Andreas Meyer-Lindenberg, Daniel R Weinberger, Si-
492 mon W Moore, and Edward T Bullmore. Efficient physical embedding of topologically complex
493 information processing networks in brains and computer circuits. *PLoS Computational Biology*,
494 6(4):e1000748, 2010. doi: 10.1371/journal.pcbi.1000748.
495

496 Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is
497 difficult. *IEEE Transactions on Neural Networks*, 5(2):157–166, 1994. doi: 10.1109/72.279181.
498

499 Lucas Beyer, Xiaohua Zhai, and Alexander Kolesnikov. Better plain vit baselines for imagenet-1k.
500 *arXiv preprint arXiv:2205.01580*, 2022.
501

502 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
503 monsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*,
volume 34, pp. 7432–7439, 2020.
504

505 Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning:
506 Taxonomy, comparison, analysis, and recommendations. *IEEE Transactions on Pattern Analysis
and Machine Intelligence*, 2024.
507

508 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
509 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
510 *arXiv preprint arXiv:1803.05457*, 2018.
511

512 Róbert Csordás, Christopher D Manning, and Christopher Potts. Do language models use their depth
513 efficiently? *arXiv preprint arXiv:2505.13898*, 2025.
514

515 Vaggelis Dorovatas, Georgios Paraskevopoulos, and Alexandros Potamianos. Auto-compressing
516 networks. *arXiv preprint arXiv:2506.09714*, 2025.
517

518 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
519 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint
arXiv:2010.11929*, 2020.
520

521 Muhammad ElNokrashy, Badr AlKhamissi, and Mona Diab. Depth-wise attention (dwatt): A layer
522 fusion method for data-efficient classification. *arXiv preprint arXiv:2209.15168*, 2022.
523

524 Daniel J Felleman and David C Van Essen. Distributed hierarchical processing in the primate cere-
525 bral cortex. *Cerebral Cortex*, 1(1):1–47, 1991. doi: 10.1093/cercor/1.1.1-a.
526

527 Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
528 networks. *arXiv preprint arXiv:1803.03635*, 2018.
529

530 Angela D Friederici. The brain basis of language processing: from structure to function. *Physiolog-
ical Reviews*, 91(4):1357–1392, 2011. doi: 10.1152/physrev.00006.2011.
531

532 Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
533 Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
for language modeling. *arXiv preprint arXiv:2101.00027*, 2020.
534

535 Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic neural
536 networks: A survey. *IEEE transactions on pattern analysis and machine intelligence*, 44(11):
537 7436–7456, 2021.
538

539 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
540 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
770–778, 2016.

540 Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
 541 convolutional networks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern*
 542 *Recognition*, pp. 4700–4708, 2017.

543 Orestis Konstantopoulos, Stelios Manolis Smirnakis, and Maria Papadopouli. Neuro-inspired
 544 ensemble-to-ensemble communication primitives for sparse and efficient anns. *arXiv preprint*
 545 *arXiv:2508.14140*, 2025.

546 Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. URL <https://api.semanticscholar.org/CorpusID:18268744>.

547 Vedang Lad, Jin Hwa Lee, Wes Gurnee, and Max Tegmark. The remarkable robustness of LLMs:
 548 Stages of inference? *arXiv preprint arXiv:2406.19384*, 2025.

549 Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Fractalnet: Ultra-deep neural net-
 550 works without residuals. *arXiv preprint arXiv:1605.07648*, 2016.

551 Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
 552 scape of neural nets. *Advances in neural information processing systems*, 31, 2018.

553 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 554 *arXiv:1711.05101*, 2017.

555 Yoshitomo Matsubara, Marco Levorato, and Francesco Restuccia. Split computing and early exiting
 556 for deep learning applications: Survey and research challenges. *ACM Computing Surveys*, 55(5):
 557 1–30, 2022.

558 David Meunier, Renaud Lambiotte, and Edward T Bullmore. Modular and hierarchically modular
 559 organization of brain networks. *Frontiers in Neuroscience*, 4:200, 2010. doi: 10.3389/fnins.2010.
 560 00200.

561 Matteo Pagliardini, Amirkeivan Mohtashami, Francois Fleuret, and Martin Jaggi. Denseformer:
 562 Enhancing information flow in transformers via depth weighted averaging. *arXiv preprint*
 563 *arXiv:2402.02622*, 2024.

564 Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural architecture
 565 search via parameter sharing. In *Proceedings of the 35th International Conference on Machine*
 566 *Learning*, volume 80, pp. 4095–4104, 2018.

567 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 568 models are unsupervised multitask learners.

569 Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. Compressive
 570 transformers for long-range sequence modelling. *arXiv preprint arXiv:1911.05507*, 2019.

571 Maximilian Riesenhuber and Tomaso Poggio. Hierarchical models of object recognition in cortex.
 572 *Nature Neuroscience*, 2(11):1019–1025, 1999. doi: 10.1038/14819.

573 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
 574 Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
 575 Imagenet large scale visual recognition challenge. 2014.

576 Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by fine-
 577 tuning. *Advances in neural information processing systems*, 33:20378–20389, 2020.

578 Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. *arXiv preprint*
 579 *arXiv:1505.00387*, 2015.

580 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
 581 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

582 Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
 583 terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An
 584 all-mlp architecture for vision. *Advances in neural information processing systems*, 34:24261–
 585 24272, 2021.

594 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 595 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*
 596 *tion processing systems*, 30, 2017.

597 Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks behave like ensembles of
 598 relatively shallow networks. *Advances in neural information processing systems*, 29, 2016.

600 Wei Wang, Yongxin Zhang, and Liang Zhu. Drf-drc: dynamic receptive field and dense residual
 601 connections for model compression. *Cognitive Neurodynamics*, 17(6):1561–1573, 2023.

603 Zonghan Yang, Yang Liu, Chenglong Bao, and Zuoqiang Shi. Interpolation between residual and
 604 non-residual networks. In *International Conference on Machine Learning*, pp. 10736–10745.
 605 PMLR, 2020.

606 Alireza Zaeemzadeh, Nazanin Rahnavard, and Mubarak Shah. Norm-preservation: Why residual
 607 networks can become extremely deep? *IEEE transactions on pattern analysis and machine*
 608 *intelligence*, 43(11):3980–3990, 2020.

609 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
 610 chine really finish your sentence? *arXiv preprint arXiv:1905.07830*, 2019.

612 Xiao Zhang, Ruoxi Jiang, William Gao, Rebecca Willett, and Michael Maire. Residual connections
 613 harm generative representation learning. *arXiv preprint arXiv:2404.10947*, 2024.

615 Defa Zhu, Hongzhi Huang, Zihao Huang, Yutao Zeng, Yunyao Mao, Banggu Wu, Qiyang Min, and
 616 Xun Zhou. Hyper-connections. *arXiv preprint arXiv:2409.19606*, 2024.

617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647

648 **A TRAINING DETAILS**
649650 **MLP-Mixer/CIFAR-10.** We use a 16-layer architecture with a hidden size $d = 128$. The input
651 image resolution is 32×32 with 3 channels, patches of size 4×4 . The channel-mixing MLP di-
652 mension is set to $D_C = 512$, while the token-mixing dimension is $D_S = 64$. Training is performed
653 with the AdamW optimizer Loshchilov & Hutter (2017), using a maximum learning rate of 0.001, a
654 cosine learning rate scheduler with warmup, and a batch size of 64.
655656 **ViT/Imagenet.** We used the setup described in (Beyer et al., 2022).
657658 **GPT-2.** We present in-detail our model and training hyperparameter choices in the table below:
659660
661
662
663
664
665
666
667
668
669
670
671

Model Hyperparam.	Value
Number of Heads	12
Number of Layers	24
Embedding Size	768
Vocab Size	50304
Sequence Length	256
Dropout	0.2
Positional Encoder	rotary
Tokenizer	GPT-2
Number of Parameters	208.54M

672 Table 4: Models Configuration
673674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Training Hyperparam.	Value
Batch Size	128
Accumulation Steps	4
Iterations	240,000
Learning Rate	0.001
Warmup Percent	0.05
Weight Decay	0.01
β_1	0.9
β_2	0.95
Scheduler	cosine
Optimizer	AdamW
Gradient Clipping	1.0
Data Type	<code>torch.bfloat16</code>
Distributed Backend	NCCL

675 Table 5: Training Configuration
676677 **B RELATED WORK**
678679 **B.1 MULTI-PATH ARCHITECTURES**
680681 The development of multi-path architectures has been a critical advancement in addressing optimi-
682 zation challenges in deep neural networks, especially vanishing and exploding gradients (Bengio
683 et al., 1994). Highway Networks (Srivastava et al., 2015) introduced gated skip connections
684 that enabled effective training of very deep models by facilitating signal flow. Residual Networks
685 (ResNets) (He et al., 2016) simplified this design with identity skip connections, allowing deep mod-
686 els to be trained without introducing additional parameters. These architectures have been shown
687 to improve gradient flow, smooth loss landscapes and enhance the gradient dynamics of deep net-
688 works (Zaeemzadeh et al., 2020; Li et al., 2018; Balduzzi et al., 2017). Furthermore, ResNets have
689 been interpreted as implicit ensembles of shallower networks, offering multiple computational paths
690 of varying depth (Veit et al., 2016). Building on the success of ResNets, a wide range of architec-
691 tural variants have been proposed to increase representational capacity through richer feature fusion;
692 DenseNets (Huang et al., 2017) replace addition-based fusion with concatenation to enable feature
693 reuse across layers, while FractalNets (Larsson et al., 2016) use recursive structures to create deep
694 ensembles.695 More recently, research has shifted towards *learnable connectivity*, generalizing vanilla ResNets to
696 architectures where inter-layer interactions are explicitly parameterized. Examples include learned
697 weighted averaging across layer outputs (Pagliardini et al., 2024), attention-based inter-layer fusion
698 (ElNokrashy et al., 2022), and hyper-connected modules (Zhu et al., 2024). These approaches can
699 be formalized as:

700
$$input_k = \sum_{i=0}^{k-1} \mathbf{c}_{i \rightarrow k} h_i, \quad (6)$$

701

702 where \mathbf{c} may be a learnable scalar, an input-dependent attention weight, or even a full matrix.

Figure 7: **MLP-Mixer/CIFAR-10.** We extend the experiment by including DenseFormer and DenseNet style Mixers.

In this work, we restrict \mathbf{c} to scalar parameters, keeping computation comparable to ResNets and ACNs while focusing on how these weights are initialized. Unlike DenseFormers, which require $O(L^2)$ residual parameters and $O(L)$ extra memory to cache all intermediate outputs, we introduce only L learnable residual weights. These act jointly to produce each \mathbf{c} , yielding a far more parameter- and memory-efficient design.

We show that leveraging the *auto-compressing inductive bias* at initialization enables efficient learning of robust representations, with connectivity adapted to the task and modality. For comparison, we extend our MLP-Mixer/CIFAR-10 experiments with a DenseFormer-style mixer and a DenseNet (using concatenations instead of additions)¹². The results presented in Fig 7 show that H-ACNs, initialized close to ACNs, achieve performance on par with vanilla ResNets at the same training speed, while surpassing all other architectures. This is achieved without additional memory overhead and with only 16 extra parameters. Moreover, H-ACNs display strong auto-compression, akin to ACNs, revealing redundancy in the predefined architecture.

B.2 PRUNING & DYNAMIC COMPUTATION

Another line of work includes *pruning-based* methods (Cheng et al., 2024; Frankle & Carbin, 2018; Sanh et al., 2020; Konstantopoulos et al., 2025), which remove redundant weights or connections to achieve architectural compression, and *dynamic computation* methods (Han et al., 2021; Matsubara et al., 2022), which dynamically adjust computation based on the input. ACNs have already demonstrated that their auto-compression synergizes with these approaches, leading to stronger performance vs. inference-efficiency trade-offs compared to ResNets. H-ACNs follow the same principle: as we show in the main paper, intermediate layer performance is significantly better than ResNets and comparable to ACNs, suggesting that analogous advantages in efficiency and performance can be expected.

¹²Because concatenations increase parameters per layer, we use a 10-layer DenseNet with a parameter count comparable to the 16-layer counterparts.

756 C INTER-LAYER CONNECTIVITY MATRIX OF STANDARD ARCHITECTURES
757

758 Here, we show the **Direct Layer Connectivity Matrix**, as defined in the main paper, of FFNs,
759 ResNets and ACNs. As explained, $C[i][j] = c_{i \rightarrow j}$ denotes the direct connection from source layer i
760 to target layer j . The matrices are shown in Fig. 8.
761

772 Figure 8: Connectivity patterns across architectures.
773774 D ABLATION STUDIES
775

776 In this section, we further ablate the initialization of the α residual weights and provide a detailed
777 explanation of the Depth-Adaptive LayerNorm (DepthLN) technique used in our experiments. Due
778 to resource and time constraints, the ablation studies were performed on PG-19 with training on 6B
779 tokens.

780 **Initialization of alphas.** First, we ablate the choice of initialization for the residual weights. We
781 vary the mean of the normal distribution used for initialization, as defined in the main paper, and
782 also test alternative strategies: (1) Half layers, using a normal with $\mu = 0.4$ for the first half of the
783 layers and $\mu = 0.15$ for the rest; and (2) Exp. decay, where the mean decays exponentially from
784 0.25 to 0.1 with increasing depth. We present the results below:

Initialization	PPL
$N(0.15, 0.01)$	19.73 ± 0.15
$N(0.25, 0.01)$	19.25 ± 0.03
$N(0.15, 0.005)$	19.64 ± 0.04
$N(0.25, 0.005)$	19.22 ± 0.02
Half layers: $N(0.4, 0.005)/N(0.15, 0.005)$	19.48 ± 0.05
Exp. decay: $N(0.25, 0.005) \rightarrow N(0.1, 0.005)$	20.05 ± 0.04

790 Table 6: Ablation of different residual weight initializations.
791

801 Among all tested initializations, $N(0.25, 0.005)$ achieves the best performance, despite being uni-
802 form across layers. Initialization strategies based on depth did not provide any improvement. As
803 noted in the main paper, a more detailed exploration of initialization strategies is left for future work.
804

805 **Depth-adaptive LayerNorm (DepthLN).** For a layer of dimension d at depth l , let the standard
806 LayerNorm of input $x_l \in \mathbb{R}^d$ be $\text{LN}(x_l)$. Then, Depth-adaptive LayerNorm scales the normalized
807 output by a learnable depth-dependent scalar α_l :

$$808 \text{DepthLN}(x_l) = \alpha_l \cdot \text{LN}(x_l), \quad \alpha_l = 1 + l \cdot s, \quad (7)$$

810 where s is a small learnable strength factor initialized at 0.05. This introduces only *one extra parameter per layer*, enhancing forward signal flow without significant computational overhead. Ablation 811 experiments (Table 7) show that including DepthLN consistently improves H-ACN performance. 812

814	Model	PPL
815	$N(0.15, 0.01)$	19.73 ± 0.15
816	↪ w/o DepthLN	20.5 ± 0.2
817	$N(0.25, 0.01)$	19.25 ± 0.03
818	↪ w/o DepthLN	19.47 ± 0.08
819		
820		

821 Table 7: Ablation of Depth-adaptive LayerNorm.
822

823 E EVOLUTION OF THE DIRECT INTER-LAYER CONNECTIVITY MATRIX

824 In this section, we provide a detailed visualization of the evolution of the direct layer connectivity
825 matrix C during GPT-2 pre-training on PG-19. As shown in the figure below, we can observe (1)
826 the sequential formation of modules during training, with the first two modules emerging initially,
827 followed by the final one, and (2) that, consistent with the metrics reported in the main paper, the
828 connectivity structure is largely established by 50–60% of training, at which point the modules are
829 clearly defined.
830

840 Figure 9: Evolution of the direct layer connectivity matrix during training of GPT-2 decoder on
841 PG-19.
842

843 F ETHICS, REPRODUCIBILITY, AND LLM USAGE

844 **Ethics Statement.** The authors affirm that they have read and will adhere to the ICLR Code of
845 Ethics in all aspects of this work.
846

847 **Reproducibility Statement.** All necessary implementation details for reproducibility are presented
848 (model architectures, we use public datasets, all training details and hyperparameter choices are
849 provided) and a detailed description of the techniques used in this work (in the main paper and
850 Appendix). We also plan to make the code publicly available.
851

852 **Use of Large Language Models.** Large language models were employed to assist in polishing the
853 manuscript and help with grammar. All content has been carefully reviewed and adjusted by the
854 authors, who take full responsibility for the final published work.
855

864 **G FORWARD PASS OF H-ACNs**
865866 Here, we present a pseudo-implementation of the forward pass of H-ACNs, to further show the
867 interpolation between ACNs and ResNets:
868869 **Algorithm 1** Forward pass of ACNs (**a=0**) and ResNets (**a=1**)
870

```

871 1:  $x \leftarrow \text{emb}(\text{input})$ 
872 2:  $current \leftarrow x$ 
873 3: for each  $i$ ,  $\text{layer}$  in enum(layers) do
874 4:    $x_{\text{out}} \leftarrow \text{layer}(x)$ 
875 5:    $current \leftarrow current + x_{\text{out}}$            # Long Connections to the output are fixed
876 6:    $x \leftarrow x_{\text{out}} + \mathbf{a}_i \cdot x$            # Short skip connections are weighted
877 7: end for
878 8:  $x_{\text{cls}} \leftarrow current$ 
879 9:  $x_{\text{cls}} \leftarrow \text{cls}(x_{\text{cls}})$ 

```

880
881 **H INTER LAYER CONNECTIVITY VS LAYER FUSION**
882883
884 Most previous works on learnable residual architectures (like DenseFormer (Pagliardini et al., 2024),
885 Depth-Wise Attention (ElNokrashy et al., 2022)) focus on **layer fusion**: how to weight or
886 combine/fuse outputs from layers that are already fully connected. These methods preserve the classical
887 ResNet assumption that every layer is directly connected to all subsequent layers, and the learnable
888 parameters simply determine how these signals are fused (e.g., via weighted averaging, attention,
889 or concatenation). Fusion mechanisms therefore operate *within* an all-to-all connectivity pattern. In
890 contrast, following ACNs, we focus on **inter-layer connectivity**: determining *which layers should*
891 *directly connect* in the first place. This represents a distinct and orthogonal architectural dimension
892 compared to fusion and both angles are crucial for network behavior. In our case, as already shown
893 in the as evidenced by the FFN to ResNet or ResNet to ACN transition, inter-layer connectivity
894 structure fundamentally shapes information routing and gradient propagation.
895896 **ResNet-like initialization prevents exploration of connectivity.** Importantly, existing learnable
897 residual methods implicitly assume—and initialize close to—the classic ResNet regime, where all
898 connections start equally active. Under such initializations, networks tend to remain ResNet-like
899 throughout training. Below, we present key evidence supporting this claim:

900 • Prior work, specifically in the DenseFormer paper Fig.5, shows that learned connectivity
901 remains nearly all-to-all, with additional increased weight on the input.

902 • In our unified formulation, initializing scalar connectivity weights to the residual regime
903 ($\alpha = 1$ for all layers) leads to trained weights that stay extremely close to 1, indicating that
904 the model does not move away from the ResNet-like connectivity pattern. Specifically, the
905 converged alphas are:

$$\begin{bmatrix} 0.99, 0.62, 1.00, 1.00, 0.95, 0.95, 0.98, 0.93, 0.94, 0.92, 0.94, 0.93 \\ 0.90, 0.90, 0.94, 0.95, 0.94, 0.95, 0.92, 0.94, 0.96, 1.00, 1.00, 1.00 \end{bmatrix}$$

906
907 • We further verified this by training DenseFormer under our setup and observed the same
908 behavior.
909

910 These findings challenge current practice: the field has largely optimized fusion mechanisms, but has
911 not explored the space of inter-layer connectivity itself. ResNet-like initialization strongly biases the
912 model toward the all-to-all regime, preventing it from discovering alternative connectivity structures
913 that may lead distinct learned representations (e.g. ACNs).
914915 That said, we extend our experimental setup to systematically evaluate how different initialization
916 strategies affect both the learned connectivity patterns and downstream performance under different
917

Init Method	PPL
$\mathcal{O}(L)$ Models	
H-ACN ($\mu = 0.25$)	19.79 ± 0.015
Res	19.84 ± 0.01
H-ACN ($\mu = 0.5$)	19.97 ± 0.01
H-ACN ($\mu = 0.75$)	20.00 ± 0.01
H-ACN ($\mu = 1.0$)	19.93 ± 0.005
H-ACN w/o long ($\mu = 1.0$)	19.76 ± 0.01
H-ACN w/o long ($\mu = 0$)	19.80 ± 0.01
$\mathcal{O}(L^2)$ Models	
DenseFormer	19.74 ± 0.015
LayerComb (Res-init)	19.63 ± 0.03
LayerComb (ACN-init)	19.39 ± 0.02

Table 8: Perplexity across initialization strategies for both linear- and quadratic-connectivity families.

layer-fusion mechanisms. The results in Table 6¹³ indicate that ACN-like initialization, as proposed in this work, can lead to improved performance compared to the standard ResNet-style initialization. Notably, an $\mathcal{O}(L^2)$ learnable architecture—similar to DenseFormer—achieves the best perplexity when initialized with our ACN-like scheme. This provides key evidence that layer fusion and inter-layer connectivity (i.e., which layers connect to which) are orthogonal architectural dimensions.

I DEPTH-ADAPTIVE TRANSFER LEARNING

A central claim of ACNs is their ability to dynamically allocate depth based on task difficulty: easier tasks naturally use fewer layers, emerging directly from the training dynamics. This leads to an important question: *Does this depth-adaptive behavior persist when ACNs are fused with ResNets under the H-ACN formulation?*

To examine this, we fine-tune our pretrained ImageNet ViT models on CIFAR-10. As shown in Fig. 10, H-ACNs continue to modulate their effective depth during downstream training. Specifically, the top three layers—important for ImageNet—become redundant for the simpler CIFAR-10 task and can be pruned with negligible impact on accuracy, reducing inference cost and latency.

This indicates that H-ACNs develop a more hierarchical organization of representations than standard residual architectures, enabling them to rely on fewer layers for simpler tasks. This opens a promising direction: large pretrained models may utilize full depth during large-scale pretraining, yet *naturally adapt* their depth to downstream tasks without requiring external pruning procedures. Furthermore, such adaptive compression can support improved early-exit behavior, enabling additional latency gains, as already shown in the original ACN paper.

¹³H-ACN w/o long is essentially the instantiation of various learnable residual works. LinearComb is a learnable architecture with L^2 parameters that combine the previous layer outputs **after the MLP** and not after the residual addition (full block) as in the case of the Denseformer.

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005

1006
1007 Figure 10: Depth allocation during fine-tuning from ImageNet to CIFAR-10. H-ACNs reduce re-
liance on upper layers for the simpler downstream task, enabling natural depth compression.

1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025