000

Light as Deception: GPT-driven Natural Relighting Against Vision-Language Pre-training Models

Anonymous Authors¹

Abstract

While adversarial attacks on vision-and-language pretraining (VLP) models have been explored, generating natural adversarial samples crafted through realistic and semantically meaningful perturbations remains an open challenge. Existing methods, primarily designed for classification tasks, struggle when adapted to VLP models due to their restricted optimization spaces, leading to ineffective attacks or unnatural artifacts. To address this, we propose LightD, a novel framework that generates natural adversarial samples for VLP models via semantically guided relighting. Specifically, LightD leverages ChatGPT to propose context-aware initial lighting parameters and integrates a pretrained relighting model (IC-light) to enable diverse lighting adjustments. LightD expands the optimization space while ensuring perturbations align with scene semantics. Additionally, gradient-based optimization is applied to the reference lighting image to further enhance attack effectiveness while maintaining visual naturalness. The effectiveness and superiority of the proposed LightD have been demonstrated across various VLP models in tasks such as image captioning and visual question answering.

1. Introduction

Vision-and-language pre-training (VLP) models have significantly advanced the integration of visual and language modalities by leveraging large-scale image-text datasets and multimodal learning techniques. With increases in data volume, model parameters, and computational power, these VLP models have achieved notable success and demonstrated impressive capabilities across various downstream vision-and-language (V+L) tasks, such as image captioning and visual question answering (VQA) (Chen et al., 2022; Alayrac et al., 2022; Tsimpoukelli et al., 2021; Gupta et al., 2022). Models like CLIPCap (Mokady et al., 2021), BLIP (Li et al., 2022), BLIP2 (Li et al., 2023a), and Image2LLM (Guo et al., 2023) have shown exceptional results in these areas. Nevertheless, recent studies have revealed the vulnerability of VLP models to adversarial attacks (Zhang et al., 2022; He et al., 2023; Han et al., 2023; Lu et al., 2023; Cheng et al., 2024; Gao et al., 2025).

However, all these attacks primarily focus on adding humanimperceptible perturbations to clean images within L_p -norm constraints. Although these attacks are effective in certain scenarios, they are typically susceptible to adversarial denoising techniques, limiting their practice (Xie et al., 2019). To address these limitations, "non-suspicious" adversarial attacks have emerged as a more realistic threat. These attacks allow for subtle yet unrestricted modifications, such as color adjustments (Hosseini & Poovendran, 2018; Shamsabadi et al., 2020b; 2021; Zhao et al., 2023), lighting changes (Shamsabadi et al., 2020a; Gao et al., 2022; Huang et al., 2023; Zhang et al., 2024), and semantic alterations (Joshi et al., 2019). Although these methods have shown promise in image classification tasks, their effectiveness and robustness against VLP models remain underexplored.

In this study, we first investigate the robustness of VLP models against current non-suspicious adversarial attacks. Specifically, we introduce a general optimization framework for adapting existing non-suspicious adversarial attacks from image classification tasks to VLP models for downstream V+L tasks. These attacks primarily adjust parameters related to semantic characteristics (such as lighting and color) based on the optimization objection, or introduce perturbations directly to the generated adversarial images, resulting in the victim models outputting erroneous predictions. Unfortunately, these methods fail to achieve adversarial attack performance and visual naturalness simultaneously. (See Section 5.2 for more details.)

To address this challenge, we propose **LightD** (Light as Deception), a novel GPT-driven adversarial relighting framework designed to deceive VLP models by adjusting the lighting of clean images. LightD comprises three key components: GPT-based lighting parameter selection, relighting-

¹Anonymous Institution, Anonymous City, Anonymous Region, Anonymous Country. Correspondence to: Anonymous Author <anon.email@domain.com>.

Preliminary work. Under review by the International Conference on Machine Learning (ICML). Do not distribute.

driven adversarial image generation, and two-step collaboration optimization process. Specifically, LightD utilizes the 057 pre-trained relighting model IC-Light (Zhang et al., 2025) 058 to apply consistent lighting conditions to the clean image. 059 To generate an appropriate reference lighting image for each 060 clean image, we adopt ChatGPT (gpt-4o-2024-08-06) to 061 determine the initial lighting parameters. Furthermore, we 062 propose a lighting-based collaboration optimization strat-063 egy to create efficient adversarial relighted images. Such 064 a strategy enables LightD to achieve a balance of attack 065 performance and visual naturalness by adjusting lighting 066 parameters and adding corruptions to the reference lighting 067 image. The main contributions can be summarized as:

- We propose a general framework for transferring nonsuspicious adversarial attacks from image classification tasks to VLP models, revealing that these attacks struggle to balance effectiveness with visual naturalness.
- We introduce **LightD**, a novel GPT-driven adversarial relighting technique against VLP models. Our approach is enhanced through GPT-based initial point selection and SGA-based collaborative optimization, which introduce perturbations to lighting parameters and the reference lighting image.
- Extensive experiments verify the superior efficacy of LightD in attacking VLP models on image captioning and VQA while maintaining high visual naturalness.

2. Related Works

068

069

070

071

074

075

076

077

078

079

081

082

083

085

086

087

2.1. VLP Models and Their Robustness

088 Vision-and-language pre-training aims to enhance the per-089 formance of subsequent multimodal tasks by pre-training 090 on extensive image-text pairs. Based on their architectures, 091 VLP models can be categorized into fused and aligned mod-092 els (Zhang et al., 2022). In fused VLP models (e.g., TCL 093 (Yang et al., 2022), ALBEF (Li et al., 2021a), BLIP (Li 094 et al., 2022)), image and text information are integrated into 095 a shared and unified representation space. Typically, a joint 096 encoder (such as a multimodal Transformer) is used to si-097 multaneously process and integrate multimodal information. 098 Conversely, aligned VLP models (e.g., CLIP (Radford et al., 099 2021)) process image and text information through sepa-100 rate encoders. After being encoded separately, these two modalities' representations are aligned or associated using a certain alignment mechanism, such as contrastive learning or matching loss. Inspired by the adversarial vulnerability 104 observed in vision and language tasks, early research has 105 focused on investigating adversarial attacks against VLP 106 models in fields such as image-text retrieval (Zhang et al., 2022; Gao et al., 2025), image captioning (Xu et al., 2018; 2019; Ji et al., 2020; Aafaq et al., 2021; Li et al., 2024), and 109

VQA (Xu et al., 2018; Li et al., 2021b; Sheng et al., 2021; Cao et al., 2022). Adversarial attacks can be categorized into white-box and black-box attacks (Gu et al., 2023). Whitebox attacks (Jia et al., 2024) have full access and knowledge of the model, whereas black-box attacks (Park et al., 2024; Bai et al., 2020) do not and are more representative of actual application scenarios. Most of these studies have concentrated on traditional CNN-RNN-based models, assuming white-box access or untargeted adversarial objectives, and requiring human intervention.

2.2. Non-suspicious Adversarial Attacks

Adversarial attacks have achieved a remarkable ability to deceive well-trained deep-learning models across various applications (Xie et al., 2017; Dong et al., 2020; Li et al., 2023b). Traditionally, these attacks have been developed under the premise that adversarial examples should be indistinguishable from their corresponding clean images, often achieved by optimizing with L_p -norm constraints (Carlini & Wagner, 2017). However, recent research has challenged this assumption, arguing that it lacks practical relevance in real-world scenarios (Gilmer et al., 2018). Since there is no direct comparison with the original image, adversarial images can remain inconspicuous without strictly limiting the perturbations. Thereafter, numerous non-suspicious adversarial attacks target domain-specific attributes have been explored, including light changes (Shamsabadi et al., 2020a; Gao et al., 2022; Huang et al., 2023; Zhang et al., 2024), color adjustments (Hosseini & Poovendran, 2018; Shamsabadi et al., 2020b; 2021; Zhao et al., 2023), and semantic alterations (Joshi et al., 2019). These attacks mainly focus on adjusting parameters related to semantic characteristics via the optimization objection. However, the adversarial images of these non-suspicious attacks cannot satisfy both attack performance and visual naturalness for VLP models (See Section 5.2).

2.3. Downstream Vison and Language Tasks

Image Captioning is a multimodal task that combines computer vision and natural language processing to generate descriptive captions for images. The process typically involves extracting visual features from an image using a CNN and then utilizing these features to produce a caption through a language model, often implemented as an RNN or a Transformer (Donahue et al., 2015; Fang et al., 2015; Huang et al., 2019). Advanced image captioning models employ encoder-decoder architectures with attention mechanisms to enhance their ability to focus on the most relevant parts of the image (Chen et al., 2017; Anderson et al., 2018). These models are trained on large datasets of images and their corresponding captions, learning to map visual content to textual descriptions.

Visual Ouestion-Answering requires models to understand 111 both visual and linguistic information to answer questions 112 about images. Early VQA models were inspired by image 113 captioning approaches, using CNNs for image encoding and 114 RNNs for question encoding (Malinowski et al., 2015; Gao 115 et al., 2015). However, the field has evolved significantly, 116 with the introduction of attention mechanisms that allow 117 models to focus on specific regions of an image while an-118 swering a question (Lu et al., 2016; Shih et al., 2016; Sood 119 et al., 2023). Recently, Transformer-based models have 120 achieved SOTA performance in VQA through large-scale 121 pre-training on visual and linguistic data (Tan & Bansal, 122 2019; Zhang et al., 2021). These models leverage the self-123 attention mechanism of Transformers to capture complex 124 interactions between visual and linguistic features, enabling 125 them to answer a wide range of questions about images. 126

3. Preliminary

128

142

143

129 Problem Formulation. Adversarial attacks on VLP models 130 involve creating discrepancies between perturbed images 131 and their corresponding texts, while adhering to predefined 132 limitations on the perturbations. Let (I, T) denote an image-133 text pair, and let I' be the corresponding adversarial coun-134 terpart. This paper focuses on non-suspicious adversarial 135 attacks that may not be constrained by slight changes to 136 images. The image will be modified by any transforma-137 tion, provided that the transformation preserves the visual 138 semantic content of the image. Let Ω represent the human 139 visual system (HVS), the problem of crafting non-suspicious 140 adversarial attack on VLP models can be formulated as: 141

$$I' = \underset{\Omega(I')=\Omega(I)}{\arg \max} \mathbf{J} \left(f_{\phi}(I'), f_{\varphi}(T) \right)$$
(1)

144 where f_{ϕ} and f_{φ} represent the image encoder and text en-145 coder of the multimodal model, respectively; **J** rates the 146 cross-modality similarity of I' and T.

147 Research Gaps. Non-suspicious adversarial attacks have 148 been extensively studied and have achieved significant suc-149 cess in deep-learning models. Until now, research on their 150 effects on VLP models is still underexplored. As we know, 151 we are the first work to investigate the effectiveness of non-152 suspicious adversarial attacks against VLP models. This 153 study addresses the gap from two aspects. First, we de-154 velop a general optimization objective that allows existing 155 non-suspicious adversarial attacks for image classification 156 to be adapted to VLP models for downstream V+L tasks. 157 Since these attacks usually optimize the semantic parame-158 ters related to lighting and color without constraints, they 159 cannot obtain promising performance in terms of attack per-160 formance and visual naturalness simultaneously. Second, 161 we propose a novel non-suspicious adversarial relighting 162 attack tailored for VLP models according to a pre-trained 163 relighting model IC-Light (Zhang et al., 2025). 164

Figure 1: The first two columns: the default lighting types provided in IC-Light (Zhang et al., 2025). The last column: lighting strategy used in our paper.

Figure 2: The whole relighting procedure consists of 1) generation of the reference lighting image by G (ComfyUI, 2024) and 2) the subsequent relighting via IC-Light model (Zhang et al., 2025).

IC-Light. IC-Light (Zhang et al., 2025) is a diffusion-based relighting model to impose consistent lighting on images, ensuring precise illumination modification while preserving intrinsic image details. The key innovation of IC-Light lies in its ability to leverage the property of illumination independence in HDR space, ensuring that the blending of appearances from different light sources results in a mathematically equivalent appearance with mixed light sources. This consistency is enforced using multi-layer perceptions (MLPs) in latent space during model training, enabling the production of highly coherent and realistic relighting effects. IC-Light supports two forms of lighting modification by default: **1** Text-conditioned method: adjusts the illumination of clean samples through illumination-related text instructions. **2** Background-conditioned method: uses a reference background image to introduce its illumination information into the clean sample. As shown in Fig. 1, these two methods result in semantic differences, especially in the background areas between the relighted and the clean images, making them unsuitable for adversarial attacks on VLP models. To address this issue, this paper proposes to use lighting-conditioned solution, leveraging a pure lighting image as a reference under the background-based method. The output relighted images are with only illumination differences and no semantic content differences (see the last column of Fig. 1).

Figure 3: Overview of the proposed LightD. (1) We use the ChatGPT to accommodate the initial lighting parameters (*i.e.*, start color, end color, and direction) for (2) reference lighting image generation; (3) Collaboration optimization for adversarial relighted image based on pre-trained IC-Light model; (4) Attack VLP models (*e.g.*, CLIPCap for image captioning tasks).

184 In a nutshell, this paper tackles three main challenges: 1) 185 Generating pure lighting images as reference background 186 for relighting. We leverage a lighting image generation 187 function G proposed in (ComfyUI, 2024) to create the refer-188 ence lighting image L by taking the parameters start color 189 c_s , end color c_e , weight w, and light direction d as input, 190 where w denotes the proportion of c_s in the entire interval 191 of L, ranging in [0, 2]. Fig. 2 illustrates the process of pure lighting image generation. 2) Ensuring the naturalness 193 of the relighted image. We attempt to use GPT as a recommender to adaptively select the appropriate parameters 195 (color, direction, and weight) for lighting image generation 196 by analyzing the visual content of the clean image. 3) En-197 suring attack performance against VLP models. We propose 198 a lighting-cooperation optimization strategy. This strategy 199 first optimizes the recommended parameters and then op-200 timizes the generated reference lighting image to improve 201 attack performance, which enlarges the optimized space 202 compared with the baseline methods.

4. Method

204

205

219

183

206 **4.1. Overview**

Fig. 3 illustrates the framework of our proposed GPT-driven natural adversarial relighting attack LigthD. Our goal is 209 to deceive the VLP models based on a pre-trained image 210 relighting model IC-Light (Zhang et al., 2025), thereby seg-211 menting into two distinct phases: the relighting phase and 212 the attack phase. During the relighting phase, 1 we harness 213 the formidable reasoning prowess of ChatGPT to ascertain 214 appropriate initial lighting parameters, such as colors and 215 direction. Then, 2 we leverage lighting image generator to 216 produce the initial reference lighting image. Subsequently, 217 we can deploy the pre-trained relighting model IC-Light 218

(Zhang et al., 2025) to generate the initial adversarial relighting image. Transitioning to the attack phase, ③ & ④ we build upon the optimization idea of SGA (Lu et al., 2023) to fine-tune both lighting parameters and reference lighting image, meticulously crafting adversarial relighted images to satisfy visual naturalness and attack performance. LightD comprises three pivotal design elements: adoptive GPT-based lighting parameter selection, relighting-driven adversarial image generation, and SGA-guided collaborative optimization. We describe each module in details below.

4.2. GPT-driven Relighted Image Generation

GPT-Based Lighting Parameter Selection. To ensure that the relighted images align more closely with typical visual perception, we adopt ChatGPT to suggest initial lighting colors and direction. As depicted in Fig. 3, we design a prompt template that guides ChatGPT in generating the lighting parameters θ (start and end colors c_s , c_e) and lighting direction *d*. More details of the prompt template can be found in Appendix B.

Lighting Image Generation. Once we have acquired the initial lighting parameters θ , including the start color c_s with weight w, end color c_e , and lighting direction d, we create a reference lighting image that guides the subsequent relighting process. By utilizing these parameters accommodated by ChatGPT, the generated reference lighting image aligns with the desired aesthetic and functional requirements, setting the stage for the creation of natural adversarial relighted images. The reference lighting image L is represented as:

$$L = \mathbf{G}(c_s, c_e, d, w), \tag{2}$$

where **G** is the lighting image generation function provided in (ComfyUI, 2024).

Adversarial Relighted Image Generation. After successfully acquiring the initial reference lighting image L, we harness the pre-trained IC-Light (Zhang et al., 2025) to produce the adversarial relighted image R. Essentially, Rretains the basic visual content of the clean image while introducing subtle yet significant changes in illumination. By applying the lighting effect of L, we can obtain R:

$$R = \mathbf{M}_*(L, I),\tag{3}$$

where M_* is the pre-trained relighting model IC-Light. According to the powerful generation ability of the diffusion model, the IC-Light allows imposing consistent light from the reference lighting image into the original clean image without structure and visual content variation.

4.3. Lighting-Based Collaboration Optimization

228

229

230

231

232

233

234 235

236

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

269

270

271

272

273

274

237 The primary objective of the proposed method is to create 238 adversarial relighted images that effectively deceive VLP 239 models without causing noticeable artifacts. To achieve this, 240 we introduce a two-step optimization strategy that leverages 241 the optimization idea of SGA (Lu et al., 2023) to iteratively 242 refine both the lighting parameters and the reference lighting 243 image used by the IC-Light model. More details of SGA can 244 be found in Appendix C. In the first step, we focus on opti-245 mizing the lighting parameters. It is devoted to adjusting the 246 parameters that maximize the confusion of the VLP models. 247 In the second step, we optimize the reference lighting image 248 based on the optimal lighting parameters from the first step. 249 By iteratively refining lighting parameters and reference 250 lighting image, LightD can achieve visual naturalness and 251 high attack performance.

Lighting Parameter Optimization. The objection of lighting parameters optimization is to identify the optimal set of lighting parameters θ (start color c_s , initial weight w = 1.0, and end color c_e). Specifically, we utilize the following loss function to obtain the optimal parameter perturbations ϵ_{θ} :

$$\epsilon_{\theta} = \underset{\Omega(R)=\Omega(I)}{\arg\max} \mathbf{J}(f_{\phi}(\mathbf{M}_{*}(\mathbf{G}(\theta), I)), f_{\varphi}(T)), \quad (4)$$

where $R = \mathbf{M}_*(\mathbf{G}(\theta), I)$ denotes the relighted image; **J** denotes the objective loss function; f_{ϕ} and f_{φ} are the image and text encoders of VLP models, respectively. Let θ_i denote the lighting parameters at the *i*th step, the parameter iteration process can be formulated as:

$$\theta_{i+1} = \theta_i + \alpha \cdot sign \frac{\bigtriangledown_{\theta_i} \mathbf{J}(f_\phi(R_{\theta_i}), f_\varphi(T))}{||\bigtriangledown_{\theta_i} \mathbf{J}(f_\phi(R_{\theta_i}), f_\varphi(T))||}, \quad (5)$$

where $R_{\theta_i} = \mathbf{M}_*(L_{\theta_i}, I)$ denotes the generated adversarial relighting image under the lighting parameters θ_i , $L_{\theta_i} = \mathbf{G}(\theta_i)$ denotes the reference lighting image at the *i*th step.

Reference Lighting Image Optimization. Once the optimal lighting parameters have been identified, the next step in our optimization process is to refine the reference lighting image. The goal of this optimization step is to further enhance the effectiveness and robustness of the adversarial examples generated by the model. To achieve this, we leverage the core idea of the SGA (Lu et al., 2023) to optimize Eq. 4 by enhancing diversity. Let L_i denotes the generated reference lighting image at the *i*th step, we first resize $L_i M$ times and obtain a expand set $\{L_{i1}, L_{i2}, \ldots, L_{iM}\}$. Then the expanded set and the clean image are fed into the pre-trained relighting model, obtaining M relighting images $\{R_{i1}, R_{i2}, \ldots, R_{iM}\}$, where $R_{ij} = \mathbf{M}_*(L_{ij}, I)$, $j = 1, 2, \ldots, M$. The iteration process is formulated as:

$$L_{i+1} = L_i + \alpha \cdot sign \frac{\left(\bigtriangledown_L \sum_{j=1}^M \mathbf{J}(f_\phi(R_{ij}), f_\varphi(T)) \right)}{\left| \mid \bigtriangledown_L \sum_{j=1}^M \mathbf{J}(f_\phi(R_{ij}), f_\varphi(T)) \right|},$$
(6)

where $R_{iM} = \mathbf{M}_*(L_{iM}, I)$ is the generated adversarial relighting image. After obtaining the optimal reference lighting image, we employ the pre-trained IC-Light (Zhang et al., 2025) to generate the adversarial relighted images.

The number of resize times is critical for the model's performance, we provide the comparison of different sizes in Appendix E.

Loss Function of Optimization. The loss function J is crucial for optimizing both the lighting parameters and the reference lighting image in our proposed method. To achieve the desired objectives of generating adversarial relighting samples that are both effective and visually natural, we design the loss function to balance two key conditions. (1) Attack capability: the encoding of the adversarial relighting image should be as different as possible from the encoding of the label text. This ensures that the adversarial image has a high likelihood of deceiving the target VLP models, causing it to produce incorrect text recognitions. (2) Visual naturalness: the encoding of the adversarial relighting image should be as similar as possible to the encoding of the original clean image. This ensures that the adversarial image retains the visual characteristics of the original image, making it less detectable as an adversarial example. Given these conditions, the loss function **J** for lighting parameter and lighting image optimization can be defined as follows:

$$\mathbf{J} = \arg\max(CE(f_{\phi}(R), f_{\varphi}(T)) + CS(h_{\phi}(R), h_{\phi}(I))),$$
(7)

where CE denotes the loss function (e.g., cross-entropy loss) of the victim model, f_{ϕ} and f_{φ} are the image encoder and text encoder of the victim model, respectively; CSdenotes the cosine similarity loss, h_{ϕ} is the CLIP image encoder, we select the ViT-B/32 version of CLIP here.

4.4. Transfer Non-suspicious Attacks to V+L Tasks

Existing natural non-suspicious adversarial attack methods, such as adversarial relighting attacks and adversarial color

Submission and Formatting Instructions for ICML 2025

275 attacks, have primarily been designed for image classifi-276 cation tasks. These methods cannot be directly applied to 277 VLP models due to different objections. In this study, we 278 propose a general strategy to transfer these non-suspicious 279 adversarial attack methods from image classification tasks 280 to V+L tasks. Let (I, l) denote a pair of a clean image and 281 its corresponding text label, I' denotes the adversarial im-282 age generated by the attack. In image classification tasks, 283 the termination condition for the optimization iteration pro-284 cess of an adversarial attack is typically $\mathbf{F}(I') \neq l = \mathbf{F}(I)$, 285 where \mathbf{F} denotes the victim model. To adapt these attacks 286 for VLP models, we develop a new termination condition 287 that maximizes the specifically designed loss function J in Eq. 7. This loss function is tailored to the objectives of 289 the V+L tasks, incorporating both the attack capability and 290 visual naturalness of the generated adversarial images. 291

5. Experiments

294 **5.1. Setups**

292

293

295 Datasets. In this study, we verify the effectiveness of our 296 LightD against open-source VLP models on two typical 297 downstream V+L tasks: image captioning and VOA. To achieve this, we leverage three widely used multimodal 299 image captioning datasets: MSCOCO (Lin et al., 2014), 300 Flickr8K (Hodosh et al., 2013), and Flickr30K (Plummer 301 et al., 2015). For the VQA task, we employ the MSCOCO 302 and DAQUAE (Malinowski & Fritz, 2014) datasets. We ran-303 domly select 1,000 images from the test set of each dataset 304 to serve as the clean images for adversarial generation. 305

Baseline Methods. We compare the proposed method with
SOTA non-suspicious adversarial attack methods. They
are three adversarial relighting attacks ALA (Huang et al.,
2023), EdgeFool (Shamsabadi et al., 2020a), and Jadena
(Gao et al., 2022), and three adversarial color attacks SemanticAdv (Hosseini & Poovendran, 2018), ColorFool
(Shamsabadi et al., 2020b), and AdvCF (Zhao et al., 2023).

Victim VLP Models. We employ several typical VLP models for different downstream V+L tasks to demonstrate the effectiveness of the proposed method. Specifically, we use CLIPCap (Mokady et al., 2021), BLIP (Li et al., 2022), and BLIP2 (Li et al., 2023a) for image captioning and BLIP and BLIP2 are used for VQA.

320 Evaluation Metrics. Image captioning typically utilizes 321 BLEU (Naseer et al., 2021), METEOR (Banerjee & Lavie, 2005), ROUGE (Chin-Yew, 2004), CIDEr (Vedantam et al., 323 2015), and SPICE (Anderson et al., 2016) to assess the 324 quality and relevance between the predicted and reference 325 captions. For the VQA task, the average prediction accuracy (APA) and WUPS0.9 (Kafle & Kanan, 2017) are used to 327 measure model's performance. We employ a no-reference 328 image quality index to assess the naturalness of the gener-329

Table 1: Comparison with state-of-the-art methods for image captioning task on MSCOCO and Flickr30K datasets.

Dataset	Model	Attack	$BLEU{\downarrow}$	METEOR↓	$\text{ROUGE}_L {\downarrow}$	$\text{CIDEr}{\downarrow}$	SPICE↓	NIQE↓
		SemanticAdv	0.538	0.179	0.418	0.463	0.106	9.479
		ColorFool	0.584	0.199	0.448	0.590	0.126	9.679
	CI IPCan	AdvCF	0.519	0.164	0.395	0.390	0.092	9.793
		EdgeFool	0.463	0.124	0.351	0.200	0.052	20.003
	CLII Cap	ALA	0.657	0.229	0.487	0.839	0.161	9.811
		Jadena	0.590	0.187	0.436	0.582	0.114	20.394
		LightD(Ours)	0.460	0.119	0.340	0.211	0.055	8.650
		SemanticAdv	0.642	0.237	0.493	0.840	0.167	5.672
		ColorFool	0.689	0.251	0.522	0.961	0.185	5.830
		AdvCF	0.671	0.247	0.509	0.886	0.177	5.822
	DI ID	EdgeFool	0.598	0.200	0.449	0.619	0.130	8.314
	BLIF	ALA	0.762	0.293	0.572	1.251	0.222	5.793
MSCOCO		Jadena	0.703	0.257	0.525	1.021	0.187	9.913
		LightD(Ours)	0.554	0.177	0.419	0.502	0.110	9.783
	BLIP2	SemanticAdv	0.638	0.220	0.496	0.835	0.167	9.308
		ColorFool	0.665	0.236	0.527	0.979	0.179	9.711
		AdvCF	0.619	0.218	0.498	0.850	0.165	9.885
		EdgeFool	0.626	0.289	0.558	0.899	0.179	11.974
		ALA	0.713	0.260	0.562	1.178	0.207	9.651
		Jadena	0.628	0.220	0.509	0.927	0.168	19.819
		LightD(Ours)	0.605	0.204	0.483	0.811	0.156	8.352
		SemanticAdv	0.495	0.138	0.358	0.172	0.075	9.663
	CLIPCap	ColorFool	0.538	0.152	0.382	0.235	0.086	9.861
		AdvCF	0.477	0.127	0.340	0.148	0.065	10.088
		EdgeFool	0.454	0.104	0.315	0.096	0.043	18.772
		ALA	0.573	0.162	0.395	0.301	0.097	10.339
		Jadena	0.539	0.142	0.368	0.228	0.077	20.139
		LightD(Ours)	0.430	0.097	0.306	0.086	0.043	8.409
		SemanticAdv	0.573	0.172	0.402	0.357	0.108	5.542
		ColorFool	0.606	0.182	0.425	0.424	0.120	5.608
		AdvCF	0.597	0.178	0.416	0.389	0.115	5.703
	DI ID	EdgeFool	0.540	0.140	0.361	0.237	0.076	9.086
	BLIF	ALA	0.673	0.212	0.466	0.611	0.148	5.683
Flickr30K		Jadena	0.615	0.182	0.421	0.435	0.118	9.601
		LightD(Ours)	0.485	0.126	0.353	0.190	0.071	9.823
		SemanticAdv	0.604	0.177	0.435	0.434	0.118	9.975
		ColorFool	0.646	0.191	0.460	0.510	0.129	10.056
		AdvCF	0.603	0.176	0.437	0.442	0.117	10.371
	DI IDA	EdgeFool	0.676	0.209	0.494	0.632	0.145	14.563
	DLIP2	ALA	0.666	0.208	0.492	0.620	0.145	10.230
		Jadena	0.618	0.183	0.455	0.495	0.119	19.491
		LightD(Ours)	0.586	0.158	0.423	0.417	0.107	8.575

ated adversarial images, i.e., NIQE (Mittal et al., 2012). A lower NIQE score suggests better image quality.

More details are provided in the Appendix D.

5.2. Performance Evaluation

To test the effectiveness of our method, we compare it with SOTA non-suspicious attacks against typical VLP models for image captioning and VQA tasks. For the image captioning task, the comparison is conducted against CLIP-Cap (Mokady et al., 2021), BLIP (Li et al., 2022), and BLIP2 (Li et al., 2023a) models on MSCOCO, Flickr8K, and Flickr30K datasets. For the VQA tasks, the comparison is conducted on BLIP (Li et al., 2022) and BLIP2 (Li et al., 2023a) models on MSCOCO and DAQUAR datasets.

Performance on Image Captioning. Table 1 provides the quantitative comparison results of all methods on MSCOCO and Flickr30K, while the result on Flickr8K is given in the Appendix F. Table 1 shows that the compared non-suspicious attacks have a certain degree of attack capability on these VLP models for image captioning tasks. Such results demonstrate the usefulness of the proposed general optimization framework for transferring these baselines to VLP models in Section 4.4. The proposed method significantly outperforms these baselines across the three victim VLP models on both MSCOCO and Flickr30K datasets,

Figure 4: Radar chart to illustrate the comparison with state-of-the-art methods for image captioning task on MSCOCO and Flickr30K datasets. Since a lower value of each evaluation metric denotes better attack performance and visual naturalness, the radar charts are computed on normalized values (1/each metric). Thus, a larger region denotes better performance.

Figure 5: Visualization of adversarial examples of attacking CIIPCap model on MSCOCO in image captioning task.

further underscoring its potency. In addition, image quality
index NIQE of our method obtains the lowest values among
most models on two datasets, which further verifies the
naturalness of our generated adversarial relighted images.
Furthermore, Fig. 4 provides a more obvious comparison in
terms of attack performance and visual naturalness for all
methods in image captioning tasks.

To provide a detailed demonstration of our method's ad-364 vantages, we present adversarial examples and predicted captions for all methods in Fig. 5. These results are ob-366 tained by attacking the ClIPCap model using the MSCOCO 367 dataset. It is evident that the adversarial images relighted by our method can effectively deceive models without compro-369 mising their natural visual appearance. In contrast, the ad-370 versarial examples generated by other methods either fail to 371 deceive the model or exhibit noticeable corruptions. In sum-372 mary, LightD outperforms state-of-the-art non-suspicious 373 attack methods in achieving a superior balance between 374 attack effectiveness and visual naturalness.

376 Performance Comparison on VQA Task. Table 2 provides 377 the quantitative comparison results of all involved attack methods. It is observed that the compared non-suspicious 378 379 adversarial attack methods cannot achieve higher attack per-380 formance and better visual naturalness simultaneously. In contrast, the proposed lightD performs the best attack per-381 formance across two VLP models on both datasets while 382 obtaining lower NIQE values. It reveals the effectiveness 383 384

of our method based on the pre-trained relighting model to impose natural and consistent light for clean images. Specifically, the specially designed ChatGPT-based lighting parameter selection and lighting-based collaboration optimization strategy enable the generated relighted images to possess non-suspicious visual perception while preserving the capability to deceive VLP models.

We also provide some visual examples to illustrate VQA results of all methods in Fig. 6. It is observed that the baselines mislead VLP models to predict error answers usually have poor visual quality. These adversarial images, characterized by unnatural colors and corruptions, can be readily identified by human beings. In contrast, the adversarial samples generated by our method can successfully mislead the VLP models while ensuring natural visual perception.

5.3. Ablation Study

Our proposed LightD comtains two key components: GPTdriven lighting parameter selection and two-step collaboration optimization. To investigate the impact of each component on the effectiveness of our method, we conduct ablation studies against the BLIP2 model on the MSCOCO dataset in both the image captioning and VQA tasks.

Evaluation of ChatGPT Recommendation. To validate the effectiveness of the initial lighting parameters (start color and end color) recommended by ChatGPT, we compare

Submission and Formatting Instructions for ICML 2025

Table 2: Performance comparison in VQA task.

399

412

Table 4: Impact of two-step optimizations. We calculate average results over 1000 samples.

			MSCOCO			DAQUAR	
Model	Attack	APA↓	WUPS $0.9\downarrow$	NIQE↓	APA↓	WUPS0.9 \downarrow	NIQE↓
	SemanticAdv	61.15	0.679	5.660	12.24	0.201	9.999
	ColorFool	68.75	0.758	5.798	15.53	0.241	9.878
	AdvCF	62.18	0.702	5.781	12.66	0.210	9.342
DIID	EdgeFool	58.54	0.668	7.584	19.78	0.260	10.478
BUIP	ALA	79.83	0.864	5.949	18.37	0.255	8.956
	Jadena	75.18	0.827	9.902	18.09	0.257	10.554
	LightD(Ours)	58.26	0.651	5.720	11.68	0.207	8.907
	SemanticAdv	42.90	0.460	9.389	6.90	0.063	8.608
	ColorFool	43.95	0.474	9.717	8.69	0.077	8.824
	AdvCF	44.32	0.489	18.112	8.91	0.074	8.941
DI IDA	EdgeFool	51.09	0.540	13.389	14.21	0.102	8.220
BLIP2	ALA	51.11	0.541	10.081	11.96	0.098	8.761
	Jadena	48.45	0.523	19.959	12.36	0.089	23.782
	LightD(Ours)	40.31	0.453	8.240	8.52	0.074	8.390

 Table 3: Impact of GPT-based initial lighting parameters. We calculate average results over 1000 samples.

Optimization	BLEU↓	METEOR↓	$ROUGE_L \downarrow$	CIDEr↓	SPICE↓	NIQE↓
Random	0.609	0.207	0.487	0.829	0.159	8.475
GPT	0.605	0.204	0.483	0.811	0.156	8.352

419 our model with the model using randomly selected lighting 420 parameters. Table 3 and Fig. 7 provide the quantitative and qualitative results. It is observed that the two models obtain 421 comparable performance, while the generated adversarial 422 423 relighting image based on GPT has a better visual perception than random selection. Since GPT has powerful reasoning 424 ability, it can recommend lighting colors that are more in line 425 with the visual perception of the clean images. Such results 426 demonstrate the effectiveness of the developed ChatGPT 427 -driven lighting parameter selection. 428

429 Evaluation of Two-Step lighting-based Optimization. We 430 conduct an ablation test to verify the effectiveness of the 431 proposed two-step lighting-based optimization operations 432 (lighting parameter and lighting image optimization) in Fig. 433 4. Using parameter optimization independently results in 434 a specific level of attack performance. However, when 435 solely utilizing light image optimization, superior attack 436 performance is attained compared to parameter optimiza-437 tion. Intriguingly, combining parameter and lighting image 438 optimization yields the most impressive performance. 439

LightPara	LightImg	BLEU↓	METEOR↓	$ROUGE_L\downarrow$	CIDEr↓	SPICE↓
~	×	0.692	0.247	0.551	1.136	0.195
×	\checkmark	0.612	0.208	0.493	0.868	0.160
\checkmark	\checkmark	0.605	0.204	0.483	0.811	0.156
	v	0.005	0.204	0.405	0.011	0.120

Figure 7: Visualization of the generated adversarial examples based on randomly selected and GPT-recommended lighting parameters (start color c_s , end color c_e).

6. Conclusion

We propose LightD, a natural GPT-driven relighting attack against VLP models via a pre-trained relighting model. By leveraging the strengths of ChatGPT to generate plausible lighting scenarios and SGA to optimize adversarial effects, LightD achieves impressive results in fooling VLP models. Furthermore, we propose a general optimization framework for adapting existing natural adversarial attacks for image classification to VLP models, experimental results underscore its versatility and applicability across different tasks. Comprehensive comparisons are conducted to verify the effectiveness of the proposed LighD with existing nonsuspicious adversarial attacks on various VLP models for image captioning and visual question-answering tasks.

440 Impact Statements

441

442

443

444

445

446

447

448

449

450

451

452

453

454 455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

This study contributes to the broader field of AI safety by demonstrating the potential vulnerabilities of visionlanguage pre-training (VLP) models to non-suspicious adversarial attacks. By developing LightD, a GPT-driven adversarial relighting framework, we provide a novel method for assessing and enhancing the robustness of VLP models against real-world threats.

References

- Aafaq, N., Akhtar, N., Liu, W., Shah, M., and Mian, A. Controlled caption generation for images through adversarial attacks. arXiv preprint arXiv:2107.03050, 2021.
- Alayrac, J.-B., Donahue, J., Luc, P., Miech, A., Barr, I., Hasson, Y., Lenc, K., Mensch, A., Millican, K., Reynolds, M., et al. Flamingo: A visual language model for fewshot learning. *NeurIPS*, 35:23716–23736, 2022.
- Anderson, P., Fernando, B., Johnson, M., and Gould, S.SPICE: Semantic propositional image caption evaluation. In *ECCV*, pp. 382–398, 2016.
- Anderson, P., He, X., Buehler, C., Teney, D., Johnson, M.,
 Gould, S., and Zhang, L. Bottom-up and top-down attention for image captioning and visual question answering.
 In *CVPR*, pp. 6077–6086, 2018.
- Bai, Y., Zeng, Y., Jiang, Y., Wang, Y., Xia, S.-T., and Guo,W. Improving query efficiency of black-box adversarial attack. In *ECCV*, pp. 101–116, 2020.
- Banerjee, S. and Lavie, A. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In *IEEMTS*, pp. 65–72, 2005.
- Cao, Y., Li, D., Fang, M., Zhou, T., Gao, J., Zhan, Y., and Tao, D. TASA: Deceiving question answering models by twin answer sentences attack. *arXiv preprint arXiv:2210.15221*, 2022.
- Carlini, N. and Wagner, D. Towards evaluating the robustness of neural networks. In *IEEE SP*, pp. 39–57, 2017.
- Chen, J., Guo, H., Yi, K., Li, B., and Elhoseiny, M. VisualGPT: Data-efficient adaptation of pretrained language models for image captioning. In *CVPR*, pp. 18030–18040, 2022.
- Chen, L., Zhang, H., Xiao, J., Nie, L., Shao, J., Liu, W., and Chua, T.-S. SCA-CNN: Spatial and channel-wise attention in convolutional networks for image captioning. In *CVPR*, pp. 5659–5667, 2017.

- Cheng, H., Xiao, E., Cao, J., Yang, L., Xu, K., Gu, J., and Xu, R. Typography leads semantic diversifying: Amplifying adversarial transferability across multimodal large language models. arXiv preprint arXiv:2405.20090, 2024.
- Chin-Yew, L. ROUGE: A package for automatic evaluation of summaries. In *TSBO*, pp. 74–81, 2004.
- ComfyUI. Comfyui-ic-light, 2024. https://github.com/kijai/ComfyUI-IC-Light.
- Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K., and Darrell, T. Long-term recurrent convolutional networks for visual recognition and description. In *CVPR*, pp. 2625–2634, 2015.
- Dong, Y., Fu, Q.-A., Yang, X., Pang, T., Su, H., Xiao, Z., and Zhu, J. Benchmarking adversarial robustness on image classification. In *CVPR*, pp. 321–331, 2020.
- Fang, H., Gupta, S., Iandola, F., Srivastava, R. K., Deng, L., Dollár, P., Gao, J., He, X., Mitchell, M., Platt, J. C., et al. From captions to visual concepts and back. In *CVPR*, pp. 1473–1482, 2015.
- Gao, H., Mao, J., Zhou, J., Huang, Z., Wang, L., and Xu, W. Are you talking to a machine? dataset and methods for multilingual image question. *NeurIPS*, 28, 2015.
- Gao, R., Guo, Q., Juefei-Xu, F., Yu, H., Fu, H., Feng, W., Liu, Y., and Wang, S. Can you spot the chameleon? adversarially camouflaging images from co-salient object detection. In *CVPR*, pp. 2150–2159, 2022.
- Gao, S., Jia, X., Ren, X., Tsang, I., and Guo, Q. Boosting transferability in vision-language attacks via diversification along the intersection region of adversarial trajectory. In *ECCV*, pp. 442–460, 2025.
- Gilmer, J., Adams, R. P., Goodfellow, I., Andersen, D., and Dahl, G. E. Motivating the rules of the game for adversarial example research. *arXiv preprint arXiv:1807.06732*, 2018.
- Gu, J., Jia, X., de Jorge, P., Yu, W., Liu, X., Ma, A., Xun, Y., Hu, A., Khakzar, A., Li, Z., et al. A survey on transferability of adversarial examples across deep neural networks. *arXiv preprint arXiv:2310.17626*, 2023.
- Guo, J., Li, J., Li, D., Tiong, A. M. H., Li, B., Tao, D., and Hoi, S. From images to textual prompts: Zero-shot visual question answering with frozen large language models. In *CVPR*, pp. 10867–10877, 2023.
- Gupta, T., Kamath, A., Kembhavi, A., and Hoiem, D. Towards general-purpose vision systems: An end-to-end task-agnostic vision-language architecture. In *CVPR*, pp. 16399–16409, 2022.

- Han, D., Jia, X., Bai, Y., Gu, J., Liu, Y., and Cao,
 X. OT-Attack: Enhancing adversarial transferability of
 vision-language models via optimal transport optimization. arXiv preprint arXiv:2312.04403, 2023.
- He, B., Jia, X., Liang, S., Lou, T., Liu, Y., and Cao, X. SAAttack: Improving adversarial transferability of visionlanguage pre-training models via self-augmentation. *arXiv preprint arXiv:2312.04913*, 2023.

499

511

512

513

514

515

516

517

518

527

528 529

530

531

532

533

534

535

540

541

542

543

544

- Hodosh, M., Young, P., and Hockenmaier, J. Framing image
 description as a ranking task: Data, models and evaluation
 metrics. J. of Artifi. Intell. Research, 47:853–899, 2013.
- Hosseini, H. and Poovendran, R. Semantic adversarial
 examples. In *CVPR*, volume 19, pp. 1614–1619, 2018.
 - Huang, L., Wang, W., Xia, Y., and Chen, J. Adaptively aligned image captioning via adaptive attention time. *NeurIPS*, 32, 2019.
 - Huang, Y., Sun, L., Guo, Q., Juefei-Xu, F., Zhu, J., Feng, J., Liu, Y., and Pu, G. Ala: Naturalness-aware adversarial lightness attack. In ACM MM, pp. 2418–2426, 2023.
- 519 Ji, J., Sun, X., Zhou, Y., Ji, R., Chen, F., Liu, J., and Tian, Q.
 520 Attacking image captioning towards accuracy-preserving target words removal. In *ACM MM*, pp. 4226–4234, 2020.
- Jia, X., Zhang, Y., Wei, X., Wu, B., Ma, K., Wang, J., and
 Cao, X. Improving fast adversarial training with priorguided knowledge. *IEEE Trans. Pattern Anal. Mach. Intell.*, 46(9):6367–6383, 2024.
 - Joshi, A., Mukherjee, A., Sarkar, S., and Hegde, C. Semantic adversarial attacks: Parametric transformations that fool deep classifiers. In *ICCV*, pp. 4773–4783, 2019.
 - Kafle, K. and Kanan, C. Visual question answering: Datasets, algorithms, and future challenges. *J. of Comput Vis. Image Understand.*, 163:3–20, 2017.
- Li, J., Selvaraju, R., Gotmare, A., Joty, S., Xiong, C., and Hoi, S. C. H. Align before fuse: Vision and language representation learning with momentum distillation. *NeurIPS*, 34:9694–9705, 2021a.
 - Li, J., Li, D., Xiong, C., and Hoi, S. BLIP: Bootstrapping language-image pre-training for unified vision-language understanding and generation. In *ICML*, pp. 12888– 12900, 2022.
- Li, J., Li, D., Savarese, S., and Hoi, S. BLIP-2: Bootstrapping language-image pre-training with frozen image encoders and large language models. In *ICML*, pp. 19730– 19742, 2023a.

- Li, J., Ni, M., Dong, Y., Zhu, T., and Liu, W. AICAttack: Adversarial image captioning attack with attention-based optimization. arXiv preprint arXiv:2402.11940, 2024.
- Li, L., Lei, J., Gan, Z., and Liu, J. Adversarial VQA: A new benchmark for evaluating the robustness of VQA models. In *ICCV*, pp. 2042–2051, 2021b.
- Li, P., Zhang, Y., Yuan, L., Zhao, J., Xu, X., and Zhang, X. Adversarial attacks on video object segmentation with hard region discovery. *IEEE Trans. Circuit Syst. Video Technol.*, 34(6):5049–5062, 2023b.
- Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick, C. L. Microsoft COCO: Common objects in context. In *ECCV*, pp. 740– 755, 2014.
- Lu, D., Wang, Z., Wang, T., Guan, W., Gao, H., and Zheng, F. Set-level guidance attack: Boosting adversarial transferability of vision-language pre-training models. In *ICCV*, pp. 102–111, 2023.
- Lu, J., Yang, J., Batra, D., and Parikh, D. Hierarchical question-image co-attention for visual question answering. *NeurIPS*, 29, 2016.
- Malinowski, M. and Fritz, M. A multi-world approach to question answering about real-world scenes based on uncertain input. *NeurIPS*, 27, 2014.
- Malinowski, M., Rohrbach, M., and Fritz, M. Ask your neurons: A neural-based approach to answering questions about images. In *CVPR*, pp. 1–9, 2015.
- Mittal, A., Soundararajan, R., and Bovik, A. C. Making a "completely blind" image quality analyzer. *IEEE Sign. Process. Letters*, 20(3):209–212, 2012.
- Mokady, R., Hertz, A., and Bermano, A. H. Clipcap: CLIP prefix for image captioning. *arXiv preprint arXiv:2111.09734*, 2021.
- Naseer, M. M., Ranasinghe, K., Khan, S. H., Hayat, M., Shahbaz Khan, F., and Yang, M.-H. Intriguing properties of vision transformers. *NeurIPS*, 34:23296–23308, 2021.
- Park, J., Miller, P., and McLaughlin, N. Hard-label based small query black-box adversarial attack. In WACV, pp. 3986–3995, 2024.
- Plummer, B. A., Wang, L., Cervantes, C. M., Caicedo, J. C., Hockenmaier, J., and Lazebnik, S. Flickr30k entities: Collecting region-to-phrase correspondences for richer image-to-sentence models. In *ICCV*, pp. 2641–2649, 2015.

- 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
- Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., et al. Learning transferable visual models from natural language supervision. In *ICML*, pp. 8748–8763, 2021.
- Shamsabadi, A. S., Oh, C., and Cavallaro, A. EdgeFool:
 An adversarial image enhancement filter. In *ICASSP*, pp. 1898–1902, 2020a.
- Shamsabadi, A. S., Sanchez-Matilla, R., and Cavallaro, A. ColorFool: Semantic adversarial colorization. In *CVPR*, pp. 1151–1160, 2020b.
 - Shamsabadi, A. S., Oh, C., and Cavallaro, A. Semantically adversarial learnable filters. *IEEE Trans. Image Process.*, 30:8075–8087, 2021.
- Sheng, S., Singh, A., Goswami, V., Magana, J., Thrush, T., Galuba, W., Parikh, D., and Kiela, D. Human-adversarial visual question answering. *NeurIPS*, 34:20346–20359, 2021.
- Shih, K. J., Singh, S., and Hoiem, D. Where to look: Focus regions for visual question answering. In *CVPR*, pp. 4613–4621, 2016.
- Sood, E., Kögel, F., Müller, P., Thomas, D., Bâce, M., and Bulling, A. Multimodal integration of human-like attention in visual question answering. In *CVPR*, pp. 2648–2658, 2023.
- Tan, H. and Bansal, M. LXMERT: Learning cross-modality encoder representations from transformers. *arXiv preprint arXiv:1908.07490*, 2019.
- Tsimpoukelli, M., Menick, J. L., Cabi, S., Eslami, S.,
 Vinyals, O., and Hill, F. Multimodal few-shot learning with frozen language models. *NeurIPS*, 34:200–212, 2021.
- Vedantam, R., Lawrence Zitnick, C., and Parikh, D. CIDEr:
 Consensus-based image description evaluation. In *CVPR*, pp. 4566–4575, 2015.
- Xie, C., Wang, J., Zhang, Z., Zhou, Y., Xie, L., and Yuille, A. Adversarial examples for semantic segmentation and object detection. In *ICCV*, pp. 1369–1378, 2017.
- Xie, C., Wu, Y., Maaten, L. v. d., Yuille, A. L., and He, K. Feature denoising for improving adversarial robustness. In *CVPR*, pp. 501–509, 2019.
- Xu, X., Chen, X., Liu, C., Rohrbach, A., Darrell, T., and
 Song, D. Fooling vision and language models despite
 localization and attention mechanism. In *CVPR*, pp. 4951–
 4961, 2018.

- Xu, Y., Wu, B., Shen, F., Fan, Y., Zhang, Y., Shen, H. T., and Liu, W. Exact adversarial attack to image captioning via structured output learning with latent variables. In *CVPR*, pp. 4135–4144, 2019.
- Yang, J., Duan, J., Tran, S., Xu, Y., Chanda, S., Chen, L., Zeng, B., Chilimbi, T., and Huang, J. Vision-language pre-training with triple contrastive learning. In *CVPR*, pp. 15671–15680, 2022.
- Zhang, J., Yi, Q., and Sang, J. Towards adversarial attack on vision-language pre-training models. In *ACM MM*, pp. 5005–5013, 2022.
- Zhang, L., Rao, A., and Agrawala, M. Scaling in-the-wild training for diffusion-based illumination harmonization and editing by imposing consistent light transport. In *ICLR*, pp. 3128–3137, 2025.
- Zhang, P., Li, X., Hu, X., Yang, J., Zhang, L., Wang, L., Choi, Y., and Gao, J. Vinvl: Revisiting visual representations in vision-language models. In *CVPR*, pp. 5579– 5588, 2021.
- Zhang, Q., Guo, Q., Gao, R., Juefei-Xu, F., Yu, H., and Feng,
 W. Adversarial relighting against face recognition. *IEEE Trans. Inform. Forensic Secur.*, 19:9145–9157, 2024.
- Zhao, Z., Liu, Z., and Larson, M. Adversarial image color transformations in explicit color filter space. *IEEE Trans. Inform. Forensic Secur.*, 18:3185–3197, 2023.

A. Summary of the Appendix

In this appendix, we provide more details of the GPT template, the SGA (Lu et al., 2023) optimization method, experimental setups, optimal parameter selection, quantitative and qualitative comparison results of image captioning tasks on the Flick8K dataset, and more visual results on both image captioning and visual question-answering (VQA) tasks.

B. GPT Template

We employ GPT to accommodate the initial lighting parameters (e.g., start color, end color, and light direction) to generate the reference lighting image for the relighting procedure of IC-Light (Zhang et al., 2025). The basic motivation lies in GPT will output optimal lighting colors that are consistent with the clean image via carefully analyzing it. The template for GPT is illustrated in Fig. 8.

Figure 8: GPT template for initial lighting parameter selection.

C. SGA Optimization

In this study, we leverage the core idea of SGA (Lu et al., 2023) to deal with the optimization problem because it can enhance the diversity of adversarial examples along the optimization path by augmenting image-text pairs. During the optimization procedure, let I_i denote the generated adversarial image at the *i*th step. SGA conducts a data augmentation by resizing I_i into multiple resolutions M, resulting in $I_i = \{I_{i1}, I_{i2}, \ldots, I_{iM}\}$, the iteration process is defined as

$$I_{i+1} = I_i + \alpha \cdot sign(\frac{\bigtriangledown_I \sum_{j=1}^M \mathbf{J}(f_\phi(I_{ij}), g_\varphi(T))}{||\bigtriangledown_I \sum_{j=1}^M \mathbf{J}(f_\phi(I_{ij}), g_\varphi(T))||})$$
(8)

where **J** denotes the objection function, T is the label text; f_{ϕ} and f_{φ} represent the image encoder and text encoder of the multimodal model, respectively.

D. More Details of Experimental Setups

Here, we give more details about setups, including datasets, baselines, victim VLP models, and evaluation metrics.

Datasets. In this study, we demonstrate the effectiveness of our techniques for crafting adversarial examples against open-source VLP models on two typical downstream vision-and-language (V+L) tasks: image captioning and VQA. Three widely used multimodal image captioning datasets are leveraged in this study, including MSCOCO (Lin et al., 2014), Flickr8K (Hodosh et al., 2013), and Flickr30K (Plummer et al., 2015). For the VQA task, MSCOCO and DAQUAE (Malinowski & Fritz, 2014) datasets are employed. In this study, we randomly choose 1,000 images from the test set of the above datasets as clean images to craft adversarial examples. The detailed information is listed as follows: MSCOCO dataset can be adopted for both image captioning and VQA tasks. MSCOCO encompasses a total of 123,287
 images, each image being annotated with approximately five captions according to human engineering, providing
 prolific linguistic annotations that describe the visual content with different degrees of detail and perspective. Moreover,
 each image in the MSCOCO dataset has three questions, each question has ten corresponding human-generated
 answers.

665

666

667

668 669

670

671

672

- Flickr8K dataset contains 8,092 images, each accompanied by five descriptions. These descriptions, crafted by human annotators, provide detailed natural language annotations that capture various aspects of the images, including objects, actions, and contextual elements.
 - Flickr30K dataset developed as an expanded version of the Flickr8K dataset, it involves 31,783 images, and each image contains five human-written descriptions that capture a wide range of visual details.
 - DAQUAR includes around 12,468 questions and answers, with each question paired with a corresponding answer.

673 Baseline Methods. We evaluate the proposed method with the state-of-the-art natural adversarial attack methods: three 674 adversarial relighting attacks and three adversarial color attacks. Adversarial relighting attacks refer to modifying the 675 lightness and brightness of the images, including ALA (Huang et al., 2023), EdgeFool (Shamsabadi et al., 2020a), and 676 Jadena (Gao et al., 2022). To obtain adversarial examples with a high attack success rate, ALA (Huang et al., 2023) 677 proposes unconstrained enhancement in terms of the light and shade relationship in images. To enhance the naturalness 678 of images, ALA crafts the naturalness-aware regularization according to the range and distribution of light. EdgeFool 679 (Shamsabadi et al., 2020a) generates adversarial images with perturbations that enhance image details via training a fully 680 convolutional neural network end-to-end with a multi-task loss function. Jadena (Gao et al., 2022) jointly and locally tunes 681 the exposure and additive perturbations of the image according to a newly designed high-feature-level contrast-sensitive loss 682 function. Adversarial color attacks attempt to change image color to obtain adversarial examples, including SemanticAdv 683 (Hosseini & Poovendran, 2018), ColorFool (Shamsabadi et al., 2020b), and AdvCF (Zhao et al., 2023). SemanticAdv 684 (Hosseini & Poovendran, 2018) crafts adversarial images as a constrained optimization problem and develops an adversarial 685 transformation based on the shape bias property of the human cognitive system. ColorFool (Shamsabadi et al., 2020b) 686 generates unrestricted perturbations by exploiting image semantics to selectively modify colors within chosen ranges that are 687 perceived as natural by humans. AdvCF (Zhao et al., 2023) is a color transformation attack that is optimized with gradient 688 information in the parameter space of a simple color filter. 689

Victim VLP Models. For the image caption task, we employ three typical VLP models to verify their robustness against 690 adversarial attacks, including CLIPCap (Mokady et al., 2021), BLIP (Li et al., 2022), and BLIP2 (Li et al., 2023a) are used. 691 For the VQA task, we use BLIP and BLIP2. Specifically, CLIPCap incorporates a lightweight transformer-based architecture 692 to generate captions from the CLIP embeddings. Unlike traditional image captioning models that rely on training a large 693 neural network from scratch, CLIPCap achieves high-quality captioning performance with a relatively smaller and more 694 efficient model that can generate accurate and contextually rich captions. BLIP is designed to unify several vision-language 695 tasks within one architecture. Unlike models that require separate setups or fine-tuning for each task, BLIP can be adapted 696 seamlessly to multiple tasks without significant architectural changes. This makes it more efficient and flexible, especially 697 for research or applications requiring versatility across visual-language tasks. BLIP-2 is an advanced multimodal model 698 developed to extend the capabilities of the original BLIP model, offering improved efficiency and performance for a wide 699 range of V+L tasks, such as image captioning, VQA, and other open-ended reasoning tasks. 700

701 Evaluation Metrics. The image captioning task typically utilizes BLEU (Naseer et al., 2021), METEOR (Banerjee & Lavie, 2005), ROUGE (Chin-Yew, 2004), CIDEr (Vedantam et al., 2015), and SPICE (Anderson et al., 2016) to assess 703 the quality and relevance of the generated captions about reference captions. BLEU measures the similarity between two 704 texts based on different lengths of n-grams (i.e., the number of consecutive words). METEOR calculates the semantic 705 similarity and text alignment of each word. ROUGE metrics include recall, precision, and F-measure, which measure the 706 relevance, similarity, and weighted average of similarity. CIDEr calculates the cosine similarity of N-grams and considers Term Frequency-Inverse Document Frequency weights to differentiate the importance of different N-grams. SPICE assesses 708 quality by comparing the matching degree of semantic propositions, such as the presence, attributes, and relationships of 709 objects. For the VQA task, the average prediction accuracy (APA) and WUPS (Kafle & Kanan, 2017) are employed to 710 measure the model's performance. APA measures the percentage of successful prediction answers among all the images. 711 WUPS measures how much a predicted answer differs from the ground truth based on the difference in their semantic 712 meaning. We employ a no-reference image quality index to assess the naturalness of the generated adversarial images, i.e., 713 NIQE (Mittal et al., 2012). A smaller value of the NIQE metric represents a better visual quality of the image. 714

Submission and Formatting Instructions for ICML 2025

Figure 10: Visualization of adversarial examples of attacking BLIP2 model on Flickr30K in image captioning.

E. Optimal Parameter

Table 5: Evaluation of resizing number *M***.**

		Visual Naturalness				
Μ	BLEU↓	METEOR↓	$ROUGE_L \downarrow$	CIDEr↓	SPICE↓	NIQE↓
1	0.616	0.217	0.511	0.954	0.174	8.868
3	0.607	0.208	0.486	0.836	0.161	8.258
5	0.605	0.204	0.483	0.811	0.156	8.352
7	0.596	0.198	0.477	0.817	0.154	8.412

In the proposed methodology, the parameter M, representing the number of resizing iterations for optimizing the reference light image, is adjustable. We conduct targeted experiments to ascertain the optimal parameter setting and assess the influence on the efficacy of our proposed approach. Specifically, we utilize the proposed method to craft adversarial examples to attack the BLIP2 model for image captioning tasks on the MSCOCO dataset. Table 5 presents the outcomes of experiments with varying resizing iterations. This table shows that the attack performance improves as the number of resizing iterations increases. However, more resizing numbers means requiring more computational cost. To balance the proposed method's attack performance, visual naturalness, and computational efficiency, we select the M = 5 for this study.

F. Performance Comparison on Flickr8K

We present the comparison results of all attack methods on the Flickr8K dataset for image captioning tasks.

Quantitative Comparison. Table 6 shows all the involved methods in the image captioning task on the Flickr8K dataset. From this table, we can observe that all the existing non-suspicious adversarial attacks for image classification tasks can be transferred to image captioning tasks according to the proposed general optimization strategy. However, these attacks do perform not well in balancing the attack performance and visual naturalness simultaneously. In contrast, the proposed attack achieves the best adversarial attack performance while retaining visual naturalness on all VLP models on the Flickr8K dataset. It demonstrates the effectiveness and superiority of the proposed model based on the pre-trained relighting

Submission	and Formatting	Instructions	for	ICML	2025
Duom	und i or matting	mou acciono	101	I CIVILI	

Model	Attack	BLEU	METEOR	ROUGEL	CIDEr	SPICE	NIQE
	SemanticAdv	0.465	0.147	0.367	0.198	0.080	9.228
	ColorFool	0.507	0.160	0.389	0.256	0.091	9.363
	AdvCF	0.447	0.133	0.344	0.170	0.070	9.596
CI IDCon	EdgeFool	0.441	0.120	0.333	0.143	0.056	16.70
CLIFCap	ALA	0.558	0.178	0.416	0.374	0.116	9.707
	Jadena	0.524	0.152	0.383	0.272	0.090	19.25
	LightD(Ours)	0.401	0.095	0.300	0.088	0.039	8.240
	SemanticAdv	0.568	0.194	0.428	0.450	0.127	5.51
	ColorFool	0.588	0.202	0.444	0.501	0.136	5.634
	AdvCF	0.571	0.195	0.433	0.445	0.129	5.60
DI ID	EdgeFool	0.515	0.156	0.383	0.313	0.097	7.620
BLIP	ALA	0.669	0.241	0.505	0.753	0.175	5.664
	Jadena	0.611	0.207	0.449	0.563	0.140	9.52
	LightD(Ours)	0.463	0.132	0.353	0.193	0.074	5.92
	SemanticAdv	0.619	0.203	0.478	0.557	0.142	9.52
	ColorFool	0.652	0.211	0.495	0.623	0.153	9.62
BLIP2	AdvCF	0.614	0.198	0.476	0.542	0.141	9.95
	EdgeFool	0.668	0.224	0.522	0.723	0.161	12.12
	ALA	0.690	0.231	0.530	0.767	0.171	9.75
	jadena	0.644	0.201	0.486	0.606	0.140	19.25
	LightD(Ours)	0.599	0.178	0.454	0.503	0.128	8.29

model. Moreover, the specifically designed GPT-driven lighting parameter selection and SGA-based two-step collaboration optimization enable craft natural and non-suspicious adversarial relighted images with promising attack capability.

Qualitative Comparison. To illustrate the advantage of our method in detail, we visualize the adversarial examples and predicted captions of all the involved attack methods on the Flick8K dataset in Fig. 9. The adversarial examples are generated by attacking the CIIPCap model. Upon observing the compared non-suspicious adversarial attacks, it is evident that they are unable to attain both optimal attack performance and visual naturalness concurrently. Specifically, while some attacks achieve promising visual quality, they fail to deceive the VLP models. Conversely, other attacks may successfully compromise the models, but the resulting adversarial images suffer from poor visual quality and can be easily detected by human observers. On the contrary, our method excels in achieving high attack performance while maintaining visual naturalness in attacking both CLIPCap and BLIP2 models for image captioning tasks.

G. More Visualizations on V+L Tasks

Image Captioning. we provide the visual results of all methods in attacking the BLIP2 model on Flickr30K datasets in Fig. 10. The generated adversarial relighted images of the proposed method enable the ability of misleading BLIP models for image captioning while maintaining the visual quality and naturalness on Flickr30K datasets.

814 VQA. We present more visual results of the non-suspicious adversarial attacks for VQA. Fig. 11 and Fig. 12 show the 815 adversarial examples of attacking the BLIP and BLIP2 model on the DAQUAR dataset, respectively. The visual results 816 verify the effectiveness and superiority of our method in terms of both attack performance and visual naturalness.

