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Abstract

Catastrophic forgetting remains a critical challenge in con-
tinual learning for large language models (LLMs), where
models struggle to retain performance on historical tasks
when fine-tuning on new sequential data without access to
past datasets. In this paper, we first reveal that the drift
of functional directions during the fine-tuning process is a
key reason why existing regularization-based methods fail
in long-term LLM continual learning. To address this, we
propose Dynamic Orthogonal Continual (DOC) fine-tuning,
a novel approach that tracks the drift of these functional
directions and dynamically updates them during the fine-
tuning process. Furthermore, by adjusting the gradients of
new task parameters to be orthogonal to the tracked histor-
ical function directions, our method mitigates interference
between new and old tasks. Extensive experiments on var-
ious LLM continual learning benchmarks demonstrate that
this approach outperforms prior methods, effectively reduc-
ing catastrophic forgetting and providing a robust tool for
continuous LLM fine-tuning. Our code is available at https:
//github.com/meloxxxxxx/DOC.

1 Introduction
Recently, Large Language Models (LLMs) have achieved
significant milestones in various tasks based on their ex-
tensive capacity and knowledge. In particular, fine-tuning
LLMs with task-specific data has emerged as a popular
learning paradigm in their diverse applications. In this con-
text, LLM Continual Learning (Wu et al. 2024b), which
fine-tunes LLMs with evolving tasks and data, has become a
crucial technique for updating their knowledge to keep pace
with new environments and goals. However, a critical chal-
lenge of continual learning is catastrophic forgetting (Wu
et al. 2022), where the model forgets the knowledge it ac-
quired from previous tasks after receiving new updates.

Existing continual learning approaches for LLMs can be
categorized into the following types (Wu et al. 2024b; Zheng
et al. 2024): Rehearsal-based (de Masson d’Autume et al.
2019; Mok et al. 2023; Huang et al. 2021), Architecture-
based (Jang et al. 2023; Peng et al. 2024; Wu et al.
2024a), Prompt-based (Wang et al. 2022; Qin and Joty 2022;
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Razdaibiedina et al. 2023), and Regularization-based ap-
proaches (Farajtabar et al. 2019; Wang et al. 2023a; Li and
Hoiem 2017; Kirkpatrick et al. 2017; Zenke, Poole, and
Ganguli 2017). While the first three approaches may suffer
from significant computational or memory overhead issues
(e.g., training additional modules or storing historical data),
regularization-based continual learning for LLMs does not
suffer from these issues and has been acknowledged as an
efficient approach (Wu et al. 2024b). More formally, we de-
note that all existing regularization-based methods abide by
the following outline:

• Step (1) Record the functional directions, mainly includ-
ing the gradient direction of the model parameter, on his-
torical tasks (Olah et al. 2020, 2018; Saxena and Cun-
ningham 2019);

• Step (2) Regularize new updates based on these histori-
cal functional directions.

For instance, Elastic Weight Consolidation (EWC) meth-
ods (Kirkpatrick et al. 2017; Zenke, Poole, and Ganguli
2017) and orthogonal optimization methods, including Or-
thogonal Gradient Descent (OGD) (Farajtabar et al. 2019)
and Orthogonal Subspace Learning (O-LoRA) (Wang et al.
2023a), employ historical gradient directions and vectors in
LoRA matrices of the model for regularization.

However, current regularization-based continual learning
still faces the catastrophic forgetting problem, leaving a gap
for its practical deployment. In this paper, we aim to miti-
gate this problem by identifying a key problem in the reg-
ularizers. Specifically, we find that the drift of functional
directions (Black et al. 2022) during continuous fine-tuning
poses a significant issue for their regularizations. While
functional directions may be valid within a local neighbor-
hood around a static point in the parameter space, contin-
uous fine-tuning can break this locality when moving the
model weights towards other spaces, thus destroying the
functionality of these directions, as shown in Figure 1(a).
This observation is detailed in Section 3.1. In the settings of
regularization-based methods, the difficulty lies in the lack
of access to historical data, which makes it challenging to
update their functional directions in the current parameter
space.

Based on the observation above, we propose our method
that tracks the drifting functional directions of historical



(a) Drifting functional directions (b) Method overview
Figure 1: An introduction to our work. Prior methods record the functional directions in a fixed pool and try to regularize future
updates with it, which is shown on the upper half of Figure (a). Our method (the lower half) updates these directions with
Online PCA for better regularization. Figure (b) presents an overview of our method. In a sequence of incoming datasets, we
compute gradients and LoRA increments to update a set of principal components that represent drifting functional directions.
We cut them off from current gradients to avoid forgetting historical functions.

tasks with the latest task data. Since LLMs primarily fine-
tune within a low-rank subspace (Aghajanyan, Zettlemoyer,
and Gupta 2020), all tasks share most of the functional di-
rections in this subspace with different linear combinations.
Thus, we employ a modified Online Principal Component
Analysis (Cardot and Degras 2015) to extract these direc-
tions from their combinations to capture and track the evolv-
ing functional directions. Leveraging these up-to-date func-
tional directions, we cut gradients of new task parameters to
be orthogonal to the tracked historical function directions,
following prior orthogonal methods including OGD (Fara-
jtabar et al. 2019) and O-LoRA (Wang et al. 2023a), which
mitigates the interference between new and old tasks. How-
ever, a key difference between our method and other orthog-
onal methods is that we dynamically update the functional
directions rather than regularizing on fixed ones. Tracking
these functional directions, which prior works often over-
look, is crucial for preserving functions that lie in drifting
directions. A brief overview of our method is in Figure 1(b).

Extensive experiments verify the drift of functional direc-
tions and demonstrate the effectiveness of our method in
tracking them, offering a substantiated motivation for our
method. Furthermore, experiments on various LLM contin-
ual learning benchmarks demonstrate that our approach sig-
nificantly mitigates the catastrophic forgetting issues in on-
line streaming data scenarios, and outperforms prior meth-
ods, e.g., we respectively achieve an accuracy of 77.7 and
73.4 in standard CL benchmark (Zhang, Zhao, and LeCun
2016) and long chains of tasks for LLaMA-7B (Touvron
et al. 2023), compared to 76.5 and 71.9 of O-LoRA (Wang
et al. 2023a), the previous state-of-the-art regularization-
based method. In summary, our contributions are as follows:
• We reveal the drift of function directions in the fine-

tuning process, which explains why regularization-based
approaches fail in long-term LLM continual learning.

• Based on this discovery, we propose the Dynamic
Orthogonal Continual Fine-tuning (DOC) method that
tracks the drift of functional directions to mitigate catas-
trophic forgetting issues.

• We conduct extensive experiments to validate that DOC
outperforms prior methods in various LLM continual

learning benchmarks, contributing an effective tool in
continuous LLM fine-tuning.

2 Preliminaries
2.1 Continual Learning Setup
Continual learning for LLMs (Wu et al. 2024b; Zheng et al.
2024) is crucial for updating their knowledge and keeping
pace with new goals. In a continual learning scenario, a pre-
trained LLM is fine-tuned on an online stream of tasks with
their task-specific data. Due to factors like storage costs and
privacy protection, historical data cannot be accessed when
fine-tuning on the latest one.
Definition of continual learning. Given a LLM
Fθ with parameters θ, a sequence of labeled datasets
{D1, D2, ..., DN}, where Dt = {(xi

t, y
i
t)}

nt
i=1 (t =

1, . . . , N). Then Fθ is sequentially fine-tuned on
D1, D2, ..., DN . When fine-tuning on DT , historical
datasets, i.e. {D1, D2, ..., Dt−1}, cannot be accessed. The
target is an Fθ that behaves well on all datasets:

argmin
θ

N∑
t=1

ni∑
i=1

Lt(Fθ(x
i
t), y

i
t), (1)

where Lt is the task-specific loss function of the t-th task.
Note that for concision, we substitute L for Lt when fine-
tuning on Dt in the following statements.

2.2 Low-Rank Adaptation (LoRA)
When fine-tuning LLMs for specific tasks, there exists a
low intrinsic dimension for the parameter update of the
model (Aghajanyan, Zettlemoyer, and Gupta 2020). For
a weight matrix Wm×n of a pre-trained LLM, LoRA (Hu
et al. 2021) employs low-rank matrixes Bm×r and Ar×n

(r ≪ min(m,n)) to constrain its update by representing
it with a low-rank decomposition:

W ∗ = W +BA, (2)

where W ∗ is the new parameter after fine-tuning. As a re-
sult, the propagation process is modified:

W ∗x = (W +BA)x = Wx+BAx, (3)

where x is the input to the module with parameter W .



3 Motivation and the Proposed Method
In this section, we first reveal that the drift of functional
directions is the key issue for existing regularization-based
methods in 3.1, then propose a method to track drifting func-
tional directions and validate the effectiveness of our track-
ing method in 3.2, and finally cut the parameter increment
of new tasks to be orthogonal to historical ones in 3.3.

3.1 Motivation: Analysis of Existing
Regularization Methods

Our method is developed using a regularization-based ap-
proach in consideration of its little computational or mem-
ory overhead issues (Wu et al. 2024b). While prior re-
search (Zheng et al. 2024) has demonstrated that existing
regularization methods are efficient on short task sequences,
their performance is relatively limited in long sequences,
leaving a gap for their practical deployment. In the fol-
lowing parts, we propose an analysis to identify the primary
cause of this defect.
Intrinsic functional directions of LLMs. Functional di-
rections (Olah et al. 2020, 2018; Saxena and Cunningham
2019) have become prevalent in research on LLMs. In
this paper, we define functional directions of LLMs as the
gradient direction of model parameters on certain data-
points. Most of the prior regularization-based approaches
employ functional directions to approximate the functional
unit of certain tasks in LLMs. They adhere to the outline for
recording functional directions and regularizing new updates
on historical directions. Specifically, Orthogonal meth-
ods, including Orthogonal Gradient Descent (OGD) (Fara-
jtabar et al. 2019) and Orthogonal Subspace Learning (O-
LoRA) (Wang et al. 2023a), avoid perturbing the histori-
cal settings of the model through orthogonal approaches,
and the two respectively employ gradient directions and
LoRA vectors as the regularized functional directions. Elas-
tic Weight Consolidation(EWC) methods (Kirkpatrick et al.
2017; Zenke, Poole, and Ganguli 2017) employ the Fisher
information matrix for its consolidation, which is also com-
puted with gradients.
Functional directions drift in the fine-tuning process. In
this part, we identify that the drift of functional directions
during the continuous fine-tuning process is the key issue
of the regularizations above. Specifically, in the process
of continually fine-tuning an LLM, the locality of linearity
in its deep neural networks is broken (Black et al. 2022),
thus destroying the functionality of the directions extracted
in earlier steps. Consequently, regularization in these di-
rections deviates from the original purpose in the continual
fine-tuning, as demonstrated in Figure 1(a). In this part, we
present the following observations regarding the drifts pro-
posed above. We take fine-tuning Llama-2 (Touvron et al.
2023) on CL Benchmark (Zhang, Zhao, and LeCun 2016)
as the example in this experiment, and measure the drift of
the gradient direction during continual fine-tuning.

As shown in Figure 2(a), with the fine-tuning process
conducted, the functional directions captured earlier no
longer represent the current ones, exposing the ineffective-
ness of employing fixed singular or average gradient as the

functional direction, which is conducted in EWC (Kirk-
patrick et al. 2017; Zenke, Poole, and Ganguli 2017) and
OGD (Farajtabar et al. 2019). Similarly, we also investigate
the drift of column vectors in LoRA B matrices employed
by O-LoRA (Wang et al. 2023a), i.e. β1, β2, ..., βr in B =
(β1, β2, ..., βr). The results (blue line, denoted as LoRA
B) show that employing column vectors in LoRA B ma-
trices mitigates the loss of functional directions. However, it
does not resolve the drift issue fundamentally. Overall, we
identify that the prevalent problem in prior regularization-
based methods is the drift of functional directions, indicating
that we need to dynamically update the functional directions
rather than relying on fixed ones.

3.2 Tracking the drift of functional directions
The difficulty of mitigating the drift of functional directions
lies in updating the functional directions of historical data in
the current parameter space, as there is no access to histori-
cal data in the settings of regularization-based methods. To
tackle this issue, we propose our method to track the drift-
ing functional directions of historical tasks with the latest
task data.

As shown in Equation (3), LLMs primarily fine-tune
within a low-rank subspace, i.e. the space of BAx, such
that all tasks share most of the bases in this subspace, and
the functional directions are different linear combinations
of these bases. By extracting and updating the bases from
the functional directions of the current task, we update the
shared bases of historical functional directions, thus updat-
ing historical functional directions themselves.
Tracking method overview. To achieve the conception
above, we select the LoRA increment as the functional di-
rection, and employ Principal Component Analysis (PCA)
to extract the bases. The following parts propose respective
elaborations.
LoRA increment as functional directions. Following prior
regularization-based methods, including OGD(Farajtabar
et al. 2019) and O-LoRA(Wang et al. 2023a), we extract
fine-tuning increments as the functional directions of certain
continual learning tasks. More specifically, the functional
direction we select is the increment of LoRA in Equation (3),
that is:

d(Wmxm) = d(BmAmxm) = d(BmAm)xm (4)

= (dBm)Amxm +Bm(dAm)xm ≜ pm, (5)

where xm is the input vector to the m-th LoRA module with
parameter Bm and Am. Let α be the learning rate, then
dB = α∇BL, dA = α∇AL, L is the task-specific loss
function. We represent the update direction of LoRA with
the following concatenated vector:

h = concat(p1, p2, ..., pM ), (6)

where M is the number of LoRA modules. The concatena-
tion captures the relation between the LoRA increment of
different layers. More computational details on x and h are
shown in Appendix A.3.
Online PCA. To extract the basis of functional directions
from their linear combinations, we employ the Online Prin-



(a) (b)
Figure 2: Quantification of functional direction drift regarding a particular datapoint (x, y). Figure (a) shows the cosine simi-
larity between current and historical functional directions. The green line shows cos⟨GT , G1⟩, where GT = ∇θL(FθT (x), y),
θT is the model parameter in the T th fine-tuning step. The yellow line shows cos⟨GT , ḠT ⟩, where ḠT = 1

T

∑T
t=1 Gt. The

blue line shows the average similarity of β1, β2, ..., βr in LoRA B matrices with their start value, i.e. 1
r

∑r
n=1 cos⟨β̃n, βn⟩,

where β̃ is the current one, β is the start one. Figure (b) shows the effect of tracking functional directions. We initialize the
principal components during the first dataset, and measure the drift in the following steps. The red line shows the drift with
cos⟨coord(h∗

T ), coord(h∗
1)⟩, where h∗

T is the LoRA increment (computed with Equation (6)) in the T -th step. For contradic-
tion, we freeze the update of principal components (the blue line). The results are the average of randomly-chosen datapoints,
with standard deviation shown.

cipal Component Analysis (Online PCA) (Cardot and De-
gras 2015), which requires only the latest data in memory,
conforming to the settings of regularization-based continual
learning.

The target of Online PCA is as follows. Let
{h1, h2, ..., hn} be functional directions computed with
Equation (6) on a sequence of incoming data. On receiving
a new functional direction ht, Online PCA seeks to update
principal components {v1t , v2t , ..., v

Kt
t } as the basis of func-

tional directions {h1, h2, ..., ht}. Moreover, when process-
ing the latest data ht, there is no access to historical datas
{h1, h2, ..., ht−1}. This realizes our goal of updating his-
torical functional directions with current ones, i.e. updating
the representation of historical functional directions with the
current functional direction. Please refer to Algorithm 1 for
a summary and Figure 1(a) for a brief demonstration.

There are multiple approaches to implement Online PCA,
including Incremental PCA (Arora et al. 2012; Levey and
Lindenbaum 2000) and stochastic approximation meth-
ods (Sanger 1989; Krasulina 1970; Oja and Karhunen 1985;
Oja 1992). Our method draws inspiration from Can-
did Covariance-free Incremental PCA (CCIPCA) (Weng,
Zhang, and Hwang 2003), since its edge lies in the ability
to add components freely, which is suited for emerging new
tasks. It also has a lower computational overhead compared
to other techniques. Please refer to Appendix for more tech-
nical details on our Online PCA method.
The effectiveness of tracking. To evaluate the effectiveness
of tracking, we investigate the drift of the functional direc-
tion in the subspace of the updated principal components.
Specifically, we compute the LoRA increment h∗

T of a par-
ticular datapoint in the T -th fine-tuning step, and compute
its coordinate in the subspace of extracted principal compo-
nents, that is

coord(h∗
T ) =

(
(h∗

T , v
1
T ), (h

∗
T , v

2
T ), ..., (h

∗
T , v

K
T )

)
. (7)

where (h∗
T , v

k
T ) =

h∗
T ·vk

T

∥vk
T ∥ is the projection of h∗

T on vkT .

Algorithm 1 DOC (Our method)
Input: Model Fθ, where θ = (A,B) includes LoRA A,B
modules; learning rate α; the t-th incoming dataset Dt, ex-
pected maximum principal component number K for each
new task
Initialization: Principal components v1T , v

2
T , ..., v

KT

T ex-
tracted from historical fine-tunings, T is the number of fin-
ished fine-tuning steps.
Output: Fine-tuned parameter θ∗

1: for data point(batch) (xi
t, y

i
t) in Dt do

2: extract gradients: ∇BL =
∇BL(Fθ(x

i
t), y

i
t) ∇AL = ∇AL(Fθ(x

i
t), y

i
t)

3: compute current LoRA increment hT+i with Equa-
tion (6)

4: use hT+i to update principal components
with Online PCA Algorithm on the basis
of existing v1T+i−1, v

2
T+i−1, ..., v

KT+i−1

T+i−1 , get
v1T+i, v

2
T+i, ..., v

KT+i

T+i (KT+i−1 ≤ KT+i ≤ K · t)
5: cut ∇BL with Equation (14), get (∇BL)cut
6: update parameter: B = B − α · (∇BL)cut A =

A− α · ∇AL
7: end for
8: return θ∗ = (A,B)

As shown in Figure 2(b), by tracking principal components,
drifting functional directions can be followed and thus re-
main in correspondence with their original states; if we for-
bid tracking, functional directions are gradually lost.

3.3 Cut fine-tuning directions for function
preservation

Following prior orthogonal space fine-tuning approaches,
including OGD (Farajtabar et al. 2019) and O-LoRA (Wang
et al. 2023a), for regularization-based continual learning, we



Standard CL Benchmark Long chain of tasks
Order 1 Order 2 Order 3 Average (↑) Order 4 Order 5 Order 6 Average (↑)

Baselines

LoRA 67.7 65.4 66.2 66.4 61.2 63.6 60.7 61.8
EWC 72.3 65.0 70.4 69.2 59.7 61.2 65.4 62.1
LwF 71.6 66.0 69.7 69.1 60.8 62.6 63.3 62.2

O-LoRA 78.2 76.4 74.7 76.5 71.7 73.8 70.2 71.9
DOC (ours) 80.5 78.6 73.9 77.7 71.6 74.1 74.4 73.4

DOC-ablation 70.7 69.5 67.3 69.1 60.0 62.5 64.9 62.4

Oracle
methods

Replay 67.9 68.2 71.0 69.0 62.3 65.0 61.4 62.9
PerTaskLoRA 76.9 76.9 76.9 76.9 76.8 76.8 76.8 76.8

MTL 83.4 83.4 83.4 83.4 80.3 80.3 80.3 80.3
ProgPrompt 77.4 76.9 77.9 77.4 76.8 76.2 77.1 76.7

Table 1: Average Accuracy (AA) of different continual methods on LLaMA-7B.

try to make the parameter increment of new tasks orthogo-
nal to historical ones. This avoids changing the functional
directions representing historical tasks, thus protecting his-
torical functions. Specifically, we make the current LoRA
increment hT orthogonal to historical ones, whose basis are
principal components {v1T , v2T , ..., vKT }. The goal is as fol-
lows:

hT ⊥ vkT k = 1, 2, ...,K. (8)
Note that in Equation (6) we have

hT = concat (d(BmAmxm) m = 1, 2, ...,M) , (9)

so we disassemble the concatenation to realize the orthogo-
nality in Equation (8). The disassembly is as follows:

vkT = concat(vkT (m) m = 1, 2, ...,M). (10)

Then we only need to make

d(BmAmxm) ⊥ vkT (m) m = 1, 2, ...M k = 1, 2, ...,K
(11)

Note that we substitute BAx for BmAmxm and ṽk for
vkT (m) in the following statements for concision. As
d(BAx) = (dB)Ax+B(dA)x, we realize the orthogonal-
ity in Equation (11) respectively for (dB)Ax and B(dA)x:

(dB)Ax ⊥ ṽk, B(dA)x ⊥ ṽk for k = 1, 2, ...,K.

For (dB)Ax, note that

(dB)Ax = (dβ1,dβ2, ...,dβr)(Ax) ∈ ⟨dβ1,dβ2, ...,dβr⟩
(12)

So we only need to cut dβi = α · ∇βiL (i = 1, 2, .., r) to
be orthogonal to ṽk (k = 1, 2, ...,K). That is:

∇βi
L ⊥ ṽk i = 1, 2, ..., r k = 1, 2, ...,K (13)

Then we reach the following gradient cut:

(∇βiL)
∗ = ∇βiL−

K∑
k=1

∇βi
L · vkT

∥vkT ∥2
· vkT i = 1, 2, ..., r.

(14)
Now we get (∇BL)cut = ((∇β1

L)∗, (∇β2
L)∗, ..., (∇βr

L)∗).
Note that the cut above removes the correlation with input
x since Equation (12), making the orthogonality hold true
for all kinds of input x. This is significant in preserving
historical functions on all tasks.

For B(dA)x, assume that we have employed (∇BL)cut
in previous steps, then their aggregated B = (β1, β2, ..., βr)
satisfies the orthogonality for the former steps. Similar to
Equation (12), we have

B(dA)x ∈ ⟨β1, β2, ..., βr⟩, (15)

so the orthogonality holds for B(dA)x. We keep B(dA)x
intact as a momentum for optimization, which means we
keep the original dA and ∇AL.

Please note that the above orthogonal cut does not
harm the gradient descent, as described in the paper of
OGD (Farajtabar et al. 2019). In summary, our complete
method is formulated as Algorithm 1. Please refer to Fig-
ure 1(b) for a brief demonstration.

4 Experiments

In this section, we test our method across various LLM con-
tinual learning benchmarks through extensive experiments
to explore the practical impact on real-world continual de-
ployment with online streaming data.

4.1 Setup

Datasets and Models. Following ProgPrompt (Razdaibied-
ina et al. 2023) and O-LoRA (Wang et al. 2023a), we em-
ploy CLBenchmark (AG News, Amazon reviews, Yelp re-
views, DBpedia, Yahoo answers) (Zhang, Zhao, and LeCun
2016) to evaluate our methods, adding GLUE (MNLI, QQP,
RTE, SST2) (Wang et al. 2019), SuperGLUE (WiC, CB,
COPA, MultiRC, BoolQ) (Wang et al. 2020), and IMDB re-
view (Maas et al. 2011) for long-chain tasks. The models
we use are LLaMA-7B, LLaMA-13B (Touvron et al. 2023),
and T5-Large (Raffel et al. 2023).
Metrics. Following ProgPrompt and O-LoRA, we em-
ploy Average Accuracy (AA) to evaluate the overall perfor-
mance of continual learning, that is AA(T ) = 1

T

∑T
t=1 at,T

where at,T is the test accuracy on the t-th task after fine-
tuning on the T -th task.

In order to measure the catastrophic forgetting, we em-
ploy Backward Transfer Rate (BWT) and Forward Transfer



Standard CL Benchmark Long chain of tasks
Order 1 Order 2 Order 3 Average (↑) Order 4 Order 5 Order 6 Average (↑)

Baselines

LoRA 69.2 68.0 65.7 67.6 59.9 64.7 62.0 62.2
EWC 72.7 66.9 66.0 68.5 63.4 60.2 66.7 63.4
LwF 71.0 70.4 72.8 71.4 64.5 62.6 65.3 64.1

O-LoRA 77.9 79.8 77.6 78.4 70.8 73.2 72.2 72.0
DOC (ours) 79.5 81.2 79.7 80.1 72.4 74.0 76.5 74.3

DOC-ablation 69.0 74.6 70.9 71.5 62.6 62.3 66.0 63.6

Oracle
methods

Replay 70.1 69.4 68.2 69.2 64.3 65.4 63.6 64.4
PerTaskLoRA 77.4 77.4 77.4 77.4 78.5 78.5 78.5 78.5

MTL 85.7 85.7 85.7 85.7 83.6 83.6 83.6 83.6
ProgPrompt 76.2 80.9 78.5 78.5 79.9 80.0 78.0 79.3

Table 2: Average Accuracy (AA) of different continual methods on LLaMA-13B.

Standard CL Long chain of
Benchmark tasks

BWT(↑) FWT(↑) BWT FWT

LoRA −14.6+0.0 0.6+0.0 −16.2+0.0 0.2+0.0

EWC −10.6+4.0 0.2−0.4 −14.3+1.9 −1.5−1.7

LwF −10.9+3.7 0.5−0.1 −15.0+1.2 −0.6−0.8

O-LoRA −1.9+12.7 1.4+0.8 −5.2+11.0 0−0.2

DOC (ours) −0.6+14.0 1.6+1.0 −3.4+12.8 −0.1−0.3

DOC-Ablation −8.8+5.8 −1.5−2.1 −13.7+2.5 −1.7−1.9

Replay −10.5+4.1 0−0.6 −14.7+1.5 0.2+0.0

ProgPrompt −0.2+14.4 0.8+0.2 −0.2+16.0 0.1−0.1

Table 3: Average BWT and FWT scores of different contin-
ual methods on LLaMA-7B

Rate (FWT) (Wu et al. 2022):

BWT(T ) =
1

T − 1

T−1∑
t=1

(at,T − at,t), (16)

FWT(T ) =
1

T − 1

T∑
t=2

(at,t − ãt). (17)

Commonly, in a continual learning scenario, a negative
BWT score indicates forgetting, and a negative FWT reveals
that we regularize the fine-tuning process and decrease the
fine-tuning performance at,t compared to a standard fine-
tuning performance ãt.

Overall, a regularization-based method pursues a higher
BWT score representing less forgetting, at the cost of a
smaller decrease in FWT score, representing less damage
to the fine-tuning of each task.
Implementation details. For LLaMA-7B and LLaMA-
13B, we set learning rate α = 1e-4, with a batch size of
8. For T5-Large, we let α = 1e-3 with a batch size of 64,
following O-LoRA. Please refer to Appendix A.2 for more
details, including step number, task sequence, instructions,
etc.
Compared methods. To ensure a fair comparison, we
primarily focus on the recent state-of-the-art regulation-
based methods, including EWC, LwF, and O-LoRA.
We also consider fine-tuning the model with task-specific

datasets sequentially using LoRA (Hu et al. 2021), which
is a vanilla baseline and the expected lower bound of con-
tinual learning. Note that other-based methods require ad-
ditional settings and are not comparable to ours, which is
detailed in Appendix A.4. Furthermore, we present the re-
sults from several other oracle methods that are not suitable
for continuous fine-tuning settings, but they can serve as up-
per bounds:

• Replay replay samples from historical tasks when fine-
tuning on new tasks.

• PerTaskLoRA train LoRA modules solely for each task.
• MTL train the model on all tasks as multi-task learning.
• ProgPrompt (Razdaibiedina et al. 2023) a state-of-the-

art method that updates an extending prompt in the
streaming data, but task ID is required during inference.

4.2 Main Results
Following ProgPrompt and O-LoRA, there are three inde-
pendent runs with different task orders for different chains
of tasks, as detailed in Appendix A.2.
Overall performance. The results of Average Accuracy
(AA) are shown in Table 3.2, Table 3.3, and Table 4.1. We
refer to the paper of O-LoRA (Wang et al. 2023a), the up-
to-date regularization-based method, for the results of other
approaches on T5-Large, as the settings and hyperparam-
eters of our experiments are equal. The results show that
our method outperforms prior ones, especially in long-chain
tasks. We respectively achieve an accuracy of 77.4 and 73.0
in the standard CL benchmark and long chains of tasks for
LLaMA-7B, compared to 75.8 and 69.6 for O-LoRA, the
previous state-of-the-art regularization-based method.
Mitigating Catastrophic Forgetting. The BWT and FWT
results are shown in Table 3.3. The BWT score of our
method is higher than that of prior approaches. We reach
-0.6 and -3.4 for standard and long continual learning tasks,
compared to -1.9 and -5.2 of O-LoRA, indicating that our
method suffers less from catastrophic forgetting. Our FWT
score, compared to other methods, indicates that we mitigate
catastrophic forgetting at a slight cost to fine-tuning perfor-
mance.



Standard CL Benchmark Long chain of tasks
Order 1 Order 2 Order 3 Average (↑) Order 4 Order 5 Order 6 Average (↑)

Baselines

LoRA 44.6 32.7 53.7 43.7 2.3 0.6 1.9 1.6
EWC 48.7 47.7 54.5 50.3 45.3 44.5 45.6 45.1
LwF 54.4 53.1 49.6 52.3 50.1 43.1 47.4 46.9

O-LoRA 75.4 75.7 76.3 75.8 72.3 64.8 71.6 69.6
DOC (ours) 78.8 78.8 74.5 77.4 72.7 72.4 74.0 73.0

DOC-ablation 62.1 62.9 60.4 61.8 55.6 52.5 57.7 55.3

Oracle
methods

Replay 55.2 56.9 61.3 57.8 55.0 54.6 53.1 54.2
PerTaskLoRA 70.0 70.0 70.0 70.0 78.1 78.1 78.1 78.1

MTL 80.0 80.0 80.0 80.0 76.5 76.5 76.5 76.5
ProgPrompt 75.2 75 75.1 75.1 78.0 77.7 77.9 77.9

Table 4: Average Accuracy (AA) of different continual methods on T5-large

LLaMA-7B LLaMA-13B T5-Large

LoRA 0.38s 0.97s 0.68s

EWC 0.42s 1.20s 0.76s
LwF 0.40s 1.23s 0.76s

O-LoRA 0.42s 1.29s 0.78s
DOC(ours) 0.46s 1.23s 0.80s

ProgPrompt 0.32s 0.43s 0.31s

K 32 48 64 96

DOC
(ours)

r = 16 76.1 77.6 76.5 76.5
r = 64 77.9 78.5 78.4 78.7

LoRA r = 16 65.4
r = 64 67.4

O-LoRA r = 16 77.0
r = 64 76.8

(a) (b)
Table 5: (a) Average clock time of one fine-tuning step; (b) Average Accuracy (AA) results of standard CL Benchmark on
LLaMA-7B with different LoRA rank r and maximum principal component number K for each new task. The results are the
average of task orders 1-3.

In summary, our method mitigates forgetting with a much
higher BWT score, at the cost of a little fine-tuning perfor-
mance with a slightly lower FWT score, eventually reaching
effective overall performances and higher AA scores.

4.3 Discussions
Computational costs. The cost of storing all principal
components (with maximum principal component number
K ≤ 100) is within 100MB, roughly equivalent to a few sets
of LoRA modules, and is negligible compared to the cost
of fine-tuning the model itself. We employ vGPU-48GB
as our device, with PyTorch 2.1.0 and CUDA 12.1, and the
clock time of one training step with different regularization
methods is shown in Table 4.1. As the Online PCA tech-
nique we employ has an explicit update expression (shown
in Appendix A.1), it does not incur much extra computa-
tional costs.
The choice of hyperparameters. We present the following
empirical study regarding different choices of LoRA rank,
say r, for fine-tuning, and the maximum principal compo-
nent number for each new task, say K, for functional di-
rection tracking. The results are shown in Table 4.1. Over-
all, adequate principal components cooperating with higher
LoRA ranks are able to cover and protect more critical func-
tional directions for historical tasks, thus ensuring a better
historical functional preservation and task accuracy. The re-
sults show that the variation between different choices of

hyperparameters is little, revealing the robustness of our
method.
Ablation study. We conduct a trial on freezing the update of
principal components to investigate the impact of functional
direction tracking. Specifically, we cease updating princi-
pal components after their initialization during the first 10%
fine-tuning steps for each task. The results are shown in
the DOC-ablation line in Table 3.2,3.3, 3.3, and 4.1. The
decrease in continual learning performance in the ablation
experiment indicates that it is tracking the functional direc-
tions that mitigate catastrophic forgetting and enhance the
performance of continual learning.

5 Conclusion
In this paper, we introduce a novel regularization-based ap-
proach that leverages functional direction tracking for con-
tinual learning in language models. We identify that the drift
of functional directions is the key issue for regularization-
based continual learning approaches, and the proposed
method systematically addresses the drift issue by updating
the functional directions dynamically with Online PCA dur-
ing the fine-tuning process. Empirical evaluations verify the
effectiveness of our tracking method and underscore its effi-
cacy in enhancing continual learning performance. For lim-
itations and future directions, please refer to Appendix A.5
and A.6.
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A Appendix
A.1 Online PCA in our method
In our method, we extract the basis of functional directions

from their linear combinations using Online PCA (Cardot
and Degras 2015). Specifically, we employ a modified Can-
did Covariance- free Incremental PCA (CCIPCA) (Weng,
Zhang, and Hwang 2003) to implement Online PCA.
The CCIPCA technique. Let Γ = 1

T−1HH⊤ be the co-
variance matrix H = (h1, h2, ..., hN ) with standardized
datas h1, h2, ..., hN . Recall the goal of the PCA is to find
the eigenvector u and the eigenvalue λ of Γ that satisfy

Γu = λu. (18)

The idea of CCIPCA is as follows. For the first eigenvector
v1, assume that estimates v10 , ..., v

1
T−1 of v = λu have been

constructed in previous steps t = 1, 2, ..., T − 1. We substi-

tute hth
⊤
t to Γ and v1

t−1

∥v1
t−1∥

to u in the eigenequation (18) for
t = 1, ..., T , and average the results:

v1T =
1

T

T∑
t=1

hth
⊤
t

v1t−1

∥v1t−1∥
. (19)

Note that CCIPCA requires no historical datas
{h1, h2, ..., hT−1} , as equation (19) can be conveniently
written in recursive form as:

v1T+1 =
T − l

T + 1
v1T +

1 + l

T + 1
hT+1h

⊤
T+1

v1T
∥v1T ∥

, (20)

where an amnesic factor l ≥ 0 is introduced to handle non-
stationary data generation, and the initialization is v0 = h1.
The almost-sure convergence of equation (20) has been
proved by (Zhang and Weng 2001). For estimating more
than one eigenvector, say v1, v2, ..., vK , to update the K-th
eigenvector vKT+1, simply replace the input vector hT+1 in
equation (20) with the following residual cutting:

h∗
T+1 = hT+1 −

K−1∑
k=1

hT+1 · vkT
∥vkT ∥2

· vkT . (21)

Modified CCIPCA for tracking functional directions. To
deal with the issue of functional direction drift, we intro-
duce a tracking factor ϵ ∈ (0, 1) to equation (20) for a faster
update:

v1T+1 = η · v1T + (1− η) · hT+1h
⊤
T+1

v1T
∥v1T ∥

, (22)

where η = T−l
T+1 · (1−ϵ). Note that the convergence of equa-

tion (22) is disturbed for tracking. Algorithm 2 summarizes
the modified tracking CCIPCA method, which additionally
employs a residual threshold δ ∈ (0, 1) to append new com-
ponents automatically (lines 7-10).
An example of functional direction tracking. We present
the following example on the working process of functional
direction tracking as a reference for Algorithm 2. Still, we
take fine-tuning Llama-2 on CLBenchmark as an example.
As shown in Figure 3, we update the principal components

Algorithm 2 Online PCA for Tracking Functional Direc-
tions
Parameter: Maximum principal component number Kmax,
amnesic factor l, tracking factor ϵ, residual threshold δ
Initialization: current principal component number n = 0
Input: The incoming model state data hT+1

Output: Updated principal components v1T+1, ..., v
K
T+1

1: residual h∗
T+1 = hT+1

2: η = T−l
T+1 · (1− ϵ)

3: for k in range(n) do
4: update vkT+1 using h∗

T+1 with equation (22)
5: update h∗

T+1 with equation (21)
6: end for
7: if n < Kmax and ∥h∗

T+1∥
∥hT+1∥ > δ then

8: add a new component vn+1
T+1 = h∗

T+1
9: n = n+ 1

10: end if

Figure 3: The update of principal components. If the resid-
ual rate is over the threshold, we add a new component for
it. The red line shows that we track the drift by adjusting the
tracking factor ϵ, whose increase mostly reduces the residual
rate for better drift tracking.

based on the residual rate ∥h∗
t ∥

∥ht∥ with residual threshold δ,
abiding by lines 7-10 in Algorithm 2. Note that a lower
residual rate indicates more complete coverage of LoRA in-
crement with existing principal components. The tracking
factor ϵ is adjusted dynamically following the increase and
decrease of the residual rate, which is executed by redoing
lines 2-6 in Algorithm 2 with adjusted ϵ and η. The results
show that we continuously keep the residual rate less than
10%, covering 90% of the LoRA increment.

A.2 Addtional experimental details
For the Online PCA above, we let the amnestic factor l =
2, following the recommendation of (Weng, Zhang, and
Hwang 2003). The empirical value of the tracking factor is
that ϵ ∈ (0, 0.1), which is adjusted with the increase and de-
crease of the residual rate, and the residual threshold δ = 0.1
for adding components automatically. For each new task, we
enhance the maximum principal component number Kmax
by 48.

We follow O-LoRA(Wang et al. 2023a) and Progressive
Prompt (Razdaibiedina et al. 2023) for the following contin-



ual learning settings:
Dataset details. Table 6 shows details of the datasets

we employ for continual learning experiments, along with
their evaluation metrics. Overall, we used datasets from CL
benchmark (Zhang, Zhao, and LeCun 2016), GLUE (Wang
et al. 2019), and SuperGLUE (Wang et al. 2020) bench-
marks, adding the IMDB movie reviews (Maas et al. 2011).
We randomly sample 100-10000 samples for each dataset,
depending on their size, and fine-tune for 1000 steps for each
incoming dataset in streaming data.

Task sequence of continual learning. The task orders
used for our CL experiments across LLaMA and T5 models
are shown in Table 7.

Prompts for different tasks. Table 8 shows prompts for
different tasks. NLI denotes natural language inference, in-
cluding MNLI, RTE, CB. SC denotes sentiment analysis,
including Amazon, Yelp, SST-2, IMDB. TC denotes topic
classification, including AG News, DBpedia, Yahoo.

A.3 Details for computation
Extract input vector x with token average. In our method,
we extract LoRA increment dWx as the functional direc-
tion, where x is the input vector of the module with the pa-
rameter matrix W . Note that in a transformer model, the
input, say X , to W is several vectors, that is:

X = (x1, x2, ..., xn) (23)

where N is the number of input tokens, xn is the input vector
at the place of the n-th token. Common methods to represent
inputs x1, x2, ..., xn with a single vector x include comput-
ing their average or taking the last vector. For stability of
computation, we employ the average method, that is:

x =
1

N

N∑
n=1

xn (24)

Standarization of LoRA increment h for PCA. We em-
ploy the LoRA increment h(computed with equation (6))
as the functional direction in our method. As there is no
scale difference in gradients, we omit normalization, follow-
ing (Cardot and Degras 2015). Note that we are concerned
with only the directions of h, so we also conduct no cen-
tralization for h at the beginning. Note that in this case, the
first few principal component represents the weighted his-
torical average (19), and the residual cut in equation (21)
will deduct the average and thus reach certain centraliza-
tion. Also, the effect of other normalization methods de-
signed for LoRA increments or gradients deserves further
investigation.

A.4 Additional Related works
The following methods have been developed for LLM con-
tinual learning. They can be categorized into the following
types: Rehearsal-based , Architecture-based , Prompt-based,
and Regularization-based approaches. A brief summary is in
Table 10.

Rehearsal-based approach (de Masson d’Autume et al.
2019; Mok et al. 2023; Huang et al. 2021) try to remind the

model of historical tasks and thus avoid forgetting. How-
ever, there are growing restoration costs as tasks accumulate,
and privacy issues in gaining historical training data.

Architecture-based approach (Jang et al. 2023; Wang
et al. 2024; Peng et al. 2024) train multiple expert models
for each task. However, when it comes to unseen tasks, there
is no proper expert to use, which destroys the generalization
ability of models.

Prompt-based approach L2P(Wang et al.
2022), LFPT5(Qin and Joty 2022), and Progressive
Prompts(Razdaibiedina et al. 2023) add prompts during the
inference of the model. This approach is lightweight, but
when the fine-tuning information gets large, the prompt will
not be able to cover it.

Regularization-based Approach EWC(Kirkpatrick
et al. 2017; Zenke, Poole, and Ganguli 2017), LwF(Li
and Hoiem 2017), OGD(Farajtabar et al. 2019), and
O-LoRA(Wang et al. 2023a) limit the update of model
parameters to preserve the historical ability of the model.
Their edge is that no historical data or extra architecture
is required. We lay emphasis on the orthogonal methods,
including OGD and O-LoRA, as we employ orthogonal cuts
to avoid changing historical parameter settings and preserve
historical functions.

Orthogonal methods The key point of orthogonal meth-
ods is to avoid wrecking the parameter subspace of historical
tasks when fine-tuning on the latest task, and the method is
to make the parameter space of new tasks orthogonal to the
historical ones. Representative methods, including Orthogo-
nal Gradient Descent (OGD)(Farajtabar et al. 2019) and Or-
thogonal Subspace Learning(O-LoRA)(Wang et al. 2023a),
have been proven effective in preventing catastrophic for-
getting. OGD forces the gradient descent to be orthogonal
to the gradient directions of historical tasks. That is:

GT ⊥ Gt t = 1, 2, ..., T − 1 (25)

where Gt = ∇θLt is the gradient direction of the t th task.
O-LoRA tries to make the LoRA B matrix in equation (2)
orthogonal to that of historical LoRA modules. That is:

βi
T ⊥ βj

t t = 1, 2, ...T − 1 i, j = 1, 2, ..., r (26)

where βi
t is the i th colomun vector of Bm×r matrix fine-

tuned in the t th task, that is B = (β1, β2, ..., βr).

A.5 Limitations
While the proposed method has an outstanding performance
in empirical evaluations, we discuss its potential limitations
as follows.

Scalability. In more complex scenarios with a large num-
ber of tasks, such as hundreds of tasks, the principal compo-
nent pool expands as we add new components during the
fine-tuning process, imposing a growing load for computa-
tion. The empirical scale of the expansion is approximately
40 components for each task, as shown in Figure 4. The size
of these components is approximately 15MB and is accept-
able in the settings of our experiments. However, in the case
of hundreds of tasks, the performance and applicability of
our method require further investigation.



Table 6: The details of 15 datasets used in the CL experiments, following O-LoRA and Progressive Prompt. NLI denotes
natural language inference, QA denotes the question and answer task.

Dataset name Category Task Domain Metric
1. Yelp CL Benchmark sentiment analysis Yelp reviews accuracy
2. Amazon CL Benchmark sentiment analysis Amazon reviews accuracy
3. DBpedia CL Benchmark topic classification Wikipedia accuracy
4. Yahoo CL Benchmark topic classification Yahoo Q&A accuracy
5. AG News CL Benchmark topic classification news accuracy
6. MNLI GLUE NLI various accuracy
7. QQP GLUE paragraph detection Quora accuracy
8. RTE GLUE NLI news, Wikipedia accuracy
9. SST-2 GLUE sentiment analysis movie reviews accuracy
10. WiC SuperGLUE word sense disambiguation lexical databases accuracy
11. CB SuperGLUE NLI various accuracy
12. COPA SuperGLUE QA blogs, encyclopedia accuracy
13. BoolQA SuperGLUE boolean QA Wikipedia accuracy
14. MultiRC SuperGLUE QA various accuracy
15. IMDB SuperGLUE sentiment analysis movie reviews accuracy

Table 7: Different orders of task sequences used for continual learning experiments. Orders 1-3 correspond to the standard CL
benchmark, orders 4-6 are long chain of tasks, following O-LoRA and Progressive Prompt.

Order Task Sequence
1 dbpedia → amazon → yahoo → ag
2 dbpedia → amazon → ag → yahoo
3 yahoo → amazon → ag → dbpedia

4 mnli → cb → wic → copa → qqp → boolqa → rte → imdb →
yelp → amazon → sst-2 → dbpedia → ag → multirc → yahoo

5 multirc → boolqa → wic → mnli → cb → copa → qqp → rte
→ imdb → sst-2 → dbpedia → ag → yelp → amazon → yahoo

6 yelp → amazon → mnli → cb → copa → qqp → rte → imdb →
sst-2 → dbpedia → ag → yahoo → multirc → boolqa → wic

Task identification. Although our method requires no
task identification during inference, it is still required dur-
ing the continual fine-tuning process. Exploring methods for
task-agnostic training would be a valuable future direction.
This is further discussed in Future Directions.

Generalization Ability. As our method is targeted at pre-
serving historical functions, it has no recognition of unseen
tasks. Its generalization ability deserves further investiga-
tion. We propose the following empirical demonstration of
the impact of our method on the generalization ability of
the model. Following O-LoRA (Wang et al. 2023a), we
start with a fine-tuned LLaMA-7B language model on the
Alpaca (Taori et al. 2023) dataset. After conducting con-
tinual learning on the CL benchmark (Zhang, Zhao, and
LeCun 2016), we test the model on the MMLU bench-
mark (Hendrycks et al. 2021b,a), composed of unseen tasks.
The results are shown in Table 9. Compared to the original
model, SeqLoRA and our method (DOC) suffer from for-
getting (accuracy respectively drops from 36.0 to 26.2 and
29.4). This is because of the lack of information about un-
seen tasks during continual learning. In the experimental
settings, the issues above limit the practicality of DOC.

Note that we fine-tune the model on Alpaca at the be-

ginning, so that continual learning also triggers the forget-
ting of Alpaca. What if we mitigate this forgetting with
CL methods? We further investigate the effect of continual
fine-tuning the model on the Alpaca and CL benchmark with
CL methods applied throughout from start to end, which
makes the Alpaca visible to the methods. Note that MMLU
is still unseen during the continual fine-tuning process in this
setting. The results show the enhanced performance (an ac-
curacy of 34.6 for DOC and 32.1 for O-LoRA, compared
to 29.4 and 30.1 in the former experiment where Alpaca is
invisible to the methods). An explanation is that the meth-
ods avoid forgetting Alpaca, which is a general dataset that
assists in the initialization of crucial functional directions of
the model, thus aiding in the preservation of crucial func-
tions for unseen tasks. The results also indicate that the
generalization of our method, which preserves the ability
on unseen tasks with a general dataset, is better compared
to O-LoRA. It inspires the practical deployment of DOC to
initialize on a general dataset beforehand.

A.6 Future directoins
The interpretability of principal components. We em-
ploy PCA in our method for functional direction tracking.



Table 8: Instructions for different tasks, following O-LoRA and Progressive Prompt.
Task Prompts

NLI What is the logical relationship between the ”sentence 1” and the ”sentence 2”?
Choose one from the options.

QQP Whether the ”first sentence” and the ”second sentence” have the same meaning?
Choose one from the options.

SC What is the sentiment of the following paragraph? Choose one from the options.

TC What is the topic of the following paragraph? Choose one from the options.

BoolQA According to the following passage, is the question true or false? Choose one
from the options.

MultiRC According to the following passage and question, is the candidate answer true
or false? Choose one from the options.

WiC Given a word and two sentences, whether the word is used with the same sense
in both sentences? Choose one from the options.

Table 9: The accuracy on the MMLU benchmark of
LLaMA-7B before and after continual learning (CL) on the
CL benchmark. The results are the average of task orders
1-3. Note that with MMLU being a four-classification prob-
lem, a 25% accuracy equates to random guessing.

MMLU Accuracy
Original model 32.3

Alpaca LoRA fine-tuned model 36.0

Seq LoRA CL after Alpaca LoRA 26.2
O-LoRA CL after Alpaca LoRA 30.1

DOC CL after Alpaca LoRA 29.4

O-LoRA throughout Alpaca and CL 32.1
DOC throughout Alpaca and CL 34.6

Another edge of PCA is that the components extracted are
statistically independent of each other; thus, each compo-
nent represents an individual unit, as proposed by (Michaud
et al. 2024). The individuality of these components provides
chances for model deconstruction and better interpretability,
and it is possible to find the exact meaning of each compo-
nent, e.g., semantic function, logic function, certain knowl-
edge, etc., through empirical methods. It is a promising
direction for interpretable learning based on model decon-
struction.

Automated task ID recognition As mentioned before,
exploring methods for task-agnostic training would be valu-
able. It deserves further investigation into the characteristics
of the principal components extracted from a specific task,
which assists in the distinction of different tasks.

Figure 4: The expansion of principal components in the first
2 tasks. Note that we do not limit the maximum principal
component number in this experiment, i.e., Kmax = +∞.
As the number of principal components increases, it reaches
a point where no extra component is required, indicating that
the current components are adequate to cover a large enough
part of the LoRA increment.



Table 10: The comparison of continual learning methods. Specifically, RF indicates whether the method is rehearsal-free. TIF
indicates whether the task ID is free during inference. Compared to regularization-based methods, other methods have extra
settings or computational overheads.

RF TIF Inference costs

Rehearsal-based MBPA++ (de Masson d’Autume et al. 2019) ✓
IDBR (Huang et al. 2021) ✓

Architecture-based

EIP (Wang et al. 2023b) ✓ ✓

Expert selectionSLM (Peng et al. 2024) ✓ ✓
Expert LMs (Jang et al. 2023) ✓
MoCL (Wang et al. 2024) ✓ ✓

Prompt-based
L2P (Wang et al. 2022) ✓ ✓

Additional promptsLFPT5 (Qin and Joty 2022) ✓
ProgPrompt (Razdaibiedina et al. 2023) ✓

Regularizatoin-based

EWC (Kirkpatrick et al. 2017) ✓ ✓
LwF (Li and Hoiem 2017) ✓
OGD (Farajtabar et al. 2019) ✓ ✓
O-LoRA (Wang et al. 2023a) ✓ ✓
DOC(ours) ✓ ✓


