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Abstract

Despite recent success on various tasks, deep001
learning techniques still perform poorly on ad-002
versarial examples with small perturbations.003
While optimization methods for adversarial at-004
tacks are well-explored in the field of com-005
puter vision, it is impractical to directly ap-006
ply them in natural language processing due007
to the discrete nature of the text. To ad-008
dress the problem, we propose a unified frame-009
work to extend the existing optimization-based010
method in the vision domain to craft textual011
adversarial samples. In this framework, con-012
tinuously optimized perturbations are added013
to the embedding layer and amplified in the014
forward propagation process. Then the final015
perturbed latent representations are decoded016
with a masked language model head to obtain017
potential adversarial samples. In this paper,018
we instantiate our framework with an attack019
algorithm named Textual Projected Gradient020
Descent (T-PGD). We find our algorithm ef-021
fective even using proxy gradient information.022
Therefore, we perform more challenging trans-023
fer black-box attacks and conduct comprehen-024
sive experiments to evaluate our attack algo-025
rithm with BERT, RoBERTa, and ALBERT026
on three benchmark datasets. Experimental027
results demonstrate that our method achieves028
an overall better performance and produces029
more fluent and grammatical adversarial sam-030
ples compared to strong baseline methods. All031
the code and data will be made public.032

1 Introduction033

Despite great success in real-world applications,034

deep neural networks (DNNs) are still vulnerable035

to adversarial samples, which are crafted by adding036

small and human-imperceptible perturbations037

to the inputs and can change the prediction038

label of the victim model (Szegedy et al., 2014;039

Goodfellow et al., 2015).040

In the field of computer vision (CV), numerous041

adversarial attack methods have been proposed to042
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Figure 1: Comparison of our method with previous dis-
crete substitution-based methods.

evaluate the robustness of DNNs (Papernot et al., 043

2016a; Madry et al., 2019), and corresponding de- 044

fense methods are also well-explored (Papernot 045

et al., 2016c; Ross and Doshi-Velez, 2018). Ad- 046

versarial attacks on images are defined as an opti- 047

mization problem of maximizing the loss function 048

of the model on specific samples, which can be 049

approximated by gradient ascent algorithms. 050

However, the textual adversarial attack is 051

more challenging due to the discrete and non- 052

differentiable nature of the text space. In Natural 053

Language Processing (NLP), the methods that di- 054

rectly employ the gradients to optimize adversarial 055

samples are not applicable in either the white-box 056

or black-box settings, since they cannot obtain valid 057

discrete texts. For this reason, most works in NLP 058

explore some heuristic methods to produce discrete 059

perturbations, such as manipulating the most im- 060

portant words in the text using corpus knowledge or 061

contextualized information (Ren et al., 2019; Zang 062

et al., 2020; Li et al., 2020). Besides, there are some 063

practices of textual adversarial attacks that employ 064

gradients for first-order approximation to find opti- 065

mal candidates in vocabulary for word substitution, 066

but the one-off search is less effective and can vio- 067

late the local linearization assumption (Cheng et al., 068
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2019; Behjati et al., 2019; Xu and Du, 2020).069

To bridge this gap, we propose a general frame-070

work to adapt the existing adversarial attack meth-071

ods optimized in continuous space to NLP (See Fig-072

ure 1). Essentially, we succeed in obtaining high-073

quality adversarial samples from the perturbed em-074

bedding space. Specifically, we employ a proxy075

gradient of the loss function to produce perturba-076

tions on token embeddings rather than on the origi-077

nal text, thus transforming the problem of searching078

for adversarial samples in the discrete text space to079

the continuous and differentiable embedding space.080

This provides the basis for applying optimization081

methods investigated in CV to craft textual adver-082

sarial samples. In this paper, we adapt the PGD083

(Madry et al., 2019) algorithm within our frame-084

work to perform textual adversarial attacks, de-085

noted as T-PGD. Note that T-PGD can be effective086

with only gradients of a local proxy model, lead-087

ing to a strong transfer attack. To this end, there are088

two models in the perturbation generation process,089

one is the local proxy model and the other is the090

true victim model. Gradient information comes091

from the local proxy model and only the decision092

of the victim model can be accessed.093

Then the perturbed latent representations should094

be transferred back to the discrete text. Although095

there have been some works exploring the096

feasibility of directly perturbing token embeddings097

(Sato et al., 2018; Cheng et al., 2019; Behjati098

et al., 2019), they simply use the first-order099

approximation of the gradient to select candidate100

words from vocabulary, which might break the101

local linearization hypothesis. However, recent102

work finds that the mask language modeling103

(MLM) head can reconstruct input sentences from104

their hidden states with high accuracy, even after105

models have been fine-tuned on specific tasks (Kao106

et al., 2021). Inspired by this, we employ an MLM107

head to decode the perturbed latent representations.108

With the extensive linguistic knowledge of109

MLM-head, the coherence and grammaticality of110

adversarial samples can be guaranteed.111

We conduct comprehensive experiments to eval-112

uate the effectiveness of our method by performing113

transfer black-box adversarial attacks, where only114

the final decisions of victim models are accessible,115

against three victim models on three benchmark116

datasets. Experimental results demonstrate the ef-117

fectiveness of our framework and T-PGD algorithm,118

with a higher attack success rate and more fluent119

and grammatical adversarial examples produced. 120

To summarize, the main contributions of this 121

paper are as follows: (1) We propose a general 122

textual adversarial attack framework facilitating 123

NLP researchers to produce adversarial texts 124

using optimization-based methods, bridging 125

the gap between CV and NLP in the study of 126

adversarial attacks. (2) Based on the framework, 127

we propose an effective adversarial transfer attack 128

method called T-PGD, handling the challenge of 129

decision-based black-box attack, which is rarely 130

investigated in NLP. 131

2 Related Work 132

2.1 Adversarial Attack in CV 133

In the field of computer vision, adding a small 134

amount of perturbations to input images to mis- 135

lead the classifier is possible (Szegedy et al., 2014). 136

Based on this observation, various adversarial at- 137

tack methods have been explored. FGSM (Good- 138

fellow et al., 2015) crafts adversarial samples using 139

the gradient of the model’s loss function to the in- 140

put images. BIM (Kurakin et al., 2017) straightfor- 141

wardly extends FGSM, iteratively applying adver- 142

sarial perturbations multiple times with a smaller 143

step size. MIM (Dong et al., 2018) exploits mo- 144

mentum when updating inputs, obtaining adversary 145

samples with superior quality. PGD (Madry et al., 146

2019) employs uniform random noise as initializa- 147

tion. Both MIM and PGD are variants of BIM. 148

2.2 Adversarial Attack in NLP 149

Existing textual attacks can be roughly categorized 150

into white-box and black-box attacks according to 151

the accessibility to the victim models. 152

White-box attack methods, also known as 153

gradient-based attack methods, assume that the 154

attacker has full knowledge of the victim mod- 155

els, including model structures and all parameters. 156

There are few application scenarios of white-box 157

attacks in real-world situations, so most white-box 158

attack models are explored to reveal the weakness 159

of victim models, including universal adversarial 160

triggers (Wallace et al., 2019), and fast gradient 161

sign inspired methods (Ebrahimi et al., 2018; Pa- 162

pernot et al., 2016b). Although well explored in 163

CV, these methods are not directly transferable to 164

NLP due to the discrete nature of the text. A recent 165

work GBDA (Guo et al., 2021) generates adversar- 166

ial samples by searching an adversarial distribution, 167

optimizing with a gradient-based algorithm that has 168
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been previously used in image adversarial attacks169

(Carlini and Wagner, 2017).170

Black-box attack models can be further divided171

into two different attack settings, i.e. score-based172

and decision-based. The first one assumes the at-173

tacker can obtain the decisions and corresponding174

confidence scores from victim models. Most re-175

search works on black-box attacks focus on this set-176

ting, exploring different word substitution methods177

and search algorithms to reduce the victim models’178

confidence scores. The word substitution methods179

mainly focus on word embedding similarity (Jin180

et al., 2020), WordNet synonyms (Ren et al., 2019),181

HowNet synonyms (Zang et al., 2020), and Masked182

Language Model (Li et al., 2020). The search algo-183

rithms involve greedy search algorithm (Ren et al.,184

2019; Jin et al., 2020), genetic algorithm (Alzan-185

tot et al., 2018), and particle swarm optimization186

(Zang et al., 2020). The other attack setting as-187

sumes the attackers can only obtain decisions from188

victim models, which is more challenging and less189

studied. Maheshwary et al. (2021) first substitutes190

some words in the input sentences to flip the la-191

bels and then conducts a search based on a genetic192

algorithm, expecting to find the most semantic pre-193

served adversarial samples. Chen et al. (2021) pro-194

pose a learnable attack agent trained by imitation195

learning to perform a decision-based attack. There196

also exist some works exploring sentence-level197

transformation, including syntax (Iyyer et al., 2018)198

and text style (Qi et al., 2021), to launch attack.199

3 Framework200

In this section, we first present an overview of201

our framework, and next, we will give the details202

of how to add continuous perturbations and203

reconstruct the text.204

3.1 Overview205

We have two models in the perturbation genera-206

tion process: (1) a local proxy model which pro-207

vides gradient information to optimize the adver-208

sarial samples, and (2) the true victim model that209

the attacker attempts to deceive. Specifically, a210

proxy BERT model fine-tuned on the attacker’s lo-211

cal dataset encodes each discrete text instance into212

continuous token embeddings and then adds con-213

tinuous perturbation to it. The perturbation would214

be iteratively optimized using the gradient of the215

proxy model, according to the prediction output216

of the victim model. After perturbation, an MLM217
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Figure 2: Overview of our framework. Continuous per-
turbations (ri) are calculated as gradients of the loss
function with respect to token embeddings. The MLM
head is employed to decode the perturbed hidden states
to obtain potential adversarial samples.

head will decode the perturbed latent representa- 218

tion to generate candidate adversarial samples. The 219

overview of the framework is shown in Figure 2. 220

With the help of our proposed framework, it 221

is feasible to perform a textual adversarial attack 222

with various gradient-based methods in CV. In this 223

paper, we examine PGD (Madry et al., 2019) as a 224

case (See Section 4). 225

3.2 Latent-space Perturbation 226

Previous work has shown that the latent represen- 227

tations of transformer-based pre-trained language 228

models are effective in providing semantic and 229

syntactic features (Clark et al., 2019; Jawahar 230

et al., 2019), and thus we use a local BERT model 231

fine-tuned on our local dataset as the encoder for 232

our framework. 233

For each text input, we first calculate the task- 234

specific loss in the forward propagation process, 235

and then perform backward propagation to obtain 236

the gradients of the loss with respect to the token 237

embeddings of the input text. The generated gra- 238

dients are viewed as the information for updating 239

the perturbations added to the token embeddings, 240

which can be obtained by solving an optimization 241

problem as follows: 242

δ = arg max
δ:‖δ‖2≤ε

L (E + δ, y; θ) , (1) 243

where δ is the perturbation, E stands for the em- 244

beddings of input tokens, y is the golden label, θ 245
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denotes current parameters of our local model, and246

L (·) is the loss function.247

The closed-form solution to the optimization248

problem is hard to directly obtain (Goodfellow249

et al., 2015), which is thus relaxed to obtain an250

approximate solution. For example, various meth-251

ods in CV usually linearize the loss function with252

gradient information to approximate the perturba-253

tions δ (Goodfellow et al., 2015; Kurakin et al.,254

2017; Madry et al., 2019).255

In NLP, most existing gradient-based methods256

commonly employ first-order approximation to ob-257

tain substitution words (Cheng et al., 2019; Be-258

hjati et al., 2019; Xu and Du, 2020). However,259

these one-off approaches may result in large step260

size perturbations, violating the hypothesis of local261

linearization (See Figure 3). To ensure the local262

linearization hypothesis, we consider adjusting the263

continuous perturbations added to the token embed-264

dings with a minor change at each step, and then265

iteratively update the token embeddings of the in-266

put instance with the perturbations until generating267

a meaningful adversarial sample for attacking.268

3.3 Reconstruction269

By means of continuous perturbations, we need to270

reconstruct the meaningful adversarial text from271

the optimized token embeddings. The MLM-head272

is observed to be able to reconstruct input sentences273

from hidden states in middle layers with high accu-274

racy, even after models have been fine-tuned on spe-275

cific tasks (Kao et al., 2021). Inspired by this, we276

adopt the MLM head as the decoder for: 1) MLM-277

head is capable of interpreting any representation278

embeddings in the hidden space, which is crucial279

to search adversarial examples continuously; 2)280

MLM-head has been fully trained during the pre-281

trained stage so it acquires linguistic knowledge to-282

gether with the language model and can reconstruct283

sentences considering the contextual information.284

Without loss of generality, we take an example285

in Figure 3 to illustrate the discrepancy between286

the one-off-based attack models and our proposed287

iterative-attack-based model. One-off attack mod-288

els are prone to choose the token b to serve as289

the substitute of token a because cos(
−→
at1,
−→
ab) <290

cos(
−→
at1,
−→ac). However, in our framework, the one-291

step perturbation
−→
at1 does not cross the decoding292

boundary, and thus the decoding results remain un-293

changed if only using one-step perturbation. Based294

on the iterative search, the perturbations can be295
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Figure 3: The process of searching for the substitute
token of the original instance a in the hidden space. In
this case, the one-off attack models are prone to select
token b after one-step perturbation (left), while our iter-
ative perturbation-based method is more likely to find
the optimal solution token c (right).

accumulated to the extent to cross the decision 296

boundary and reach the transition point t3, which 297

will be decoded as the optimal solution c. Then a 298

is replaced by c to obtain the adversarial sample to 299

query the victim model for its decision. If this ad- 300

versarial sample fails to fool the victim model, we 301

start the next searching iteration from the current 302

perturbed token embedding, i.e. t3 in Figure 3, but 303

not from the embedding of the decoded token c. By 304

exploiting virtual embeddings as transition points, 305

this iterative attack framework can preserve accu- 306

mulated gradient information and avoid breaking 307

local linearization assumptions. 308

4 Method 309

We denote each sample as (x ∈ X , y ∈ Y), 310

where x denotes the input text, y denotes its 311

corresponding label. In particular, the hidden state 312

of x is regarded as ~h and the neural network is 313

implied by a mapping function f , which consists 314

of three components, i.e., f0, f1 and f2, holding: 315

f (x) = f2 (f1 (f0 (x))) , (2) 316

where f0 is the embedding layer, f1 denotes the hid- 317

den layers that map embeddings to hidden states of 318

a certain layer, and f2 denotes the rest of the neural 319

network. Then the forward propagation process 320

can be described as: 321

e = f0 (x) , h = f1 (e) , y = f2 (h) (3) 322

4.1 T-PGD Algorithm 323

We instantiate our framework with PGD (Madry 324

et al., 2019) algorithm, and name our attack model 325
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as Textual-PGD (T-PGD). The algorithm flow of326

T-PGD is shown in Appendix A. To solve the opti-327

mization problem in Eq. (1), we iteratively search328

for the optimal solution by adding the gradient-329

based perturbations to the token embeddings with330

the following formula:331

gadv = ∇δL (E, y; θ)

δi+1 = Proj (δi + αgadv/‖gadv‖F ) ,
(4)332

where gadv is the gradient of the loss with respect333

to the continuous perturbation δ, α is the step334

size of δ, and i denotes the current iteration335

step. Proj (·) performs a re-initialization when δ336

reaches beyond the ε-neighborhood of the original337

embedding. For each sample, we first map it to the338

token embeddings, where continuous perturbations339

can be added to. After obtaining the gradient of the340

loss function with respect to the token embeddings341

in (i+1)-th iteration, perturbations δi+1 are342

generated according to Eq. (4) and then added to343

the token embeddings. Then the perturbations are344

amplified through the forward propagation process345

(Goodfellow et al., 2015). Next, the hidden states346

with perturbations are decoded for reconstructing347

the crafted adversarial samples:348

advi+1 = Dec(hi+1), (5)349

where advi+1 denotes the adversarial sample350

obtained in the i + 1 iteration. We query the351

victim model only when advi+1 satisfying: (1)352

it varies from adv0 to advi; (2) it is more similar353

to the original sentences, compared to previous354

potential adversarial samples. Here we employ355

the Universal Sentence Encoder (USE) score (Cer356

et al., 2018), a metric for semantic similarity, to357

measure the similarity between sentences. If attack358

succeeds and USE(advi+1, x) > T , where T is a359

tunable threshold for USE score, then advi+1 is360

considered as the adversarial sample of the original361

input. For each sample, the maximum iteration of362

the searching process is pre-defined to avoid the363

infinite loop problem.364

4.2 Heuristic Strategies365

Random Masking for Diversity. To enhance366

the diversity of adversarial samples, we randomly367

mask one token in each input sentence to ran-368

domly initialize the search for a broader search369

scope. Specifically, we tokenize x to a list of tokens,370

xtoken = [x0, ..., xi, ..., xn]. Then we randomly371

select i-th index token using the uniform distribu- 372

tion and replace it with a special token [MASK]. 373

Next, the MLM-head-based decoder will predict 374

the masked word according to its context, which 375

will diversify the generated adversarial samples 376

with semantically consistent consideration. Then, 377

these processed sentences are embedded into con- 378

tinuous token embeddings as mentioned. 379

Input Reconstruction Task. Intuitively, the 380

quality of generated adversarial samples is largely 381

affected by the reconstruction accuracy of the 382

MLM-head-based decoder. If failing to recover the 383

original sentence even though no perturbations are 384

added, its capacity to generate fluent adversarial 385

samples from perturbed hidden states is limited. 386

To reduce the risk of a catastrophic drop in 387

the quality of adversarial samples generated by 388

continuous perturbation, external constraints on the 389

MLM-head-based decoder should be considered 390

to ensure reconstruction accuracy. Note that the 391

MLM head has been pre-trained to precisely 392

fill the masked word, which is also fitted to our 393

task. We add an additional loss term to force 394

the added perturbations to minimize the loss of 395

input reconstruction task, which will be optimized 396

simultaneously with the adversarial loss so that 397

the adversarial samples can fool the models with 398

minimal perturbations. Specifically, the loss 399

function is defined with two components: 400

L (E, y; θ) = L1 (E, y; θ) + βL2 (E, y; θ) , (6) 401

where L1 (E, y; θ) is the original loss of the local 402

model on specific tasks (e.g. CE loss in sentiment 403

classification), L2 (E, y; θ) is the cross-entropy 404

loss of the input reconstruction task, and β is a 405

weighting constant. Note that we aim to reduce the 406

reconstruction loss L2 while increasing L (E, y; θ) 407

along the gradient direction, so β should be 408

negative. Taking two losses into account jointly, 409

we adjust the perturbation searching target to 410

successfully fool the victim models with fewer 411

modifications. 412

Antonym Filtering. Li et al. (2019) reports that 413

semantically opposite words locate closely in their 414

representation embeddings since antonyms usually 415

appear in similar contexts. Therefore, we filter 416

antonyms of original words using WordNet (Fell- 417

baum, 2010) to prevent invalid adversarial samples. 418
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Dataset #Class Train Test Avg Len BERT Acc RoBERTa Acc ALBERT Acc
SST-2 2 7K 1.8K 16.5 89.9 94.2 92.8
MNLI 3 433K 10K 31.7 82.8 83.6 82.3

AG’s News 4 30K 1.9K 39.3 91.2 94.7 94.2

Table 1: Detailed information of datasets and original accuracy of victim models.

Dataset Model BERT RoBERTa ALBERT
ASR% USE ∆I ∆PPL ASR% USE ∆I ∆PPL ASR% USE ∆I ∆PPL

SST-2

PWWS 75.12 0.83 0.29 533.86 77.03 0.82 0.41 837.7 72.00 0.82 0.40 531.85
Textfooler 85.36 0.81 0.33 480.14 87.28 0.82 0.32 924.09 72.68 0.79 0.25 706.83

PSO 85.60 0.75 0.10 501.12 85.50 0.74 0.09 479.27 91.49 0.77 0.14 397.77
BERT-Attack 90.36 0.81 0.51 378.79 93.53 0.88 0.45 387.95 92.43 0.79 0.81 348.37

GBDA 57.19 0.64 0.42 186.21 58.05 0.64 0.22 27.45 54.31 0.64 0.47 153.94
TPGD 97.00 0.92 0.62 343.65 94.75 0.89 0.63 302.70 93.59 0.90 0.69 291.00

MNLI

PWWS 75.12 0.83 0.34 516.95 71.65 0.84 0.3 715.42 45.88 0.77 4.17 744.49
Textfooler 72.34 0.83 0.31 780.8 77.27 0.87 0.3 640.21 82.47 0.81 0.31 854.73

PSO 75.85 0.8 0.11 481.43 76.08 0.80 0.11 411.12 89.41 0.79 0.22 424.48
BERT-Attack 87.68 0.87 0.55 484.27 91.26 0.89 0.23 604.22 89.65 0.89 0.25 456.31

GBDA 61.28 0.67 0.08 265.38 59.31 0.67 0.12 316.18 62.65 0.67 0.10 288.37
TPGD 93.96 0.92 -0.95 296.82 94.55 0.91 -0.97 261.62 94.65 0.93 -0.98 259.57

AG’s News

PWWS 65.46 0.84 0.65 394.28 54.70 0.84 0.82 491.48 48.53 0.84 4.71 476.81
Textfooler 88.71 0.81 0.61 454.13 78.25 0.82 0.59 372.9 73.21 0.84 1.32 367.66

PSO 66.22 0.79 0.25 539.25 64.63 0.79 0.29 508.76 76.37 0.84 0.15 282.73
BERT-Attack 81.25 0.84 0.48 431.47 82.58 0.85 0.07 307.74 91.28 0.81 2.52 289.52

GBDA 77.66 0.69 -0.16 85.69 68.97 0.69 -0.59 96.95 66.67 0.73 0.20 54.91
TPGD 94.47 0.75 -0.05 625.08 99.30 0.87 -1.42 285.12 99.24 0.87 -1.14 260.64

Table 2: The results of automatic evaluation metrics on SST-2, MNLI, and AG’s News. ASR denotes the attack
success rate, USE denotes the similarity of original and adversarial samples, ∆I and ∆PPL denotes the increase of
grammar errors and perplexity after original texts are transformed into adversaries. We conduct Student t-tests to
measure the significant difference. Bold numbers indicate significant advantage with p-value 0.05 as the threshold
and underline numbers mean no significant difference.

5 Experiments419

We conduct comprehensive experiments to evaluate420

our general framework and T-PGD algorithm on421

the task of sentiment analysis, natural language in-422

ference, and news classification. We consider both423

automatic and human evaluations to analyze our424

method in terms of attack performance, semantic425

consistency, and grammaticality.426

5.1 Datasets and Victim Models427

For sentiment analysis, we choose SST-2 (Socher428

et al., 2013), a binary sentiment classification429

benchmark dataset. For natural language inference,430

we choose the mismatched MNLI (Williams et al.,431

2018) dataset. For news classification, we choose432

AG’s News (Zhang et al., 2015) multi-classification433

datasets with four categories: World, Sports, Busi-434

ness, and Science/Technology. We randomly sam-435

ple 1,000 samples that models can classify correctly436

from the test set and perform adversarial attacks on437

those samples.438

For each dataset, we evaluate T-PGD by439

attacking BERT (Devlin et al., 2019), RoBERTa440

(Liu et al., 2019), and ALBERT (Lan et al., 2020)441

with a local fine-tuned BERT model to generate442

potential adversarial samples. Details of datasets 443

and the original accuracy of victim models are 444

listed in Table 1. 445

5.2 Experimental Setting 446

Baseline Methods. We select four strong score- 447

based attacks as baselines: (1) PWWS (Ren et al., 448

2019); (2) Textfooler (Jin et al., 2020); (3) PSO 449

(Zang et al., 2020); (4) BERT-Attack (Li et al., 450

2020). Note that all of them require the confidence 451

scores of victim models, while our model only as- 452

sumes the decisions are available, which is more 453

challenging. We also make a comparison with the 454

decision-based GBDA (Guo et al., 2021). 455

Evaluation Metrics. We evaluate our method 456

considering the attack success rate and adversar- 457

ial sample quality. (1) Attack Success Rate (ASR) 458

is the proportion of adversarial samples that suc- 459

cessfully mislead victim models’ predictions. (2) 460

Quality of adversarial samples is evaluated by two 461

automatic metrics and human evaluation, includ- 462

ing their semantic consistency, grammaticality, and 463

fluency. Specifically, we use Universal Sentence 464

Encoder (Cer et al., 2018) to compute the semantic 465

similarity between the original text and the corre- 466
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sponding adversarial sample, Language-Tool1 to467

calculate the increase of grammar errors in texts468

after being perturbed, and GPT-2 (Radford et al.,469

2019) to compute the increase of perplexity to mea-470

sure fluency. We also conduct a human evaluation471

to measure the validity and quality of adversarial472

samples.473

5.3 Experimental Results474

The results of automatic evaluation metrics are475

listed in Table 2.476

Attack Performance. T-PGD consistently out-477

performs the strong score-based attack methods478

considering the attack success rate. We attribute479

the success of our attack method to the more effec-480

tive searching process following the guidance of481

the gradient information, which is verified in the482

ablation study (Section 6).483

Adversarial Sample Quality. We observe that484

the quality of the adversarial samples generated485

by T-PGD increases with the text length. Our ad-486

versarial samples yield overall higher USE scores487

than baseline models, indicating that our method488

can manipulate adversarial samples more precisely489

with explicit gradient information. And although490

the grammatical performance of T-PGD is not the491

best on SST-2, which mostly contains shorter text492

(See Table 1), MNLI and AG’s News T-PGD pro-493

duce the fewest grammatical errors and the lowest494

perplexity, since the embedding space of longer495

text is broader and has a better optimal solution.496

Finally, we attribute the overall high quality of our497

adversarial samples to the introduction of recon-498

struction loss, which is demonstrated in Section 6.499

5.4 Human Evaluations500

To further study the quality and validity of adver-501

sarial samples, we randomly selected 100 original502

SST-2 sentences and 100 adversarial samples from503

the SOTA baseline BERT-Attack and T-PGD re-504

spectively for human evaluation. Following (Li505

et al., 2020), we shuffle the 300 samples and ask 3506

independent human judges to evaluate the quality507

(300 samples per person). For semantic consis-508

tency evaluation, we ask humans to predict the509

labels of mixed texts. For grammar and fluency,510

human judges score from 1 to 5 on the above exam-511

ples. All annotators have no knowledge about the512

1https://github.com/jxmorris12/
language_tool_python

Source Accuracy Grammar & Fluency
Original 0.92 4.63

BERT-Attack 0.48 3.41
T-PGD 0.68 3.52

Table 3: Human evaluation on SST-2 in terms of pre-
diction accuracy, grammar correctness, and fluency.

source of the text, and all their evaluation results 513

are averaged (shown in Table 3). 514

Semantic Consistency. Since human judges 515

have high accuracy on the original text, the pre- 516

diction results on texts can be regarded as ground 517

truth labels. Therefore, human accuracy can be a 518

criterion for semantic consistency between original 519

sentences and adversarial ones. From the results, 520

human judges achieve 0.68 accuracies on adversar- 521

ial samples crafted by T-PGD, significantly higher 522

than the baseline method. This result verifies that 523

the adversarial samples crafted by T-PGD have a 524

better semantic consistency. 525

Grammar and Fluency. We can also conclude 526

from Table 3 that adversarial samples crafted by 527

T-PGD have better quality compared to the base- 528

line method considering the grammar and fluency, 529

evaluated by human annotators. However, both 530

BERT-Attack and T-PGD suffer a decline in gram- 531

matical correctness and fluency of adversarial text, 532

leaving room for improvement in future research. 533

6 Further Analysis 534

Importance of Gradient Information. T-PGD 535

employs the gradient of the proxy local BERT 536

model to approximate the perturbations. To ver- 537

ify the effectiveness of the gradient information, 538

we conduct an ablation experiment on SST-2 by 539

adding only random perturbations in the embed- 540

ding space without exploiting the gradient informa- 541

tion. In detail, we generate a Gaussian noise with 542

the same mean and variance as our gradient-based 543

perturbations. The results in Table 4 shows that 544

without exploiting the direction of the gradient, the 545

search in embedding space may deviate from the 546

vicinity where the optimal and original points are 547

located, reflected by the low ASR and USE score 548

respectively. 549

Importance of Reconstruction Task. We show 550

the importance of adding a reconstruction loss (L2 551

in Eq.( 6)) for generating more accurate reconstruc- 552

tions. We conduct an ablation study on SST-2. The 553

results are shown in Table 5. On all three victim 554
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Model
T-PGD Random

ASR USE ASR USE
BERT 97.00 0.92 47.48 0.79

RoBERTa 94.75 0.89 56.59 0.79
ALBERT 93.59 0.90 51.36 0.79

Table 4: Ablation results of gradient information on
SST-2. Random corresponds to adding random pertur-
bations to the embeddings.

Victim
T-PGD β=0

ASR USE ∆I PPL ASR USE ∆I PPL

BERT 97.00 0.92 0.62 343.65 100 0.79 1.45 875.64
RoBERTa 94.75 0.89 0.63 302.70 100 0.84 1.36 466.56
ALBERT 93.59 0.90 0.69 291.00 100 0.83 1.50 693.39

Table 5: Ablation results on the reconstruction loss.
β=0 denotes the setting without the reconstruction loss.

models, the attack performances (ASR) improve555

significantly (up to 100) while the quality of adver-556

sarial samples deteriorates, with USE score decreas-557

ing and grammar errors and perplexity increasing.558

This validates our claim that without reconstruc-559

tion loss, the adversarial samples attempt to change560

the predictions of the model, ignoring whether the561

semantics is preserved and the linguistic quality is562

guaranteed. We further tune β to study the trend of563

ASR and USE score. Results on BERT are shown564

in Figure 4. We observe that as the absolute value565

of β increases, at the early stage ASR declines566

while USE increases, suggesting that at first the567

effectiveness is sacrificed for sample quality; at568

the later stage ASR continues to decline and so569

does the USE, showing that the reconstruction loss570

should not be over-weighted either.571

Figure 4: The trend of ASR and USE with β changing.

Transferability across models. We investigate572

the transferability of adversarial examples. We573

sample 1,000 samples from SST-2 and craft adver-574

sarial samples by T-PGD and baseline methods by575

attacking BERT. Then we test the attack success576

rate of these adversarial samples on RoBERTa to577

evaluate the transferability of adversarial samples.578

As seen in Table 6, adversarial samples crafted by579

T-PGD achieve the best transferability performance.580

Method PWWS Textfooler PSO BERT-Attack TPGD

Transfer ASR 28.21 18.00 44.73 11.02 45.29

Table 6: The ASR on SST-2 of attacking RoBERTa us-
ing adversarial samples crafted on attacking BERT.

581

Transferability across training datasets. We 582

consider a more practical setting that the attacker 583

does not have the same downstream training 584

dataset as the victim, i.e. the local proxy model is 585

trained on a different dataset from the victim model. 586

To this end, we train a local proxy BERT model 587

on IMDB and attack the victim model on SST-2. 588

We compared the results with attacking with the 589

local proxy model trained on the same dataset as 590

the true victim model in Table 7. We can see that 591

T-PGD can also achieve great attack performance 592

in these practical circumstances, although slightly 593

worse than training on the same dataset. 594

Victim BERT-SST-2
Dataset ASR USE ∆I ∆PPL
SST-2 97.00 0.92 0.62 343.65
IMDB 93.30 0.90 0.70 204.18

Table 7: Results of attack performance. The local
model is fine-tuned on SST-2 and IMDB respectively.

7 Conclusion and Future Work 595

In this paper, we propose a general framework to 596

facilitate generating discrete adversarial texts using 597

optimization-based methods. In our framework, the 598

problem of searching textual adversarial samples 599

in discrete text space is transformed into the con- 600

tinuous embedding space, where the perturbation 601

can be optimized by gradient information, as ex- 602

plored in CV. The perturbations in embeddings will 603

be amplified in the forward propagation process, 604

then decoded by an MLM head from the latent rep- 605

resentations. We instantiate our framework with 606

T-PGD, where the gradient comes from the local 607

proxy model instead of the true victim model, i.e. 608

T-PGD performs a decision-based black-box attack. 609

Experimental results show the superiority of our 610

method in terms of attack performance and adver- 611

sarial sample quality. 612

In the future, we will adopt other methods in 613

CV with our framework. Besides, we find that 614

our framework can serve as a general optimization 615

framework for discrete texts, and thus has the po- 616

tential to provide solutions to other tasks like text 617

generation. We will further explore this direction. 618
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Ethical Consideration619

In this section, we discuss the potential broader620

impact and ethical considerations of our paper.621

Intended Use. In this paper, we design a general622

framework to adapt existing gradient-based meth-623

ods in CV to NLP, and further, propose a decision-624

based textual attack method with impressive per-625

formance. Our motivations are twofold. First, we626

attempt to introduce adversarial attack methods of627

CV to NLP, since image attack methods have been628

well-explored and proved to be effective, therefore629

helping these two fields better share research re-630

sources hence accelerating the research process on631

both sides. Second, we hope to find insights into632

the interpretability and robustness of current black-633

box DNNs from our study.634

Potential Risk. There is a possibility that our at-635

tack methods may be used maliciously to launch636

adversarial attacks against off-the-shelf commer-637

cial systems. However, studies on adversarial at-638

tacks are still necessary since it is important for639

the research community to understand these pow-640

erful attack models before defending against these641

attacks.642

Energy Saving. We will public the settings of643

hyper-parameters of our method, to prevent people644

from conducting unnecessary tuning and help re-645

searchers quickly reproduce our results. We will646

also release the checkpoints including all victim647

models to avoid repeated energy costs.648
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A T-PGD Algorithm856

The algorithm flow of T-PGD is shown in Algo-857

rithm 1.858

A.1 Adversarial Training859

We explore to enhance models’ robustness against860

adversarial attacks through adversarial training on861

SST-2 with BERT. Specifically, we first generate ad-862

versarial samples using the original training dataset.863

Then we fine-tune the BERT model using the train-864

ing dataset augmented with generated adversarial865

samples. We evaluate the model’s original accu-866

racy on the test set and robustness against different867

adversarial attack methods. As seen in Table 8, the868

model shows generally better robustness through869

adversarial training. Besides, the accuracy on the870

test set is also improved from 89.90 to 90.48, which871

is different from previous textual adversarial at-872

tacks where accuracy is sacrificed for robustness873

(Ren et al., 2019; Zang et al., 2020).874

Ori Acc 89.90%
Adv.T Acc 90.48%

Method PWWS Textfooler PSO BERT-Attack T-PGD
Ori ASR 69.94 86.38 82.03 86.55 92.22

Adv.T ASR 66.78 87.41 73.34 84.84 83.78

Table 8: Results of adversarial training. Adv.T denotes
the adversarial training paradigm.

B Ablation Study of Random Masking875

We conduct an ablation study of random masking.876

Our intuition is that random masking can broaden877

the searching scope of adversarial examples, and878

thus lead to diverse adversarial samples and higher879

attack success rate. To prove this, we attack BERT880

on SST-2, with and without our random masking881

strategy. Result are shown in Table 9.882

Model
w w/o

ASR USE ASR USE
BERT 97.00 0.92 92.20 0.91

Table 9: Ablation results of random masking on SST-2
against BERT.

C Trade-off between performance and883

efficiency884

Selection of Step Number. Users can make their885

trade-offs between ASR and efficiency when us-886

ing our model. The MaxStep in Algorithm 1887

determined the perturbation searching scope in888

embedding space, which contributes to the attack889

success rate as well as semantic coherence. Intu- 890

itively, extending the searching scope boosts per- 891

formance but costs more time. To determine the 892

proper value range, we conduct experiments to 893

study the statistic of step numbers when obtain- 894

ing final adversaries.Results on SST-2 with three 895

models are shown in Figure 5. We can observe 896

that most of the attacks finished before step 30. 897

Therefore, MaxStep = 50 is virtually enough for 898

an adequate search, and it can also be adjusted to 899

trade-off time costs and attack success rate. 900
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Algorithm 1 T-PGD
Require: Original input x sampled from X
Ensure: Adversary of x

1: Randomly mask one word in x
2: E0 = f (x)
3: AdvList=[]
4: for j < MaxIter do
5: for i < MaxStep do
6: gadv = ∇δL (Ei, y; θi)
7: δi+1 = Proj‖δ‖F≤ε (δi + αgadv/‖gadv‖F )
8: Ei+1 = Ei + δi+1

9: hi+1 = f1(Ei+1)
10: Advi+1 = Dec(hi+1)
11: θi+1 = θi - η·gadv
12: if Advi+1 not in AdvList then
13: Append Advi+1 to AdvList
14: Query victim model with Advi+1

15: if attack succeed and USE(Adv, Ori) > USE_GATE and no antonyms then
16: return Advi+1

17: end if
18: end if
19: end for
20: E0 = E0 + 1√

NE0

Uniform (−ε, ε)
21: end for

Figure 5: The statistic of perturbation step numbers when successfully obtaining final adversaries. The three
pictures represent results on BERT, RoBERTa, and ALBERT in turn.
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