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ABSTRACT

Deep neural networks may easily memorize noisy labels present in real-world data,
which degrades their ability to generalize. It is therefore important to track and
evaluate the robustness of models against noisy label memorization. We propose
a metric, called susceptibility, to gauge such memorization for neural networks.
Susceptibility is simple and easy to compute during training. Moreover, it does not
require access to ground-truth labels and it only uses unlabeled data. We empir-
ically show the effectiveness of our metric in tracking memorization on various
architectures and datasets and provide theoretical insights into the design of the
susceptibility metric. Finally, we show through extensive experiments on datasets
with synthetic and real-world label noise that one can utilize susceptibility and the
overall training accuracy to distinguish models that maintain a low memorization
on the training set and generalize well to unseen clean data.

1 INTRODUCTION

Deep neural networks are prone to memorizing noisy labels in the training set, which are inevitable in
many real world applications (Frénay & Verleysen, |[2013; Zhang et al.,[2016; |Arpit et al.,|2017; Song
et al.| 2020a; Nigam et al., 2020; Han et al.,|2020; |[Zhang et al., 202 1a; Wei et al.,|2021). Given a new
dataset that contains clean and noisy labels, one refers to the subset of the dataset with correct labels
(respectively, with incorrect labels due to noise), as the clean (respectively, noisy) subset. When
neural networks are trained on such a dataset, it is important to find the sweet spot from no fitting at
all to fitting every sample. Indeed, fitting the clean subset improves the generalization performance
of the model (measured by the classification accuracy on unseen clean data), but fitting the noisy
subset, referred to as “memorization’ﬂ degrades its generalization performance. New methods have
been introduced to address this issue (for example, robust architectures (Xiao et al., 2015} [Li et al.,
2020), robust objective functions (Li et al.,2019; |Ziyin et al., 2020)), regularization techniques (Zhang
et al.,[2017} [Pereyra et al., 2017} Chen et al.,[2019; [Harutyunyan et al., [2020)), and sample selection
methods (Nguyen et al.} 2019)), but their effectiveness cannot be assessed without oracle access to
the ground-truth labels to distinguish the clean and the noisy subsets, or without a clean test set.

Our goal in this paper is to track memorization during training without any access to ground-truth
labels. To do so, we sample a subset of the input data and label it uniformly at random from the set of
all possible labels. The samples can be taken from unlabeled data, which is often easily accessible,
or from the available training set with labels removed. This new held-out randomly-labeled set is
created for evaluation purposes only, and does not affect the original training process.

First, we compare how different models fit the held-out randomly-labeled set after multiple steps of
training on it. We observe empirically that models that have better accuracy on unseen clean test
data show more resistance towards memorizing the randomly-labeled set. This resistance is captured
by the number of steps required to fit the held-out randomly-labeled set. In addition, through our
theoretical convergence analysis on this set, we show that models with high/low test accuracy are
resistant/susceptible to memorization, respectively.

'Fitting samples that have incorrect random labels is done by memorizing the assigned label for each
particular sample. Hence, we refer to it as memorization, in a similar spirit as |Feldman & Zhang| (2020).
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Figure 1: Models trained on CIFAR-10 with 50% label noise. Top (Oracle access to ground-truth labels):
We observe that the fit on the clean subset of the training set (shown in the top left) and the fit on the noisy subset
(located below the fit on the clean subset) affect the predictive performance (measured by the classification
accuracy) on unseen clean test data differently. Fitting the clean (resp., noisy) subset improves (resp., degrades)
test accuracy, as shown by the green (resp., red) arrow. With oracle access to ground-truth label, one can
therefore select models with a high fit on the clean subset and a low fit on the noisy subset, as it is done in the
top right to find desirable models. Bottom (Our approach in practice): In practice however, the ground-truth
label, and hence the fit on the clean and noisy subsets are not available. In this paper, we propose the metric
called susceptibility ¢ to track the fit on the noisy subset of the training set. Susceptibility is computed using a
mini-batch of data that are assigned with random labels independently from the dataset labels. We observe a
strong correlation between susceptibility and memorization. Moreover, the susceptibility metric together with
the training accuracy on the entire set, is used to recover models with low “memorization” (low fit on the noisy
subset) and high “trainability” (high fit on the clean subset) without any ground-truth label oracle access. The
average test accuracy of models in the top-left rectangle of the right figures are 77.9314.68% and 76.15.16.32%
for the oracle and our approach, respectively. Hence, our method successfully recovers desirable models.

Building on this result, we then propose an easy-to-compute metric that we call susceptibility to
noisy labels, which is the difference in the objective function of a single mini-batch from the held-out
randomly-labeled set, before and after taking an optimization step on it. At each step during training,
the larger this difference is, the more the model is affected by (and is therefore susceptible to) the noisy
labels in the mini-batch. Figure [T](bottom left) provides an illustration of the susceptibility metric.
We observe a strong correlation between the susceptibility and the memorization within the training
set, which is measured by the fit on the noisy subset. We then show how one can utilize this metric
and the overall training accuracy to distinguish models with a high test accuracy across a variety of
state-of-the-art deep learning models, including DenseNet (Huang et al, 2017)), EfficientNet
2019), and ResNet architectures, and various datasets including synthetic
and real-world label noise (Clothing-1M, Animal-10N, CIFAR-10N, Tiny ImageNet, CIFAR-100,
CIFAR-10, MNIST, Fashion-MNIST, and SVHN), see Figure|I| (right). Our main contributions and
takeaways are summarized below:

1. We empirically observe and theoretically show that models with a high test accuracy are
resistant to memorizing a randomly-labeled held-out set (Sections [2] and 3)).

2. We propose the susceptibility metric, which is computed on a randomly-labeled subset
of the available data. Our extensive experiments show that susceptibility closely tracks
memorization of the noisy subset of the training set (Section 3).

3. We observe that models which are trainable and resistant to memorization, i.e., having a
high training accuracy and a low susceptibility, have high test accuracies. We leverage this
observation to propose a model-selection method in the presence of noisy labels (Section ).

4. We show through extensive experiments that our results are persistent for various datasets,
architectures, hyper-parameters, label noise levels, and label noise types (Section[6).
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Figure 2: The evolution of output prediction of two neural networks during training on a single sample with a
wrong randomly-assigned label (assigned label is “cat” while ground-truth label is “deer”) versus the number
of epochs (steps) k. Networkl1 is a GoogLeNet (Szegedy et al.,2015) (pre-)trained on CIFAR-10 dataset with
clean labels and has initial test accuracy of 95.36%. Network?2 is a GoogLeNet (pre-)trained on CIFAR-10
dataset with 50% label noise level and has initial test accuracy of 58.35%. Network2 has a lower test accuracy
compared to Network1, and we observe that it memorizes this new sample after only & = 2 steps. In contrast,
Network1 persists in predicting the correct output for this sample for longer, and memorizes the new sample
only after k& = 99 steps. More examples and an ablation study on the effect of calibration are given in Figures
and|[T4]in Appendix D] respectively.

Related work |Garg et al.|(2021a) show that for models trained on a mixture of clean and noisy data,
a low accuracy on the noisy subset of the training set and a high accuracy on the clean subset of the
training set guarantee a low generalization error. With oracle access to the ground-truth labels to
compute these accuracies, one can therefore predict which models perform better on unseen clean
data. This is done in Figure[T] (Oracle part). However, in practice, there is no access to ground-truth
labels. Our work therefore complements the results of (Garg et al.,|2021a)) by providing a practical
approach (see Figure[T] (Practice part)). Moreover, both our work and (Zhang et al.l 2019¢) emphasize
that a desirable model differentiates between fitting clean and noisy samples. |[Zhang et al.| (2019¢c)
showcase this intuition by studying the drop in the training accuracy of models trained when label
noise is injected in the dataset. We do it by studying the resistance/susceptibility of models to noisy
labels of a held-out set. [Zhang et al.| (2019¢) only study the training accuracy drop for settings where
the available training set is clean. However, when the training set is itself noisy, which is the setting
of interest in our work, we observe that this training accuracy drop does not predict memorization,
unlike our susceptibility metric (see Figure 9] (left) in Appendix[A). Furthermore, even though the
metric proposed in|Lu & He|(2022) is rather effective as an early stopping criterion, it is not able to
track memorization, contrary to susceptibility (see Figure 0] (middle)). For a thorough comparison to
other related work refer to Appendix [A]

2 GOOD MODELS ARE RESISTANT TO MEMORIZATION

Consider models fw(x) with parameter matrix W trained on a dataset S = {(x;,¥;)}7, which is
a collection of n input-output pairs that are drawn from a data distribution D over X x ) in a
multi-class classification setting. We raise the following question: How much are these models
resistant/susceptible to memorization of a new low-label-quality (noisy) dataset when they are trained
on it? Intuitively, we expect a model with a high accuracy on correct labels to stay persistent on
its predictions and hence to be resistant to the memorization of this new noisy dataset. We use the
number of steps that it requires to fit the noisy dataset, as a measure for this resistance. The larger this
number, the stronger the resistance (hence, the lower the susceptibility). In summary, we conjecture
that models with high test accuracy on unseen clean data are more resistant to memorization of noisy
labels, and hence take longer to fit a randomly-labeled held-out set.

To mimic a noisy dataset, we create a set with random labels. More precisely, we define a randomly-
labeled held-outset of samples S = {(X;,7:)}7. which is generated from 7 unlabeled samples

{X;}7 ~ X that are either accessible, or are a subset of {X; }". The outputs 7; of dataset S are drawn
independently (both from each other and from labels in S) and uniformly at random from the set

of possible classes. Therefore, to fit S , the model needs to memorize the labels. We track the fit
(memorization) of a model on .S after k£ optimization steps on the noisy dataset .S.

We perform the following empirical test. In Figure[2] we compare two deep neural networks. The
first one has a high classification accuracy on unseen clean test data, whereas the other one has a low
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test accuracy. We then train both these models on a single sample with an incorrect label (S contains
a single incorrectly-labeled sample). We observe that the model with a high test accuracy takes a
long time (in terms of number of training steps) to fit this sample; hence this model is resistant to
memorization as the number of steps & required to fit S is large. In contrast, the model with a low
test accuracy memorizes this sample after taking only a few steps; hence this model is susceptible to
memorization as k required to fit S is smal This observation reinforces our intuition, that good
models, measured by a high test accuracy, are more resistant to memorization of noisy labels.

Next, we further validate this observation theoretically by performing a convergence analysis on
the held-out set S, where the input samples {X;}7 of S are the same as the inputs of dataset S (and
hence 71 = n). We consider the binary-classification setting. The output vector y = (71, - - - ,ﬂn)T is
a vector of independent random labels that take values uniformly in {—1, 1}. Therefore, creating this
dataset S does not require extra information, and in particular no access to the data distribution D.
Consider the network fw(x) as a two-layer neural network with ReLU non-linearity (denoted by
o(z) = max{x,0}) and m hidden-units:

m

g aro wfx

where x € R? is the input vector, W = (w1, -+ ,w,;,) € R>*™ a = (ay,--- ,a,,) € R™ are the
weight matrix of the first layer, and the weight vector of the second layer, respectively. For simplicity,
the outputs associated with the inputs {x; }T are denoted by vector fwy € R™ instead of { fw(x;)}}.
The first layer weights are initialized as w,-(0) ~ N (0, xI) Vr € [m], where 0 < x < 1 is the
magnitude of initialization and A denotes the normal distribution. a,.s are independent random
variables taking values uniformly in {—1, 1}, and are considered to be fixed throughout training.

We define the objective function on datasets .S and s, respectively, as

%Z(fW(Xi)fyi)Qv lz fW Xz yz . (1)
=1

1 2
DO(W) = = ||fw — =
W)= 3t -¥l3 =5 >

Label noise level (LNL) of .S (and accordingly of the label vector y) is the ratio ny /n, where n; is the
number of samples in S that have labels that are independently drawn uniformly in {—1,1}, and the
remaining n — ny samples in .S have the ground-truth label. The two extremes are S with LNL = 0,
which is the clean dataset, and .S with LNL = 1, which is a dataset with entirely random labels.

To study the convergence of different models on S , we compute the objective function &)(W) after k

steps of training on the dataset S. Therefore, the overall training/evaluation procedure is as follows;
for r € [m], the second layer weights of the neural network are updated according to gradient descent:

0% (W(t))

Wt 1) = wi(t) = ==

where for 0 < t < k: ® = ®, and for k g t<k+ l%ig = <T> whereas 7 is the learning rate. Note
that we refer to ®(W(¢)) as ®(¢) and to P(W(t)) as ®(¢).

When a model fits the set §, the value of ® becomes small, say below some threshold 5.~The
resistance of a model to memorization (fit) on the set .S is then measured by the number of steps k* (&)

such that ®(k + k) < e for k > k*(¢). The larger (respectively, smaller) k* is, the more the model is
resistant (resp, susceptible) to this memorization. We can reason on the link between good model
and memorization from the following proposition.

Proposition 1 (Informal). The objective function ®  at step k + kisa decreasing function of the label
noise level (LNL) in S, and of the number of steps k.

Interestingly, we observe that the situation is different for a correctly-labeled sample. Figure[13|in Ap-
pendix [D]shows that models with a higher test accuracy typically fit an unseen correctly-labeled sample faster
than models with a lower test accuracy.
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Figure 3: Accuracy on the noisy subset of the training set versus susceptibility ¢(¢) (Equation (2))) for
deep convolutional neural networks (ranging from a 5—layer cnn to more sophisticated structures such as
EfficientNet (Tan & Le, 2019)) trained on CIFAR-10 with 50% label noise. We observe a strong Pearson
correlation coefficient between Train ACC Noisy and ((t): p = 0.884.

Proposition[I] yields that models trained on S with a low LNL (which are models with a high test
accuracy on clean data) push <I>(k + k:) to become large. The number of steps k*( ) should therefore
be large for ® to become less than e: these models resist to the memorization of S. Conversely,
models trained on S with a high LNL (which are models with a low test accuracy), allow for k*( )

to be small and give up rapidly to the memorization of S. These conclusions match the empirical
observation in Figure[2] and therefore further support the intuition that good models are resistant to
memorization. Please refer to Section [3]for the formal theoretical results that produce Proposition I}

3 EVALUATING RESISTANCE TO MEMORIZATION

In Section [2] we showed that desirable models in terms of high classification accuracy on unseen
clean data are resistant to the memorization of a randomly-labeled set. In this section, we describe a
simple and computationally efficient metric to measure this resistance. To evaluate it efficiently at
each step of the forward pass, we propose to take a single step on multiple randomly labeled samples,
instead of taking multiple steps on a single randomly labeled sample (as done in Figure[2). To make

the metric even more computationally efficient, instead of the entire randomly labeled set S (as in our
theoretical developments), we only take a single mini-batch of S. For simplicity and with some abuse
of notation, we still refer to this single mini-batch as S.

To track the prediction of the model over multi-
ple samples, we compare the objective function

on S before and after taking a single optimiza-

Algorithm 1 Computes the susceptibility to noisy
labels ¢

tion step on it. The learning rate, and its sched-
ule, have a direct effect on this single optimiza-
tion step. For certain learning rate schedules, the
learning rate might become close to zero (e.g.,
at the end of training), and hence the magnitude
of this single step would become too small to be
informative. To avoid this, and to account for the
entire history of the optimization trajectoryﬂ we
compute the average difference over the learning
trajectory (a moving average). We propose the
following metric, which we call susceptibility to
noisy labels, ((t). At step t of training,

m=1y 5w

=1

<T>(W(T+1))} 7

N )
where W (1), W (7 + 1) are the model param-
eters before and after a single update step on

S. Algorlthml descrlbes the computation of (.

10:  Compute ((t) =

1: Input: Dataset .S, Number of Epochs T’

2: Sample a mini-batch S from S; Replace its
labels with random labels

3: Initialize network fyw(o)

4: Initialize ¢ ( ) =0

5:fort=1,---,T do

6: Update fw(t from fy(;—1) using dataset S

7. Compute ®(W(t))

8:  Update fw i+1) from fyy ;) using dataset S
9:  Compute ®(W(t + 1))

%[(t - 1)¢Ct - 1) +
B(W(t) — BW(t +1))]

11: end for
12: Return (.

3The importance of the entire learning trajectory including its early phase is emphasized in prior work such

as (Jastrzebski et al.,[2020).
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Figure 4: The effect of filtering the models based on the susceptibility metric {(¢) for models trained on
CIFAR-10 with 50% label noise. We observe that by removing models with a high value of ¢(¢), the correlation
between the training accuracy (accessible to us in practice) and the test accuracy (not accessible) increases a
lot, and we observe that among the selected models, a higher training accuracy implies a higher test accuracy.
Refer to Figures[T6] [T8] 21} [24] [26] for similar results on 5 other datasets. We use a threshold such that half of the
models have ¢ < threshold and hence remain after filtration.

The lower ((t) is, the less the model changes its predictions for S after a single step of training on
it and thus the less it memorizes the randomly-labeled samples. We say therefore that a model is
resistant (to the memorization of randomly-labeled samples) when the susceptibility to noisy labels
¢(t) is low.

Susceptibility ¢ tracks memorization for different models The classification accuracy of a model
on a set is defined as the ratio of the number of samples where the label predicted by the model
matches the label on the dataset, to the total number of samples. We refer to the subset for which
the dataset label is different from the ground-truth label as the noisy subset of the training set. Its
identification requires access to the ground-truth label. Recall that we refer to memorization within
the training set as the fit on the noisy subset, which is measured by the accuracy on it. We call this
accuracy “Train ACC Noisy” in short. In Figure[3] we observe a strong positive correlation between
the memorization of the held-out randomly labeled set, which is tracked by ((¢) (Equation (2)) and
the memorization of noisy labels within the training set, tracked by Train ACC Noisy. Susceptibility
¢, which is computed on a mini-batch with labels independent from the training set, can therefore
predict the resistance to memorization of the noisy subset of the training set. In Figure[36] we show
the robustness of susceptibility ¢ to the mini-batch size, and to the choice of the particular mini-batch.

Susceptibility ¢ tracks memorization for a single model It is customary when investigating
different capabilities of a model, to keep checkpoints/snapshots during training and decide which
one to use based on the desired property, see for example (Zhang et al.||2019a; |Chatterji et al., 2019
Neyshabur et al., |2020; |Andreassen et al., [2021; Baldock et al., 2021)). With access to ground-truth
labels, one can track the fit on the noisy subset of the training set to find the model checkpoint with the
least memorization, which is not necessarily the end checkpoint, and hence an early-stopped version
of the model. However, the ground-truth label is not accessible in practice, and therefore the signals
presented in Figure 3] (left) are absent. Moreover, as discussed in Figure[7] the training accuracy on
the entire training set is also not able to recover these signals. Using susceptibility (, we observe that
these signals can be recovered without any ground-truth label access, as shown in Figure [3](right).
Therefore, ¢ can be used to find the model checkpoint with the least memorization. For example,
in Figure 3] for the ResNet model, susceptibility ¢ suggests to select model checkpoints before it
sharply increases, which exactly matches with the sharp increase in the fit on the noisy subset. On the
other hand, for the MobileNet model, susceptibility suggests to select the end checkpoint, which is
also consistent with the selection according to the fit on the noisy subset.

4 GOOD MODELS ARE RESISTANT AND TRAINABLE

When networks are trained on a dataset that contains clean and noisy labels, the fit on the clean
and noisy subsets affect the generalization performance of the model differently. Therefore, as we
observe in Figure al for models trained on a noisy dataset (details are deferred to Appendix [B), the
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Figure 5: For models trained on CIFAR-10 with 50% label ~Figure 6: The lower (dashed lines) and upper
noise, using the average values of {(¢) and of the training (solid lines) bound terms of Theorem 2] that de-
accuracy over the available models we can obtain 4 different pend on the label noise level (LNL). They are
regions. Region 1: Trainable and resistant, with average test computed from the eigenvectors and eigenval-
accuracy of 76%. Region 2: Trainable but not resistant, with  ues of the Gram-matrix for 1000 samples of
average test accuracy of 70.59%. Region 3: Not trainable but  the MNIST dataset, computed over 10 random
resistant, with average test accuracy of 52.49%. Region 4: draws computed with hyper-parameters 1 =
Neither trainable nor resistant, with average test accuracy of 107%, k& = 10000 and § = 0.05. We observe
58.23%. We observe that the models in Region 1 generalize the bounds in Theorem 2] are a decreasing func-
well on unseen data, as they have a high test accuracy. tion of LNL.

correlation between the training accuracy (accuracy on the entire training set) and the test accuracy
(accuracy on the unseen clean test set) is low. Interestingly however, we observe in Figure [4b|
that if we remove models with a high memorization on the noisy subset, as indicated by a large
susceptibility to noisy labels (t), then the correlation between the training and the test accuracies
increases significantly (from p = 0.608 to p = 0.951), and the remaining models with low values
of {(t) have a good generalization performance: a higher training accuracy implies a higher test
accuracy. This is especially important in the practical settings where we do not know how noisy the
training set is, and yet must reach a high accuracy on clean test data.

After removing models with large values of {(t), we select models with a low label noise memo-
rization. However, consider an extreme case: a model that always outputs a constant is also low at
label noise memorization, but does not learn the useful information present in the clean subset of the
training set either. Clearly, the models should be “trainable” on top of being resistant to memorization.
A “trainable model" is a model that has left the very initial stages of training, and has enough capacity
to learn the information present in the clean subset of the dataset to reach a high accuracy on it. The
training accuracy on the entire set is a weighted average of the training accuracy on the clean and
noisy subsets. Therefore, among the models with a low accuracy on the noisy subset (selected using
susceptibility ¢ in Figure @b), we should further restrict the selection to those with a high overall
training accuracy, which corresponds to a high accuracy on the clean subset.

We can use the two metrics, susceptibility to noisy labels ((¢) and overall training accuracy, to
partition models that are being trained on some noisy dataset in four different regions using their
average values, as shown in Figure[5} Region 1: Trainable and resistant to memorization, Region 2:
Trainable but not resistant, Region 3: Not trainable but resistant, and Region 4: Neither trainable nor
resistant. Note that the colors of each point, which indicate the value of the test accuracy are only for
illustration and are not used to find these regions. The average test accuracy is the highest for models
in Region 1 (i.e., that are resistant to memorization on top of being trainable). In particular, going from
Region 2 to Region 1 increases the average test accuracy of the selected models from 70.59% to 76%,
i.e., a 7.66% relative improvement in the test accuracy. This improvement is consistent with other
datasets as well: 6.7% for Clothing-1M (Figure [29a)), 4.2% for Animal-10N (Figure 29b)), 2.06%
for CIFAR-10N (Figure[29d), 31.4% for noisy MNIST (Figure[13)), 33% for noisy Fashion-MNIST
(Figure[17), 33.6% for noisy SVHN (Figure[19), 15.1% for noisy CIFAR-100 (Figure 22), and 8%
for noisy Tiny ImageNet (Figure [25) datasets (refer to Appendix [E] for detailed results).

Comparison with a noisy validation set: Given a dataset containing noisy labels, a correctly-
labeled validation set is not accessible without ground-truth label access. One can however use
a subset of the available dataset and assess models using this noisy validation set. An important
advantage of our approach compared to this assessment is the information that it provides about
the memorization within the training set, which is absent from performance on a test or a noisy
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validation set. For example, in Figures [34aand [35a] we observe models (on the very top right) that
have memorized 100% of the noisy subset of the training set, and yet have a high test accuracy.
However, some models (on the top middle/left part), which have the same fit on the clean subset but
lower memorization, have lower or similar test accuracy. Even the test accuracy was therefore not
able to compare these models in terms of memorization. For more details, refer to Appendix [C}

Moreover, as formally discussed in (Lam & Stork, [2003)), the number of noisy validation samples
that are equivalent to a single clean validation sample depends on the label noise level of the dataset
and on the true error rate of the model, which are both unknown in practice, making it difficult to
pick an acceptable size for the validation set without compromising the training set. If we use a small
validation set (which allows for a large training set size), then we observe a very low correlation
between the validation and the test accuracies (as reported in Table [I|and Figure [T0]in Appendix [C).
In contrast, our approach provides much higher correlation to the test accuracy. We also conducted
experiments with noisy validation sets with larger sizes and observed that the size of the noisy
validation set would need to be increased around ten-fold to reach the same correlation as our
approach. Increasing the size of the validation set removes data out of the training set, which may
degrade the overall performance, whereas our approach leaves the entire available dataset for training.

5 CONVERGENCE ANALYSIS

In this section, we elaborate on the analysis that leads to (the informal) Proposition E} A matrix, a
vector and a scalar are denoted respectively by A, a, and a. The identity matrix is denoted by I. The
indicator function of a random event A is denoted by I(A). The (¢, j)—th entry of Matrix A is A;;.

Consider the setting described in Section 2 with [|x[|, = 1 and |y| < 1 for (x,y) ~ D = X x ),

where X = R? and ) = R. For input samples {x;}7, the n x n Gram matrix H* has entries

x; X; (m — arccos(x; X;
27

and its eigen-decomposition is H* = Y7 | A, ;v;vl, where the eigenvectors v; € R™ are orthonormal

and Ao = min{\;}?. Using the eigenvectors and elgenvalues of H*, we have the following theorem.

Theorem 1. For xk = O (67‘{33/)‘20), m = (ASEQ%), andn = 0O (%), with probability at least

1 — & over the random parameter initialization described in Section[2] we have:

HYY = Eynon [X 5 1{w x; > 0,w'x; > 0}] = )), Vi, j € [n], (3)

y| = Z vIy —vIy — (1 — A" VT 2(1— Ai)2F + e
fwiit) Y, = iY—Viy NA) Vi ¥ NA; .

i=1
The proof is provided in Appendix [J}

Theoremenables us to approximate the objective function on dataset S (Equation (I))) as follows:

~ - 1 _ 2 -
S+ E)~ 5 Y [ 5= (L= p] (1 —ma)* @

i=1

n

where p; = v!'y and p; = v!y. Let us define
n 2 5 ~ _
= ZE b2 [1 (- nxi)"} (1 -, %= Varg, [@(k + k)} . )

We numerically observe that /2 4+ /3 /§ are both decreasing functions of the label noise level

(LNL) of the label vector y, and of k (see Figures @ and. . . E in Appendix @ for different
values of the learning rate 7, number of steps &, and datasets). The approximation in Equation (@)

together with the above observation then yields the following lower and upper bounds for &)(k + l~c)

Theorem 2. With probability at least 1 — § over the draw of the random label vector'y, given the
approximation made in Equation (@),

B2 IS~ S E
5 <O(k+k)— ;1 i)’ <S5 (6)

oo
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The proof is provided in Appendix @ Because the term -, (1 — n/\i)% is independent of LNL of
the label vector y, we can conclude that &)(kj— l;:) is a decreasing function of LNL. Moreover, Since
0<1l-—nX\ <1 theterm) ;  (1— n)\i)zk is also a decreasing function of k. Therefore, similarly,
we can conclude that 5(1@ + I;:) is a decreasing function of k. Proposition summarizes this result.

6 ON THE GENERALITY OF THE OBSERVED PHENOMENA

In this section, we provide additional experiments that show our empirical results hold across different
choices of dataset, training and architecture design as well as label noise level and form.

Dataset: In Appendix we provide a walk-through on how to use our method for real-world
noisy-labeled datasets Clothing-1M, Animal-10N, and CIFAR-10N. Our results consistently hold for
MNIST, Fashion MNIST, SVHN, CIFAR-100, and Tiny ImageNet datasets; see Figures [I5}{29]

Learning rate schedule: Our results are not limited to a specific optimization scheme. In our
experiments, we apply different learning rate schedules, momentum values, and optimizers (SGD and
Adam) (for details see Appendix [B)). More specifically, we show in Figure 31| (in Appendix [F) that
the strong correlation between memorization and our metric ((t) stays consistent for both learning
rate schedulers cosineannealing and exponential.

Architecture: Results of Sections E] and E] are obtained from a variety of architecture families, such
as DenseNet (Huang et al., [2017), MobileNet (Howard et al.}2017), VGG (Simonyan & Zisserman),
2014), and ResNet (He et al., [2016a). For the complete list of architectures, see Appendix [B| We
observe that ((¢) does not only detect resistant architecture families (as done for example in Figure 3),
but that it is also able to find the best design choice (e.g., width) among configurations that are already
resistant, see Figure[30]in Appendix

Low label noise levels: For models trained on CIFAR-10 and CIFAR-100 datasets with 10% label
noise (instead of 50%), we still observe a high correlation between accuracy on the noisy subset and
¢(t) in Figures[32|and [33|in Appendix |[Fl Moreover, we observe in Figures[34|and [35|in Appendix E]
that the average test accuracy of the selected models using our metric is comparable with the average
test accuracy of the selected models with access to the ground-truth label.

Asymmetric label noise: In addition to the real-world label noises and synthetic symmetric label
noise, we have also performed experiments with synthetic asymmetric label noise as proposed in
(Xia et al., [2021). Using our approach, the average test accuracy of the selected models is 66.307%,
whereas the result from oracle is 66.793% (see Figure [38|in Appendix [E).

7 CONCLUSION

We have proposed a simple but surprisingly effective approach to track memorization of the noisy
subset of the training set using a single mini-batch of unlabeled data. Our contributions are three-fold.
First, we have shown that models with a high test accuracy are resistant to memorization of a held-out
randomly-labeled set. Second, we have proposed a metric, susceptibility, to efficiently measure
this resistance. Third, we have empirically shown that one can utilize susceptibility and the overall
training accuracy to distinguish models (whether they are a single model at various checkpoints, or
different models) that maintain a low memorization on the training set and generalize well to unseen
clean data while bypassing the need to access the ground-truth label. We have studied model selection
in a variety of experimental settings and datasets with label noise, ranging from selecting the “best”
models from “good” models (for easy datasets such as Animal-10N) to selecting “good” models from
“bad” models (for more complex datasets such as Clothing-1M).

Our theoretical results have direct implications for online settings. When the quality of the labels
for new data stream is low, Theorem T|can directly compare how different models converge on this
low quality data, and help in selecting resistant models, which converge slowly on this data. Our
empirical results provide new insights on the way models memorize the noisy subset of the training
set: the process is similar to the memorization of a purely randomly-labeled held-out set. Finally, an
important direction for future work is to study how susceptibility performs as a regularizer.
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A ADDITIONAL RELATED WORK

Memorization |Arpit et al.|(2017) describe memorization as the behavior shown by neural networks
when trained on noisy data. [Patel & Sastry| (2021) define memorization as the difference in the
predictive performance of models trained on the clean data and on the noisy data distributions,
and propose a robust objective function that resists to memorization. The effect of neural network
architecture on their robustness to noisy labels is studied in (Li et al., 202 1)), which measure robustness
to noisy labels by the prediction performance of the learned representations on the ground-truth
target function. |[Feldman & Zhang|(2020) formally define memorization of a sample for an algorithm
as the inability of the model to predict the output of a sample based on the rest of the dataset, so
that the only way that the model can fit the sample is by memorizing its label. Our definition of
memorization as the fit on the noisy subset of the training set follows the same principle; the fit of a
randomly-labeled individual sample is only possible if the totally random label associated with the
sample is memorized, and it is impossible to predict using the rest of the dataset.

Learning before Memorization Multiple studies have reported that neural networks learn simple
patterns first, and memorize the noisy labeled data later in the training process (Arpit et al.l 2017; |Gu
& Tresp, |2019; |[Krueger et al., 2017} |Liu et al., 2020). Hence, early stopping might be useful when
learning with noisy labels. Parallel to our study, Lu & He| (2022) propose early stopping metrics
that are computed on the training set. These early stopping metrics are computed by an iterative
algorithm (either a GMM or k-Means) on top of the training loss histograms. This adds computational
overhead compared to our approach, which is based on a simple metric that can be computed on the
fly. Moreover, we can observe in Figure E]that the metric proposed in|Lu & He|(2022)), which is the
mean difference between distributions obtained from the GMM applied on top of the training losses,
does not correlated with memorization on the training set, as opposed to our metric susceptibility.
Hence, we can conclude that, even though the mean difference metric might be a rather well early
stopping criterion for a single setting, it does not perform well in terms of comparing different settings
to one another. Moreover, [Rahaman et al.| (2019); [Xu et al.| (2019a3b) show that neural networks
learn lower frequencies in the input space first and higher frequencies later. However, the monotonic
behaviour of neural networks during the training procedure is recently challenged by the epoch-wise
double descent (Zhang et al.| | 2020; Nakkiran et al.,[2021). When a certain amount of fit is observed
on the entire training set, how much of this fit corresponds to the fit on the clean and noisy subsets,
respectively, is still unclear. In this paper, we propose an approach to track the fit to the clean subset
and the fit to the noisy subset (memorization) explicitly.

Training Speed [Lyle et al|(2020) show there is a connection between training speed and the
marginal likelihood for linear models. Jiang & Gal also find an explanation for the connection
between training speed and generalization, and [Ru et al.| (2021)) use this connection for neural
architecture search. However, in Figure[7] we observe that a sharp increase in the training accuracy (a
high training speed), does not always indicate an increase in the value of accuracy on the noisy subset.
This result suggests that studies that relate training speed with generalization (Lyle et al., [2020; Ru
et al.,|2021)) might not be extended as such to noisy-label training settings. On the other hand, we
observe a strong correlation between susceptibility ¢ and accuracy on the noisy subset.

Leveraging Unlabeled/Randomly-labeled Data Unlabeled data has been leveraged previously
to predict out-of-distribution performance (when there is a mismatch between the training and test
distributions) (Garg et al.| 2021b). [Li et al.| (2019) introduce synthetic noise to unlabeled data,
to propose a noise-tolerant meta-learning training approach. Zhang et al| (2021b)) use randomly
labeled data to perform neural architecture search. In our paper, we leverage unlabeled data to track
memorization of label noise.

Benefits of Memorization Studies on long-tail data distributions show potential benefits from
memorization when rare and atypical instances are abundant in the distribution (Feldman) [2020;
Feldman & Zhang] [2020; Brown et al., [2021)). These studies argue that the memorization of these
rare instances is required to guarantee low generalization error. On a separate line of work, previous
empirical observations suggest that networks trained on noisy labels can still induce good representa-
tions from the data, despite their poor generalization performance (Li et al.| 2020; Maennel et al.|
2020). In this work, we propose an approach to track memorization when noisy labels are present.
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Figure 7: Accuracy on the entire, the clean and the noisy subsets of the training set, versus suscepti-
bility in Equation (2)) for a 5—layer convolutional neural network trained on CIFAR-10 with 50%
label noise without any regularization, with Mixup (Zhang et all,[2017), and with Active Passive
loss using the normalized cross entropy together with reverse cross entropy loss (denoted by NCE)
[2020). The sharp increases in the overall training accuracy (illustrated by the red and
yellow stars) can be caused by an increase in the accuracy of either the clean (the yellow star) and
noisy (the red star) subsets. Therefore, this sharp increase could not predict memorization, contrary
to the susceptibility ¢, which is strongly correlated with the accuracy on the noisy subset (Pearson
correlation between Train ACC Noisy and susceptibility ¢ is p = 0.636).

Theoretical Results To analyze the convergence of different models on some randomly labeled
set, we rely on recent results obtained by modelling the training process of wide neural networks by
neural tangent kernels (NTK) (Du et al.| 2018}, Jacot et al., 2018}, [Allen-Zhu et al.,[2018; [Arora et al.,
[2019; [Bietti & Mairal, 2019} [Lee et al., 2019). In particular, the analysis in our paper is motivated by
recent work on convergence analysis of neural networks (Du et al.,[2018}; [Arora et al.} 2019). |Arora
perform fine-grained convergence analysis for wide two-layered neural networks using
gradient descent. They study the convergence of models trained on different datasets (datasets with
clean labels versus random labels). In Section[5] we study the convergence of different models trained
on some randomly-labeled set. In particular, our models are obtained by training wide two-layered
neural networks on datasets with varying label noise levels. As we highlight in the proofs, our work
builds on previous art, especially (Du et al.,[2018}; [Arora et al.,[2019), yet we build on a non-trivial
way and for a new problem statement.

Robustness to Adversarial Examples Deep neural networks are vulnerable to adversarial samples
(Szegedy et all 2013} [Goodfellow et al., 2014}; [Akhtar & Mian| [2018): very small changes to the
input image can fool even state-of-the-art neural networks. This is an important issue that needs to be
addressed for security reasons. To this end, multiple studies towards generating adversarial examples
and defending against them have emerged (Carlini & Wagner}, 2017} [Papernot et al.,[2016b}a} [Athalye
2018). As a side topic related to the central theme of the paper, we examined the connection
between models that are resistant to memorization of noisy labels and models that are robust to
adversarial attacks. Figure [§]compares the memorization of these models trained on some noisy
dataset, with their robustness to adversarial attacks. We do not observe any positive or negative
correlation between the two. Some models are robust to adversarial attacks, but perform poorly
when trained on datasets with noisy labels, and vice versa. This means that the observations made
in this paper are orthogonal to the ongoing discussion regarding the trade-off between robustness
to adversarial samples and test accuracy (Tsipras et al.| 2018} [Stutz et al., 2019} [Yang et al., 2020},
[Pedraza et al., 2021}, [Zhang et al.l 2019b; [Yin et al., 2019).
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Figure 8: SimBa (Guo et al., 2019) adversarial attack success rate versus accuracy on the noisy subset
of the training set for networks trained on CIFAR-10 with 50% label noise. To evaluate robustness of
different models with respect to adversarial attacks, we compare the success rate of the adversarial
attack SimBa proposed in (Guo et al.| [2019)) after 1000 iterations. We observe no correlation between
the success rate and neither accuracy on the noisy subset nor susceptibility C.
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Figure 9: Left: Accuracy on the noisy subset of the training set, versus the training accuracy
drop presented in (Zhang et al., [2019c])) for the following neural network configurations trained on
the CIFAR-10 dataset with 50% label noise: a 5-layer convolutional neural network, DenseNet,
EfficientNet, MobileNet, MobileNetV2, RegNet, ResNet, ResNeXt, SENet, and ShuffleNetV2. As
proposed in (Zhang et al.,|2019¢), to compute the training accuracy drop, we create a new dataset
from the available noisy training set, by replacing 25% of its labels with random labels. We then
train these networks on the new dataset, and then compute the difference in the training accuracy
of the two setups, divided by 25 (the level of label noise that was injected). This is reported above
as Train ACC Drop. (Zhang et al.,[2019c¢) state that desirable networks should have a large drop;
therefore there should ideally be a negative correlation between the training accuracy drop and the
accuracy on the noisy subset. However, we observe a slight positive correlation. Therefore, it is
difficult to use the results of Zhang et al.|(2019¢)) to track memorization, i.e., training accuracy on the
noisy subset. Middle: Accuracy on the noisy subset of the training set, versus the mean difference
between the distributions obtained by applying GMM on the training losses, which is proposed in
Lu & He[(2022) as an early stopping criterion. We observe a negative correlation between the two,
and hence conclude that this metric cannot be used to compare memorization of different settings at
different stages of training. Right: As opposed to the other two metrics, we observe a strong positive
correlation between our metric susceptibility ( and memorization.
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B EXPERIMENTAL SETUP

Generating Noisy-labeled Datasets We modify original datasets similarly to|Chatterjee| (2020); for
a fraction of samples denoted by the label noise level (LNL), we replace the labels with independent
random variables drawn uniformly from {1,--- ,c} for a dataset with ¢ number of classes. On

average (1 — LNL) + (LNL) - 1/c of the samples still have their correct labels. Note that LNL for S
is 1.

Experiments of Figures 2} [12}[13] and [I4] The models at epoch 0 are pre-trained models on either
the clean or noisy versions of the CIFAR-10 dataset for 200 epochs using SGD with learning rate
0.1, momentum 0.9, weight decay 5 - 10~4, and cosineannealing learning rate schedule with
T max = 200. The new sample is a sample drawn from the training set, and its label is randomly
assigned to some class different from the correct class label. In Figure the new sample is an
unseen sample drawn from the test set.

CIFAR-I(ﬂ Experiments The models are trained for 200 epochs on the cross-entropy
objective function using SGD with weight decay 5 - 10~* and batch size 128. The
neural network architecture options are: cnn (a simple 5-layer convolutional neu-
ral network), DenseNet (Huang et al., 2017), EfficientNet (Tan & Lel 2019) (with
scale=0.5, 0.75, 1, 1.25, 1.5),GooglLeNet (Szegedy etal.,[2015), MobileNet (Howard
et al, 2017) (with scale=0.5, 0.75, 1, 1.25, 1.5), ResNet (He et al.), [2016a),
MobileNetV2 (Sandler et al.l 2018) (with scale=0.5, 0.75, 1, 1.25, 1.5), Preact
ResNet (He et al.,2016b), RegNet (Radosavovic et al.,[2020), ResNeXt (Xie et al., 2017), SENet (Hu
et al., [2018)), ShuffleNetV2 (Ma et al.| 2018) (with scale=0.5, 1, 1.5, 2),DLA (Yuetall,
2018)), and VGG (Simonyan & Zisserman) 2014). The learning rate value options are: 0.001, 0.005,
0.01, 0.05, 0.1, 0.5. The learning rate schedule options are: cosineannealing with T max
200, cosineannealing with T max 100, cosineannealing with T max 50, and no learn-
ing rate schedule. Momentum value options are 0.9, 0. In addition, we include experiments with
Mixup (Zhang et al.L|2017), active passive losses: normalized cross entropy with reverse cross entropy
(NCE+RCE) (Ma et al.| 2020), active passive losses: normalized focal loss with reverse cross entropy
(NFL+RCE) (Ma et al.| 2020), and robust early learning (Xia et al.| |2021)) regularizers.

CIFAR-100 Experiments The models are trained for 200 epochs on the cross-entropy objective
function using SGD with learning rate 0.1, weight decay 5 - 10~%, momentum 0.9, learning rate
schedule cosineannealing with T max 200 and batch size 128. The neural network archi-
tecture options are: cnn, DenseNet, EfficientNet (with scale=0.5, 0.75, 1, 1.25, 1.5),
GoogleNet, MobileNet (with scale=0.5, 0.75, 1, 1.25, 1.5),ResNet, MobileNetV2
(with scale=0.5, 0.75, 1, 1.25, 1.5), RegNet, ResNeXt, ShuffleNetV2 (with
scale=0.5, 1, 1.5, 2),DLA, and VGG. In addition, we include experiments with Mixup,
active passive losses: NCE+RCE, active passive losses: NFL+RCE, and robust early learning
regularizers.

SVHN (Netzer et al., 2011) Experiments The models are trained for 200 epochs on the
cross-entropy objective function with learning rate 0.1 and batch size 128. The optimizer
choices are SGD with weight decay 5 - 10~%, and momentum 0.9, and Adam optimizers.
The learning rate schedule options for the SGD experiments are: cosineannealing
with T max 200, and exponential. The neural network architecture options are:
DenseNet, EfficientNet (with scale=0.25, 0.5, 0.75, 1), GooglLeNet (with
scale= 0.25, 1, 1.25), MobileNet  (with scale= 1, 1.25, 1.5, 1.75),

MobileNetV2 (with scale= 1, 1.25, 1.5, 1.75), ResNet (with
scale=0.25, 0.5, 1, 1.25, 1.5, 1.75), ResNeXt, SENet (with
scale=0.25, 0.5, 0.75, 1), ShuffleNetV2 (with scale=0.25, 0.5, 0.75, 1),
DLA (with scale=0.25, 0.5, 0.75, 1), and VGG (with

scale=0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75).

MNISTE] and Fashion-MNIST (Xiao et al., 2017) Experiments The models are trained
for 200 epochs on the cross-entropy objective function with batch size 128, using SGD
with learning rate 0.1, weight decay 5 - 10™%, and momentum 0.9. The learning rate

4https ://www.cs.toronto.edu/~kriz/cifar.html
Shttp://yann.lecun.com/exdb/mnist/
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schedule options are: cosineannealing with T max 200, and exponential.
The neural network architecture options are: AlexNet (Krizhevsky et all [2012) (with
scale=0.25, 0.5, 0.75, 1), ResNetl8 (with scale=0.25, 0.5, 0.75, 1),
ResNet34 (with scale=0.25, 0.5, 0.75, 1), ResNet50 (with
scale=0.25, 0.5, 0.75, 1), VGGI11 (with scale=0.25, 0.5, 0.75, 1), VGGI13
(with scale=0.25, 0.5, 0.75, 1), VGG16 (with scale=0.25, 0.5, 0.75, 1),
VGG19 (with scale=0.25, 0.5, 0.75, 1).

Tiny ImageNet (Le & Yang, |2015) Experiments The models are trained for 200 epochs
on the cross-entropy objective function with batch size 128, using SGD with weight decay
5- 1074, and momentum 0.9. The learning rate schedule options are: cosineannealing
with T max 200, exponential, and no learning rate schedule. The learning rate options are:
0.01,0.05,0.1,0.5. The neural network architecture options are: AlexNet, DenseNet, MobileNetV2,
ResNet, SqueezeNet (Iandola et al.,[2016), and VGG.

Clothing-1M (Xiao et al., 2015) Experiments The models are trained for 20 epochs on the cross-
entropy objective function with batch size 128 using SGD with weight decay 5 - 10~%, and mo-
mentum 0.9. The learning rate schedule options are: cosineannealing with T max 20, and
exponential. The learning rate options are: 0.01,0.005,0.001. The neural network architecture
options are: AlexNet, ResNet18, ResNet 34, ResNeXt, and VGG. Note that because this dataset has
random labels we do not introduce synthetic label noise to the labels.

Animal-10N (Song et al.,[2019) Experiments The models are trained for 50 epochs on the cross-
entropy objective function with batch size 128 using SGD with weight decay 5 - 10~%, and mo-
mentum 0.9. The learning rate schedule options are: cosineannealing with T max 50, and
exponential. The learning rate options are: 0.001,0.005,0.01. The neural network architecture
options are: ResNet18, ResNet34, SqueezeNet, AlexNet and VGG. Note that because this dataset has
random labels we do not introduce synthetic label noise to the labels.

CIFAR-10N (Wei et al., 2022) Experiments On these experiments, we work with the aggregate
version of the label set which has label noise level of 9% (CIFAR-10N-aggregate in Table 1 of [Wei
et al.| (2022)). The models are trained for 200 epochs on the cross-entropy objective function with
batch size 128 using SGD with weight decay 5-10~%, and momentum 0.9 with cosineannealing
learning rate schedule with T max 200. The learning rate options are: 0.1, 0.05. The neural network
architecture options are: cnn, EfficientNet, MobileNet, ResNet, MobileNetV2, RegNet, ResNeXt,
ShuffleNetV2, SENet, DLA and VGG.

Each of our experiments take few hours to run on a single Nvidia Titan X Maxwell GPU.

C COMPARISON WITH BASELINES

Comparison to a Noisy Validation Set Following the notations from [Chen et al.| (2021), let the
clean and noisy data distributions be denoted by D and D, respectively, the classifiers by h, and the
classification accuracy by A. Suppose that the optimal classifier in terms of accuracy on the clean
data distribution is h*, i.e., h* = argmax;, Ap(h). (Chen et al., 2021) states that under certain
assumptions on the label noise, the accuracy on the noisy data distribution is also maximized by
h*, that is h* = argmax;, Ap(h). However, these results do not allow us to compare any two
classifiers hy and ho, because we cannot conclude from the results in (Chen et al.| [2021) that if
Ap(hi) > Ap(hs), then Ag(h1) > Ap(ha). Moreover, it is important to note that these results
hold when the accuracy is computed on unlimited dataset sizes. As stated in (Lam & Storkl [2003), the
number of noisy validation samples that are equivalent to a single clean validation sample depends
on the label noise level and on the true error rate of the model, which are both unknown in practice.
Nevertheless, below we thoroughly compare our approach with having a noisy validation set.

As discussed in Section 4] the susceptibility ¢ together with the training accuracy are able to select
models with a high test accuracy. Another approach to select models is to use a subset of the available
noisy dataset as a held-out validation set. Table[I]provides the correlation values between the test
accuracy on the clean test set and the validation accuracy computed on noisy validation sets with
varying sizes. On the one hand, we observe that the correlation between the validation accuracy and
the test accuracy is very low for small sizes of the noisy validation set. On the other hand, in the same
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Size of the set  [Train Acc| Val Acc | Our approach
10 0.244 0.792
128 0.458 0.890
256 0.707 0.878
512 0.799 0.876
1024 0.513 0.830 0.877
2048 0.902 0.917
4096 0.886 0.912
8192 0.940 0.923
10000 0.956 0.914

Table 1: The Kendall 7 correlation between each metric and the test accuracy for CNN, ResNet,
EfficientNet, and MobileNet trained on CIFAR-10 with 50% label noise, where the validation
accuracy (Val Acc) on a held-out subset of the data and the susceptibility ¢ use a set with the size
indicated in each row. We observe that our approach results in a much higher correlation compared to
using a noisy validation set. Furthermore, our approach is less sensitive to the size of the held-out
set, compared to using a noisy validation set. In particular, to reach the same correlation value, our
approach with set size = 10 is equivalent to using a noisy validation set with size = 512 (highlighted
in red). Also, our approach with set size = 128 is almost equivalent to using a noisy validation set
with size = 1024 (highlighted in blue). Hence, to use a noisy validation set, one requires around
ten-fold the amount of held-out data.

table, we observe that if the same size is used to compute ¢, our approach provides a high correlation
to the test accuracy, even for very small sizes of the held-out set.

In our approach, we first filter out models for which the value of ( exceeds a threshold. We set the
threshold so that around half of the models remain after this filtration. We then report the correlation
between the training and test accuracies among the remaining models. As a sanity check, we doubled
checked that, with this filtration, the model with the highest test accuracy was not filtered out.

Moreover, in Figure[T0} we report the advantage of using our approach compared to using a noisy
validation set for various values of the dataset label noise level (LNL) and the size of the set that
computes the validation accuracy and susceptibility (. We observe that the lower the size of the
validation set, and the higher the LNL, the more advantageous our approach is. Note also that for
high set sizes and low LNLs, our approach produces comparable results to using a noisy validation
set.

Comparison to Label Noise Detection Approaches Another line of work is studying methods that
detect whether a label assigned to a given sample is correct or not (Zhu et al.,2021;|Song et al.| 2020b;
Pleiss et al., [2020; [Pulastya et al., 2021)). Such methods can estimate the clean and noisy subsets.
Then, by tracking the training accuracy on the clean and noisy subsets, similar to what is done in
Figure[5] they can select models that are located in Region 1, i.e., that have a low estimated accuracy
on the noisy subset and a high estimated accuracy on the clean subset. In Figure[IT] we compare the
average test accuracy of models selected by our approach with those selected by such subset-selection
methods. Let X be the accuracy of the detection of the correct/incorrect label of a sample by the
subset selection benchmark: if X = 100%, then the method has full access to the ground truth label
for each label, if X = 90% the method correctly detects 90% of the labels. We observe a clear
advantage of our method for X up to 96%, and comparable performance for X > 96%.
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Figure 10: The Kendall 7 correlation between
our approach and the test accuracy minus the
Kendall 7 correlation between validation ac-
curacy (computed on a noisy set) and the test
accuracy for various label noise levels (LNL)
and set sizes. We observe the advantage of
our approach to using a noisy validation set
particularly for high LNLs and low set sizes.
For other combinations, we also observe com-
parable results (the correlation difference is
very close to zero). Note that the last row can
be recovered from the difference in correla-
tion values of Table[T]
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Figure 11: Comparison between the average test ac-
curacy obtained using our approach and the average
test accuracy obtained using a method that detects
correctly-labeled samples within the training set from
the incorrectly-labeled ones with X % accuracy (the x-
axis). The results are obtained from training {CNN,
ResNet, EfficientNet, MobileNet} x { without regulariza-
tion, +Mixup, +NCERCE, + NFLRCE, +robust early
learning} on CIFAR-10 with 50% label noise. We ob-
serve that to have the same performance as our approach,
such methods require a very high accuracy (above 96%),
and even with higher accuracies, our approach gives
comparable results.
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D ADDITIONAL EXPERIMENTS FOR SECTION

In this section, we provide additional experiments for the observation presented in Section 2] In
Figure [I2] we observe that networks with a high test accuracy are resistant to memorizing a new
incorrectly-labeled sample. On the other hand, in Figure[I3] we observe that networks with a high
test accuracy tend to fit a new correctly-labeled sample faster.
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Figure 12: The evolution of output prediction of two networks that are trained on a single randomly
labeled sample. In all sub-figures, Network 1 has a higher test accuracy compared to Network 2, and
we observe it is less resistance to memorization of the single incorrectly-labeled sample. Example 1:
Network 1 is a ResNeXt trained on CIFAR-10 dataset with 50% random labels and has test accuracy of
58.85%. Network 2 is a ResNeXt that is not pre-trained and has test accuracy of 9.74%. Example 2:
Network 1 is a SENet trained on CIFAR-10 dataset with original labels and has test accuracy of
95.35%. Network 2 is a SENet that is trained on CIFAR-10 with 50% label noise and has test
accuracy of 56.38%. Example 3: Network 1 is a RegNet trained on CIFAR-10 dataset with original
labels and has test accuracy of 95.28%. Network 2 is a RegNet that is trained on CIFAR-10 with
50% label noise and has test accuracy of 55.36%. Example 4: Network 1 is a MobileNet trained on
CIFAR-10 dataset with original labels and has test accuracy of 90.56%. Network 2 is a MobileNet
that is trained on CIFAR-10 with 50% label noise and has test accuracy of 82.76%.

Moreover, we study the effect of calibration on the observations of Figures [2] and [I2] A poor
calibration of a model may affect the confidence in its predictions, which in turn might affect the
susceptibility/resistance to new samples. Therefore, in Figure [T4] we compare models that have
almost the same calibration value. More precisely, Network 1 is trained on the clean dataset, and
Network 2 (calibrated) is a calibrated version of the model that is trained on the noisy dataset using
the Temperature scaling approach (Guo et al., 2017). We observe that even with the same calibration
level, the model with a higher test accuracy is more resistant to memorizing a new incorrectly-labeled
sample.
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Figure 13: The evolution of output prediction of two networks that are trained on a single unseen
correctly-labeled sample. In all sub-figures, Network 1 has a higher test accuracy compared to
Network 2. We observe that give a new correctly-labeled sample Network 2 learns it later, unlike
our observation in Figure 2] for a new incorrectly-labeled sample. Example 1: Network 1 is a
GoogLeNet trained on CIFAR-10 dataset with clean labels and has test accuracy of 95.36%. Network
2 is a GoogLeNet trained on CIFAR-10 dataset with 50% label noise level and has test accuracy
of 58.35%. Example 2: Network 1 is a ResNeXt trained on CIFAR-10 dataset with 50% random
labels and has test accuracy of 58.85%. Network 2 is a ResNeXt that is not pre-trained and has test
accuracy of 9.74%. Example 3: Network 1 is a SENet trained on CIFAR-10 dataset with original
labels and has test accuracy of 95.35%. Network 2 is a SENet that is trained on CIFAR-10 with
50% label noise and has test accuracy of 56.38%. Example 4: Network 1 is a RegNet trained on
CIFAR-10 dataset with original labels and has test accuracy of 95.28%. Network 2 is a RegNet that is
trained on CIFAR-10 with 50% label noise and has test accuracy of 55.36%. Example 5: Network 1
is a MobileNet trained on CIFAR-10 dataset with original labels and has test accuracy of 90.56%.
Network 2 is a MobileNet that is trained on CIFAR-10 with 50% label noise and has test accuracy of
82.76%.
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Figure 14: The evolution of output prediction of networks that are trained on a single randomly
labeled sample. In all sub-figures, Network 1 (trained on the clean dataset) has a higher test accuracy
than Network 2 (trained on the noisy dataset), and we observe it is less resistant to memorization of
the single incorrectly-labeled sample. Furthermore, we have ensured using the temperature scaling
method that the two models have the same calibration (ECE) value. Example 1:
Network 1 is a GoogleNet trained on CIFAR-10 dataset with original labels and has test accuracy of
95.36%. Network 2 is a GoogleNet that is trained on CIFAR-10 with 50% label noise and has test
accuracy of 58.35%. Example 2: Network 1 is a RegNet trained on CIFAR-10 dataset with original
labels and has test accuracy of 95.28%. Network 2 is a RegNet that is trained on CIFAR-10 with
50% label noise and has test accuracy of 55.36%.
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E ADDITIONAL EXPERIMENTS FOR SECTION [4]

In this section, we provide additional experiments for our main results for MNIST, Fashion-MNIST,
SVHN, CIFAR-100, and Tiny Imagenet datasets. Later in the section, we provide additional
experiments on the Clothing-1M, Animal-10N and CIFAR-10N datasets, where as stated in Appendix
are datasets with real-world label noise.

In Figure [T35] we observe that for networks trained on the noisy MNIST datasets, models that
are resistant to memorization and trainable have on average more than 20% higher test accuracy
compared to models that are trainable but not resistant (similar results for other datasets are observed
in Figures[T7} [T9] [22] and 23)). Furthermore, without access to the ground-truth, the models with a
high (respectively, low) accuracy on the clean (resp., noisy) subsets are recovered using susceptibility
¢ as shown in Figures[20]and 23] Moreover, in Figure[I6] we observe that by selecting models with a
low value of ((t) the correlation between training accuracy and test accuracy drastically increases
from —0.766 to 0.863, which shows the effectiveness of the susceptibility metric {(¢) (similar results
for other datasets are observed in Figures [I8] 21} [24] and [26).
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Figure 15: Using susceptibility {(¢) and training accuracy, we can obtain 4 different regions for
models trained on MNIST with 50% label noise (details in Appendix . Region 1: Trainable and
resistant, with average test accuracy of 95.38%. Region 2: Trainable and but not resistant, with
average test accuracy of 72.65%. Region 3: Not trainable but resistant, with average test accuracy of
47.69%. Region 4: Neither trainable nor resistant.
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models at all epochs that have ¢(¢) < 0.05

Figure 16: For models trained on MNIST with 50% label noise (details in Appendix, the correlation
between training accuracy and test accuracy increases a lot by removing models based on the
susceptibility metric ((t).
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Figure 17: Using susceptibility ((¢) and training accuracy we can obtain 4 different regions for
models trained on Fashion-MNIST with 50% label noise (details in Appendix . Region 1: Trainable

and resistant, with average test accuracy of 95.82%. Region 2: Trainable and but not resistant, with

average test accuracy of 72.04%. Region 3: not trainable but resistant, with average test accuracy of
52.68%. Region 4: Neither trainable nor resistant.
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Figure 18: For models trained on Fashion-MNIST with 50% label noise (details in Appendix , the

correlation between training accuracy and test accuracy increases a lot by removing models based on
the susceptibility metric ((t).
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Figure 19: Using susceptibility ((¢) and training accuracy we can obtain 4 different regions for
models trained on SVHN with 50% label noise (details in Appendix . Region 1: Trainable and
resistant, with average test accuracy of 88.64%. Region 2: Trainable and but not resistant, with

average test accuracy of 66.34%. Region 3: Not trainable but resistant, with average test accuracy of
53.25%. Region 4: Neither trainable nor resistant, with average test accuracy of 85.17%.
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Figure 20: For models trained on SVHN with 50% label noise (details in Appendix , with the
help of our susceptibility metric {(¢) and the overall training accuracy, we can recover models with a
high/low accuracy on the clean/noisy subset.
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Figure 21: For models trained on SVHN with 50% label noise (details in Appendix , the correlation
between training accuracy and test accuracy increases a lot by removing models based on the
susceptibility metric ((t).
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Figure 22: Using susceptibility ((¢) and training accuracy we can obtain 4 different regions for
models trained on CIFAR-100 with 50% label noise (details in Appendix . Region 1: Trainable
and resistant, with average test accuracy of 47.09%. Region 2: Trainable and but not resistant, with

average test accuracy of 40.96%. Region 3: Not trainable but resistant, with average test accuracy of
22.65%. Region 4: Neither trainable nor resistant, with average test accuracy of 39.07%.
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Figure 23: For models trained on CIFAR-100 with 50% label noise, with the help of our susceptibility

metric ((¢) and the overall training accuracy, we can recover models with a high/low accuracy on the
clean/noisy subset.
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Figure 24: For models trained on CIFAR-100 with 50% label noise (details in Appendix , the

correlation between training accuracy and test accuracy increases a lot by removing models based on
the susceptibility metric {(t).
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Figure 25: Using susceptibility ((¢) and training accuracy we can obtain 4 different regions for
models trained on Tiny Imagenet with 10% label noise (details in Appendix IEI) Region 1: Trainable
and resistant, with average test accuracy of 57.51%. Region 2: Trainable and but not resistant, with

average test accuracy of 53.25%. Region 3: Not trainable but resistant, with average test accuracy of
18.53%. Region 4: Neither trainable nor resistant, with average test accuracy of 53.26%.
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Figure 26: For models trained on Tiny Imagenet with 10% label noise (details in Appendix , the

correlation between training accuracy and test accuracy increases by removing models based on the
susceptibility metric ¢(t).
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E.1 WALK-THROUGH ON REAL-WORLD NOISY-LABALED DATASETS

To evaluate the performance of our approach on real-world datasets, we have conducted additional
experiments on the Clothing-1M dataset (Xiao et al., [2015)), which is a dataset with 1M images
of clothes, on the Animal-10N dataset (Song et al., | 2019), which is a dataset with 50k images of
animals and on the CIFAR-10N dataset (Wei et al., [2022), which is the CIFAR-10 dataset with
human-annotated noisy labels obtained from Amazon Mechanical Turk. In the Clothing-1M dataset,
the images have been labeled from the texts that accompany them, hence there are both clean and
noisy labels in the set, and in the Animal-10N dataset, the images have been gathered and labeled
from search engines. In these datasets, some images have incorrect labels and the ground-truth
labels in the training set are not available. Hence in our experiments we cannot explicitly track
memorization as measured by the accuracy on the noisy subset of the training set.

We train different settings on these two datasets with various architectures (including ResNet, AlexNet
and VGG) and varying hyper-parameters (refer to Appendix [B]for details). We compute the training
accuracy and susceptibility ¢ during the training process for each setting and visualize the results in
Figure 27| below.

Train ACC
Train ACC

i
0

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

ZSuscep;tibiIity EC ' Susceptibility ¢
(a) The Clothing-1M dataset (b) The Animal-10N dataset

Train ACC

" Susceptibility ¢
(c) The CIFAR-10N dataset

Figure 27: Training accuracy and susceptibility ¢ for various models trained on real-world noisy-
labeled datasets.

We divide the models of Figure[27)into 4 regions, where the boundaries are set to the average value
of the training accuracy (horizontal line) and the average value of susceptibility (vertical line) over
the available models: Region 1: Models that are trainable and resistant to memorization, Region 2:
Trainable and but not resistant, Region 3: Not trainable but resistant and Region 4: Neither trainable
nor resistant. This is shown in Figure 28]

Our approach suggests selecting models in Region 1 (low susceptibility, high training accuracy).

In order to assess how our approach does in model-selection, we can reveal the test accuracy computed
on a held-out clean test set in Figure [29] We observe that the average (+ standard deviation) of the
test accuracy of models in each region is as follows:

* Clothing-1M dataset: Region 1: 61.799% + 1.643; Region 2: 57.893% =+ 3.562; Region 3:
51.250% =+ 17.209; Region 4: 51.415% +9.709.

 Animal-10N dataset: Region 1: 96.371% + 1.649; Region 2: 92.508% =+ 2.185; Region 3:
91.179% + 6.601; Region 4: 89.352% + 3.142.
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Figure 28: Training accuracy and susceptibility ¢ for various models trained on real-world noisy-
labeled datasets. According to the average values of the training accuracy and susceptibility { the
figure is divided into 4 regions.

e CIFAR-10N dataset: Region 1: 87.2% % 0.99; Region 2: 85.44% + 2.52; Region 3: 77.87%
+ 8.15; Region 4: 78.45% + 3.86.

We observe that using our approach we are able to select models with a very high test accuracy. In
addition, the test accuracies of models in Region 1 have the least amount of standard deviation. Note
that our susceptibility metric { does not use any information about the label noise level or the label
noise type that is present in these datasets. Similarly to the rest of this paper, random labeling is used
for computing (. Interestingly, even though within the training sets of these datasets the label noise
type is different than random labeling (label noise type is instance-dependent (Xia et al. 2020} [Wei
et al.,[2022))), ( is still successfully tracking memorization.

Therefore, our approach selects trainable models with low memorization even for datasets with
real-world label noise. Observe that selecting models only on the basis of their training accuracy
or only on the basis of their susceptibility fails: both are needed. It is interesting to note that in the
Clothing-1M dataset, as the dataset is more complex, the range of the performance of different models
varies and our approach is able to select “good” models from “bad” models. On the other hand, in
the Animal-10N and CIFAR-10N datasets, as the datasets are easier to learn and the estimated label
noise level is lower, most models are already performing rather well. Here, our approach is able to
select the “best” models from “good” models.
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Figure 29: Training accuracy and susceptibility ¢ for various models trained on real-world noisy-
labeled datasets. According to the average values of the training accuracy and susceptibility ¢ the

figure is divided into 4 regions. The test accuracy of the models is visualized using the color of each
point and is only for illustration and is not used to find different regions.
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F EXPERIMENTS RELATED TO SECTION [@]

In this section, we provide some ablation studies that are discussed in Section [6]

In Figure [30] we observe that even among neural network architectures with a good resistance to
memorization, susceptibility to noisy labels ¢ (¢) detects the most resistant model. We observe that the
high correlation between ¢ and memorization of the noisy subset is not limited to a specific learning
rate schedule in Figure[31] or a label noise level in Figures[32]and[33] Moreover, in Figures [34]and[33]
we observe that for datasets with label noise level of 10%, the susceptibility to noisy labels ¢ and
training accuracy still select models with a high test accuracy. The same consistency is observed in
Figure [38]for models trained with asymmetric label noise.

In the paper, we choose S to be only a single mini-batch of randomly-labeled set for computational
efficiency. But we also made sure that this does not harm the correlation between Train ACC Noisy

and ((t). We analyze the effect of size of Sin Figure(left), which confirms that a single mini-batch
is large enough to have a high correlation between Train ACC Noisy and ((t). Moreover, we observe
the robustness of the susceptibility metric to the exact choice of the mini-batch in Figure 36| (right).

To better illustrate the match between Train ACC Noisy and ((t), we provide the overlaid curves in
Figure[37] This figure clearly shows how using ¢, one can detect/select checkpoints of the model
with low memorization.

A study on different thresholds used to select models We would like to point out that if we can
tune these thresholds (instead of using the average values of training accuracy and susceptibility over
the available models), we can select models with even higher test accuracies than what is reported
in our paper. For example, for models of Figure 5] by tuning these two thresholds one could reach
a test accuracy of 79.15% (instead of the reported 76%) as shown in Figure 39| (left). However, we
want to remain in the practical setting where we do not have any access to a clean validation set for
tuning. As a consequence, we must avoid any hyper-parameter tuning. And indeed, throughout our
experiments, these thresholds are never tuned nor set manually to any extent. Among thresholds
that can be computed without access to a clean validation set, we opted for the average values of
susceptibility and training accuracy (over the available models) for simplicity. We empirically observe
that this choice is robust and produces favorable results in various experimental settings. We could
take other percentiles for the threshold, but they are more complex to obtain than simple averages,
because they would then depend on the distribution among models. In Figure [39] we study various
values of percentiles for these thresholds. We observe that depending on the available models and the
given dataset, some other percentiles might give higher test accuracies than simply using the average
values. These percentiles range however typically from 35 to 55 and are therefore not far from
the mean, hence their benefit in increasing test accuracy appears small compared to the increased
complexity to compute them or to rely on additional assumptions on the distribution of susceptibility
and training accuracy. We observe in Figure [39] (right) that except for very extreme values of the
thresholds (which basically select all models as resistant to memorization), the average test accuracy
of models in Region 1 is much higher than the averge test accuracy of models in Region 2. Hence,
our proposed model selection approach is robust to the choice of these thresholds.
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Figure 30: Accuracy on the noisy subset of the training set versus the susceptibility ¢ (¢) (Equation (2)))
for MobileNet and ShuffleNetV2 configurations trained on CIFAR-100 with 50% label noise. Pearson
correlation between the Train ACC Noisy and susceptibility ¢ is p = 0.749. Scale is a hyper-
parameter that proportionally scales the number of hidden units and number of channels in the neural
network configuration.
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Figure 31: Accuracy on the noisy subset of the training set versus the susceptibility ((t) for net-
works trained on MNIST with 50% label noise. On top and bottom we have models trained with
exponential and cosineanneal ing learning rate schedulers, respectively. Pearson correla-
tion between Train ACC Noisy and ¢ for exponential and cosineannealing schedules are
p =0.89 and p = 0.772, respectively .
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Figure 32: Accuracy on the noisy subset of the training set versus susceptibility to noisy labels ()
for networks trained on CIFAR-10 with 10% label noise. Pearson correlation between Train ACC
Noisy and ( is p = 0.634.
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Figure 33: Accuracy on the noisy subset of the training set versus susceptibility to noisy labels ()
for networks trained on CIFAR-100 with 10% label noise. Pearson correlation between Train ACC
Noisy and ¢ is p = 0.849.
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Figure 34: For models trained on CIFAR-10 with 10% label noise for 200 epochs, using susceptibility
¢ and the overall training accuracy, the average test accuracy of the selected models is comparable
with (even higher than) the case of having access to the ground-truth label.
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Figure 35: For models trained on CIFAR-100 with 10% label noise for 200 epochs, using susceptibility
¢ and the overall training accuracy, the average test accuracy of the selected models is comparable
with (even higher than) the case of having access to the ground-truth label.
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Figure 36: Left: Pearson correlation coefficient between the accuracy on the noisy subset of the
training set and susceptibility ¢ (Equation (2))) for different choices of dataset size for S for ResNet
(He et al.l 2016a), MobileNet (Howard et al.,|2017), and 5—layer cnn that are trained on CIFAR-100
dataset with 50% label noise. We observe that unless the dataset is very small, the choice of the
dataset size S does not affect the correlation value. Therefore, throughout our experiments, we choose
the size 128 for this set, which is the batch size used for the regular training procedure as well. Note
that this size is very small compared to the size of the training set itself, which is 50000, hence the
computational overhead to compute ( is negligible compared to the original training process. Right:
We can observe the variance of the susceptibility metric over 10 different random seeds. We can
observe that as the variance is quite low, the metric is robust to the exact choice of the mini-batch and
to the random labels that are assigned to the mini-batch.
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Figure 37: Accuracy on the noisy subset (solid lines) versus Susceptibility ¢(¢) (dashed lines) for
neural networks trained on CIFAR-10 with 50% label noise. We observe a very strong match between
the two, which suggests that susceptibility can be used to perform early stopping by selecting the
checkpoint for each model with the least memorization. For example, for MobileNet and EfficientNet,
¢ does not warn about memorization, hence one can select the end checkpoint. On the other hand, for
DenseNet and GoogleNet, ( suggests selecting those checkpoints that are before the sharp increases.
This is also consistent with the signal given by the fit on the noisy subset, which requires ground-truth
label access, unlike susceptibility ¢ which does not require such access.
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Figure 38: For models trained for 200 epochs on CIFAR-10 with 50% asymmetric label noise as

proposed in (Xia et al.}2021)), using susceptibility ¢ and the overall training accuracy, the average
test accuracy of the selected models is comparable with the case of having access to the ground-truth

label.
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Figure 39: Left: Average test accuracy of models in Region 1 of Figurefor various thresholds used
to find Region 1. In Figure[5]and throughout this paper, Region 1 has models with susceptibility ¢ <
tl and training accuracy > t2, where t1 and t2 are average { and training accuracy over the available
models, respectively. Here, we study different values of these thresholds t1 and t2 and their effect on
the average test accuracy of models of Region 1. We explore different percentiles of ¢ and training
accuracy over all models to be used to find these thresholds. The extreme would be to have 100th
percentiles for both thresholds (low rightmost item of this table), which means models of Region
1 have ( < maximum susceptibility and training accuracy > minimum training accuracy. In this
extreme case, all models are selected in Region 1. Overall, we observe that some other percentiles
might give higher test accuracies than simply using the average values. These percentiles range
however typically from 35 to 55 and are therefore not far from the mean, hence their benefit in
increasing test accuracy appears small compared to the increased complexity to compute them or to
rely on additional assumptions on the distribution of susceptibility and training accuracy. Right: The
difference in the average test accuracies of models in Region 1 and models in Region 2 for various
values of percentiles used to find different regions. A positive value implies that models in Region
1 have a higher average test accuracy. We can observe that except for very extreme values of the
thresholds, which basically select all models as trainable, the average test accuracy of models in
Region 1 is much higher than the average test accuracy of models in Region 2. Hence, our approach
to select resistant and trainable models is robust to the choice of these thresholds.
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G THEORETICAL PRELIMINARIES
In this section, we provide some technical tools that we use throughout our proofs. Recall from
Section 2] that the first layer weights of the neural network are initialized as

w,(0) ~ N (0,£%T), Vr e [m], (7

where 0 < x < 1 is the magnitude of initialization and N denotes the normal distribution. And the
second layer weights a,-s are independent random variables taking values uniformly in {—1,1} at
initialization.

G.1 PROPERTIES OF THE GRAM-MATRIX

Properties Here, we recall a few useful properties of the Gram-matrix (Equation (3))).

1. As shown by (Du et al.| 2018), H* is positive definite and A\g = Apin (H™) > 0.

2. The matrix H* has eigen decomposition H>™ =" | \;v;v], where the eigenvectors are
orthonormal. Therefore, v/ v; = §; ; fori, j € [n], the n x n identity matrix I is decomposed
as Zz:l v;v} and any n- dlmentlonal (column-wise) vector y can be decomposed as 'y =

2?21("?3’)"1%
3. (Recalled from (Du et al., 2018; |Arora et al.| [2019)) We have |[H>||, < rf(H™) = & =

iy Ais and
Ao /\min(Hoo) 1
—0(2% =0 <.
() (uw@ =T,

[T =nH>[l; <1 =nko.

Hence,

G.2 COROLLARIES ADAPTED FROM (DU ET AL.,|2018;|ARORA ET AL.,|{2019)

Corollary 1. (Adapted Theorem 3.1 of (Arora et al.} 2019)) to our setting) For m = €} (#263) and
(0]
n=0 (%),for any 0 € (0, 1], with probability at least 1 — § over random initialization ({7):

and
<(1-Z2)®(W(t), ifo<t<k,
S(W(t+1) <(1-BO)BW(), ifk<t<k+k.

Therefore, by replacing Equations (I)) and (), throughout the proof we can use:

n
oo —vl =0 (/).
[fweesn) =¥l \/1— 2° [[fweoy =¥,

||fW(t) Y||27 if0<t<k,

and

IN

IN

[fwern) =¥, 1= 20 bwey =¥, ifk<t<k+k,

where we use inequality v/1 — o < 1 — «/2, which holds for 0 < a < 1.
Corollary 2. (Adapted from Equation (25) of (Arora et al.||2019)) If the parameter vector is updated

at step t by one gradient descent step on % ||fw(t) -—u
with probability at least 1 — 0:

n3
() - HO)L =0 (=),

40
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then the output of the neural network is as follows
fw (1) — fw) = —nH™ (fw) —u) +£(1),

where £(-) is considered to be a perturbation term that can be bounded with probability at least 1 — §
over random initialization (7)) by

3
1€@, =0 (\/7%7)7\;53/2) [fw o) =, - ®)

Remark: In our setting, this corollary holds for 0 < ¢ < k—1withu =y, andfork <t < k+ E—1
with u =y. We only need to show that for our setting for ¢ > k, ||[H(t) — H(0)|| . is bounded, which
is done in Lemma[3

Corollary 3. (From Equation (27) of (Arora et al., |2019)) We have for 1 <t < k

t—1
fwe —y=1I- 77H°°)t (fW(o) - }’) + Z (I—nH®) E(t—s—1),
s=0
where ||£(-)||y is some perturbation term that can be bounded using Equation (§) withu = y.

G.3 ADDITIONAL LEMMAS

Lemma 1. For the setting described in Section 2} we have

fwy =Y =3 [(VzTY) — (1= (vy) - (ViTy):| vi +x(k), €)
i=1
where x (k) is some perturbation term that with probability at least 1 — § over the random initializa-
tion (7))
n3/2 nd/2
K|, =0 - . 10
Il =0 (et + s ) (10)

G.3.1 LEMMAS TO BoUND H(¢) wiTH H™

Because the two datasets S and S have the same input samples, the Gram matrix defined in Equa-
tion (3) is the same for both of them. We now recall two lemmas from (Du et al] 2018} [Arora et al.]
2019) and provide a lemma extending them to bound H(¢) with H>, where

and I.;(t) = I{wl (t)x; > 0}.

Lemma 2. (recalled from (Du et al.| |2018; |Arora et al.| [2019)) For \g = N\pin(H) > 0, m =
Q (Agzizzsa)’ andn =0 (%) with probability at least 1 — § over the random initialization (), for
all 0 <t <k, we have:

TLS
B - 1) =0 ()

Lemma 3. (Our extension) For A\g = A\puin(H) > 0, m = Q (#2‘55) andn = O (%) with
0
probability at least 1 — & over the random initialization (1)), for all k + 1 <t < k + k, we have:

n3
[H(t) —HQ0)||z = O <\/W) :
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Lemma 4. (recalled from (Du et al.} 2018; Arora et al.||2019)) With probability at least 1 — § over
the random initialization (1), we have:

el ny/log %
|H(0) — B ||F—0(Vﬁ )

Remark for Lemma lThe indicator function I{w,.(t)T'x; > 0} is invariant to the scale « of w,.,

hence E[H; = H;;, even though the expectation on the left hand side is taken with respect to

w ~ N(0, 2I) and the expectation on the right hand side is taken with respect to w ~ A/(0,I).

H PROOF OF LEMMA 3]

Proof. We recall from the proof of Lemma C.2 of (Arora et al.;,|2019) that if with probability at least
w,(t) —w.(0)||, < R, then with probability at least 1 — 9, we have ||H(¢) — H(0)|| » <

+ ﬁ. So, we first find an upper bound on ||w,.(t) — w,.(0)||, for ¢ > k and replace its value

4n’R
\/ﬁms .
4n’R 2n
Rin Tams T
To find an upper bound on ||w,.(t) — w,.(0)||,, for ¢ > k, we can follow a similar approach as in the
proof of Lemma C.1 of (Arora et al., | 2019):

t—1
1w, (8) = Wi (0)lly < Y (Wi (7 + 1) = Wi ()l
=0
k—1 t—1
= Z [wi (7 +1) = wi (1)l + Z [We(T 4+ 1) = Wi (7)]];
7=0 7=k
ORSYNG <« i <
= 27 () _y"2+§ﬁ [wery =l
®) S v nA
<3 (110w -l

7=0

t—1
A ~
(1) ey

t A T—k _
+ZM (1— 7740> (|1 fwe) —YHQ+ 1y — vl
k t—k
TI/\0>
)% (-

o(E) D (-7 o

<o(Fm) 2 (1) =0 (i), a

where (a) holds because for an update step on label vector u according to gradient descent, we have

[we (7 +1) —we(7)[| = ‘

77 n
ﬁar ; (fwir) (xi) = u;) L i (k)x;
< TS i) = ] < B ) .
=1
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inequalities (b) and (c) use Corollary[I] Inequality (d) holds because we have |y;| < 1 and |g;| = 1,
so again by using Corollary T]

[fwiry = ¥, + ¥ = ¥ll; < (1 — 774/\0) 0 <\/§> +0(v/n)=0 <\/§> .12

Therefore, with probability at least 1 — § over random initialization (7)) for ¢ > k
an’R 2n2 n?
H(t =0 ———1,
IH) - 1O, < P 2o ()
where we replaced R with the upper bound in Equation (TT).

I PROOF OF LEMMA[I

Proof. Note that throughout the proof, we refer to events with probability at least 1 — J, as high
probability events. Using the union bound, the probability of intersection of o high-probability events
is an event with probability at least 1 — «d. Therefore, we can again refer to this event as a high
probability event with probability at least 1 — &, but re-scale § in the event accordingly. Because § only
appears on bounds of the perturbation terms, and therefore in the form of O(6~1), then re-scaling
0 would not change the order of these perturbation terms. Hence, throughout the proof we do not
put concerns on the exact probability of events, we only refer to them as high probability events,
and eventually we know that the probability of our computations is at least 1 — § over the random
initialization Equation (7).

Because Lemma[2]holds for ¢ = k — 1, we use CorollaryQ]witht =k —landu =y

fwiey — fw—1) = —nH> (fwe—1) —y) + (k- 1),
where with probability at least 1 — §

etk =Dl = 0 (=2 ) wan -

because of Equation (8). We then compute

fwiy — ¥ = fwa—1) —?— UHOO (fwe—1) —y) +&(k—1)

k—1
= fw(o) — ¥ — nZH (fwey —¥) + D _&(®). (13)
t=0
Let
k—1
—n Y H® (I—qH®)" fy(g)
t=0
k—1t—1 k—1
—n Y Y HX(I—nH®) ¢(t—s—1)+ > &(t) +fwo)- (14)
t=1 s=0 t=0
Then Equation (T3) becomes:
k—1
fway =¥ =1y H® ([I—yH®)'y =y + x(k), (15)

t=0
where we have replaced fw;) —y for 1 <t < k in Equation (T3)) using Corollary by

t—1

(I—nH®)" (fw() —y) + ) (I—nH®)"€(t — 5 - 1).
s=0
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Next, we would like to find an upper bound for || x(k)||. As shown inDu et al.[(2018); |Arora et al.
(2019), with probability at least 1 — ¢ over random initialization (7), we have

2
2 Nk

ltwo [, < =5~ (16)

The first term in x (k) (Equation (T4)) is bounded because of Equation from above with high

probability as

k—1

< S B, 10— B[ o
2 t=0
k—1

< n;g(l — 1) O ({/ﬁ;)

0 < n3/2 H) ’
Vo
where the second inequality uses Property [3]
The second term of x (k) in Equation can also be bounded with high probability by

k—1
n Y H™ (I—nH>) fy(q)
t=0

k—1t—-1
N Y HE(I—nH®) gt —s—1)
t=1 s=0
k—1t—-1

<0y DI 1= H= |5 [E(t =5~ 1),

t=1 s=0

2

I
-

(a) k-1t

n s 7]7?,3
S UZZ 5 (]‘ - 77)\0) 0 (ﬁ/\01€53/2) ||fW(t—s—1) - Y||2

3 t—s—1
n s m nAo n
—(1=nX)' O ————= 1—-— 0] -
P e (=) (\/7”)‘0“53/2> ( 4 ) ( 5)
2 9/2 k—1t— )\ t—s—1
n’n o (1M
onméz) ZZ (L=1) (1 1 >
Z - L>\() t—1 tz—f 1_ 77)\0 s
4 = \1—nlo/4

<
()

ol R0 e ()]
(5
()

k— t
o n2n?/? (4 —nXo) i (1_ n)\o)f BT
VmAokd? ) (3nAo) (1 —nho/4) = 4
=0 n*n’/ 4 [1-(1=nr/8" 1-(1-nr)"
Jmord? ) 3k nho/4 Mo
n9/2
<O(——
= (\/mgw) ’

where (a) uses Property [3|and Equation (8)), (b) uses Corollary [1} and the rest of the computations
use algebraic tricks.
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The third term of x (k) in Equation (T4) can be bounded with high probability using Equation (8] by:

k—1

=30k = 3 0 (e oo -1,

t=
3 k—1 t
nn n n\o
< _ — 1——
—0<mw>0(@§< )

n7/2
SO\ =37 )
NGO L
where we use Corollary

Summing up, and using Equation (T6)) to bound the last term of Equation (T4)), we showed that with
high probability:

n3/2k no/2 n7/2 Jnk
k <O -
||X( )||2 = (\/g)\o + \/ﬁ)\gmp + \/an\%mp + \/g )

3/2 9/2
=0 . 17
(o * o) an
We now reformulate Equation (T3) in terms of the eigenvectors and eigenvalues of the Gram matrix
(Equation (3)) as follows, by repeatedly using Property 2]

fwy — —UZH‘” )y =¥ + x(k)
k=1 n n n n
=0y D> A Z (1 =nA) viv] Y (v Iy)ve = Y (v 9)vi + x(k)
t=0 i=1 - 2=1 i=1
k=1 n n n n
:nzzz i (l—n)\j)tVi(VZTVj)(V v.)( Z V; TY)vi + x(k)
t=0 i=1 j=1z=1 i=1
k=1 n n n n
2 Z Z Z Z Ai (1= nX;)" vid; ;6;-(vDy) — Z(VZT?)VZ + x(k)
t=0 i=1 j=1 z=1 i=1
k—1 n n
=0 Y A (=) vi(viy) = D (viV)vi + x(k)
t=0 i—1 i—1
n k—1 n
=n) A Z (L =n2)" (v y)ve = D>_(v¥)vi + x(k)
=1 t= i—1
=3 (1= =) (Ty)vi = YT+ x(R)
i=1 i=1
= [0F¥) = (= m)" 6Tw) = 079 v x(), (8)

where in (@) with some abuse of notation d; ; and ¢; . refer to the Kronecker delta function. This
concludes the proof. O

J  PROOF OF THEOREM I

Proof. We start similarly to the proof of Lemmal Because fort = k + k — 1 Lemmalholds using
Corollarylfor t=k+k—1landu= y, we have:

fwieriy = fwirsio1y = —nH™ (fW(m;}q) - ?) +&(k+k—1),
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where from Equation (§) with high probability

3

~ B m i ~
Hﬁ(k k= 1)H2 =0 <\/RA0/<L53/2) wa(k"’k_l) B sz '
Therefore, recursively we can write:

fwiesiy =Y = bwesior) — ¥ —7H™ (fW(H,;,l) — 37) +&(k+k—1)

Z(I_WHO")(wmk b - )+§k+1}—1)
k-1

= (1 pH™)* (fwey —¥) + > A—nH®) E(k+k—1—1)
t=0

y—¥— > (1—n\)" (v]y) vi + x(k)

i=1

= (- y=)*

el
|
-

+Y X —gH®) ¢(k+k—1—1)

-y- anlfn/\ y)w]

= g (k) + (I—nHW)tg(kH}—l—t), (19)
t

~+
i
o

=I- 17H°°

R‘lﬁ
,_.»—-

i
<

where the 4th operation follows from Lemma|[I] Now, we find bounds for the perturbation terms. Let

6\/3)\() ng

:O(W)’ m:Q(W). (20)

Then, using Lemmal(T] the first perturbation term of Equation (I9) is upper bounded as

@ my < (1 - oo (Tt
2 = \[)\o \/771)\3/“52

~0 ((1 ~ 7o) e) € 0(e),
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where the last line comes from inserting our choices of x and m from Equation (20).
The last term of Equation (T9) can be upper bounded with high probability as

kZ gl ek +k—1—1) <Z||I— H°°H2H€k+k—1—t)H

a) -1 3

0

nmn ~
<SS a-moo =" Hf . _ H
= tz: o) (x/ﬁkomi?’”) W(ktk—1-1) ~ Y|,

—~

) k—1 o k—1—t N
ol o )
t=0
-1 o E—1—t
<0 (\/7)\0,%53/2) —1n)o) (1 - 4) [wa(k) - YHQ +ly - Y||2]
t=
© ~71 o k—1—t p

IN

o /2 1_777)\0 k—l% T \*
\/m)\olﬁ52 4 1-— 77)\0/4

<%0 ™ 7/2 @ ) (Ao€
~ 3n)o VmAgrd? \/>/\8/162 n )’

where (a) uses Property [3|and Equation (8), (b) uses Corollary[I|and (c) uses Equation (T2). Finally
(d) follows from inserting our choice of m from Equation (20). Because we have Y - | \; = n/2

from Property 3] and Ao = min{\;}?", then Ao < 1/2. Both perturbation terms in Equation (T9) are
therefore at most in the order of € W1th our choices of m and « from Equation (20).

Using Property [2] the squared norm of the first term in Equation (T9) is

n 2

> =m) [0y = (1= A)* 6Ty = 9] v

i=1

2

=33 =m0y - (=) 0fy) - (D)
(L =m)* [(vy) = (1= ny)* (vFy) = (vF9)| ¥ T
=3 [0 - =m0 6Ty - PR - e

The norm of Equation (T9) is therefore, for our choice of x and m given in Equation (20), with
probability at least 1 — ¢

y|| = zn: Iy —vTF — (1= 0Ty (1= pan)?F £ e
fw et Y, = _ i Y=V Yy nAi) Vi y NA; )

which concludes the proof. O

K PROOF AND NUMERICAL EVALUATIONS OF THEOREM

Proof. Because y; ~ U({—1,1}) and y; L gy, for i # j, and ||v;||, = 1, for ¢ € [n], we have:

Zv1jy] +szljijz kyk ZV1]+ZZV1JV1 kE y] [yk} =1+0=1.

jlkl Jlkl
k#j k#j
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Recall from Equation (@) that
1 2 ;
=3 > [ —pi (L—nA)"| (1=nA)** .
i=1

This expression is a random variable that depends on random vectors p and p, which are functions
of the random label vectors y and y, respectively. We now compute the expectation of the above
objective function with respect to p and p:

{ UCJFM ZE p;] [1—(1—77/\)} (1—77>\i)2’~c

%21}3[ 21 (1 =) Z]E[plpz [1—(1—%)](1—17&)2’}

n

1 & 2 | .
:5;E ] 1= =m0 <1an1->2’€+§;(1%1->2’“

=3 DY viaviE | [1— (=00 (1= na0®
i=1 |j=1k=1
1 1¢ 20
=§u+5;(1—m) , (22)
where follows with . given by Equation (5), and because y; L yy, for all j, k € [n].
Because of Chebyshev inequality and Equation (22)), with probability at least 1 — §, we have:

~ 1 & by
Sk+h)-5> 0 P g <\3 (23)
1=1
where B 3
¥ = Vary, [q)(k + k)} , (24)

which concludes the proof.
O

Numerical Evaluations We now empirically evaluate the lower and upper bounds in Equation (23)
for networks trained on label vector y with varying label noise levels (LNL). To do so, we discard the
middle term of the left hand side of Equation (23), as it does not depend on y. We then study the rest
in Figures and[43] for different datasets and values of 77 and k. We observe consistently that
both the lower and the upper bounds are a decreasing function of the label noise level (LNL) in the
label vector y.

48



Published as a conference paper at ICLR 2023

10 150

25 125
lojlezo
Ho1s
3N

ol 200
Ho
3N 50

05 25

00 == 0
0 2000 4000 6000 8000 10000 ) 2000 4000 6000 8000 10000 ) 2000 4000 6000 8000 10000

Epoch (k) Epoch (k) Epoch (k)
(a) k =100 (b) £ = 1000 (c) kK = 10000
500 =
o - =
|© l»j“gmo \ l»j“"gzoo \
— Hos o0 N
2N gy N
[ .
: [ [ o
3 s 0 15 20 25 2 3 s 15 20 25 2 0 s 0 15 20 25 30
Epoch (k) Epoch (k) Epoch (k)
k=10 (e) k =100 () k = 1000

Figure 40: The lower (dashed lines) and upper (solid lines) bound terms of Theorem that depend
on the label noise level (LNL) are depicted as a function of the number of epochs £, for different
hyper-parameter values (the learning rate 7 and k) with § = 0.05. The eigenvector projections p; that
appear in p and ¥ are computed from the Gram-matrix of 1000 samples from the MNIST dataset.
The resulting values are obtained from an average over 10 random draws of the label vector y. We
observe that both the lower and the upper bounds of Equation (23 are decreasing functions of LNL
and of k.

0.020

©
| 0.015
o e
— +| 0010
N oos
< 0000 ~
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000
Epoch (k) Epoch (k) Epoch (k)
(a) k=100 (b) £ = 1000 (c) K = 10000
o “os
5 T e
— 200
Il
I 100
t o
GE 80 100 0. 100 o 20 40 SQ 80 100
Epoch (k) Epoch (k) Epoch (k)
(d k=10 (e) k =100 (f) k = 1000

Figure 41: The lower (dashed lines) and upper (solid lines) bound terms of Theoremﬁl that depend
on the label noise level (LNL) are depicted as a function of the number of epochs k, for different
hyper-parameter values (the learning rate n and k) with 6 = 0.05. The eigenvector projections p; that
appear in g and Y are computed from the Gram-matrix of 1000 samples from the Fashion-MNIST
dataset. The resulting values are obtained from an average over 10 random draws of the label vector
y. We observe that both the lower and the upper bounds of Equation (23) are decreasing functions of
LNL and of k.
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Figure 42: The lower (dashed lines) and upper (solid lines) bound terms of TheoremJZl that depend

on the label noise level (LNL) are depicted as a function of the number of epochs k, for different
hyper-parameter values (the learning rate n and k) with 6 = 0.05. The eigenvector projections p; that
appear in p and X are computed from the Gram-matrix of 1000 samples from the CIFAR-10 dataset.
The resulting values are obtained from an average over 10 random draws of the label vector y. We
observe that both the lower and the upper bounds of Equation (23) are decreasing functions of LNL
and of k.
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Figure 43: The lower (dashed lines) and upper (solid lines) bound terms of TheoremJZl that depend
on the label noise level (LNL) are depicted as a function of the number of epochs k, for different
hyper-parameter values (the learning rate n and k) with § = 0.05. The eigenvector projections p;
that appear in p and X are computed from the Gram-matrix of 1000 samples from the SVHN dataset.
The resulting values are obtained from an average over 10 random draws of the label vector y. We
observe that both the lower and the upper bounds of Equation (23) are decreasing functions of LNL
and of k.
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