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Abstract

Multi-turn textual feedback-based fashion image re-
trieval focuses on a real-world setting, where users can it-
eratively provide information to refine retrieval results un-
til they find an item that fits all their requirements. In this
work, we present a novel memory-based method, called
FashionNTM, for such a multi-turn system. Our frame-
work incorporates a new Cascaded Memory Neural Turing
Machine (CM-NTM) approach for implicit state manage-
ment, thereby learning to integrate information across all
past turns to retrieve new images, for a given turn. Un-
like vanilla Neural Turing Machine (NTM), our CM-NTM
operates on multiple inputs, which interact with their re-
spective memories via individual read and write heads, to
learn complex relationships. Extensive evaluation results
show that our proposed method outperforms the previous
state-of-the-art algorithm by 50.5%, on Multi-turn Fash-
ionIQ [60] – the only existing multi-turn fashion dataset
currently, in addition to having a relative improvement of
12.6% on Multi-turn Shoes – an extension of the single-
turn Shoes dataset [5] that we created in this work. Fur-
ther analysis of the model in a real-world interactive set-
ting demonstrates two important capabilities of our model
– memory retention across turns, and agnosticity to turn
order for non-contradictory feedback. Finally, user study
results show that images retrieved by FashionNTM were fa-
vored by 83.1% over other multi-turn models.

1. Introduction

Image retrieval has been extensively studied in the com-
puter vision community, both using classical approaches
[10, 52, 25] and recently, using learning-based techniques
[2, 15, 41, 43, 23]. Existing works can be grouped based on
input queries considered – from image-only queries, com-
monly known as Content-Based Image Retrieval (CBIR)

*Work primarily done during internship at Amazon. Additional details are avail-
able at https://sites.google.com/eng.ucsd.edu/fashionntm.
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Figure 1: Illustration of multi-turn fashion image retrieval. Ini-
tially (Turn 1), the system receives an initial query image, and
a textual feedback mentioning the user’s desired changes. The
model then retrieves a ranked list of closest matching images. Sub-
sequently, the user keeps refining their choice by providing more
feedback, while the model retrieves newer images by considering
both current and past feedback. This continues until the multi-turn
system has successfully obtained the final retrieved image (Turn
N) with all the desired properties mentioned across every past turn.

[35, 39, 48], to attributes [18], sketches [44], and natural
language [32, 61]. However, most of these methods do not
incorporate interactive user feedback, which is necessary
for a personalized task such as fashion retrieval.

Textual feedback-based fashion image retrieval allows
users to refine online shopping search results by providing
information about how the results differ from their desired
product (e.g., “a dress like this but darker in color”). Sev-
eral approaches for implementing such a system have been
proposed recently [14, 7, 31, 56, 17, 60, 63], which involve
learning a joint representation via multi-modal information
fusion across the query (reference) image and the associ-
ated feedback, and using it to retrieve the closest matching
image in the database (product catalog) as the target.

Popular methods for fashion retrieval task [14, 31, 7,
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4, 23] involve single-turn exchange of information, where
users provide feedback exactly once to update the search
results. However, this is not characteristic of the real-world
setting as online shopping customers typically start with a
general idea of what they want and iteratively update the re-
quirements until they find something that matches their de-
sired features. This usually involves providing additional at-
tributes, or modifying previously specified features in each
turn to refine the search results. The ideal feedback-based
fashion image retrieval system is, hence, inherently multi-
turn, as illustrated in Figure 1.

There are two major challenges associated with multi-
turn image retrieval. First, there is a lack of sufficient
training and evaluation datasets – despite the abundance
of single-turn fashion retrieval datasets, to the best of our
knowledge, there is only one publicly available multi-turn
fashion image retrieval dataset [60] currently. This is be-
cause labeling a sequence of images while ensuring conti-
nuity, consistency, and uni-directional information flow is a
difficult problem. Thus, to facilitate research in this domain,
we created a new fashion image retrieval dataset to allow for
further benchmarking. Second, generalizing performance
to real-world dynamic user interactive cases is non-trivial –
as this is still a relatively new research domain, most exist-
ing algorithms do not generalize beyond the training dataset
to consider multiple turns of interactive feedback. In this
work, we propose a novel memory-based framework to ex-
plicitly consider sequential feedback from users across mul-
tiple turns to retrieve desired items, both for the static image
datasets, as well as real-world dynamic users.

Sequential modeling is a relatively mature field of re-
search. However, a majority of the existing approaches
[46, 27, 49, 20, 9] do not maintain an explicit memory,
and therefore cannot learn long and complex information.
Vanilla memory network-based methods, which explicitly
maintain an external memory, could be used for retaining
past information, but they do not provide a robust mecha-
nism to iteratively update their memory [55, 51]. In con-
trast, Neural Turing Machines (NTMs) [16] provide a fully
differentiable model with sophisticated read and write op-
erations to extract and update historical information in its
explicit memory via an attention mechanism. Therefore, in
this work, we build on NTMs to develop a novel framework
for the multi-turn retrieval task. We further propose a novel
Cascaded Memory Neural Turing Machine (CM-NTM) that
allows us to encode multiple relationships from the features
of a particular turn and store them over time across multi-
ple memories in a multi-turn setting. This is similar to how
multi-head attention (MHA) operates for transformers [53].
To ensure that the individual memories effectively utilize
each other’s information, we link them together in a cas-
caded fashion. Evaluation results demonstrate that our pro-
posed approach improves the retrieval performance as com-

pared to the previous state-of-the-art by 50.5% on Multi-
turn FashionIQ, and by 12.6% on Multi-turn Shoes.

In summary, we make the following contributions. First,
we propose a state-of-the-art memory-based framework,
called FashionNTM, for multi-turn feedback-based fashion
image retrieval, that uses an external memory to learn com-
plex long-term relationships. Second, we develop a novel
Cascaded Memory Neural Turing Machine (CM-NTM),
that extends NTM to learn relationships across multiple in-
puts via additional controllers and read/write heads in a
cascaded fashion. Third, we conduct experiments to show
that the proposed approach outperforms existing state-of-
the-art retrieval models by 50.5% on Multi-turn FashionIQ
[60], and around 12.6% on the multi-turn version of Shoes
dataset [5] respectively. Additionally, by performing an in-
teractive analysis, we demonstrated two important capabil-
ities of our multi-turn system – memory retention across
turns, and agnosticity to turn order for non-contradictory
feedback. Finally, a user study result shows that on an aver-
age, the images retrieved by our model are preferred 83.1%
more than those from other multi-turn methods.

2. Related Work
Single turn feedback-based fashion image retrieval -
Previous works in feedback-based fashion image retrieval
have primarily focused on the single-turn scenario [14, 40,
31, 7, 54, 4, 3, 59, 6, 36, 22], where a model is provided
with a reference image along with an associated feedback
text highlighting the desired attribute changes. The typical
approach is to encode the multi-modal image and text in-
put using pre-trained visual feature extractors [19, 24, 34]
and sequential natural language processors [20, 12], respec-
tively. More recently, pre-trained extractors such as Con-
trastive Language-Image Pre-training (CLIP) [45] have also
been used [4, 3]. This is then followed by a transformer-
based decoder network [53] for generating information-rich
features for image retrieval from the database. Although
these methods perform well in single-turn settings, they
cannot be directly used for real-world applications that deal
with multiple turns of information exchange.
Multi-turn visuo-linguistic methods - A few methods
have been proposed recently for fusing visual and textual
input across multiple turns of information exchange. A pop-
ular application has been the video dialog task [42, 21, 33,
30, 17], where a trained system is asked to answer questions
based on an ongoing video dialog. However, these kinds
of dialogs are primarily text-based for both the questioner
and the answering agent, without any interaction across im-
age and text inputs. In the fashion domain, there have been
some early works for the multi-turn retrieval task. Guo et al.
[17] proposed a model that uses convolutional neural net-
works (CNNs) for encoding images and text, followed by a
recurrent neural network for aggregating sequences. Then,
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Figure 2: The complete FashionNTM framework. During training, the model receives an input query image, In, and associated feedback,
Un. From these, query features fqry(n) are computed using an off-the-shelf single-turn fashion image retrieval model. These features
are then fed into the memory network which learns to retain useful information from the current turn, and combine it with information
from previous turns by interacting with an external memory bank, via read/write operations. The memory-modified features f ′

qry(n) are
compared with the target index features ftar(n), and other negative samples fneg(n), to compute the training loss. At inference, the model
receives a series of multi-modal inputs turn-wise and computes the final modified feature f ′

qry(N) using the trained memory network. This
is compared with features fcand derived from different candidate images in the database to retrieve the closest matching images.

a k-Nearest Neighbor search is performed across sampled
images to get the closest match. The entire model is trained
end-to-end using reinforcement learning (RL). Inspired by
this, Zhang et al. [63, 62] proposed two approaches for en-
hancing the text-image feature fusion by adding constraints,
and using offline interactive recommendation. Recently,
Yuan et al. [60] released the first multi-turn fashion image
retrieval dataset, based on the original single turn FashionIQ
[56]. They also proposed a state-of-the-art model, which we
directly compare with our approach.
Memory networks for vision and language - Memory net-
works have been widely used for a number of natural lan-
guage processing and computer vision applications. Some
works [55, 51, 13, 11] utilize it for Sentence Video Ques-
tions and Answering (QA) task. Another popular applica-
tion is video object segmentation [8, 58, 50, 37]. Recently,
there have been some works on including memory in trans-
former architectures [26, 47, 57, 38]. However, these ap-
proaches design their memory to be used only for specific
tasks, and hence cannot be directly compared with ours. In
this work, we propose a memory network based method for
the multi-turn fashion image retrieval task.

3. FashionNTM

The multi-turn feedback-based image retrieval task can
be viewed as a series of information exchange transac-
tions. We define a transaction as one session of query con-
text comprising a query image and the associated feedback

text. Notationally, an N -turn transaction is represented as
T = [(I1, U1), (I2, U2), · · · , (IN , UN )], where In and Un

correspond to the query image and feedback utterance re-
spectively, at turn n ∈ [1, N ]. Given such a transaction, the
aim of a multi-turn model is to iteratively retrieve the final
desired target image Itar(N) by ranking candidates in the
fashion image database based on a matching score.

The overall pipeline of our approach, called Fashion-
NTM, is illustrated in Figure 2. We start with a single-turn
feature extraction module to encode the multi-modal image
and text inputs of each turn n in a multi-turn transaction. It
comprises two parallel blocks – (i) a query feature extractor
(QE), for processing In and Un to generate the joint query
representation fqry(n), and (ii) a target feature extractor
(TE), for encoding all the images in the database into their
corresponding index features. For the ground-truth target
image Itar(n), we call these features ftar(n), while for ev-
ery other sample Ineg(n) in the batch, we name it fneg(n).
The query feature fqry(n) is fed turn-wise to the Cascaded
Memory Neural Turing Machine (CM-NTM) block. CM-
NTM first computes several derived features from the orig-
inal query feature. Subsequently, the original query feature
and each of the derived features interact with their own con-
trollers, read/write heads, and sequentially update the mem-
ories in a cascaded manner, i.e. output of one memory goes
as input to the next. Ultimately, we get the enhanced feature
f ′
qry(n) as the final output, which is then compared with the

target feature ftar(n) using a similarity score-based batch
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It consists of C controllers; one for the query feature and C − 1
for the derived features. Each controller interacts with its own
memory using its own read and write heads. The controllers are
linked with each other, forming a cascaded chain. The modified
features from the last memory are output as the final embedding.

loss function. This loss treats ftar(n) as a positive sample
and every other feature in the batch, fneg(n), as a negative
sample. We use cosine-similarity [54, 31, 14] between fea-
ture vectors as the matching score. During inference, the
model receives a sequence of multi-modal turn-wise inputs
and computes the final modified feature f ′

qry(N). This is
compared with feature fcand derived from different candi-
date images in the database, and the closest match is re-
trieved as output. In the following sections, we describe the
key components of our framework.
Single-turn feature extractor - We utilize the state-of-the-
art single-turn image retrieval model, FashionVLP [14], for
extracting multi-modal text and image features. Fashion-
VLP extracts image embeddings at multiple levels of gran-
ularity and incorporates a vision-language pre-trained trans-
former for fusing these encodings with text feedback to
obtain multi-modal query features. It adopts a convolu-
tional neural network (CNN) architecture with contextual
attention for fusing fashion-contextual image features of
target images. Specifically, for each turn of a multi-turn
transaction, we obtain query features fqry and target fea-
tures ftar. An N -turn retrieval transaction is of the form
Tretr = [fqry(1), fqry(2), · · · , fqry(N)], with the target
feature representation given by ftar(N).

3.1. Cascaded Memory Neural Turing Machine

To learn relationships across transactions, we propose
a novel Cascaded Memory Neural Turing Machine (CM-
NTM) module. CM-NTM allows multiple inputs to in-
teract with their own memories using individual read and
write heads to learn multiple complex relationships in the
input data. We achieve this by deriving several features
from the original n-th turn query feature fqry(n) using a
projection function F , which comprises a fully-connected
(FC) layer with batch normalization. Specifically, for a
C-stage cascaded CM-NTM, we obtain the derived feature

f c
drv = BatchNorm(FCc(fqry(n))), where c ∈ [1, C − 1],

and FCc(·) is the FC layer for the c-th stage. Having ob-
tained C inputs comprising the original query and C − 1
derived features, we pass them sequentially to our mem-
ory network. Figure 3 presents our memory network archi-
tecture. It consists of three main components1: Controller,
Read/Write heads, and Memory blocks.
Controller - The vanilla NTM has a single controller which
takes the query feature at turn n, along with the previous
turn’s read vector, and emits an intermediate controller out-
put. This is used by the read and write heads to compute
the current turn’s attention weights, which are then used to
update the memory. In our work, we introduce C different
controllers – one for each of our inputs. Each controller,
c ∈ [1, C] can therefore interactively update its memory via
individual read and write heads, allowing it to learn multiple
complex relationships in each turn.
Read/Write heads - The controller output is fed to these
heads. The write head learns to generate erase and add
parameters, which are used to update the current memory.
Similarly, the read head generates an attention weight vec-
tor, which is used to obtain a weighted sum over the mem-
ory locations to get the read vector rout(n). In our work,
we have separate read and write heads for each memory.
Memory block - This is represented as a 2-D matrix of the
form N × M , where N corresponds to memory locations
and M to the vector size at each location. The output of
each memory block is a fused representation of the con-
troller output and the read vector. In our cascaded multi-
memory setup, the controllers are linked in a chain, such
that the memory-modified features are sequentially propa-
gated. Specifically, for controller c ∈ [1, C] at turn n, the
input is given by inputc(n) = [rc−1

out (n); f
c
drv; r

c
out(n−1)],

where r0out(n) = rCout(n− 1), fC
drv = fqry(n), and ; repre-

sents concatenation. The final output, f ′
qry(n), is the fused

representation of the last controller output outputCctrl and
final read vector rCout. We experiment with a different num-
ber of memories C and memory sizes in Section 4.7.

3.2. Loss function

We adopt a batch cross-entropy loss [14], where each en-
try in a batch acts as a negative sample for all other entries.
In the multi-turn setting, we compute the loss function turn-
wise. Given a batch size B, the loss between predicted fea-
ture xn = [1f ′

qry(n),
2 f ′

qry(n), . . . ,
B f ′

qry(n)], and ground-
truth yn = [1ftar(n),

2 ftar(n), . . . ,
B ftar(n)], at turn n is

of the form

L(xn,yn) =
1

B

B∑
i=1

− log
eκ(

if ′
qry(n),

iftar(n))∑B
j=1 e

κ(if ′
qry(n),

jftar(n))

1We mainly discuss our novel changes to the NTM design. For details
regarding the vanilla architecture, please refer to the original paper [16].
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Table 1: Statistics of the datasets used in this work. The top 2
rows are for the recently proposed Multi-turn FashionIQ dataset
[60]. The bottom two rows are for the Multi-turn version of the
Shoes [5] dataset, which we created as part of our work.

Number of transactions with

Dataset Split 2-turns 3-turns 4-turns Total
images

Multi-turn FashionIQ [60] Train 6, 897 1, 733 475 10, 438
Test 1, 752 483 165 6, 274

Multi-turn Shoes (ours) Train 1, 659 1, 036 982 11, 030
Test 296 96 28 4, 631

where κ is the cosine similarity metric [14]. In this way,
each jftar(n) in the batch, ∀j ∈ [1, B] and j ̸= i, serves
as a negative sample fneg(n) for a given if ′

qry(n). The
turn-wise retrieval loss function is represented as Ln

retr =
L(xn,yn), with the overall loss function for our proposed
multi-turn model given by L = 1

N

∑N
n=1 Ln

retr.

4. Experimental Evaluation

4.1. Datasets

Multi-turn FashionIQ [60]: To the best of our knowledge,
this is the only existing fashion dataset with multi-turn ses-
sions, where each turn is derived from the original single-
turn FashionIQ [56] dataset. It comprises of 11, 505 ses-
sions across three clothing types – dress, top-tee, and shirt.
The dataset is split into transactions of 2-turns, 3-turns, and
4-turns. In each turn, the data is represented as a pair (In,
Un), where In and Un correspond to the query image and
the feedback text for turn n.
Multi-turn Shoes: The original Shoes dataset [5] contains
images of 10 categories of women’s shoes obtained from
the web along with automatic labeling of attributes. Guo et
al. [17] provide additional natural language descriptions of
the images to make them suitable for single-turn feedback-
based image retrieval. This resulted in about 10k training
pairs and 4.6k test queries. In this work, we create a multi-
turn extension of this dataset to further research in this do-
main. Like the approach described in [60], we concatenated
several single-turn transactions by matching the target im-
age of one session to the query of another. To maintain

consistency with Multi-turn FashionIQ, we also developed
transactions of 2-turns, 3-turns, and 4-turns. Table 1 pro-
vides the statistics of both the datasets.

4.2. Implementation Details

Single-turn feature extractor pre-training - We use the
recently proposed single turn (ST) fashion image retrieval
model, FashionVLP [14], to extract the query and target fea-
tures for both datasets. To ensure a fair comparison with
other algorithms, we re-train FashionVLP only on those
single-turn queries that are part of the multi-turn dataset.
The implementation details and hyperparameters are simi-
lar to those mentioned in Goenka et al. [14].
CM-NTM training - We build our CM-NTM model us-
ing the open-source implementation [28] of NTM [16]. We
implement a separate controller for each memory in our
cascaded design using Long Short Term Memory (LSTM)
networks [20]. The read and write heads are composed of
multi-layer perceptrons (MLPs) and attention networks. We
use C = 4 for Shoes, and C = 8 memory stages for Fash-
ionIQ, as it is a larger dataset. To ensure equal turn lengths
for batch training, we pad the short turn transactions by re-
peating the last transaction similar to Yuan et al. [60]. We
train our models for 100 epochs with a batch size of 80 and
a learning rate of 1e-4. We used the PyTorch framework
with Adam [29] optimizer for training.

4.3. Baselines and Previous State-of-the-art

We compare the performance of our model with six other
single-turn and multi-turn approaches.
Single-turn methods - In these methods, we aggregate
the multi-turn query data into a single feature with-
out iterating over them turn-wise. The first baseline is
ST+ avg(all turns), where we take the mean of all the
N query features in a transaction to get a single mean query
f̄qry(N). This is compared with the candidate target fea-
tures ftar(N). Next, we have ST+ cat(all captions),
where all the captions of a multi-turn transaction are con-
catenated into one long caption, along with initial reference
image, to get query features f̂qry(N). This is compared
with target features ftar(N) to retrieve the final images.

Table 2: Quantitative results on Multi-turn FashionIQ [60]. We compare with multiple single-turn and multi-turn baselines, and state-of-
the-art works [17, 60]. Results show the superior performance of our proposed approach on the popularly used recall rate evaluation metric.

Dress Toptee Shirt Overall
Model R@5 R@8 R@5 R@8 R@5 R@8 R@5 R@8 Mean

Single-turn
ST + avg(all turns) 25.6 32.5 32.1 38.1 27.0 32.3 28.2 34.3 31.3
ST + cat(all captions) 30.2 36.3 36.0 44.1 35.3 42.5 33.8 41.0 37.4

Multi-turn
Dialog Manager [17] 12.7 16.7 11.6 15.8 13.9 17.7 13.1 15.2 14.2
CFIR [60] 29.8 33.5 29.4 33.6 30.5 34.1 30.3 33.4 31.9
ST + EWMA (ours) 42.0 48.4 43.8 50.9 36.9 44.2 40.9 47.8 44.4
ST + LSTM (ours) 47.8 52.5 44.4 50.5 41.6 47.6 44.6 50.2 47.4
FashionNTM (ours) 48.3 52.8 45.1 49.8 43.8 48.8 45.7 50.4 48.1
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Multi-turn methods - In these methods, the multi-turn
data is fed turn-wise to the model. The first method
is Dialog Manager [17], which employs reinforcement
learning (RL) framework to learn relationships between
turns. Next, we have the previous state-of-the-art Conver-
sational Fashion Image Retrieval CFIR method [60], which
encodes only the text using a transformer network [53], and
uses a simple Gated Recurrent Unit (GRU) layer for multi-
turn image retrieval. The third baseline is ST+ EWMA, where
we use exponential weighted moving average [1] to heuris-
tically aggregate past turns, with more weights given to re-
cent history. Finally, we have the ST+ LSTM model that
uses a single-layer LSTM [20] with a hidden size of 100 for
aggregating past information.

4.4. Results

Evaluation Metrics - Following [14, 60, 17], we evaluate
models using the standard top-K recall (i.e. R@K) for image
retrieval. Overall performance are compared specifically on
the average of R@5 and R@8.
Quantitative results on multi-turn datasets - In Table 2,
we compare the results of different methods on the multi-
turn FashionIQ dataset. We observe that the multi-turn
baselines generally perform better than single-turn meth-
ods. This is expected as aggregating data by naı̈vely aver-
aging/concatenating loses feedback content and turn-order
information and hence is likely to miss out on important
cues. Our memory-based approach outperforms all the
other multi-turn baselines by a large margin. This shows
that the memory network can store and retrieve useful in-
formation to and from the memory between intermediate
turns, which allows it to keep track of past information bet-
ter than other networks that do not use explicit memory. The
50.5% performance gain over the previous state-of-the-art
highlights our model’s capability to learn meaningful repre-
sentations over multiple turns of conversational feedback.

In Table 3, we provide a similar comparison for the
Multi-turn Shoes dataset. Consistent with results for Multi-
turn FashionIQ, the multi-turn baselines perform better than

Table 3: Comparison with existing single-turn and multi-turn mod-
els on the multi-turn version of the Shoes [5] dataset. We compare
with multiple single-turn, and multi-turn baselines. Comparative
analysis shows the superior performance of our proposed approach
using the popular recall rate evaluation metric.

Model R@5 R@8 Mean
Single-turn

ST + avg(all turns) 12.4 17.6 15.0
ST + cat(all captions) 10.7 13.6 12.2

Multi-turn
ST + EWMA (ours) 18.3 23.8 21.1
ST + LSTM (ours) 23.3 32.1 27.7
FashionNTM (ours) 26.7 35.7 31.2

all the single-turn ones, and our memory network-based
approach performs the best with a relative improvement
of 12.6%. The difference in performance across different
models is more pronounced in these results than in Table 2.
This is possibly because the annotations are cleaner and
more consistent in this dataset as compared to Multi-turn
FashionIQ [60]. For instance, multiple images in the Fash-
ionIQ dataset can match a particular query, but only one of
them is labeled as the ground-truth.

An important property of a good multi-turn system is
that performance should be robust to the length of the his-
torical information (number of past turns). For example,
even for a large number of previous turns considered, the
model should efficiently retain desirable details, while fil-
tering out unnecessary information. In Table 4, we ana-
lyze this property for models with and without memory.
A single-turn model that assumes ground-truth information
for all past turns, and evaluated only on the final-turn, is
taken as reference. This is expected to be the upper-bound
on the performance in a single-turn setting, as perfect infor-
mation about the history is guaranteed. We vary the number
of past turns included in the input transaction history (ver-
sus treated as ground-truth) for the multi-turn models (with
or without memory) in order to evaluate their effectiveness
at capturing and utilizing past information. As seen from
the table, for a model without memory, the performance
depreciates significantly with each additional turn from the

Table 4: Importance of aggregating historical data using memory-based vs non-memory approach. In the first row, we show the result of a
model using only the final turn information of a multi-turn transaction. This assumes the groundtruth retrieval for all previous turns, and
therefore provides the upper-bound on single-turn performance for final retrieval. Subsequently, we include additional information from
the history, and compare performance across models with and without memory. As seen from the non-memory case, the performance
depreciates a lot (≈ 64.9% difference compared to the final turn’s performance), as we try to aggregate longer historical information. In
contrast, for the memory network model, it can be seen that the performance is fairly consistent (≈ 0.5% difference) across the turn length.

Memory usage Turn configuration Dress Toptee Shirt Overall Difference
R@5 R@8 R@5 R@8 R@5 R@8 R@5 R@8 Mean from final turn

- only final turn 77.9 77.9 84.0 84.0 74.1 77.8 78.7 79.9 79.3 -
Experiments with data aggregated across multiple-turns

Only single turn
(w/o memory)

last two turns 51.3 58.4 56.0 76.0 44.4 48.1 50.6 60.9 55.8 −29.6%
last three turns 33.6 43.4 32.0 44.0 29.6 40.7 31.8 42.7 37.3 −53.0%

all turns 18.6 28.3 32.0 32.0 25.9 29.6 25.5 30.0 27.8 −64.9%

FashionNTM
(with memory)

last two turns 76.1 77.9 84.0 84.0 77.8 77.8 79.3 79.9 79.6 +0.4%
last three turns 77.0 77.9 84.0 84.0 77.8 77.8 79.6 79.9 79.8 +0.6%

all turns 76.1 77.9 84.0 84.0 77.8 77.8 79.3 79.9 79.6 +0.4%
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is more formal  
and elegant

is longer and  
has light color 

is gray and not  
red with belt 

Initial query GT target 

EWMA

LSTM

FashionNTM
(ours) 

Rank 1 2 3 4 5

has no stripes  
and is darker 

has round neckline  
with blue pattern 

is a red colored  
shirt with center logo 

Initial query Initial query GT target GT target 

1 2 3 4 5 1 2 3 4 5

Turn 1 Turn 3 Turn 1 Turn 2 Turn 3 Turn 3Turn 2Turn 1 Turn 4

has more sleeves and  
shorter, rounder collar

has longer sleeves  
with three different color 

has equally spaced  
stripes and dark color 

has short sleeves  
and red stripes

Turn 2

(a) Multi-turn FashionIQ. From left to right, the images belong to the Dress, Shirt, and Toptee categories respectively.

are all tan  
with rubberized sole

are gray with  
blue accents 

are more solid gray  
with red front sole 

Initial query GT target 

EWMA

LSTM

FashionNTM
(ours) 

Rank 1 2 3 4 5

are purple suede  
with top buckle 

are brown and  
not plum 

are shiny leather  
with no buckle 

have velcro  
closures 

has lacing,  
not velcro closures

have pale gray  
inserts and not blue

Initial query Initial query GT target GT target 

1 2 3 4 5 1 2 3 4 5

Turn 1 Turn 2 Turn 3 Turn 1 Turn 2 Turn 3Turn 2Turn 1Turn 3 Turn 4

is smoother  
with higher heel 

(b) Multi-turn Shoes. From left to right, we have three different samples of shoes from the dataset.

Figure 4: Top-5 final image retrievals on the evaluated multi-turn datasets. The top row illustrates 3 sets of multi-turn query session. We
consider three different multi-turn models - EWMA, LSTM, and our proposed FashionNTM. As seen from the retrievals, our proposed model
correctly predicts the target image in all 3 cases for the FashionIQ dataset, and in 2 out of 3 cases for the Shoes dataset.

past treated as input rather than ground-truth. As we go fur-
ther back in history, the performance consistently reduces.
However, for our multi-turn model with memory, the perfor-
mance does not change appreciably as the number of turns
change. This shows that our proposed approach can suc-
cessfully retain/filter out past data based on their relevance,
across various lengths of history.

An interesting observation is that having only the final
turn with memory does not yield a good result. This is pos-
sibly due to the initialization method of the memory net-
work, which is random. Hence, in absence of a history (only
single turn case), the only past features to be aggregated are
the random initialization features.

Qualitative results - In addition to the quantitative exper-
iments described above, we also present some qualitative
final image retrieval results of our evaluated models on both
the multi-turn datasets. The first set of results are shown in
Figures 4a and 4b for the Multi-turn FashionIQ [60] and the

Multi-turn Shoes datasets, respectively2. We compare the
top-5 predicted results from our proposed model with two
other multi-turn baselines, ST+ EWMA and ST+ LSTM. As
seen in the figures, our approach can correctly predict the
desired target image for both datasets with higher ranks as
compared to other baselines. More specifically, we see that
in Figure 4a, even though all the three multi-turn models
can infer the general sense of desired attributes, such as “is
longer” in the left block and “has short sleeves” in the right,
only our model can capture complex and detailed proper-
ties, e.g., “gray and not red” in the left block, and “red color
with center logo” in the middle block. Furthermore, our
model can retrieve multiple desirable products, as seen by
the first four images in the middle block, and four out of
five images in the right block. Similar results are observed
for Shoes in Figure 4b, where our model correctly predicts

2Please refer to the supplementary material for additional results, along
with the differences in annotation quality between the two datasets.

11329



User Feedback:
is green in color

User Feedback:
has a solid color
and small image

Turn 1 query

Turn 2 query

Rank 1 Rank 2 Rank 1

Rank 1 Rank 1

Rank 2

Rank 2 Rank 2

Single-turn FashionNTM (ours)

Rank 3

Rank 3 Rank 3

Rank 3

Figure 5: Memory retention capability of our proposed approach.
Given an initial query image, we take two interactive user feed-
backs in turns. On the left side, we have the single-turn model
which only learns to retrieve an image using a single dialog ex-
change. As a result, none of the retrieved images in turn 2 are
“green in color”, which was desired in turn 1. In contrast, our pro-
posed approach on the right can learn to retain data from both the
turns, and therefore retrieves desirable product in 2 out of 3 cases.

the desired target as rank-1 in two out of three examples,
whereas the other models fail to retrieve meaningful results.

4.5. Model Analysis in Interactive Settings

In addition to the results above for the static dataset,
we also performed some interactive experiments to evalu-
ate whether our model can adapt to real-world dynamic use
cases beyond the trained datasets.
Memory retention - In this experiment, we demonstrate
the memory retention capability of our proposed model by
comparing it with a single-turn network, which does not re-
tain historical information. We start with an initial query
image retrieved via a single-turn model. Subsequently, we
take user input for the next two turns to retrieve newer sets
of images. As seen in Figure 5, for the single-turn model
(left side), none of the retrieved images in turn 2 are green
in color. This is because the “green in color” attribute was a
desired property in turn 1, which the model without memory
could not recover. In contrast, for our memory network ap-
proach (right side) both the top-2 retrieved images for turn
2 are “green in color” in addition to having “a solid color
and small image”. Thus, our model can learn to retain in-
formation from previous turns.
Agnosticity to turn order - Ideally, a deployed multi-turn
image retrieval system should be independent of the order of
feedbacks provided, as long as they are non-contradictory.
This is demonstrated in the experiment conducted in Fig-
ure 6. In the first case, we take two text inputs as feedbacks
from a user and present them to the model. In the second
case, we reverse the order of the feedbacks. As shown in
the figure, for the flipped case, our proposed FashionNTM
model retrieves similar looking final products, even though
the intermediate retrievals are very different.

It is to be noted that for both the experiments depicted
in Figures 5 and 6, the feedback is taken from a dynamic
user, thereby establishing the interactive capability of our

Turn 1 query Rank 1 

Rank 1 Turn 2 query Rank 2

Rank 2 Rank 3

Rank 3 

User Feedback 1:  
is white in color

User Feedback 2:  
has longer sleeves  
and longer length

Turn 2 query 

Turn 1 query Rank 1 Rank 2 Rank 3 

Rank 1 Rank 2 Rank 3 

User Feedback 1:  
has longer sleeves
and longer length

User Feedback 2:
is white in color

Original sequence Flipped sequence 

Figure 6: Turn order independence feature of a memory network.
In this experiment, we start with an initial query image, and take
two non-contradictory user feedbacks. In one case (left), we let the
model retrieve images based on the original order of the feedbacks,
whilst in the other (right), we flip the order of the feedbacks. Our
proposed approach adapts to presented input, and retrieves similar
looking final results for both the cases, even though the intermedi-
ate outputs are quite different.

proposed model beyond the training dataset.

4.6. User Study

Fashion image retrieval is inherently a subjective task,
where the task success heavily relies on the satisfaction of
a customer. Thus, we conducted a small human-preference
survey among 5 participants (not associated with the pa-
per in any way). To each user, we showed the final top-
1 retrieved image by the 3-best multi-turn models on the
FashionIQ [60] dataset from Table 2 – EWMA, LSTM, and our
proposed FashionNTM. To ensure consistency, we gener-
ated 45 queries for this study, whose results are shown in
Figure 7. The y-axis shows the number of preferred re-
trieval results for each user. Results show that each of the
5 users preferred images retrieved by the proposed Fash-
ionNTM model, on an average 83.1% more as compared to
other multi-turn methods. In the supplementary material,
we include some examples of the user interface shown to

EWMA LSTM FashionNTM (ours)

Figure 7: Human preference study of top multi-turn systems.

11330



Table 5: Different number of memories for the proposed approach
by fixing the memory size to 4 × 768. We select the mean value
for comparison and pick the best one.

Model Number of R@5 R@8 Mean %
memories (C) increase

ST+v-NTM 1 24.5 30.5 27.5 -

FashionNTM

2 26.4 33.8 30.1 9.5
4 27.6 35.5 31.5 14.5
8 26.9 35.2 31.1 13.1
16 26.4 33.8 30.1 9.5

the participants during this study.

4.7. Ablation Studies

We perform multiple ablation studies to gain insights on
how changing different configurations of the memory net-
work affect the overall performance. We perform these ab-
lations on the multi-turn Shoes dataset as it contains more
realistic and consistent feedback texts.3

Number of memories in CM-NTM - This experiment in-
volves varying the number of memories C in our cascaded
memory architecture. In Table 5, we observe that the cas-
caded memory CM-NTM models perform significantly bet-
ter than vanilla NTM, which has only one memory. We
hypothesize that having inputs from multiple turns interact-
ing with the same memory could eventually lead to satura-
tion as we get additional data which could be alleviated if
there are multiple memories in the network to recover the
past which might help in capturing multiple complex re-
lationships in multi-turn interactions better. Additionally,
multiple memory networks can help in learning diverse rep-
resentations of the input using derived features, which is
not possible with a single memory network. As seen in Ta-
ble 5 for Shoes dataset, the performance increases with the
number of memories, peaking at C = 4, and then gradually
decreases as the model starts to overfit.
Inference time with multiple memories - In this experi-
ment, we study the performance of FashionNTM in terms of
the mean of R@5 and R@8 recall rates along with the time
taken to process one multi-turn transaction. For each C,
we evaluate the performance across four different memory
sizes. As seen from Figure 8, the inference time increases
with additional memories. Configurations in the green and
blue clusters are desirable, as they provide a good trade-off
between recall performance and computation time, while
the pink and red clusters are undesirable due to poor perfor-
mance and longer inference time, respectively.

5. Conclusion and Future Work
In this paper, we presented a novel cascaded Neural

Turing Machine-based approach, called FashionNTM, for
multi-turn feedback-based fashion image retrieval. Multiple

3For a similar study on the Multi-turn Fashion-IQ dataset, please refer
to the supplementary material.

Recall rate vs Inference time

Inference time (in ms) 
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l R
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16 x 768

x
+

Legend

2 memories
4 memories
8 memories
16 memories

2 x 768
4 x 768
8 x 768

1 memory

Figure 8: Scatter plot showing recall versus inference time for
multiple memories in our CM-NTM for the Multi-turn Shoes
dataset. The configurations belonging to the green cluster give the
best recall overall, while having a high inference time. The con-
figurations in the blue cluster provide a suitable alternative with
quicker inference at the cost of lower recall. The magenta and red
clusters are undesirable configurations due to poor performance
and long inference time, respectively.

memories in our model allow it to effectively retain and re-
call a number of complex relationships across transactions
in the multi-turn setting, and multiple controllers help in
assigning relative importance to each feature stored in the
memory. This aids in attending to different parts of the in-
put at different levels, thus leading to better performance
across datasets. We also performed extensive experiments
to compare our performance with baselines and previous
state-of-the-art and observed that our multi-memory model
significantly outperforms previous works [60], with up to
50.5% relative improvement on Multi-turn FashionIQ, and
by 12.6% on the multi-turn Shoes dataset, which we created
in this work. We further demonstrated that our model can
generalize beyond the trained setting to dynamically inter-
act with real-world users to retrieve meaningful final prod-
uct images. Finally, a user preference study reveals that
our model is preferred by human participants on an aver-
age 83.1% more as compared to other multi-turn methods.

Despite promising results, there are a few limitations that
make multi-turn image retrieval a hard problem to solve.
Firstly, there is dearth of high quality and diverse multi-
turn image retrieval datasets in the fashion domain which
hinders comprehensive studies in this field. Additionally,
deploying current approaches to real-world scenarios (e.g.,
virtual private assistants) becomes a challenge due to com-
putational requirements. Lastly, selecting the right configu-
ration for different components such as memory size, num-
ber of memories, etc. in a memory-based network is not a
trivial task and depends a lot on the use case. Nevertheless,
for future work, our approach could be further extended to
non-fashion domains where multi-turn feedback-based in-
formation retrieval solutions are required.
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