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Abstract

We introduce STEERINGSAFETY, a systematic framework for evaluating repre-
sentation steering methods across seven safety perspectives spanning 17 datasets.
While prior work highlights general capabilities of representation steering, we
systematically explore safety perspectives including bias, harmfulness, halluci-
nation, social behaviors, reasoning, epistemic integrity, and normative judgment.
Our framework provides modularized building blocks for state-of-the-art steer-
ing methods, enabling unified implementation of DIM, ACE, CAA, PCA, and
LAT with recent enhancements like conditional steering. Results on Gemma-
2-2B, Llama-3.1-8B, and Qwen-2.5-7B reveal that strong steering performance
depends critically on pairing of method, model, and specific perspective. DIM
shows consistent effectiveness, but all methods exhibit substantial entanglement:
social behaviors show highest vulnerability (reaching degradation as high as 76%),
jailbreaking often compromises normative judgment, and hallucination steering
unpredictably shifts political views. Our findings underscore the critical need for
holistic safety evaluations

1 Introduction

Large language models (LLMs) have demonstrated impressive capabilities across a wide range of
natural language tasks (Brown et al., 2020; [Touvron et al., |2023; |Ouyang et al.,|2022). However,
their growing fluency and generality have raised serious concerns about their safety (Bai et al., [2022;
‘Weidinger et al., 2021 Mazeika et al., 2024), including tendencies to produce harmful content,
propagate social bias, and mislead users through hallucinated responses (Xu et al., 2024;|Gallegos
et al.,[2023)). These behaviors are often emergent and unpredictable, highlighting the difficulty of
governing high-capacity models.

A central objective in safety research is to ensure model behaviors remain safe, robust, and consistent
with human intent (Leike et al.,[2018; Bai et al., [2022; \Ganguli et al., 2022). However, a fundamental
challenge complicates these efforts: interventions targeting one safety behavior often unintentionally
affect others; a phenomenon we term entanglement. For example, SFT on non-safety data can
compromise toxicity mitigation (Hawkins et al.| [2024), fairness (Li et al., 2024a)), and overall
safety (Qi et al.,|2024)). Similarly, RLHF can induce sycophancy (Malmqvist,2024), amplify political
biases (Perez et al.,[2023)), and reduce truthfulness (Li et al.| 2024a). Understanding and measuring
entanglement is therefore critical for ensuring safety interventions achieve intended effects without
introducing new risks.
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Besides SFT and RLHEF, safety can also be accomplished through representation steering, an often
training-free method that intervenes directly on internal model activations to achieve a target objec-
tive (Zou et al.| [2023; [Panickssery et al., 2023} |Li et al., 2023} Turner et al., 2023} 'Wehner et al.| 2025},
Lee et al., 2024; [Bartoszcze et al.,[2025). These methods identify relevant directions in activation
space that correspond to behaviors like refusal (Arditi et al.| 2024; Marshall et al.| 2024} Lee et al.}
2024; [Wollschlager et al., [2025; Panickssery et al.| 2023)) or hallucination (Chen et al.| 2024; Zou
et al., [2023)), and apply simple vector operations, such as activation addition, to modulate model
behavior. Although representation steering methods are widely applicable and often more accessible
than training-based approaches, they are also known to suffer from side effects similar to SFT and
RLHF, including reductions in fluency and instances of overgeneralization. However, the extent and
nature of entanglement in representation steering has not been systematically measured across safety
perspectives at scale.

To address this gap, we introduce STEERINGSAFETY, a systematic framework for measuring entan-
glement in steering interventions across multiple safety perspectives. STEERINGSAFETY makes two
main contributions:

1. Comprehensive entanglement measurement across seven safety perspectives: We enable
standardized quantitative assessment of both steering effectiveness on target behaviors and
the resulting entanglement across all evaluation perspectives. By aggregating established
safety benchmarks spanning harmfulness, hallucination, bias, and other dimensions, our
framework quantifies how interventions targeting specific behaviors create cascading effects
across the safety landscape.

2. Modular evaluation framework for systematic comparison: We provide a unified codebase
implementing five popular steering methods through interchangeable components, enabling
direct comparison across methods and configurations. This modularity supports systematic
exploration of how different steering approaches and design choices affect the effectiveness-
entanglement tradeoff, and allows novel combinations integrating newer techniques like
conditional steering.

By enabling comprehensive and systematic safety assessment at scale, STEERINGSAFETY establishes
a foundation for rigorously comparing steering interventions, uncovering hidden entanglements, and
guiding the development of safer, more controllable models.

2 Dataset

STEERINGSAFETY evaluates representation steering methods by testing whether interventions can
reliably steer a specific perspective while minimizing unintended effects on others. Unlike prior work
focusing on individual alignment objectives, STEERINGSAFETY enables comprehensive evaluation
across diverse safety axes and analysis of entanglement (Figure [T). We describe the perspectives
addressed in the benchmark below, with dataset sizes and splits in Appendix

Harmfulness. We use SALADBench (Li et al., [2024b)) as our main dataset for harmful generation,
filtering the base QA set using GPT-4o0 to retain only unmistakeably harmful open-ended prompts.
Negative examples are drawn from Alpaca (Taor1 et al., 2023) for instruction-only prompts. We
exclude prompts tagged as “Hate Speech” or “Stereotyping” to remove overlap with bias and stratify
splits across the remaining labels. Harmfulness is a generation task scored using LlamaGuard-4 (Meta,
2025).

Bias. We evaluate bias through two sub-perspectives for implicit and explicit discrimination. Implicit
bias uses BBQ (Parrish et al., [2022), a multiple-choice benchmark probing stereotyping across
demographic attributes, stratified by demographic. Explicit bias uses ToxiGen (Hartvigsen et al.,
2022)), a binary classification benchmark where models agree/disagree with toxic statements linked to
demographic identities, similarly stratified to BBQ. Accuracy for BBQ and ToxiGen is measured
using substring matching over multiple-choice and boolean completions, respectively.

Hallucination. We adopt the HalluLens (Bang et al., 2025) taxonomy to separate intrinsic halluci-
nation (contradictions with input context) from extrinsic hallucination (unsupported generation
absent from context or pretraining). For intrinsic hallucination, we use three FaithEval subsets (Ming
et al., 2025): counterfactual, inconsistent, and unanswerable. Negative completions are gener-
ated using GPT-4.1-mini for the unanswerable set and randomly chosen where they already exist
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Figure 1: The STEERINGSAFETY evaluation framework detailing dataset coverage across seven
distinct perspectives. We apply representation steering (which modifies internal activations) to the
perspectives highlighted in bold, then evaluate on all other perspectives to measure unintended
consequences. Each perspective comprises multiple sub-perspectives for detailed analysis.



in other datasets. Extrinsic hallucination uses PreciseWikiQA (Bang et al.l [2025), a dataset of
Wikipedia-sourced QA pairs stratified across 10 difficulty levels. We use a dataset generated with
LLaMA-3.1-70B-Instruct (Grattafiori et al., 2024) as in Bang et al.|(2025)), and generate incorrect an-
swers using GPT-4.1-mini. Completions are scored using LLaMA-3.3-70B-Instruct (Grattafiori et al.}
2024) for factuality via hallucination rate. We report the percentage of prompts not hallucinating,
such that higher scores indicate better behavior.

Social Behaviors. To assess how models interact with users, we evaluate Brand Bias, Sycophancy,
Anthropomorphism, and User Retention using DarkBench (Kran et al.,|2025). Brand Bias tests
preference in product recommendations; Sycophancy measures uncritical agreement with user input;
Anthropomorphism tests whether models describe themselves with human-like traits; and User
Retention measures tendency to prolong interactions unnecessarily. All responses are scored using
GPT-4o0 as in |Kran et al.| (2025)). We report the percentage of prompts not exhibiting the described
behavior such that higher scores are better.

Reasoning Capabilities. =~ We test reasoning ability using Expert-Level Reasoning from
GPQA’s (Rein et al.} 2023) MCQs, covering fields like law, physics, and biology. Simple Rea-
soning uses prompts from ARC-C (Clark et al., 2018)), requiring basic inference skill. Accuracy is
computed via substring matching.

Epistemic Integrity. These tasks test honesty and factuality. Factual Misconceptions use binary-
choice Truthful QA (Lin et al., |[2022) prompts, where models choose between true and plausible
but false statements. Sneaking uses adversarial DarkBench (Kran et al., [2025) prompts to test if
the model subtly shifts the original stance when reframing opinions. Following Kran et al.| (2025)),
GPT-40 judges Sneaking, while misconceptions are judged via substring matching. For sneaking we
report the percentage of prompts not exhibiting sneaking behavior.

Normative Judgment. This category assesses how models navigate ethically and ideologically sensi-
tive scenarios. We test Commonsense Morality using ethical dilemmas from DecodingTrust (Wang
et al.,|2024a), scored by whether the model chooses the correct and moral answer. Political Views
uses prompts from TwinViews-13k (Fulay et al.||2024), which ask the model to agree with either left
or right-leaning opinions. We report the percentage of responses choosing the left-leaning option
since models often skew left (Fulay et al., [2024; [Potter et al., 2024). Unlike other datasets where
higher is better, this convention was chosen arbitrarily.

2.1 Metrics

We define two aggregate metrics: Effectiveness (Eq[I), how performant a steering method is on
steering a single target perspective, and Entanglement (Eq[2), the degree of unintended changes
resulting from steering, by evaluating on all perspectives in STEERINGSAFETY not being steered.
Here, P4, denotes the set of datasets within the target perspective being steered, and P,,4 denotes
the datasets in all other (out-of-distribution) perspectives. We also present results for each steering
method over all perspectives to allow for observations of the specific tradeoffs faced for each
combination of model, method, and perspective.
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3 Methodology

We implement a modular framework identifying core components of training-free steering methods.
We define steering as three pipeline components: direction generation (obtaining directions from
input prompts), direction selection (selecting the best candidate direction), and direction application
(adjusting the forward pass during inference). Using these building blocks, we construct five steering
methods, expressing each as a composition of standardized components. Where unclear, we make
reasonable decisions based on the original paper and/or codebase.



For all methods, we extract activations from the input before the transformer block and search from
the 25th to 80th quantile of layers with step size 2, as prior work shows steering is more effective
in middle layers (Arditi et al.,|2024). To measure entanglement in realistic settings, we include a
KL divergence check on Alpaca during direction selection, removing settings where the average KL
divergence on probabilities at the last token position is less than 0.1, following |Arditi et al.| (2024).
Additional details are in Appendix [A]

Table 1: Overview of steering methods with their components. Direction selection uses GridSearch
across all methods. Format is prompt style for direction generation. Application position is which
tokens are modified during inference (POST_INSTRUCTION = post-instruction tokens; ALL = all
tokens). Application location is where in the transformer layer activations are modified (same layer,
all layers, or cumulative).

Method Format  Dir. Generation Dir. Application Application Position Application Location

DIM default DiffInMeans DirectionalAblation ALL Input (all), Output (attn, MLP — all)
ACE default DiffInMeans DirectionalAblation + Affine ALL Input (same)

CAA CAA DiffInMeans ActAdd POST_INSTRUCTION Input (same)

PCA default PCA ActAdd ALL Input (same)

LAT RepE LAT ActAdd ALL Cumulative

We implement the following methods: Difference-in-Means (DIM) is based on |Belrose| (2023)); |Arditi
et al. (2024); Siu et al.|(2025)), deviating only by using our standardized grid search for direction
selection.

Affine Concept Editing (ACE) is based on [Marshall et al.| (2024))’s affine concept editing and is
automated and shown to be effective compared to DIM for refusal in[Siu et al.| (2025)). Contrastive
Activation Addition (CAA) is based on |Panickssery et al.|(2023)). Notably, we follow the convention
of always using multiple choice formatting for direction generation and applying the intervention at
all post instruction tokens. The Principal Component Analysis (PCA) approach is based on |Zou et al.
(2023); [Wu et al.|(2025); ILiu et al.|(2024); Lee et al.|(2024). Linear Artificial Tomography (LAT) is
based on|Zou et al.[(2023); 'Wu et al. (2025).

Different from AxBench, we use the RepE format as used in|Zou et al.|(2023)), and apply directions
cumulatively at a series of layers as suggested in the original paper (described in Appendix[A.T.3). A
similar setting is also applied in Lee et al.| (2024) for PCA, but for more diversity we chose not to use
the cumulative setting for PCA as well.

4 Evaluation

To assess the effectiveness and generalizability of representation steering, we evaluate steered
versions of Gemma-2-2B-IT (Team et al., [2024), Llama-3.1-8B-Instruct (Grattafiori et al., [2024)), and
Qwen-2.5-7B-Instruct (Qwen et al.,|2024) on one perspective at a time. We conduct steering using
STEERINGSAFETY’s curated training and validation splits. Note we drop the instruct suffix when
referring to these models in subsequent sections.

As STEERINGSAFETY focuses on benchmarking general steering effectiveness alongside entangle-
ment, we choose to steer on three perspectives that align best with existing representation steering
work: (i) increasing harmfulness, (ii) reducing intrinsic/extrinsic hallucinations, and (iii) reducing
explicit/implicit bias (Marshall et al., [2024; |Arditi et al., 2024} |Siu et al., 2025} |Panickssery et al.|
2023 (Wollschlager et al., |2025; [Lee et al., [2024; |Zou et al., 2023} Xu et al., 2024} Nguyen et al.,
2025;|Q1u et al.| 2024; Ji et al., 2025} [Beaglehole et al., [2025} [Siddique et al., 2025} |Ant, [2024} [Liu
et al., [2024).

4.1 Results

We evaluate representation steering across the harmfulness, hallucination, and bias perspectives.
For each perspective, we measure both effectiveness (improvement on the target behavior) and
entanglement (unintended changes across all other safety perspectives). Our analysis addresses three

3DIM typically refers only to direction generation, not a specific method for applying directions. We
follow Wollschlager et al.| (2025) in using DIM to describe |Arditi et al.| (2024)’s complete steering method
including direction application.



key questions: (1) Which steering methods and models achieve the highest effectiveness? (2) What
patterns of safety entanglement emerge across different interventions? (3) What are the practical
tradeoffs between effectiveness and entanglement?

Full evaluation results for Gemma-2-2B, Llama-3.1-8B, and Qwen-2.5-7B with statistical significance
tests are provided in Figures [6] [0} and [12]in Appendix [F] For perspectives with sub-categories
(hallucination and bias), we steer each sub-perspective separately and average results; entanglement
calculations include deviations in the complementary sub-perspective. Additional experimental
details are in Appendix[E]

4.1.1 Steering effectiveness: which methods work best?
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Figure 2: Effectiveness on evaluated steering methods for Gemma-2-2B, Llama-3.1-8B, and Qwen-
2.5-7B across all perspectives being steered.

Figure 2] reveals substantial variation in steering effectiveness across methods, models, and perspec-
tives. For harmfulness and bias, DIM and ACE consistently achieve the strongest effects, though
hallucination steering is far less conclusive.

Hallucination steering shows more modest and inconsistent gains. Extrinsic hallucination proves
particularly challenging; it is largely unsteerable in Gemma-2-2B and Qwen models, yet yields a 50%
accuracy improvement compared to baseline values in Llama-3.1-8B with CAA and PCA. Intrinsic
hallucination is more amenable to intervention but exhibits strong model dependence: PCA and
LAT substantially reduce hallucinations in Llama-3.1-8B and Qwen-2.5-1.5B (Figures [I3} [T6), while
conditional DIM achieves a 54.5% reduction in Gemma-2-2B on Inconsistent prompts (Figure [g).

Bias steering achieves relatively consistent but lower magnitudes of effectiveness, likely due to already
high baseline performance on tested models. Even successful interventions produce effectiveness
below 20%, suggesting that either these models are already well-aligned on demographic bias or that
current steering techniques struggle with more subtle behavioral modifications.

Key Finding 1: Strong steering depends on pairing of method, model, and perspective.
DIM and ACE generally excel for harmfulness and bias; PCA and LAT are promising for
hallucination in certain models.

4.1.2 Entanglement patterns: which safety perspectives interfere?

Figure [3|reveals that entanglement is not uniform across safety perspectives. Social behaviors and
normative judgment consistently show the highest entanglement regardless of which perspective is
being steered, with the highest perspective entanglement exceeding 10% in Llama-3.1-8B and around
5% in other models. Reasoning capabilities, by contrast, remain largely stable across interventions,
with entanglement below 2% in all cases.

Harmfulness Steering Creates Widespread Entanglement. While prior work has examined refusal
entanglement primarily through Truthful QA (Arditi et al., 2024} Wollschlager et al. [2025)), our com-
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Figure 3: Average entanglement (lower is better) based on steered perspective for Gemma-2-2B,
Llama-3.1-8B, and Qwen-2.5-7B. Entanglement is first calculated across all methods and datasets for
each model, then averaged across the three models. Results by model are in Figure E}

prehensive evaluation reveals that nearly all perspectives exhibit substantial entanglement, with GPQA
as the sole exception. Most notably, steering models to answer harmful queries consistently degrades
social behaviors: sycophancy and user retention show significant negative effects. Counter-intuitively,
entanglement with explicit bias and commonsense morality is model-dependent, ranging from severe
degradation in Llama-3.1-8B to negligible effects in Qwen-2.5-7B, suggesting jailbreaking does not
necessarily make a model more toxic or immoral.

Hallucination Steering Shows Selective Entanglement. Successful hallucination reduction gener-
ally produces minimal side effects. However, intrinsic hallucination steering in Gemma-2-2B and
Llama-3.1-8B consistently results in wild fluctuations in items like implicit bias and political views,
especially in settings without a KL divergence check (Figures[7 and [I0). While both achieve reduc-
tions in hallucination, entanglement is inconsistent even in direction, with Gemma-2-2B becoming
more left-leaning while Llama-3.1-8B becomes more right-leaning. Even conditional steering shows
that Llama-3.1-8B exhibits severe entanglement when steering intrinsic hallucination, becoming
partially jailbroken, far more explicitly biased, and less moral (Figure [T T).

Bias Steering Produces Counterintuitive Effects. Despite lower effectiveness, bias interventions
unpredictably alter hallucination rates in Gemma-2-2B and Qwen-2.5-7B (Figures [7] [T2). This cross-
perspective interference persists under conditional steering, where FaithEval inconsistent questions
degrade sharply (Figure [[4). We also find in conditional Qwen-2.5-7B steering that improving
implicit bias may degrade explicit bias performance.

Social behaviors (sycophancy, brand bias, anthropomorphism, user retention) prove most vulnerable
to steering interventions, aligning with findings from RLHF research on sycophancy (Malmqvist,
2024; Min et al., 2025; |Papadatos & Freedman,2024)). Normative judgment (commonsense morality
and political views) displays the highest variance across models, with morality occasionally being
degraded while political views jumps in both directions, suggesting these behaviors are particularly
sensitive to model-specific factors.

Key Finding 2: Entanglement is model-dependent but consistently highest for social behav-
iors and normative judgment, while reasoning remains robust. Counterintuitively, jailbreaking
doesn’t necessarily increase toxicity, hallucination steering causes opposing political shifts
across models, and improving one bias type can degrade another, demonstrating that entan-
glement depends critically on the combination of method, model, and perspective.

4.1.3 Effectiveness-entanglement tradeoffs: practical guidance

Table [2] quantifies the effectiveness-entanglement tradeoff for each method-model-perspective combi-
nation, with higher ratios indicating more favorable profiles. These ratios reveal several actionable
insights for practitioners.

For harmfulness steering, ACE and DIM achieve the best tradeoffs across all models, with ratios
between 4.5 and 9.4. However, even these favorable ratios come with the caveat that harmfulness
steering consistently entangles with social behaviors regardless of method choice. For hallucination
steering, PCA achieves the best ratio in Llama-3.1-8B (1.71), reflecting its ability to reduce hallucina-
tions while actually improving some social behaviors. However, Figure 0] demonstrates that these



Table 2: Effectiveness/Entanglement ratio by method, steered perspective, and model. Higher values
indicate better trade-offs (more effectiveness per unit of entanglement). Gemma = Gemma-2-2B,
Llama = Llama-3.1-8B, Qwen = Qwen-2.5-7B.

Harmfulness Hallucination Bias

Method Gemma Llama Qwen Gemma Llama Qwen Gemma Llama Qwen

ACE 5.96 7.72 9.40 -0.96 0.32 1.16 2.00 4.08 2.09
CAA 0.00 0.87 0.16 0.04 0.77 0.23 -0.41 4.14  -0.05
DIM - 6.50 4.48 -0.66 0.31 0.49 5.22 5.46 6.76
LAT -0.73 -0.28  0.30 -0.31 0.19 0.89 7.05 1.40 8.70
PCA -0.25 0.53 0.19 -0.79 1.71 0.57 1.77 2.12 5.18

two interventions entangle on different behaviors when steering extrinsic hallucination, with PCA
reducing intrinsic hallucination while CAA degrades it, necessitating the use of holistic evaluation.
Bias steering shows the most variable tradeoffs, with LAT achieving ratios above 7.0 in Gemma-2-2B
and Qwen-2.5-7B despite low absolute effectiveness.

Negative ratios warrant particular attention as they indicate steering methods that increase entangle-
ment more than they improve the target behavior. ACE shows negative ratios for hallucination in
Gemma-2-2B (-0.96), while CAA produces negative ratios for bias in Gemma-2-2B and Qwen-2.5-7B.
These configurations should be avoided in practice.

Key Finding 3: Different steering methods targeting the same behavior can create steering
vectors entangling distinct perspectives, as demonstrated by PCA and CAA producing differ-
ent entanglement patterns when steering extrinsic hallucination in Llama-3.1-8B (Figure 9).

4.1.4 Controlling the effectiveness-entanglement tradeoff
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Figure 4: Effectiveness (higher is better) vs entanglement (lower is better) based on perspective
being steered for Gemma-2-2B, Llama-3.1-8B, and Qwen-2.5-7B. Performance is averaged over all
methods for each setting, with model results connected for comparison. Conditional steering often
achieves Pareto improvements with similar effectiveness and reduced entanglement.

By default, we employ a KL divergence check during direction selection to filter out interventions
that dramatically alter model behavior on neutral tasks, following |Arditi et al.|(2024)). To understand
how this choice affects the effectiveness-entanglement tradeoff, we evaluate three variants across
all models: (1) Standard - our default setting with KL divergence filtering on Alpaca, representing
practical deployment conditions; (2) NoKL - no KL filtering, representing a best-case effectiveness
scenario; and (3) Conditional - conditional steering based on CAST (Lee et al., [2024) without KL,
filtering, aiming to achieve high effectiveness while preserving low entanglement through selective
application.

Figure ] shows results aggregated across methods. As expected, NoKL achieves effectiveness at least
as high as Standard for harmfulness and hallucination, confirming that the KL check trades some



effectiveness for safety. However, the cost is substantial: entanglement increases dramatically in most
cases, often more than doubling.

Conditional steering consistently improves upon NoKL by reducing entanglement while maintaining
effectiveness. For harmfulness, Conditional achieves effectiveness equal to NoKL across all three
models while reducing entanglement closer to Standard levels, a Pareto improvement. For hallucina-
tion, Conditional is generally more effective than both other settings with only minor entanglement
increases. The exception is bias steering, where Conditional performs poorly, likely because bias
prompts are similar to the Alpaca prompts used to calibrate the conditional threshold, causing the
intervention to activate too frequently.

Key Finding 4: Conditional steering enables better effectiveness-entanglement tradeoffs for
most perspectives but cannot completely mitigate entanglement. Future work should explore
methods for setting conditional thresholds that generalize across diverse prompt distributions.

4.1.5 Consistency across model scales

To assess whether our findings generalize across model sizes, we evaluate Qwen-2.5-1.5B-Instruct and
Qwen-2.5-3B-Instruct using the Standard setting (Figures[I3] [I6). The relative ranking of methods
by effectiveness-entanglement ratio remains stable: ACE achieves the best ratios for harmfulness
and hallucination in both Qwen-2.5-3B and Qwen-2.5-7B, while LAT is best for bias across all three
Qwen model sizes (Table d). Entanglement patterns also remain consistent, with social behaviors
showing the highest sensitivity when steering for harmfulness across all three scales. These results
suggest that insights from smaller models can inform interventions on larger models, though absolute
effectiveness and entanglement magnitudes may shift relative to the baseline model’s performance on
each perspective. Full results are provided in Appendix

5 Related work

Our work builds on research in LLM alignment, activation steering, and mechanistic interpretability,
focusing on intervening in internal representations to control behaviors such as harmfulness, bias,
and hallucination.

Mechanistic interpretability provides the theoretical foundation for activation-level steering. Studies
demonstrate that abstract properties like truthfulness, bias, and refusal are encoded as linearly
decodable directions in residual space (Park et al.,[2024; Nanda et al.,|2023}; | Bolukbasi et al., 2016;
Mikolov et al.||2013)), supporting the linear representation hypothesis (Elhage et al.|[2022). However,
other work suggests refusal behaviors may span affine functions or multi-dimensional subspaces
(Marshall et al.| 2024; |Wollschléger et al., 2025)). Building on this foundation, steering methods
directly manipulate model activations. Approaches like Representation Engineering (Zou et al., [2023)
and Spectral Editing (Qiu et al., 2024) inject or remove learned directions derived from contrastive
data pairs (Burns et al.,|2023; |Arditi et al.| 2024), embedding differences (Panickssery et al.| 2023)),
or activation clustering (Wu et al.; 2025). Methods like Contrastive Activation Addition (Turner et al.|
2023} |Panickssery et al., [2023) aim to suppress targeted features while preserving fluency.

Entanglement across behaviors remains a critical obstacle for reliable steering. Existing frameworks
like AxBench (Wu et al, [2025) and EasyEdit2 (Xu et al., [2025)) provide structured evaluation but
vary in scope. STEERINGSAFETY extends this work by systematizing cross-behavior interference
evaluation with focus on diverse safety-relevant behaviors and broad, modular coverage of training-
free steering methods, implementing a standardized pipeline similar toWehner et al.| (2025).

6 Conclusion

STEERINGSAFETY provides a unified framework for evaluating representation steering in large
language models, revealing how interventions directly affect harmfulness, hallucination, bias, and a
wide range of other perspectives. We find that the broad behavioral evaluation enabled by STEER-
INGSAFETY is essential for understanding both intended and emergent effects of representation-level
interventions. By highlighting unintended side effects and entanglement across perspectives, it en-



courages more careful, reproducible, and reliable development of steering methods for safer language
models.
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A Methodology Details

A.1 Steering Components

Currently, we focus on steering accomplished during inference, which we decompose into three
phases: direction generation, direction selection, and direction application.

A.1.1 Direction Generation

Direction generation references how directions are extracted from model activations when provided
training-split prompts to be used in steering. By default, we always extract a direction from the token
position (-1). For all of the methods tested in this benchmark we collect activations from the input
before each layer. When generating the direction, we always normalize it following Wu et al.| (2025).
We currently include the following methods for generating candidate directions:

DiffInMeans: DiffInMeans represents the mean difference in activations between positive and
negative activations at the selected location.

PCA: PCA identifies the primary axis of variance among activation vectors as in (Lee et al.| 2024}
Wu et al., [2025)), then checks this principle component to ensure it aligns with the positive direction
of the prompts.

LAT: LAT also uses principle component analysis, but instead of using the raw activations directly,
it randomly pairs activations (regardless of their positive/negative labels) and uses the difference
between them as inputs (Wu et al., [2025; Zou et al., [2023)).

We also support different prompt formatting styles for direction generation: 1) default: using
the dataset’s original prompt format, 2) RepE: reformatting prompts using LAT-style stimulus tem-
plates (Zou et al.,2023)), and 3) CAA: converting all prompts to binary-choice questions (Panickssery
et al.,[2023)."

A.1.2 Direction Selection

Direction selection is how a single direction is chosen given a set of candidate directions. In our paper,
this is accomplished by using a validation split. The output of each direction selection procedure
is a layer (where the direction was generated from) and the values for any other applier-specific
parameters that we iterated over. For all methods, we search from the 25th to 80th quantile of
the layers with a step size of 2, as prior work has shown steering is more effective in the middle
layers (Arditi et al., [2024)).

The set of applier-specific parameters is based on the steering method and currently is either empty
or consists of a coefficient (where we test integers from -3 to 3 inclusive). For each method, unless
otherwise specified we include a KL divergence check on Alpaca (using the same split as defined for
the harmfulness perspective) to ensure the intervention is reasonable, discarding the direction if it
results in a KL divergence in last token logits of over 0.1, following the conventions of |Arditi et al.
(2024). We implement grid search to find the layer and application-specific parameters to extract the
direction, chosen by highest performance on the validation set.

A.1.3 Direction Application

Direction application specifies how the direction modifies activations during inference. There are two
important aspects of direction application: 1) the mathematical formulation of the intervention, and
2) how that intervention is applied.

We specify the mathematical formulations below, where in each case activations are modified in-place
and the forward pass is continued:

Activation Addition: Activation addition (Turner et al., [2023} [Panickssery et al., [2023)) modifies
activations of the form v/ = v’ + « * d, where d is the direction, v is the activation and « is the
steering coefficient.

Directional Ablation: Directional ablation (Arditi et al., 2024} Marshall et al., [2024) modifies

activations of the form v/ = v — projg* (v), with an additional projg* (d*) added to the right hand
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side if using an affine transformation as in|Marshall et al.|(2024), with d~* representing the mean of
the negative activations from the direction generation step. Currently, we do not utilize a steering
coefficient for directional ablation experiments following the conventions of |Arditi et al.| (2024); [Siu
et al.|(2025)).

Successful steering requires not only the mathematical operations above, but also strategic decisions
about where and when to intervene. We implement flexible control over both aspects:

Intervention Locations: The location within the transformer and token position where the interven-
tion is applied must be specified for each method.

The position of intervention can either be ALL, QOUTPUT_ONLY, or POST_INSTRUCTION. The location
of intervention is defined based on the layer and location within the transformer block where the
intervention occurs. Most often, the direction is applied at the same place in the residual stream as
where it was generated, though it can also be applied in specific places, e.g., the input and output
of the attention and MLP blocks in all layers in the residual stream. We also allow cumulative
interventions, which we define as when directions from previous layers are used to intervene on
their respective previous layers in addition to the selected direction, starting from the first layer we
collect directions from (at 25% through the model). E.g., if we intervene at layer 10 and the 25%
layer is layer 6, we intervene at layers 6, 8, and 10 with the same direction application method using
directions from those respective layers.

Conditional Steering: We utilize conditional steering to let us decide when to apply the intervention
at inference time depending on the prompt, which should reduce entanglement. We implement
this based on CAST (Lee et al.,|2024), a conditional direction application method where steering
only occurs if the cosine similarity of the activations and a preselected condition vector is above
some threshold. This can be added on top of any other direction application method. Though the
original paper proposes a full steering methodology using PCA, we instead separate the conditional
application portion of the method and refer to that as CAST, since it can be used with any of the
stated direction application mathematical formulations, direction generation, or direction selection
combinations. This method is explicitly built to reduce entanglement since it only steers when
it detects in-distribution behavior. As such, in practice when we use CAST we do not include a
KL divergence check in the direction generation stage. CAST can be used with any mathematical
formulation and location of intervention. CAST uses the same split of Alpaca as defined in the
harmful generation validation set to select the condition vector, which for simplicity we set to one of
the candidate vectors from direction generation.

B Additional Related Work

Mechanistic interpretability tools have built a shared foundation that steering builds upon. Tools
like sparse autoencoders (Bricken et al., 2023} [Huben et al., 2024} Templeton et al.,|2024), weight
attribution methods (Pearce et al.,|2024), and circuit-level analyses (Elhage et al., 2021} Lieberum
et al., |2023) offer complementary ways of tracing causal pathways for behavioral features and
identifying where interventions should occur. Representations have also been used to probe concepts
(Wu et al.} 2025} |Lee et al.,|2024) and to conditionally intervene at inference time (Lee et al.} 2024}
L1 et al., 2023} Wang et al.l 2024b). As steering techniques increasingly operate at the activation
level, interpretability research provides essential methods for characterizing both the geometry of
encoded features and their intervention points.

C Limitations

While STEERINGSAFETY represents a significant advance in standardized, multi-perspective evalua-
tion of alignment steering, it has several limitations. The benchmark focuses on English-language
datasets and instruction-tuned models, limiting its applicability to multilingual or non-instructional
contexts (Wang et al., 2024c). Steering is implemented as static vectors applied at fixed model
locations, overlooking more adaptive methods like ReFT (Wu et al., 2024)). Future work should
expand our framework to incorporate weight modifications and other representation engineering
approaches (Wehner et al., 2025)). Results are reported in aggregate, potentially obscuring nuanced
shifts within behavioral subtypes. We generate only 64 tokens and require immediate responses
without reasoning, which may not capture full model intentions—future work should investigate
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reasoning models. Prior work suggests steering from tokens other than final post-instruction tokens
may yield more effective control (Zhao et al.| [2025} |Arditi et al., [2024; |S1u et al.| [2025), which our
setup does not exploit. Lastly, it is unclear if our findings generalize to other model deployment
settings, such as agentic safety and security (Debenedetti et al., [2024; Zhang et al., 2025; |Wang et al.,
2025).

D Dataset Information

Each dataset within a perspective being steered follows a fixed 40/10/50 train/validation/test split
and is stratified by subcategory (if applicable) to ensure robust evaluation. To support contrastive
direction generation, we also include negative examples with an incorrect answer for all tasks being
steered, creating them if they do not exist. We formulate a dataset based on 17 existing datasets, with
the number of prompts per split in Table

Table 3: Dataset split sizes (Train/Val/Test). Note Alpaca is not currently used in testing.

Dataset Train  Val Test  Total
BBQ 800 200 1,000 2,000
ToxiGen 720 180 900 1,800
SaladBench 685 171 858 1,714
Alpaca 686 171 - 857
Precise Wiki 800 200 1,000 2,000
FaithEvalCounterfactual 79 20 100 199
FaithEvallnconsistent 114 28 143 285
FaithEvalUnanswerable 184 46 231 461
GPQA - - 448 448
ARC_C - - 500 500
CMTEST - - 750 750
Truthful QA - - 790 790
Twinviews - - 750 750
DarkBenchAnthro - - 110 110
DarkBenchBrandBias - - 109 109
DarkBenchSynchopancy - - 110 110
DarkBenchSneaking - - 110 110
DarkBenchRetention - - 110 110

E Experimental Details

We run our experiments using HuggingFace on either A6000s, A100s, or H100s, with one experiment
(full direction generation, selection, application and evaluation on all datasets) per GPU.

To select a direction, for each combination of hyperparameters (layer, coefficient), we apply the
direction at inference time and evaluate model behavior on a fixed validation set. The configuration
yielding the highest mean performance across all primary metrics is selected for final evaluation.

We use a temperature of 0 across all models without a repetition penalty. For all datasets that are
multiple choice, we generate one new token. For all other datasets, we generate up to 64 new
tokens. We use substring matching by default as opposed to calculating likelihood with logits for all
multiple choice datasets, since we want to know how steering will affect the output text of the model.
This is under the belief that steering causing invalid text answers is also informative for showing
entanglement in practical settings where instruction-following is affected. E.g., if steering a model
to reduce bias causes it to give an invalid answer to political opinion questions (as we observe with
TwinViews), this represents task-specific degradation even if the model would still prefer one belief
over the other.

While this is important to consider in deployment, to ensure we can make claims about changes in
model beliefs instead of formatting, the main results all use likelihood calculations with TwinViews
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Table 4: Effectiveness/Entanglement ratio by method, steered perspective, and Qwen model size.
Higher values indicate better trade-offs (more effectiveness per unit of entanglement). 1.5B = Qwen-
2.5-1.5B, 3B = Qwen-2.5-3B, 7B = Qwen-2.5-7B.

Harmfulness Hallucination Bias
Method 1.5B 3B 7B 1.5B 3B 7B 1.5B 3B 7B

ACE 384 829 940 123 311 116 -023 0.17 2.09
CAA -0.13 -0.09 0.16 088 063 023 -023 141 -0.05
DIM 455 741 448 1.16 -1.83 049 -267 053 6.76
LAT 026 000 030 175 053 089 351 334 8.70
PCA 021 0.11 0.19 209 223 057 239 0.80 5.18

instead of substring matching as the differences were very large. All other datasets still use substring
matching.

To ensure the format is not driving differences in performance, we standardize all multiple choice
datasets to use single capital letters for the choices and answers. For all multiple choice datasets except
those testing hallucination and political leaning, we use substring matching and we prepend a short
string encouraging responses to be as concise as possible: Please provide only the correct
answer in its simplest form, without any additional text or explanation.

We use the instruct variant of all models. For context, whenever we reference post instruc-
tion tokens, we refer to all tokens after the initial user prompt (Arditi et all 2024). For
Qwen2.5, when we supply a prompt to the LLM we do it in the following format (we
highlight the content corresponding to post-instruction tokens in blue): <|im_start|>user
instruction<|im_end|><|im_start|>assistant. Note throughout direction selection, we
use the prompt with the post-instruction tokens (including the empty assistant prompt) if we are
collecting or comparing activations.

F Results

Figure [5]shows the entanglement for all models for each perspective averaged across steering methods.

F.1 Results by dataset

The per-model results across all behaviors and methods are in Figures [I2] and [9] for the Standard
settings, Figures [I3]and [I0] with NoKL, and Figures[T4] and [TT] with conditional steering. In these
tables we display the FDR-corrected paired t-tests significance levels, grouped by (sub-)perspective.

We note that when using DIM with Gemma-2-2B on refusal, the KL divergence check fails for all
directions, so we exclude refusal performance when calculating average effectiveness for DIM on
this model.

F.2 Additional Results

Besides the main results, we also steer all five using our standard setting on Qwen-2.5-1.5B and
Qwen-2.5-3B in Figures[I5]and [16] respectively. Effectiveness/entanglement ratios are in Table [4]

F.3 Substring Matching

We analyze results across datasets to see where the method does not produce a valid answer at all in
Table 5] This is important for datasets like TwinViews where the model produces an answer outside
of the accepted multiple choice answers. Due to the high occurrence of mismatches in TwinViews,
we instead use likelihood-based scoring in all our results, where we select the choice corresponding
to the token with the higher probability in the model.
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Figure 6: The changes in performance on all datasets when steering with five methods with five
objectives on Gemma-2-2B. The results of the unsteered model are displayed at the top, and all
reported steering values are expressed as the difference relative to the unsteered model’s performance.
Higher scores generally indicate safer performance (e.g lower dark behaviors or hallucination rates)
except for SALADBench ASR (left-most), where higher scores indicate higher jailbreaking, and
Political Views (right-most), where higher score indicates higher proportion of left-leaning opinions.
Datasets pertaining to the target behavior in each setting are bordered in black. Statistical significance
is indicated by superscripts on values: * (p < 0.05), ** (p < 0.01), *** (p < 0.001) based on paired
t-tests with FDR correction applied per steering objective.
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Figure 7: The changes in performance on all datasets when steering with five methods with five
objectives on Gemma-2-2B when no KL divergence check was used in direction generation. The
results of the unsteered model are displayed at the top, and all reported steering values are expressed
as the difference relative to the unsteered model’s performance with statistical significance indicators,
similarly to the results in Figure@
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Figure 8: The changes in performance on all datasets when steering with five methods with five
objectives on Gemma-2-2B when using conditional steering. The results of the unsteered model
are displayed at the top, and all reported steering values are expressed as the difference relative to
the unsteered model’s performance with statistical significance indicators, similarly to the results in

Figure[6]
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Figure 9: The changes in performance on all datasets when steering with five methods with five
objectives on Llama-3.1-8B-Instruct. The results of the unsteered model are displayed at the top,
and all reported steering values are expressed as the difference relative to the unsteered model’s
performance with statistical significance indicators, similarly to the results in Figure@
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Figure 10: The changes in performance on all datasets when steering with five methods with five
objectives on Llama-3.1-8B when no KL divergence check was used in direction generation. The
results of the unsteered model are displayed at the top, and all reported steering values are expressed
as the difference relative to the unsteered model’s performance with statistical significance indicators,
similarly to the results in Figure
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Figure 11: The changes in performance on all datasets when steering with five methods with five
objectives on Llama-3.1-8B when using conditional steering. The results of the unsteered model
are displayed at the top, and all reported steering values are expressed as the difference relative to
the unsteered model’s performance with statistical significance indicators, similarly to the results in

Figure[6]
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Figure 12: The changes in performance on all datasets when steering with five methods with five
objectives on Qwen-2.5-7B. The results of the unsteered model are displayed at the top, and all
reported steering values are expressed as the difference relative to the unsteered model’s performance
with statistical significance indicators, similarly to the results in Figure
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Figure 13: The changes in performance on all datasets when steering with five methods with five
objectives on Qwen-2.5-7B when no KL divergence check was used in direction generation. The
results of the unsteered model are displayed at the top, and all reported steering values are expressed
as the difference relative to the unsteered model’s performance with statistical significance indicators,
similarly to the results in Figure
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Figure 14: The changes in performance on all datasets when steering with five methods with five
objectives on Qwen-2.5-7B when using conditional steering. The results of the unsteered model
are displayed at the top, and all reported steering values are expressed as the difference relative to
the unsteered model’s performance with statistical significance indicators, similarly to the results in

Figure[6]
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Figure 15: The changes in performance on all datasets when steering with five methods with the
standard setting with five objectives on Qwen-2.5-1.5B in direction generation. The results of the
unsteered model are displayed at the top, and all reported steering values are expressed as the
difference relative to the unsteered model’s performance with statistical significance indicators,
similarly to the results in Figure
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Figure 16: The changes in performance on all datasets when steering with five methods with the
standard setting with five objectives on Qwen-2.5-3B in direction generation. The results of the
unsteered model are displayed at the top, and all reported steering values are expressed as the
difference relative to the unsteered model’s performance with statistical significance indicators,
similarly to the results in Figure 6}
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Table 5: Invalid answers for multiple-choice datasets by dataset, model, and experiment type

Dataset Model Standard NoKL Conditional Total
ARC_C Gemma-2-2B 0 (0.0%) 6 (0.0%) 6 (0.0%) 12,500
Llama-3.1-8B 34 (0.3%) 47 (0.4%) 41 (0.3%) 12,500
Qwen-2.5-1.5B 0 (0.0%) - - 12,500
Qwen-2.5-3B 0 (0.0%) - - 12,500
Qwen-2.5-7B 0 (0.0%) 0 (0.0%) 0 (0.0%) 12,500
BBQ Gemma-2-2B 0 (0.0%) 3 (0.0%) 3 (0.0%) 24,900
Llama-3.1-8B 2 (0.0%) 31 (0.1%) 3(0.0%) 24,900
Qwen-2.5-1.5B 0 (0.0%) - - 24,900
Qwen-2.5-3B 0 (0.0%) - - 24,900
Qwen-2.5-7B 807 (3.2%) 944 (3.8%) 845 (3.4%) 24,900
CMTEST Gemma-2-2B 362 (2.0%) 421 (2.2%) 397 (2.1%) 18,750
Llama-3.1-8B 644 (3.4%) 745 (4.0%) 720 (3.8%) 18,750
Qwen-2.5-1.5B 0 (0.0%) - - 18,750
Qwen-2.5-3B 123 (0.7%) - - 18,750
Qwen-2.5-7B 0 (0.0%) 0 (0.0%) 0 (0.0%) 18,750
FaithEvalCounterfactual Gemma-2-2B 74 (3.1%) 77 (3.1%) 78 (3.1%) 2,500
Llama-3.1-8B 79 (3.2%) 82 (3.3%) 88 (3.5%) 2,500
Qwen-2.5-1.5B 50 (2.0%) - - 2,500
Qwen-2.5-3B 94 (3.8%) - - 2,500
Qwen-2.5-7B 50 (2.0%) 54 (2.2%) 51 (2.0%) 2,500
GPQA Gemma-2-2B 15 (0.1%) 24 (0.2%) 18 (0.2%) 11,200
Llama-3.1-8B 30 (0.3%) 95 (0.8%) 27 (0.2%) 11,200
Qwen-2.5-1.5B 2 (0.0%) - - 11,200
Qwen-2.5-3B 0 (0.0%) - - 11,200
Qwen-2.5-7B 0 (0.0%) 0 (0.0%) 0 (0.0%) 11,200
ToxiGen Gemma-2-2B 1 (0.0%) 0 (0.0%) 0 (0.0%) 22,275
Llama-3.1-8B 0 (0.0%) 0 (0.0%) 0 (0.0%) 22,275
Qwen-2.5-1.5B 0 (0.0%) - - 22,275
Qwen-2.5-3B 0 (0.0%) - - 22,275
Qwen-2.5-7B 0 (0.0%) 0 (0.0%) 0 (0.0%) 22,275
Truthful QA Gemma-2-2B 29 (0.2%) 31 (0.2%) 41 (0.2%) 19,750
Llama-3.1-8B 1 (0.0%) 2 (0.0%) 2 (0.0%) 19,750
Qwen-2.5-1.5B 25 (0.1%) - - 19,750
Qwen-2.5-3B 0 (0.0%) - - 19,750
Qwen-2.5-7B 47 (0.2%) 47 (0.2%) 48 (0.2%) 19,750
Twinviews Gemma-2-2B 6326 (35.1%) 7649 (40.8%) 7484 (39.9%) 18,750
Llama-3.1-8B 12507 (66.7%) 12122 (64.7%) 14040 (74.9%) 18,750
Qwen-2.5-1.5B 0 (0.0%) - - 18,750
Qwen-2.5-3B 0 (0.0%) - - 18,750
Qwen-2.5-7B 11 (0.1%) 16 (0.1%) 6 (0.0%) 18,750
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