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Abstract

We introduce STEERINGSAFETY, a systematic framework for evaluating repre-1

sentation steering methods across seven safety perspectives spanning 17 datasets.2

While prior work highlights general capabilities of representation steering, we3

systematically explore safety perspectives including bias, harmfulness, halluci-4

nation, social behaviors, reasoning, epistemic integrity, and normative judgment.5

Our framework provides modularized building blocks for state-of-the-art steer-6

ing methods, enabling unified implementation of DIM, ACE, CAA, PCA, and7

LAT with recent enhancements like conditional steering. Results on Gemma-8

2-2B, Llama-3.1-8B, and Qwen-2.5-7B reveal that strong steering performance9

depends critically on pairing of method, model, and specific perspective. DIM10

shows consistent effectiveness, but all methods exhibit substantial entanglement:11

social behaviors show highest vulnerability (reaching degradation as high as 76%),12

jailbreaking often compromises normative judgment, and hallucination steering13

unpredictably shifts political views. Our findings underscore the critical need for14

holistic safety evaluations.115

1 Introduction16

Large language models (LLMs) have demonstrated impressive capabilities across a wide range of17

natural language tasks (Brown et al., 2020; Touvron et al., 2023; Ouyang et al., 2022). However,18

their growing fluency and generality have raised serious concerns about their safety (Bai et al., 2022;19

Weidinger et al., 2021; Mazeika et al., 2024), including tendencies to produce harmful content,20

propagate social bias, and mislead users through hallucinated responses (Xu et al., 2024; Gallegos21

et al., 2023). These behaviors are often emergent and unpredictable, highlighting the difficulty of22

governing high-capacity models.23

A central objective in safety research is to ensure model behaviors remain safe, robust, and consistent24

with human intent (Leike et al., 2018; Bai et al., 2022; Ganguli et al., 2022). However, a fundamental25

challenge complicates these efforts: interventions targeting one safety behavior often unintentionally26

affect others; a phenomenon we term entanglement. For example, SFT on non-safety data can27

compromise toxicity mitigation (Hawkins et al., 2024), fairness (Li et al., 2024a), and overall28

safety (Qi et al., 2024). Similarly, RLHF can induce sycophancy (Malmqvist, 2024), amplify political29

biases (Perez et al., 2023), and reduce truthfulness (Li et al., 2024a). Understanding and measuring30

entanglement is therefore critical for ensuring safety interventions achieve intended effects without31

introducing new risks.32

Besides SFT and RLHF, safety can also be accomplished through representation steering, an often33

training-free method that intervenes directly on internal model activations to achieve a target objec-34
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tive (Zou et al., 2023; Panickssery et al., 2023; Li et al., 2023; Turner et al., 2023; Wehner et al., 2025;35

Lee et al., 2024; Bartoszcze et al., 2025). These methods identify relevant directions in activation36

space that correspond to behaviors like refusal (Arditi et al., 2024; Marshall et al., 2024; Lee et al.,37

2024; Wollschläger et al., 2025; Panickssery et al., 2023) or hallucination (Chen et al., 2024; Zou38

et al., 2023), and apply simple vector operations, such as activation addition, to modulate model39

behavior. Although representation steering methods are widely applicable and often more accessible40

than training-based approaches, they are also known to suffer from side effects similar to SFT and41

RLHF, including reductions in fluency and instances of overgeneralization. However, the extent and42

nature of entanglement in representation steering has not been systematically measured across safety43

perspectives at scale.44

To address this gap, we introduce STEERINGSAFETY, a systematic framework for measuring entan-45

glement in steering interventions across multiple safety perspectives. STEERINGSAFETY makes two46

main contributions:47

1. Comprehensive entanglement measurement across seven safety perspectives: We enable48

standardized quantitative assessment of both steering effectiveness on target behaviors and49

the resulting entanglement across all evaluation perspectives. By aggregating established50

safety benchmarks spanning harmfulness, hallucination, bias, and other dimensions, our51

framework quantifies how interventions targeting specific behaviors create cascading effects52

across the safety landscape.53

2. Modular evaluation framework for systematic comparison: We provide a unified codebase54

implementing five popular steering methods through interchangeable components, enabling55

direct comparison across methods and configurations. This modularity supports systematic56

exploration of how different steering approaches and design choices affect the effectiveness-57

entanglement tradeoff, and allows novel combinations integrating newer techniques like58

conditional steering.59

By enabling comprehensive and systematic safety assessment at scale, STEERINGSAFETY establishes60

a foundation for rigorously comparing steering interventions, uncovering hidden entanglements, and61

guiding the development of safer, more controllable models.62

2 Dataset63

STEERINGSAFETY evaluates representation steering methods by testing whether interventions can64

reliably steer a specific perspective while minimizing unintended effects on others. Unlike prior work65

focusing on individual alignment objectives, STEERINGSAFETY enables comprehensive evaluation66

across diverse safety axes and analysis of entanglement (Figure 1). We describe the perspectives67

addressed in the benchmark below, with dataset sizes and splits in Appendix D.68

Harmfulness. We use SALADBench (Li et al., 2024b) as our main dataset for harmful generation,69

filtering the base QA set using GPT-4o to retain only unmistakeably harmful open-ended prompts.70

Negative examples are drawn from Alpaca (Taori et al., 2023) for instruction-only prompts. We71

exclude prompts tagged as “Hate Speech” or “Stereotyping” to remove overlap with bias and stratify72

splits across the remaining labels. Harmfulness is a generation task scored using LlamaGuard-4 (Meta,73

2025).74

Bias. We evaluate bias through two sub-perspectives for implicit and explicit discrimination. Implicit75

bias uses BBQ (Parrish et al., 2022), a multiple-choice benchmark probing stereotyping across76

demographic attributes, stratified by demographic. Explicit bias uses ToxiGen (Hartvigsen et al.,77

2022), a binary classification benchmark where models agree/disagree with toxic statements linked to78

demographic identities, similarly stratified to BBQ. Accuracy for BBQ and ToxiGen is measured79

using substring matching over multiple-choice and boolean completions, respectively.80

Hallucination. We adopt the HalluLens (Bang et al., 2025) taxonomy to separate intrinsic halluci-81

nation (contradictions with input context) from extrinsic hallucination (unsupported generation82

absent from context or pretraining). For intrinsic hallucination, we use three FaithEval subsets (Ming83

et al., 2025): counterfactual, inconsistent, and unanswerable. Negative completions are gener-84

ated using GPT-4.1-mini for the unanswerable set and randomly chosen where they already exist85

in other datasets. Extrinsic hallucination uses PreciseWikiQA (Bang et al., 2025), a dataset of86
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Figure 1: The STEERINGSAFETY evaluation framework detailing dataset coverage across seven
distinct perspectives. We apply representation steering (which modifies internal activations) to the
perspectives highlighted in bold, then evaluate on all other perspectives to measure unintended
consequences. Each perspective comprises multiple sub-perspectives for detailed analysis.
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Wikipedia-sourced QA pairs stratified across 10 difficulty levels. We use a dataset generated with87

LLaMA-3.1-70B-Instruct (Grattafiori et al., 2024) as in Bang et al. (2025), and generate incorrect an-88

swers using GPT-4.1-mini. Completions are scored using LLaMA-3.3-70B-Instruct (Grattafiori et al.,89

2024) for factuality via hallucination rate. We report the percentage of prompts not hallucinating,90

such that higher scores indicate better behavior.91

Social Behaviors. To assess how models interact with users, we evaluate Brand Bias, Sycophancy,92

Anthropomorphism, and User Retention using DarkBench (Kran et al., 2025). Brand Bias tests93

preference in product recommendations; Sycophancy measures uncritical agreement with user input;94

Anthropomorphism tests whether models describe themselves with human-like traits; and User95

Retention measures tendency to prolong interactions unnecessarily. All responses are scored using96

GPT-4o as in Kran et al. (2025). We report the percentage of prompts not exhibiting the described97

behavior such that higher scores are better.98

Reasoning Capabilities. We test reasoning ability using Expert-Level Reasoning from99

GPQA’s (Rein et al., 2023) MCQs, covering fields like law, physics, and biology. Simple Rea-100

soning uses prompts from ARC-C (Clark et al., 2018), requiring basic inference skill. Accuracy is101

computed via substring matching.102

Epistemic Integrity. These tasks test honesty and factuality. Factual Misconceptions use binary-103

choice TruthfulQA (Lin et al., 2022) prompts, where models choose between true and plausible104

but false statements. Sneaking uses adversarial DarkBench (Kran et al., 2025) prompts to test if105

the model subtly shifts the original stance when reframing opinions. Following Kran et al. (2025),106

GPT-4o judges Sneaking, while misconceptions are judged via substring matching. For sneaking we107

report the percentage of prompts not exhibiting sneaking behavior.108

Normative Judgment. This category assesses how models navigate ethically and ideologically sensi-109

tive scenarios. We test Commonsense Morality using ethical dilemmas from DecodingTrust (Wang110

et al., 2024a), scored by whether the model chooses the correct and moral answer. Political Views111

uses prompts from TwinViews-13k (Fulay et al., 2024), which ask the model to agree with either left112

or right-leaning opinions. We report the percentage of responses choosing the left-leaning option113

since models often skew left (Fulay et al., 2024; Potter et al., 2024). Unlike other datasets where114

higher is better, this convention was chosen arbitrarily.115

2.1 Metrics116

We define two aggregate metrics: Effectiveness (Eq.1), how performant a steering method is on117

steering a single target perspective, and Entanglement (Eq.2), the degree of unintended changes118

resulting from steering, by evaluating on all perspectives in STEERINGSAFETY not being steered.119

Here, Pmain denotes the set of datasets within the target perspective being steered, and Pood denotes120

the datasets in all other (out-of-distribution) perspectives. We also present results for each steering121

method over all perspectives to allow for observations of the specific tradeoffs faced for each122

combination of model, method, and perspective.123

Effectiveness =
1

|Pmain|
∑

d∈Pmain

{
y
(steered)
d − yd
(1− yd)

}
(1)

Entanglement =

√
1

|Pood|
∑

d∈Pood

(y
(steered)
d − yd)2 (2)

3 Methodology124

We implement a modular framework identifying core components of training-free steering methods.125

We define steering as three pipeline components: direction generation (obtaining directions from126

input prompts), direction selection (selecting the best candidate direction), and direction application127

(adjusting the forward pass during inference). Using these building blocks, we construct five steering128

methods, expressing each as a composition of standardized components. Where unclear, we make129

reasonable decisions based on the original paper and/or codebase.130

For all methods, we extract activations from the input before the transformer block and search from131

the 25th to 80th quantile of layers with step size 2, as prior work shows steering is more effective132
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in middle layers (Arditi et al., 2024). To measure entanglement in realistic settings, we include a133

KL divergence check on Alpaca during direction selection, removing settings where the average KL134

divergence on probabilities at the last token position is less than 0.1, following Arditi et al. (2024).135

Additional details are in Appendix A.136

Table 1: Overview of steering methods with their components. Direction selection uses GridSearch
across all methods. Format is prompt style for direction generation. Application position is which
tokens are modified during inference (POST_INSTRUCTION = post-instruction tokens; ALL = all
tokens). Application location is where in the transformer layer activations are modified (same layer,
all layers, or cumulative).

Method Format Dir. Generation Dir. Application Application Position Application Location

DIM default DiffInMeans DirectionalAblation ALL Input (all), Output (attn, MLP – all)
ACE default DiffInMeans DirectionalAblation + Affine ALL Input (same)
CAA CAA DiffInMeans ActAdd POST_INSTRUCTION Input (same)
PCA default PCA ActAdd ALL Input (same)
LAT RepE LAT ActAdd ALL Cumulative

We implement the following methods: Difference-in-Means (DIM) is based on Belrose (2023); Arditi137

et al. (2024); Siu et al. (2025), deviating only by using our standardized grid search for direction138

selection. 2139

Affine Concept Editing (ACE) is based on Marshall et al. (2024)’s affine concept editing and is140

automated and shown to be effective compared to DIM for refusal in Siu et al. (2025). Contrastive141

Activation Addition (CAA) is based on Panickssery et al. (2023). Notably, we follow the convention142

of always using multiple choice formatting for direction generation and applying the intervention at143

all post instruction tokens. The Principal Component Analysis (PCA) approach is based on Zou et al.144

(2023); Wu et al. (2025); Liu et al. (2024); Lee et al. (2024). Linear Artificial Tomography (LAT) is145

based on Zou et al. (2023); Wu et al. (2025).146

Different from AxBench, we use the RepE format as used in Zou et al. (2023), and apply directions147

cumulatively at a series of layers as suggested in the original paper (described in Appendix A.1.3). A148

similar setting is also applied in Lee et al. (2024) for PCA, but for more diversity we chose not to use149

the cumulative setting for PCA as well.150

4 Evaluation151

To assess the effectiveness and generalizability of representation steering, we evaluate steered152

versions of Gemma-2-2B-IT (Team et al., 2024), Llama-3.1-8B-Instruct (Grattafiori et al., 2024), and153

Qwen-2.5-7B-Instruct (Qwen et al., 2024) on one perspective at a time. We conduct steering using154

STEERINGSAFETY’s curated training and validation splits. Note we drop the instruct suffix when155

referring to these models in subsequent sections.156

As STEERINGSAFETY focuses on benchmarking general steering effectiveness alongside entangle-157

ment, we choose to steer on three perspectives that align best with existing representation steering158

work: (i) increasing harmfulness, (ii) reducing intrinsic/extrinsic hallucinations, and (iii) reducing159

explicit/implicit bias (Marshall et al., 2024; Arditi et al., 2024; Siu et al., 2025; Panickssery et al.,160

2023; Wollschläger et al., 2025; Lee et al., 2024; Zou et al., 2023; Xu et al., 2024; Nguyen et al.,161

2025; Qiu et al., 2024; Ji et al., 2025; Beaglehole et al., 2025; Siddique et al., 2025; Ant, 2024; Liu162

et al., 2024).163

4.1 Results164

We evaluate representation steering across the harmfulness, hallucination, and bias perspectives.165

For each perspective, we measure both effectiveness (improvement on the target behavior) and166

entanglement (unintended changes across all other safety perspectives). Our analysis addresses three167

key questions: (1) Which steering methods and models achieve the highest effectiveness? (2) What168

2DIM typically refers only to direction generation, not a specific method for applying directions. We
follow Wollschläger et al. (2025) in using DIM to describe Arditi et al. (2024)’s complete steering method
including direction application.
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patterns of safety entanglement emerge across different interventions? (3) What are the practical169

tradeoffs between effectiveness and entanglement?170

Full evaluation results for Gemma-2-2B, Llama-3.1-8B, and Qwen-2.5-7B with statistical significance171

tests are provided in Figures 6, 9, and 12 in Appendix F. For perspectives with sub-categories172

(hallucination and bias), we steer each sub-perspective separately and average results; entanglement173

calculations include deviations in the complementary sub-perspective. Additional experimental174

details are in Appendix E175

4.1.1 Steering effectiveness: which methods work best?176

Figure 2: Effectiveness on evaluated steering methods for Gemma-2-2B, Llama-3.1-8B, and Qwen-
2.5-7B across all perspectives being steered.

Figure 2 reveals substantial variation in steering effectiveness across methods, models, and perspec-177

tives. For harmfulness and bias, DIM and ACE consistently achieve the strongest effects, though178

hallucination steering is far less conclusive.179

Hallucination steering shows more modest and inconsistent gains. Extrinsic hallucination proves180

particularly challenging; it is largely unsteerable in Gemma-2-2B and Qwen models, yet yields a 50%181

accuracy improvement compared to baseline values in Llama-3.1-8B with CAA and PCA. Intrinsic182

hallucination is more amenable to intervention but exhibits strong model dependence: PCA and183

LAT substantially reduce hallucinations in Llama-3.1-8B and Qwen-2.5-1.5B (Figures 15, 16), while184

conditional DIM achieves a 54.5% reduction in Gemma-2-2B on Inconsistent prompts (Figure 8).185

Bias steering achieves relatively consistent but lower magnitudes of effectiveness, likely due to already186

high baseline performance on tested models. Even successful interventions produce effectiveness187

below 20%, suggesting that either these models are already well-aligned on demographic bias or that188

current steering techniques struggle with more subtle behavioral modifications.189

Key Finding 1: Strong steering depends on pairing of method, model, and perspective.
DIM and ACE generally excel for harmfulness and bias; PCA and LAT are promising for
hallucination in certain models.

190

4.1.2 Entanglement patterns: which safety perspectives interfere?191

Figure 3 reveals that entanglement is not uniform across safety perspectives. Social behaviors and192

normative judgment consistently show the highest entanglement regardless of which perspective is193

being steered, with the highest perspective entanglement exceeding 10% in Llama-3.1-8B and around194

5% in other models. Reasoning capabilities, by contrast, remain largely stable across interventions,195

with entanglement below 2% in all cases.196

Harmfulness Steering Creates Widespread Entanglement. While prior work has examined refusal197

entanglement primarily through TruthfulQA (Arditi et al., 2024; Wollschläger et al., 2025), our com-198

prehensive evaluation reveals that nearly all perspectives exhibit substantial entanglement, with GPQA199
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Figure 3: Average entanglement (lower is better) based on steered perspective for Gemma-2-2B,
Llama-3.1-8B, and Qwen-2.5-7B. Entanglement is first calculated across all methods and datasets for
each model, then averaged across the three models. Results by model are in Figure 5.

as the sole exception. Most notably, steering models to answer harmful queries consistently degrades200

social behaviors: sycophancy and user retention show significant negative effects. Counter-intuitively,201

entanglement with explicit bias and commonsense morality is model-dependent, ranging from severe202

degradation in Llama-3.1-8B to negligible effects in Qwen-2.5-7B, suggesting jailbreaking does not203

necessarily make a model more toxic or immoral.204

Hallucination Steering Shows Selective Entanglement. Successful hallucination reduction gener-205

ally produces minimal side effects. However, intrinsic hallucination steering in Gemma-2-2B and206

Llama-3.1-8B consistently results in wild fluctuations in items like implicit bias and political views,207

especially in settings without a KL divergence check (Figures 7 and 10). While both achieve reduc-208

tions in hallucination, entanglement is inconsistent even in direction, with Gemma-2-2B becoming209

more left-leaning while Llama-3.1-8B becomes more right-leaning. Even conditional steering shows210

that Llama-3.1-8B exhibits severe entanglement when steering intrinsic hallucination, becoming211

partially jailbroken, far more explicitly biased, and less moral (Figure 11).212

Bias Steering Produces Counterintuitive Effects. Despite lower effectiveness, bias interventions213

unpredictably alter hallucination rates in Gemma-2-2B and Qwen-2.5-7B (Figures 7, 12). This cross-214

perspective interference persists under conditional steering, where FaithEval inconsistent questions215

degrade sharply (Figure 14). We also find in conditional Qwen-2.5-7B steering that improving216

implicit bias may degrade explicit bias performance.217

Social behaviors (sycophancy, brand bias, anthropomorphism, user retention) prove most vulnerable218

to steering interventions, aligning with findings from RLHF research on sycophancy (Malmqvist,219

2024; Min et al., 2025; Papadatos & Freedman, 2024). Normative judgment (commonsense morality220

and political views) displays the highest variance across models, with morality occasionally being221

degraded while political views jumps in both directions, suggesting these behaviors are particularly222

sensitive to model-specific factors.223

Key Finding 2: Entanglement is model-dependent but consistently highest for social behav-
iors and normative judgment, while reasoning remains robust. Counterintuitively, jailbreaking
doesn’t necessarily increase toxicity, hallucination steering causes opposing political shifts
across models, and improving one bias type can degrade another, demonstrating that entan-
glement depends critically on the combination of method, model, and perspective.

224

4.1.3 Effectiveness-entanglement tradeoffs: practical guidance225

Table 2 quantifies the effectiveness-entanglement tradeoff for each method-model-perspective combi-226

nation, with higher ratios indicating more favorable profiles. These ratios reveal several actionable227

insights for practitioners.228

For harmfulness steering, ACE and DIM achieve the best tradeoffs across all models, with ratios229

between 4.5 and 9.4. However, even these favorable ratios come with the caveat that harmfulness230

steering consistently entangles with social behaviors regardless of method choice. For hallucination231

steering, PCA achieves the best ratio in Llama-3.1-8B (1.71), reflecting its ability to reduce hallucina-232

tions while actually improving some social behaviors. However, Figure 9 demonstrates that these233

two interventions entangle on different behaviors when steering extrinsic hallucination, with PCA234
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Table 2: Effectiveness/Entanglement ratio by method, steered perspective, and model. Higher values
indicate better trade-offs (more effectiveness per unit of entanglement). Gemma = Gemma-2-2B,
Llama = Llama-3.1-8B, Qwen = Qwen-2.5-7B.

Harmfulness Hallucination Bias

Method Gemma Llama Qwen Gemma Llama Qwen Gemma Llama Qwen

ACE 5.96 7.72 9.40 -0.96 0.32 1.16 2.00 4.08 2.09
CAA 0.00 0.87 0.16 0.04 0.77 0.23 -0.41 4.14 -0.05
DIM – 6.50 4.48 -0.66 0.31 0.49 5.22 5.46 6.76
LAT -0.73 -0.28 0.30 -0.31 0.19 0.89 7.05 1.40 8.70
PCA -0.25 0.53 0.19 -0.79 1.71 0.57 1.77 2.12 5.18

reducing intrinsic hallucination while CAA degrades it, necessitating the use of holistic evaluation.235

Bias steering shows the most variable tradeoffs, with LAT achieving ratios above 7.0 in Gemma-2-2B236

and Qwen-2.5-7B despite low absolute effectiveness.237

Negative ratios warrant particular attention as they indicate steering methods that increase entangle-238

ment more than they improve the target behavior. ACE shows negative ratios for hallucination in239

Gemma-2-2B (-0.96), while CAA produces negative ratios for bias in Gemma-2-2B and Qwen-2.5-7B.240

These configurations should be avoided in practice.241

Key Finding 3: Different steering methods targeting the same behavior can create steering
vectors entangling distinct perspectives, as demonstrated by PCA and CAA producing differ-
ent entanglement patterns when steering extrinsic hallucination in Llama-3.1-8B (Figure 9).

242

4.1.4 Controlling the effectiveness-entanglement tradeoff243

Figure 4: Effectiveness (higher is better) vs entanglement (lower is better) based on perspective
being steered for Gemma-2-2B, Llama-3.1-8B, and Qwen-2.5-7B. Performance is averaged over all
methods for each setting, with model results connected for comparison. Conditional steering often
achieves Pareto improvements with similar effectiveness and reduced entanglement.

By default, we employ a KL divergence check during direction selection to filter out interventions244

that dramatically alter model behavior on neutral tasks, following Arditi et al. (2024). To understand245

how this choice affects the effectiveness-entanglement tradeoff, we evaluate three variants across246

all models: (1) Standard - our default setting with KL divergence filtering on Alpaca, representing247

practical deployment conditions; (2) NoKL - no KL filtering, representing a best-case effectiveness248

scenario; and (3) Conditional - conditional steering based on CAST (Lee et al., 2024) without KL249

filtering, aiming to achieve high effectiveness while preserving low entanglement through selective250

application.251

Figure 4 shows results aggregated across methods. As expected, NoKL achieves effectiveness at least252

as high as Standard for harmfulness and hallucination, confirming that the KL check trades some253

effectiveness for safety. However, the cost is substantial: entanglement increases dramatically in most254

cases, often more than doubling.255
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Conditional steering consistently improves upon NoKL by reducing entanglement while maintaining256

effectiveness. For harmfulness, Conditional achieves effectiveness equal to NoKL across all three257

models while reducing entanglement closer to Standard levels, a Pareto improvement. For hallucina-258

tion, Conditional is generally more effective than both other settings with only minor entanglement259

increases. The exception is bias steering, where Conditional performs poorly, likely because bias260

prompts are similar to the Alpaca prompts used to calibrate the conditional threshold, causing the261

intervention to activate too frequently.262

Key Finding 4: Conditional steering enables better effectiveness-entanglement tradeoffs for
most perspectives but cannot completely mitigate entanglement. Future work should explore
methods for setting conditional thresholds that generalize across diverse prompt distributions.

263

4.1.5 Consistency across model scales264

To assess whether our findings generalize across model sizes, we evaluate Qwen-2.5-1.5B-Instruct and265

Qwen-2.5-3B-Instruct using the Standard setting (Figures 15, 16). The relative ranking of methods266

by effectiveness-entanglement ratio remains stable: ACE achieves the best ratios for harmfulness267

and hallucination in both Qwen-2.5-3B and Qwen-2.5-7B, while LAT is best for bias across all three268

Qwen model sizes (Table 4). Entanglement patterns also remain consistent, with social behaviors269

showing the highest sensitivity when steering for harmfulness across all three scales. These results270

suggest that insights from smaller models can inform interventions on larger models, though absolute271

effectiveness and entanglement magnitudes may shift relative to the baseline model’s performance on272

each perspective. Full results are provided in Appendix F.2.273

5 Related work274

Our work builds on research in LLM alignment, activation steering, and mechanistic interpretability,275

focusing on intervening in internal representations to control behaviors such as harmfulness, bias,276

and hallucination.277

Mechanistic interpretability provides the theoretical foundation for activation-level steering. Studies278

demonstrate that abstract properties like truthfulness, bias, and refusal are encoded as linearly279

decodable directions in residual space (Park et al., 2024; Nanda et al., 2023; Bolukbasi et al., 2016;280

Mikolov et al., 2013), supporting the linear representation hypothesis (Elhage et al., 2022). However,281

other work suggests refusal behaviors may span affine functions or multi-dimensional subspaces282

(Marshall et al., 2024; Wollschläger et al., 2025). Building on this foundation, steering methods283

directly manipulate model activations. Approaches like Representation Engineering (Zou et al., 2023)284

and Spectral Editing (Qiu et al., 2024) inject or remove learned directions derived from contrastive285

data pairs (Burns et al., 2023; Arditi et al., 2024), embedding differences (Panickssery et al., 2023),286

or activation clustering (Wu et al., 2025). Methods like Contrastive Activation Addition (Turner et al.,287

2023; Panickssery et al., 2023) aim to suppress targeted features while preserving fluency.288

Entanglement across behaviors remains a critical obstacle for reliable steering. Existing frameworks289

like AxBench (Wu et al., 2025) and EasyEdit2 (Xu et al., 2025) provide structured evaluation but290

vary in scope. STEERINGSAFETY extends this work by systematizing cross-behavior interference291

evaluation with focus on diverse safety-relevant behaviors and broad, modular coverage of training-292

free steering methods, implementing a standardized pipeline similar to Wehner et al. (2025).293

6 Conclusion294

STEERINGSAFETY provides a unified framework for evaluating representation steering in large295

language models, revealing how interventions directly affect harmfulness, hallucination, bias, and a296

wide range of other perspectives. We find that the broad behavioral evaluation enabled by STEER-297

INGSAFETY is essential for understanding both intended and emergent effects of representation-level298

interventions. By highlighting unintended side effects and entanglement across perspectives, it en-299

courages more careful, reproducible, and reliable development of steering methods for safer language300

models.301
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Edoardo Debenedetti, Jie Zhang, Mislav Balunović, Luca Beurer-Kellner, Marc Fischer, and Florian366

Tramèr. Agentdojo: A dynamic environment to evaluate prompt injection attacks and defenses for367

llm agents, 2024. URL https://arxiv.org/abs/2406.13352.368

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda369

Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli,370

Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal371

Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris372

Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.373

https://transformer-circuits.pub/2021/framework/index.html.374

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,375

Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCan-376

dlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of377

superposition, 2022. URL https://arxiv.org/abs/2209.10652.378

Suyash Fulay, William Brannon, Shrestha Mohanty, Cassandra Overney, Elinor Poole-Dayan, Deb379

Roy, and Jad Kabbara. On the relationship between truth and political bias in language models. In380

Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pp.381

9004–9018. Association for Computational Linguistics, 2024. doi: 10.18653/v1/2024.emnlp-main.382

508. URL http://dx.doi.org/10.18653/v1/2024.emnlp-main.508.383

Isabel O. Gallegos, Ryan A. Rossi, Joe Barrow, Md Mehrab Tanjim, Sungchul Kim, Franck Dernon-384

court, Tong Yu, Ruiyi Zhang, and Nesreen K. Ahmed. Bias and fairness in large language models:385

A survey, 2023. URL https://arxiv.org/abs/2309.00770.386

Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda Askell, Yuntao Bai, Saurav Kadavath, Ben387

Mann, Ethan Perez, Nicholas Schiefer, Kamal Ndousse, Andy Jones, Sam Bowman, Anna Chen,388

Tom Conerly, Nova DasSarma, Dawn Drain, Nelson Elhage, Sheer El-Showk, Stanislav Fort, Zac389

Hatfield-Dodds, Tom Henighan, Danny Hernandez, Tristan Hume, Josh Jacobson, Scott Johnston,390

Shauna Kravec, Catherine Olsson, Sam Ringer, Eli Tran-Johnson, Dario Amodei, Tom Brown,391

Nicholas Joseph, Sam McCandlish, Chris Olah, Jared Kaplan, and Jack Clark. Red teaming392

language models to reduce harms: Methods, scaling behaviors, and lessons learned, 2022. URL393

https://arxiv.org/abs/2209.07858.394

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad395

Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,396

Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev,397

Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru,398

Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak,399

Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu,400

Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle401

Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego402

Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,403

Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel404

Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon,405

Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan406

Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet,407

11

https://openreview.net/pdf?id=ETKGuby0hcs
https://openreview.net/forum?id=Zj12nzlQbz
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2406.13352
https://arxiv.org/abs/2209.10652
http://dx.doi.org/10.18653/v1/2024.emnlp-main.508
https://arxiv.org/abs/2309.00770
https://arxiv.org/abs/2209.07858


Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,408

Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie409

Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua410

Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak,411

Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley412

Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence413

Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas414

Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri,415

Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie416

Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes417

Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne,418

Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal419

Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,420

Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,421

Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie422

Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana423

Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie,424

Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon425

Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan,426

Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas427

Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami,428

Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti,429

Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier430

Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao431

Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song,432

Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe433

Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya434

Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei435

Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu,436

Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit437

Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury,438

Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer,439

Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu,440

Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido,441

Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu442

Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer,443

Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu,444

Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc445

Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily446

Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers,447

Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank448

Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee,449

Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan,450

Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph,451

Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog,452

Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James453

Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny454

Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings,455

Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai456

Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik457

Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle458

Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng459

Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish460

Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim461

Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle462

Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,463

Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,464

Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,465

Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia466

12



Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro467

Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,468

Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,469

Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin470

Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu,471

Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh472

Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay,473

Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang,474

Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie475

Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta,476

Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman,477

Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun478

Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria479

Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru,480

Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz,481

Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv482

Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,483

Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait,484

Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The485

llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.486

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi, Maarten Sap, Dipankar Ray, and Ece Kamar.487

Toxigen: A large-scale machine-generated dataset for implicit and adversarial hate speech detection.488

In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, 2022.489

Will Hawkins, Brent Mittelstadt, and Chris Russell. The effect of fine-tuning on language model490

toxicity, 2024. URL https://arxiv.org/abs/2410.15821.491

Robert Huben, Hoagy Cunningham, Logan Riggs, Aidan Ewart, and Lee Sharkey. Sparse au-492

toencoders find highly interpretable features in language models. In The Twelfth International493

Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenRe-494

view.net, 2024. URL https://openreview.net/forum?id=F76bwRSLeK.495

Ziwei Ji, Lei Yu, Yeskendir Koishekenov, Yejin Bang, Anthony Hartshorn, Alan Schelten, Cheng496

Zhang, Pascale Fung, and Nicola Cancedda. Calibrating verbal uncertainty as a linear feature to497

reduce hallucinations, 2025. URL https://arxiv.org/abs/2503.14477.498

Esben Kran, Hieu Minh "Jord" Nguyen, Akash Kundu, Sami Jawhar, Jinsuk Park, and Mateusz Maria499

Jurewicz. Darkbench: Benchmarking dark patterns in large language models, 2025. URL500

https://arxiv.org/abs/2503.10728.501

Bruce W. Lee, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Erik Miehling, Pierre Dognin, Manish502

Nagireddy, and Amit Dhurandhar. Programming refusal with conditional activation steering, 2024.503

URL https://arxiv.org/abs/2409.05907.504

Jan Leike, David Krueger, Tom Everitt, Miljan Martic, Vishal Maini, and Shane Legg. Scalable agent505

alignment via reward modeling: a research direction, 2018. URL https://arxiv.org/abs/506

1811.07871.507

Aaron J. Li, Satyapriya Krishna, and Himabindu Lakkaraju. More rlhf, more trust? on the impact of508

preference alignment on trustworthiness, 2024a. URL https://arxiv.org/abs/2404.18870.509

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time510

intervention: Eliciting truthful answers from a language model. Advances in Neural Information511

Processing Systems, 36:41451–41530, 2023.512

Lijun Li, Bowen Dong, Ruohui Wang, Xuhao Hu, Wangmeng Zuo, Dahua Lin, Yu Qiao, and Jing513

Shao. Salad-bench: A hierarchical and comprehensive safety benchmark for large language models,514

2024b. URL https://arxiv.org/abs/2402.05044.515

Tom Lieberum, Matthew Rahtz, János Kramár, Neel Nanda, Geoffrey Irving, Rohin Shah, and516

Vladimir Mikulik. Does circuit analysis interpretability scale? evidence from multiple choice517

capabilities in chinchilla, 2023. URL https://arxiv.org/abs/2307.09458.518

13

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2410.15821
https://openreview.net/forum?id=F76bwRSLeK
https://arxiv.org/abs/2503.14477
https://arxiv.org/abs/2503.10728
https://arxiv.org/abs/2409.05907
https://arxiv.org/abs/1811.07871
https://arxiv.org/abs/1811.07871
https://arxiv.org/abs/1811.07871
https://arxiv.org/abs/2404.18870
https://arxiv.org/abs/2402.05044
https://arxiv.org/abs/2307.09458


Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring how models mimic human519

falsehoods. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings520

of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long521

Papers), pp. 3214–3252, Dublin, Ireland, 2022. Association for Computational Linguistics. doi:522

10.18653/v1/2022.acl-long.229. URL https://aclanthology.org/2022.acl-long.229.523

Sheng Liu, Haotian Ye, Lei Xing, and James Y. Zou. In-context vectors: Making in context524

learning more effective and controllable through latent space steering. In Forty-first International525

Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net,526

2024. URL https://openreview.net/forum?id=dJTChKgv3a.527

Lars Malmqvist. Sycophancy in large language models: Causes and mitigations, 2024. URL528

https://arxiv.org/abs/2411.15287.529

Thomas Marshall, Adam Scherlis, and Nora Belrose. Refusal in llms is an affine function, 2024.530

URL https://arxiv.org/abs/2411.09003.531

Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou, Zifan Wang, Norman Mu, Elham Sakhaee,532

Nathaniel Li, Steven Basart, Bo Li, David A. Forsyth, and Dan Hendrycks. Harmbench: A533

standardized evaluation framework for automated red teaming and robust refusal. In Forty-first534

International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.535

OpenReview.net, 2024. URL https://openreview.net/forum?id=f3TUipYU3U.536

Meta. The llama 4 herd: The beginning of a new era of natively multimodal ai innovation, Apr 2025.537

URL https://ai.meta.com/blog/llama-4-multimodal-intelligence/.538

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word539

representations. In Lucy Vanderwende, Hal Daumé III, and Katrin Kirchhoff (eds.), Proceedings540

of the 2013 Conference of the North American Chapter of the Association for Computational541

Linguistics: Human Language Technologies, pp. 746–751, Atlanta, Georgia, 2013. Association for542

Computational Linguistics. URL https://aclanthology.org/N13-1090.543

Taywon Min, Haeone Lee, Yongchan Kwon, and Kimin Lee. Understanding impact of human544

feedback via influence functions. In Proceedings of the 63rd Annual Meeting of the Association545

for Computational Linguistics (Volume 1: Long Papers), pp. 27471–27500. Association for546

Computational Linguistics, 2025. doi: 10.18653/v1/2025.acl-long.1333. URL http://dx.doi.547

org/10.18653/v1/2025.acl-long.1333.548

Yifei Ming, Senthil Purushwalkam, Shrey Pandit, Zixuan Ke, Xuan-Phi Nguyen, Caiming Xiong,549

and Shafiq Joty. Faitheval: Can your language model stay faithful to context, even if "the moon is550

made of marshmallows", 2025. URL https://arxiv.org/abs/2410.03727.551

Neel Nanda, Andrew Lee, and Martin Wattenberg. Emergent linear representations in world mod-552

els of self-supervised sequence models. In Yonatan Belinkov, Sophie Hao, Jaap Jumelet, Na-553

joung Kim, Arya McCarthy, and Hosein Mohebbi (eds.), Proceedings of the 6th BlackboxNLP554

Workshop: Analyzing and Interpreting Neural Networks for NLP, pp. 16–30, Singapore, 2023.555

Association for Computational Linguistics. doi: 10.18653/v1/2023.blackboxnlp-1.2. URL556

https://aclanthology.org/2023.blackboxnlp-1.2.557

Duy Nguyen, Archiki Prasad, Elias Stengel-Eskin, and Mohit Bansal. Multi-attribute steering of558

language models via targeted intervention. arXiv preprint arXiv:2502.12446, 2025.559

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,560

Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,561

Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Chris-562

tiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions with human563

feedback. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh564

(eds.), Advances in Neural Information Processing Systems 35: Annual Conference on Neural565

Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 -566

December 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/567

b1efde53be364a73914f58805a001731-Abstract-Conference.html.568

14

https://aclanthology.org/2022.acl-long.229
https://openreview.net/forum?id=dJTChKgv3a
https://arxiv.org/abs/2411.15287
https://arxiv.org/abs/2411.09003
https://openreview.net/forum?id=f3TUipYU3U
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://aclanthology.org/N13-1090
http://dx.doi.org/10.18653/v1/2025.acl-long.1333
http://dx.doi.org/10.18653/v1/2025.acl-long.1333
http://dx.doi.org/10.18653/v1/2025.acl-long.1333
https://arxiv.org/abs/2410.03727
https://aclanthology.org/2023.blackboxnlp-1.2
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html


Nina Panickssery, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Matt569

Turner. Steering llama 2 via contrastive activation addition, 2023. URL https://arxiv.org/570

abs/2312.06681.571

Henry Papadatos and Rachel Freedman. Linear probe penalties reduce llm sycophancy, 2024. URL572

https://arxiv.org/abs/2412.00967.573

Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geometry574

of large language models. In Forty-first International Conference on Machine Learning, ICML575

2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.576

net/forum?id=UGpGkLzwpP.577

Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Thomp-578

son, Phu Mon Htut, and Samuel Bowman. BBQ: A hand-built bias benchmark for question579

answering. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Findings of580

the Association for Computational Linguistics: ACL 2022, pp. 2086–2105, Dublin, Ireland, May581

2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-acl.165. URL582

https://aclanthology.org/2022.findings-acl.165/.583

Michael T. Pearce, Thomas Dooms, Alice Rigg, Jose M. Oramas, and Lee Sharkey. Bilinear mlps584

enable weight-based mechanistic interpretability, 2024. URL https://arxiv.org/abs/2410.585

08417.586

Ethan Perez, Sam Ringer, Kamile Lukosiute, Karina Nguyen, Edwin Chen, Scott Heiner, Craig587

Pettit, Catherine Olsson, Sandipan Kundu, Saurav Kadavath, Andy Jones, Anna Chen, Benjamin588

Mann, Brian Israel, Bryan Seethor, Cameron McKinnon, Christopher Olah, Da Yan, Daniela589

Amodei, Dario Amodei, Dawn Drain, Dustin Li, Eli Tran-Johnson, Guro Khundadze, Jackson590

Kernion, James Landis, Jamie Kerr, Jared Mueller, Jeeyoon Hyun, Joshua Landau, Kamal Ndousse,591

Landon Goldberg, Liane Lovitt, Martin Lucas, Michael Sellitto, Miranda Zhang, Neerav Kingsland,592

Nelson Elhage, Nicholas Joseph, Noemi Mercado, Nova DasSarma, Oliver Rausch, Robin Larson,593

Sam McCandlish, Scott Johnston, Shauna Kravec, Sheer El Showk, Tamera Lanham, Timothy594

Telleen-Lawton, Tom Brown, Tom Henighan, Tristan Hume, Yuntao Bai, Zac Hatfield-Dodds, Jack595

Clark, Samuel R. Bowman, Amanda Askell, Roger Grosse, Danny Hernandez, Deep Ganguli, Evan596

Hubinger, Nicholas Schiefer, and Jared Kaplan. Discovering language model behaviors with model-597

written evaluations. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of598

the Association for Computational Linguistics: ACL 2023, pp. 13387–13434, Toronto, Canada,599

July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.847.600

URL https://aclanthology.org/2023.findings-acl.847/.601

Yujin Potter, Shiyang Lai, Junsol Kim, James Evans, and Dawn Song. Hidden persuaders: LLMs’602

political leaning and their influence on voters. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung603

Chen (eds.), Proceedings of the 2024 Conference on Empirical Methods in Natural Language604

Processing, pp. 4244–4275, Miami, Florida, USA, November 2024. Association for Computational605

Linguistics. doi: 10.18653/v1/2024.emnlp-main.244. URL https://aclanthology.org/2024.606

emnlp-main.244/.607

Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi Jia, Prateek Mittal, and Peter Henderson.608

Fine-tuning aligned language models compromises safety, even when users do not intend to! In The609

Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May610

7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=hTEGyKf0dZ.611

Yifu Qiu, Zheng Zhao, Yftah Ziser, Anna Korhonen, Edoardo Maria Ponti, and Shay B. Co-612

hen. Spectral editing of activations for large language model alignment. In Amir Globersons,613

Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng614

Zhang (eds.), Advances in Neural Information Processing Systems 38: Annual Conference on615

Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, Decem-616

ber 10 - 15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/617

684c59d614fe6ae74a3be8c3ef07e061-Abstract-Conference.html.618

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan619

Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,620

Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin621

15

https://arxiv.org/abs/2312.06681
https://arxiv.org/abs/2312.06681
https://arxiv.org/abs/2312.06681
https://arxiv.org/abs/2412.00967
https://openreview.net/forum?id=UGpGkLzwpP
https://openreview.net/forum?id=UGpGkLzwpP
https://openreview.net/forum?id=UGpGkLzwpP
https://aclanthology.org/2022.findings-acl.165/
https://arxiv.org/abs/2410.08417
https://arxiv.org/abs/2410.08417
https://arxiv.org/abs/2410.08417
https://aclanthology.org/2023.findings-acl.847/
https://aclanthology.org/2024.emnlp-main.244/
https://aclanthology.org/2024.emnlp-main.244/
https://aclanthology.org/2024.emnlp-main.244/
https://openreview.net/forum?id=hTEGyKf0dZ
http://papers.nips.cc/paper_files/paper/2024/hash/684c59d614fe6ae74a3be8c3ef07e061-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/684c59d614fe6ae74a3be8c3ef07e061-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/684c59d614fe6ae74a3be8c3ef07e061-Abstract-Conference.html


Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi622

Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,623

Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2024. URL624

https://arxiv.org/abs/2412.15115.625

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,626

Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a benchmark,627

2023. URL https://arxiv.org/abs/2311.12022.628

Zara Siddique, Irtaza Khalid, Liam D. Turner, and Luis Espinosa-Anke. Shifting perspectives:629

Steering vector ensembles for robust bias mitigation in llms, 2025. URL https://arxiv.org/630

abs/2503.05371.631

Vincent Siu, Nicholas Crispino, Zihao Yu, Sam Pan, Zhun Wang, Yang Liu, Dawn Song, and632

Chenguang Wang. COSMIC: Generalized refusal direction identification in LLM activations. In633

Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Findings634

of the Association for Computational Linguistics: ACL 2025, pp. 25534–25553, Vienna, Austria,635

July 2025. Association for Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/636

v1/2025.findings-acl.1310. URL https://aclanthology.org/2025.findings-acl.1310/.637

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy638

Liang, and Tatsunori B. Hashimoto. Stanford Alpaca: An instruction-following LLaMA model.639

https://github.com/tatsu-lab/stanford_alpaca, 2023.640

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya641

Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan642

Ferret, Peter Liu, Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar,643

Charline Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin,644

Nikola Momchev, Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur,645

Olivier Bachem, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchison,646

Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge, Antonia647

Paterson, Ben Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu Kumar, Chris648

Perry, Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David Weinberger,649
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A Methodology Details737

A.1 Steering Components738

Currently, we focus on steering accomplished during inference, which we decompose into three739

phases: direction generation, direction selection, and direction application.740

A.1.1 Direction Generation741

Direction generation references how directions are extracted from model activations when provided742

training-split prompts to be used in steering. By default, we always extract a direction from the token743

position (-1). For all of the methods tested in this benchmark we collect activations from the input744

before each layer. When generating the direction, we always normalize it following Wu et al. (2025).745

We currently include the following methods for generating candidate directions:746

DiffInMeans: DiffInMeans represents the mean difference in activations between positive and747

negative activations at the selected location.748

PCA: PCA identifies the primary axis of variance among activation vectors as in (Lee et al., 2024;749

Wu et al., 2025), then checks this principle component to ensure it aligns with the positive direction750

of the prompts.751

LAT: LAT also uses principle component analysis, but instead of using the raw activations directly,752

it randomly pairs activations (regardless of their positive/negative labels) and uses the difference753

between them as inputs (Wu et al., 2025; Zou et al., 2023).754

We also support different prompt formatting styles for direction generation: 1) default: using755

the dataset’s original prompt format, 2) RepE: reformatting prompts using LAT-style stimulus tem-756

plates (Zou et al., 2023), and 3) CAA: converting all prompts to binary-choice questions (Panickssery757

et al., 2023)."758

A.1.2 Direction Selection759

Direction selection is how a single direction is chosen given a set of candidate directions. In our paper,760

this is accomplished by using a validation split. The output of each direction selection procedure761

is a layer (where the direction was generated from) and the values for any other applier-specific762

parameters that we iterated over. For all methods, we search from the 25th to 80th quantile of763

the layers with a step size of 2, as prior work has shown steering is more effective in the middle764

layers (Arditi et al., 2024).765

The set of applier-specific parameters is based on the steering method and currently is either empty766

or consists of a coefficient (where we test integers from -3 to 3 inclusive). For each method, unless767

otherwise specified we include a KL divergence check on Alpaca (using the same split as defined for768

the harmfulness perspective) to ensure the intervention is reasonable, discarding the direction if it769

results in a KL divergence in last token logits of over 0.1, following the conventions of Arditi et al.770

(2024). We implement grid search to find the layer and application-specific parameters to extract the771

direction, chosen by highest performance on the validation set.772

A.1.3 Direction Application773

Direction application specifies how the direction modifies activations during inference. There are two774

important aspects of direction application: 1) the mathematical formulation of the intervention, and775

2) how that intervention is applied.776

We specify the mathematical formulations below, where in each case activations are modified in-place777

and the forward pass is continued:778

Activation Addition: Activation addition (Turner et al., 2023; Panickssery et al., 2023) modifies779

activations of the form v′ = v′ + α ∗ d, where d is the direction, v is the activation and α is the780

steering coefficient.781

Directional Ablation: Directional ablation (Arditi et al., 2024; Marshall et al., 2024) modifies782

activations of the form v′ = v − proj∥d∗(v), with an additional proj∥d∗(d−∗) added to the right hand783

19



side if using an affine transformation as in Marshall et al. (2024), with d−∗ representing the mean of784

the negative activations from the direction generation step. Currently, we do not utilize a steering785

coefficient for directional ablation experiments following the conventions of Arditi et al. (2024); Siu786

et al. (2025).787

Successful steering requires not only the mathematical operations above, but also strategic decisions788

about where and when to intervene. We implement flexible control over both aspects:789

Intervention Locations: The location within the transformer and token position where the interven-790

tion is applied must be specified for each method.791

The position of intervention can either be ALL, OUTPUT_ONLY, or POST_INSTRUCTION. The location792

of intervention is defined based on the layer and location within the transformer block where the793

intervention occurs. Most often, the direction is applied at the same place in the residual stream as794

where it was generated, though it can also be applied in specific places, e.g., the input and output795

of the attention and MLP blocks in all layers in the residual stream. We also allow cumulative796

interventions, which we define as when directions from previous layers are used to intervene on797

their respective previous layers in addition to the selected direction, starting from the first layer we798

collect directions from (at 25% through the model). E.g., if we intervene at layer 10 and the 25%799

layer is layer 6, we intervene at layers 6, 8, and 10 with the same direction application method using800

directions from those respective layers.801

Conditional Steering: We utilize conditional steering to let us decide when to apply the intervention802

at inference time depending on the prompt, which should reduce entanglement. We implement803

this based on CAST (Lee et al., 2024), a conditional direction application method where steering804

only occurs if the cosine similarity of the activations and a preselected condition vector is above805

some threshold. This can be added on top of any other direction application method. Though the806

original paper proposes a full steering methodology using PCA, we instead separate the conditional807

application portion of the method and refer to that as CAST, since it can be used with any of the808

stated direction application mathematical formulations, direction generation, or direction selection809

combinations. This method is explicitly built to reduce entanglement since it only steers when810

it detects in-distribution behavior. As such, in practice when we use CAST we do not include a811

KL divergence check in the direction generation stage. CAST can be used with any mathematical812

formulation and location of intervention. CAST uses the same split of Alpaca as defined in the813

harmful generation validation set to select the condition vector, which for simplicity we set to one of814

the candidate vectors from direction generation.815

B Additional Related Work816

Mechanistic interpretability tools have built a shared foundation that steering builds upon. Tools817

like sparse autoencoders (Bricken et al., 2023; Huben et al., 2024; Templeton et al., 2024), weight818

attribution methods (Pearce et al., 2024), and circuit-level analyses (Elhage et al., 2021; Lieberum819

et al., 2023) offer complementary ways of tracing causal pathways for behavioral features and820

identifying where interventions should occur. Representations have also been used to probe concepts821

(Wu et al., 2025; Lee et al., 2024) and to conditionally intervene at inference time (Lee et al., 2024;822

Li et al., 2023; Wang et al., 2024b). As steering techniques increasingly operate at the activation823

level, interpretability research provides essential methods for characterizing both the geometry of824

encoded features and their intervention points.825

C Limitations826

While STEERINGSAFETY represents a significant advance in standardized, multi-perspective evalua-827

tion of alignment steering, it has several limitations. The benchmark focuses on English-language828

datasets and instruction-tuned models, limiting its applicability to multilingual or non-instructional829

contexts (Wang et al., 2024c). Steering is implemented as static vectors applied at fixed model830

locations, overlooking more adaptive methods like ReFT (Wu et al., 2024). Future work should831

expand our framework to incorporate weight modifications and other representation engineering832

approaches (Wehner et al., 2025). Results are reported in aggregate, potentially obscuring nuanced833

shifts within behavioral subtypes. We generate only 64 tokens and require immediate responses834

without reasoning, which may not capture full model intentions—future work should investigate835
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reasoning models. Prior work suggests steering from tokens other than final post-instruction tokens836

may yield more effective control (Zhao et al., 2025; Arditi et al., 2024; Siu et al., 2025), which our837

setup does not exploit. Lastly, it is unclear if our findings generalize to other model deployment838

settings, such as agentic safety and security (Debenedetti et al., 2024; Zhang et al., 2025; Wang et al.,839

2025).840

D Dataset Information841

Each dataset within a perspective being steered follows a fixed 40/10/50 train/validation/test split842

and is stratified by subcategory (if applicable) to ensure robust evaluation. To support contrastive843

direction generation, we also include negative examples with an incorrect answer for all tasks being844

steered, creating them if they do not exist. We formulate a dataset based on 17 existing datasets, with845

the number of prompts per split in Table 3.846

Table 3: Dataset split sizes (Train/Val/Test). Note Alpaca is not currently used in testing.

Dataset Train Val Test Total

BBQ 800 200 1,000 2,000
ToxiGen 720 180 900 1,800
SaladBench 685 171 858 1,714
Alpaca 686 171 - 857
PreciseWiki 800 200 1,000 2,000
FaithEvalCounterfactual 79 20 100 199
FaithEvalInconsistent 114 28 143 285
FaithEvalUnanswerable 184 46 231 461
GPQA - - 448 448
ARC_C - - 500 500
CMTEST - - 750 750
TruthfulQA - - 790 790
Twinviews - - 750 750
DarkBenchAnthro - - 110 110
DarkBenchBrandBias - - 109 109
DarkBenchSynchopancy - - 110 110
DarkBenchSneaking - - 110 110
DarkBenchRetention - - 110 110

E Experimental Details847

We run our experiments using HuggingFace on either A6000s, A100s, or H100s, with one experiment848

(full direction generation, selection, application and evaluation on all datasets) per GPU.849

To select a direction, for each combination of hyperparameters (layer, coefficient), we apply the850

direction at inference time and evaluate model behavior on a fixed validation set. The configuration851

yielding the highest mean performance across all primary metrics is selected for final evaluation.852

We use a temperature of 0 across all models without a repetition penalty. For all datasets that are853

multiple choice, we generate one new token. For all other datasets, we generate up to 64 new854

tokens. We use substring matching by default as opposed to calculating likelihood with logits for all855

multiple choice datasets, since we want to know how steering will affect the output text of the model.856

This is under the belief that steering causing invalid text answers is also informative for showing857

entanglement in practical settings where instruction-following is affected. E.g., if steering a model858

to reduce bias causes it to give an invalid answer to political opinion questions (as we observe with859

TwinViews), this represents task-specific degradation even if the model would still prefer one belief860

over the other.861

While this is important to consider in deployment, to ensure we can make claims about changes in862

model beliefs instead of formatting, the main results all use likelihood calculations with TwinViews863
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Table 4: Effectiveness/Entanglement ratio by method, steered perspective, and Qwen model size.
Higher values indicate better trade-offs (more effectiveness per unit of entanglement). 1.5B = Qwen-
2.5-1.5B, 3B = Qwen-2.5-3B, 7B = Qwen-2.5-7B.

Harmfulness Hallucination Bias

Method 1.5B 3B 7B 1.5B 3B 7B 1.5B 3B 7B

ACE 3.84 8.29 9.40 1.23 3.11 1.16 -0.23 0.17 2.09
CAA -0.13 -0.09 0.16 0.88 0.63 0.23 -0.23 1.41 -0.05
DIM 4.55 7.41 4.48 1.16 -1.83 0.49 -2.67 0.53 6.76
LAT 0.26 0.00 0.30 1.75 0.53 0.89 3.51 3.34 8.70
PCA 0.21 0.11 0.19 2.09 2.23 0.57 2.39 0.80 5.18

instead of substring matching as the differences were very large. All other datasets still use substring864

matching.865

To ensure the format is not driving differences in performance, we standardize all multiple choice866

datasets to use single capital letters for the choices and answers. For all multiple choice datasets except867

those testing hallucination and political leaning, we use substring matching and we prepend a short868

string encouraging responses to be as concise as possible: Please provide only the correct869

answer in its simplest form, without any additional text or explanation.870

We use the instruct variant of all models. For context, whenever we reference post instruc-871

tion tokens, we refer to all tokens after the initial user prompt (Arditi et al., 2024). For872

Qwen2.5, when we supply a prompt to the LLM we do it in the following format (we873

highlight the content corresponding to post-instruction tokens in blue): <|im_start|>user874

instruction<|im_end|><|im_start|>assistant. Note throughout direction selection, we875

use the prompt with the post-instruction tokens (including the empty assistant prompt) if we are876

collecting or comparing activations.877

F Results878

Figure 5 shows the entanglement for all models for each perspective averaged across steering methods.879

880

F.1 Results by dataset881

The per-model results across all behaviors and methods are in Figures 12 and 9 for the Standard882

settings, Figures 13 and 10 with NoKL, and Figures 14 and 11 with conditional steering. In these883

tables we display the FDR-corrected paired t-tests significance levels, grouped by (sub-)perspective.884

We note that when using DIM with Gemma-2-2B on refusal, the KL divergence check fails for all885

directions, so we exclude refusal performance when calculating average effectiveness for DIM on886

this model.887

F.2 Additional Results888

Besides the main results, we also steer all five using our standard setting on Qwen-2.5-1.5B and889

Qwen-2.5-3B in Figures 15 and 16, respectively. Effectiveness/entanglement ratios are in Table 4.890

F.3 Substring Matching891

We analyze results across datasets to see where the method does not produce a valid answer at all in892

Table 5. This is important for datasets like TwinViews where the model produces an answer outside893

of the accepted multiple choice answers. Due to the high occurrence of mismatches in TwinViews,894

we instead use likelihood-based scoring in all our results, where we select the choice corresponding895

to the token with the higher probability in the model.896
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Figure 5: Entanglement (lower is better) based on perspective being steered for Gemma-2-2B, Llama-
3.1-8B, and Qwen-2.5-1.5B, Qwen-2.5-3B, and Qwen-2.5-7B.
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Figure 6: The changes in performance on all datasets when steering with five methods with five
objectives on Gemma-2-2B. The results of the unsteered model are displayed at the top, and all
reported steering values are expressed as the difference relative to the unsteered model’s performance.
Higher scores generally indicate safer performance (e.g lower dark behaviors or hallucination rates)
except for SALADBench ASR (left-most), where higher scores indicate higher jailbreaking, and
Political Views (right-most), where higher score indicates higher proportion of left-leaning opinions.
Datasets pertaining to the target behavior in each setting are bordered in black. Statistical significance
is indicated by superscripts on values: * (p < 0.05), ** (p < 0.01), *** (p < 0.001) based on paired
t-tests with FDR correction applied per steering objective.
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Figure 7: The changes in performance on all datasets when steering with five methods with five
objectives on Gemma-2-2B when no KL divergence check was used in direction generation. The
results of the unsteered model are displayed at the top, and all reported steering values are expressed
as the difference relative to the unsteered model’s performance with statistical significance indicators,
similarly to the results in Figure 6.
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Figure 8: The changes in performance on all datasets when steering with five methods with five
objectives on Gemma-2-2B when using conditional steering. The results of the unsteered model
are displayed at the top, and all reported steering values are expressed as the difference relative to
the unsteered model’s performance with statistical significance indicators, similarly to the results in
Figure 6.
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Figure 9: The changes in performance on all datasets when steering with five methods with five
objectives on Llama-3.1-8B-Instruct. The results of the unsteered model are displayed at the top,
and all reported steering values are expressed as the difference relative to the unsteered model’s
performance with statistical significance indicators, similarly to the results in Figure 6.
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Figure 10: The changes in performance on all datasets when steering with five methods with five
objectives on Llama-3.1-8B when no KL divergence check was used in direction generation. The
results of the unsteered model are displayed at the top, and all reported steering values are expressed
as the difference relative to the unsteered model’s performance with statistical significance indicators,
similarly to the results in Figure 6.
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Figure 11: The changes in performance on all datasets when steering with five methods with five
objectives on Llama-3.1-8B when using conditional steering. The results of the unsteered model
are displayed at the top, and all reported steering values are expressed as the difference relative to
the unsteered model’s performance with statistical significance indicators, similarly to the results in
Figure 6.
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Figure 12: The changes in performance on all datasets when steering with five methods with five
objectives on Qwen-2.5-7B. The results of the unsteered model are displayed at the top, and all
reported steering values are expressed as the difference relative to the unsteered model’s performance
with statistical significance indicators, similarly to the results in Figure 6.
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Figure 13: The changes in performance on all datasets when steering with five methods with five
objectives on Qwen-2.5-7B when no KL divergence check was used in direction generation. The
results of the unsteered model are displayed at the top, and all reported steering values are expressed
as the difference relative to the unsteered model’s performance with statistical significance indicators,
similarly to the results in Figure 6.
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Figure 14: The changes in performance on all datasets when steering with five methods with five
objectives on Qwen-2.5-7B when using conditional steering. The results of the unsteered model
are displayed at the top, and all reported steering values are expressed as the difference relative to
the unsteered model’s performance with statistical significance indicators, similarly to the results in
Figure 6.
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Figure 15: The changes in performance on all datasets when steering with five methods with the
standard setting with five objectives on Qwen-2.5-1.5B in direction generation. The results of the
unsteered model are displayed at the top, and all reported steering values are expressed as the
difference relative to the unsteered model’s performance with statistical significance indicators,
similarly to the results in Figure 6.
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Figure 16: The changes in performance on all datasets when steering with five methods with the
standard setting with five objectives on Qwen-2.5-3B in direction generation. The results of the
unsteered model are displayed at the top, and all reported steering values are expressed as the
difference relative to the unsteered model’s performance with statistical significance indicators,
similarly to the results in Figure 6.
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Table 5: Invalid answers for multiple-choice datasets by dataset, model, and experiment type

Dataset Model Standard NoKL Conditional Total

ARC_C Gemma-2-2B 0 (0.0%) 6 (0.0%) 6 (0.0%) 12,500
Llama-3.1-8B 34 (0.3%) 47 (0.4%) 41 (0.3%) 12,500
Qwen-2.5-1.5B 0 (0.0%) - - 12,500
Qwen-2.5-3B 0 (0.0%) - - 12,500
Qwen-2.5-7B 0 (0.0%) 0 (0.0%) 0 (0.0%) 12,500

BBQ Gemma-2-2B 0 (0.0%) 3 (0.0%) 3 (0.0%) 24,900
Llama-3.1-8B 2 (0.0%) 31 (0.1%) 3 (0.0%) 24,900
Qwen-2.5-1.5B 0 (0.0%) - - 24,900
Qwen-2.5-3B 0 (0.0%) - - 24,900
Qwen-2.5-7B 807 (3.2%) 944 (3.8%) 845 (3.4%) 24,900

CMTEST Gemma-2-2B 362 (2.0%) 421 (2.2%) 397 (2.1%) 18,750
Llama-3.1-8B 644 (3.4%) 745 (4.0%) 720 (3.8%) 18,750
Qwen-2.5-1.5B 0 (0.0%) - - 18,750
Qwen-2.5-3B 123 (0.7%) - - 18,750
Qwen-2.5-7B 0 (0.0%) 0 (0.0%) 0 (0.0%) 18,750

FaithEvalCounterfactual Gemma-2-2B 74 (3.1%) 77 (3.1%) 78 (3.1%) 2,500
Llama-3.1-8B 79 (3.2%) 82 (3.3%) 88 (3.5%) 2,500
Qwen-2.5-1.5B 50 (2.0%) - - 2,500
Qwen-2.5-3B 94 (3.8%) - - 2,500
Qwen-2.5-7B 50 (2.0%) 54 (2.2%) 51 (2.0%) 2,500

GPQA Gemma-2-2B 15 (0.1%) 24 (0.2%) 18 (0.2%) 11,200
Llama-3.1-8B 30 (0.3%) 95 (0.8%) 27 (0.2%) 11,200
Qwen-2.5-1.5B 2 (0.0%) - - 11,200
Qwen-2.5-3B 0 (0.0%) - - 11,200
Qwen-2.5-7B 0 (0.0%) 0 (0.0%) 0 (0.0%) 11,200

ToxiGen Gemma-2-2B 1 (0.0%) 0 (0.0%) 0 (0.0%) 22,275
Llama-3.1-8B 0 (0.0%) 0 (0.0%) 0 (0.0%) 22,275
Qwen-2.5-1.5B 0 (0.0%) - - 22,275
Qwen-2.5-3B 0 (0.0%) - - 22,275
Qwen-2.5-7B 0 (0.0%) 0 (0.0%) 0 (0.0%) 22,275

TruthfulQA Gemma-2-2B 29 (0.2%) 31 (0.2%) 41 (0.2%) 19,750
Llama-3.1-8B 1 (0.0%) 2 (0.0%) 2 (0.0%) 19,750
Qwen-2.5-1.5B 25 (0.1%) - - 19,750
Qwen-2.5-3B 0 (0.0%) - - 19,750
Qwen-2.5-7B 47 (0.2%) 47 (0.2%) 48 (0.2%) 19,750

Twinviews Gemma-2-2B 6326 (35.1%) 7649 (40.8%) 7484 (39.9%) 18,750
Llama-3.1-8B 12507 (66.7%) 12122 (64.7%) 14040 (74.9%) 18,750
Qwen-2.5-1.5B 0 (0.0%) - - 18,750
Qwen-2.5-3B 0 (0.0%) - - 18,750
Qwen-2.5-7B 11 (0.1%) 16 (0.1%) 6 (0.0%) 18,750
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