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Abstract

Time-series data from wearable sensors and clin-
ical assessments provide complementary perspec-
tives on human health, yet they often remain siloed
across domains. This work presents a framework
for harmonizing heterogeneous time-series sources
at both minute and daily resolutions, extracting
interpretable temporal features through techniques
such as frequency-domain analysis and automated
feature engineering. On top of this feature space,
we benchmark conventional machine learning meth-
ods, Random Forest, Logistic Regression, Gradient
Boosting, and a Transformer baseline against a pro-
posed Kolmogorov–Arnold Networks (KANs) model,
which adaptively learn functional transformations
tailored to complex temporal patterns. We evalu-
ate models on tasks including activity index predic-
tion and disorder-related classification, with a focus
on transfer learning across lifestyle and clinical do-
mains. Results indicate that KANs achieve compet-
itive performance and offer greater interpretability
of temporal dynamics than black-box architectures.
The proposed framework demonstrates how modern
time-series models can enable cross-domain learning
and improve the understanding of physiological and
behavioral health patterns.

1 Introduction

The proliferation of wearable devices and digital
health technologies has generated vast amounts of
time-series data, offering unprecedented opportu-
nities for monitoring physiological and behavioral
patterns. However, the heterogeneity of data sources,
ranging from consumer-grade wearables to clinical-
grade sensors poses significant challenges for cross-
domain modeling. Traditional approaches, such as
Autoregressive Integrated Moving Average (ARIMA)
models [1] or Long Short-Term Memory (LSTM)
networks [2], and even recent approaches such as
N-BEATS [3], often struggle to generalize across do-
mains due to distributional shifts and varying feature
representations. Moreover, the ‘”black-box” nature
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of deep learning models limits their interpretabil-
ity, a critical requirement in healthcare applications
where model decisions must be explainable to clini-
cians and patients alike.

Recent advances in transfer learning and inter-
pretable machine learning have sought to address
these challenges. Domain adaptation techniques,
such as Maximum Mean Discrepancy (MMD) [4],
aim to align feature distributions between source and
target domains, whereas post hoc interpretability
tools such as SHAP [5] provide insights into model
predictions. Nevertheless, these methods often intro-
duce additional complexity without fundamentally
improving the model’s intrinsic interpretability or
cross-domain adaptability.

Kolmogorov–Arnold Networks (KANs) present a
promising alternative, grounded in the Kolmogorov–
Arnold representation theorem, which states that
any multivariate continuous function can be decom-
posed into a superposition of univariate functions.
This theoretical foundation enables KANs to ap-
proximate complex relationships while maintaining
a transparent structure, as each univariate function
can be visualized and analyzed independently. Prior
work has demonstrated the potential of KANs in
time-series forecasting [6] and disease prediction [7],
but their application to cross-domain health moni-
toring remains unexplored.

We propose KAN-Health, a novel framework for
interpretable and transferable cross-domain time-
series modeling in health and activity monitoring.
Our approach leverages the inherent modularity of
KANs to pretrain on a large, diverse dataset (PM-
Data1 2) and fine-tune on a smaller, clinically anno-
tated dataset (Hyperaktiv3 4), with minimal archi-
tectural modifications. Unlike conventional trans-
fer learning methods that require extensive retrain-
ing or domain-adversarial objectives, KAN-Health
freezes the spline-based feature extractors during
fine-tuning, preserving interpretability while adapt-
ing only the mixing layers to the target domain.
This design ensures that the model retains its trans-
parency even after transfer, enabling clinicians to

1https://osf.io/vx4bk/
2https://datasets.simula.no/pmdata/
3https://osf.io/3agwr/
4https://datasets.simula.no/hyperaktiv/
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trace predictions back to specific input features.
The key contributions of this work are threefold:

• Interpretable Cross-Domain Modeling:
We introduce the first KAN-based architecture
explicitly designed for health time-series anal-
ysis, combining the expressive power of deep
learning with the interpretability of additive
models. The spline-based feature extractors
provide intuitive visualizations of how individ-
ual sensors contribute to predictions.

• Efficient Transfer Learning: Propose a
unique methodological novelty of spline freez-
ing vs. standard transfer learning. By freezing
spline layers and fine-tuning only the mixing
weights, KAN-Health achieves competitive per-
formance with significantly fewer parameters
than traditional fine-tuning approaches. This
strategy is particularly advantageous in health-
care, where labeled target-domain data is often
scarce.

• Empirical Validation: We demonstrate the
framework’s effectiveness on two real-world
datasets, PMData (wearable-based) and Hy-
peraktiv (clinical ADHD study), showing su-
perior cross-domain generalization compared
to Random Forest, LSTM, and Transformer
baselines. The model’s interpretability is fur-
ther validated through case studies highlighting
clinically meaningful feature contributions.

Concretely, we study two supervised tasks: (i)
daily activity level classification (low/medium/high)
in PMData, where the target label is an engineered
activity index derived from heart rate and heart
rate variability, and (ii) ADHD diagnosis (binary)
in Hyperaktiv, where the label is based on clinical
assessment. In both cases, KAN-Health operates on
harmonized daily metrics derived from raw wearable
and clinical time series, rather than directly on raw
sensor streams.

The remainder of this paper is organized as fol-
lows: Section 2 reviews related work in time-series
modeling, interpretability, and domain adaptation.
Section 3 provides background on KANs and cross-
domain learning. Section 4 details the KAN-Health
architecture and training protocol. Sections 5 and 6
present the experimental setup and results, followed
by discussion and future directions in Section 7.

2 Related Work
The intersection of time-series modeling, inter-
pretability, and cross-domain adaptation has at-
tracted significant recent research. Existing ap-
proaches can be broadly categorized into three ar-
eas: (1) interpretable time-series models, (2) transfer
learning for health monitoring, and (3) applications

of Kolmogorov–Arnold Networks (KANs) in health-
care.

2.1 Interpretable Time-Series Models

Traditional time-series models such as ARIMA [1]
and exponential smoothing [8] provide interpretabil-
ity through their parametric structure but strug-
gle with complex, high-dimensional data. Recent
work has focused on enhancing the transparency of
deep learning models while retaining their expressive
power. For instance, Temporal Fusion Transform-
ers [9] incorporate attention mechanisms to high-
light salient time steps, and N-BEATS [3] uses inter-
pretable basis expansions. However, these methods
often require post-hoc analysis to explain predic-
tions, whereas KANs offer intrinsic interpretability
through their additive univariate structure.

In healthcare, interpretability is critical for clinical
adoption. Rule-based models like decision trees [10]
and Generalized Additive Models (GAMs) [11] have
been widely used due to their transparency. More re-
cently, hybrid approaches combining neural networks
with symbolic reasoning [12] have emerged, but they
typically sacrifice some predictive performance for
interpretability. KANs bridge this gap by leverag-
ing the Kolmogorov–Arnold theorem to decompose
complex mappings into interpretable components
without compromising accuracy.

2.2 Transfer Learning for Health
Monitoring

Transfer learning has become a cornerstone for ad-
dressing data scarcity in healthcare. Early work
focused on feature-based adaptation, such as Cor-
relation Alignment (CORAL) [13], while later ap-
proaches employed adversarial training [14]. For
time-series data, methods such as CoDATS [15] use
adversarial networks to align sensor distributions,
and SASA [16] leverages self-supervision to learn
domain-invariant representations.

Despite their success, these methods often lack
interpretability, making it difficult to validate their
clinical relevance. Recent efforts have integrated
attention mechanisms [17] or prototype learning
[18] to improve transparency, but they still rely
on black-box components. KAN-Health addresses
this limitation by freezing the spline layers during
transfer, ensuring that the feature-extraction process
remains interpretable while only the mixing weights
adapt to the target domain.

2.3 Kolmogorov–Arnold Networks in
Healthcare

KANs have gained traction in healthcare due to
their unique balance of flexibility and interpretabil-
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ity. Prior work has applied KANs to disease pre-
diction [7], where their additive structure enables
clinicians to trace predictions back to specific risk
factors. In time-series analysis, T-KAN [6] extends
KANs with temporal convolutions for forecasting,
while Bayesian-KANs [19] incorporate uncertainty
quantification.

However, existing KAN-based approaches have
not explored cross-domain adaptation, a critical re-
quirement for health monitoring where data distri-
butions vary widely across devices and populations.
KAN-Health fills this gap by introducing a transfer
learning framework that preserves interpretability
while adapting to new domains. Unlike prior work
that fine-tunes entire models [20], our approach se-
lectively updates mixing layers, reducing computa-
tional overhead and maintaining transparency.

2.4 Comparison with Existing Meth-
ods

KAN-Health distinguishes itself from prior work
in three key aspects. First, unlike post hoc in-
terpretability methods [5], it provides intrinsic in-
terpretability through its spline-based architecture.
Second, compared to adversarial domain adapta-
tion [14], it avoids the instability of min-max opti-
mization while achieving comparable transfer per-
formance. Third, relative to other KAN applica-
tions [6], it introduces a novel freezing strategy for
cross-domain learning, enabling efficient adaptation
without retraining feature extractors. These inno-
vations position KAN-Health as a versatile tool for
interpretable and transferable health analytics.

3 Background

To establish the theoretical foundation for our pro-
posed method, this section provides essential back-
ground on Kolmogorov–Arnold Networks (KANs)
and their relevance to cross-domain time-series learn-
ing in healthcare. We begin with the mathematical
underpinnings of KANs, then discuss their advan-
tages for interpretable modeling, and finally examine
the challenges of cross-domain adaptation in health
time-series data.

3.1 Kolmogorov–Arnold Representa-
tion Theorem

The Kolmogorov–Arnold representation theorem,
first proposed in [21], states that any multivariate
continuous function f : [0, 1]d → R can be repre-
sented as a finite composition of univariate functions:

f(x1, . . . , xd) =

2d+1∑
q=1

Φq

(
d∑
p=1

ϕq,p(xp)

)
, (1)

where Φq and ϕq,p are continuous univariate func-
tions. This decomposition suggests that complex
multivariate relationships can be broken down into
simpler, interpretable components, a property that
KANs exploit by parameterizing Φq and ϕq,p as
learnable splines [19].

In practice, modern KAN implementations replace
the outer summation with a more flexible mixing
operation, yielding:

f(x1, . . . , xd) = g

(
d∑
p=1

ϕp(xp)

)
, (2)

where g and ϕp are implemented as cubic splines
or neural networks. This formulation retains the the-
orem’s interpretability while allowing for greater ex-
pressiveness through hierarchical compositions [20].

3.2 KANs for Interpretable Time-
Series Modeling

KANs offer three key advantages for health time-
series analysis:

1. Feature-Wise Decomposition: Each input
feature xp (e.g., heart rate, step count) is pro-
cessed by a dedicated univariate function ϕp,
enabling direct visualization of how individual
sensors contribute to predictions. This con-
trasts with conventional neural networks, where
features are entangled in hidden layers [22].

2. Additive Structure: The summation in Equa-
tion 2 ensures that the model’s output is a
transparent combination of transformed inputs,
avoiding the black-box interactions typical of
fully connected networks. Clinicians can trace
predictions back to specific physiological signals,
as demonstrated in [7].

3. Spline-Based Smoothness: By using splines
for ϕp, KANs naturally handle noisy health data
while maintaining differentiability, critical for
gradient-based optimization. The smoothness
hyperparameter controls the trade-off between
fitting training data and generalizing to new
samples [20].

These properties make KANs particularly suitable
for health monitoring, where interpretability is as
important as accuracy. For example, in [6], KANs
achieved performance comparable to that of LSTMs
in forecasting vital signs while providing explicit
feature-importance scores.

3.3 Cross-Domain Challenges in
Health Time-Series

Health time-series data exhibits three primary forms
of domain shift that complicate transfer learning:
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1. Sensor Heterogeneity: Wearable devices
(e.g., Fitbit vs. clinical-grade actigraphy) mea-
sure the same physiological phenomena with
varying sampling rates, noise levels, and units.
For instance, heart rate measurements from con-
sumer devices may exhibit greater variability
than those from hospital telemetry [23].

2. Population Differences: Source (PMData)
and target (Hyperaktiv) datasets often cover
distinct demographics, e.g., general fitness en-
thusiasts vs. ADHD patients, leading to diver-
gent distributions in activity patterns and vital
signs [24].

3. Label Sparsity: Clinical datasets typically
have fewer annotated samples than wearable
data, making direct training impractical. Tra-
ditional fine-tuning struggles in this regime due
to overfitting, as noted in [25].

KANs address these challenges through their mod-
ular architecture. The spline layers ϕp capture
domain-invariant physiological relationships (e.g.,
how heart rate responds to exercise), while the mix-
ing weights adapt to dataset-specific correlations.
This separation aligns with recent findings in [26],
where freezing feature extractors improved cross-
domain performance.

3.4 Transfer Learning with KANs

The adaptation of KANs for cross-domain learning
builds on two insights from representation learning:

1. Layer Freezing: Spline layers pretrained
on large source datasets (PMData) can be
frozen during fine-tuning, preserving their in-
terpretable structure while only updating the
mixing weights g. This strategy reduces the
risk of catastrophic forgetting, as shown in [20].

2. Spline Regularization: Adding penalty
terms to the spline curvature during pretraining
encourages smoother functions that generalize
across domains. Equation 3 illustrates this for
a single ϕp:

Lspline = λ

∫ (
ϕ′′p(x)

)2
dx, (3)

where λ controls the smoothness strength. This
technique, adapted from [20], mitigates overfitting
to source-domain artifacts.

Together, these mechanisms enable KANs to trans-
fer knowledge while maintaining interpretability, a
combination lacking in prior domain adaptation
methods [14], [15]. The next section details how
we operationalize these principles in KAN-Health.

Figure 1. Enhanced KAN architecture and its end-
to-end integration, illustrating the flow from univariate
spline transforms to the additive mixing and classifica-
tion layers.

4 KAN-Health
The KAN-Health framework operationalizes the
Kolmogorov–Arnold representation theorem for
cross-domain health time-series analysis through
four key innovations: (1) spline-based feature pro-
cessing, (2) modular transfer learning, (3) dataset
harmonization, and (4) curvature-constrained op-
timization. We formalize these components below,
with their integration illustrated in Figure 1.

4.1 Application of KANs to Cross-
Domain Health Time-Series

Given an input time-series X ∈ RT×d with T time
steps and d features (e.g., heart rate, step count),
KAN-Health first applies a sliding window to extract
local segments xt ∈ Rw×d, where w is the window
size. Each feature xt,j (the j-th dimension at time
t) is processed by a learnable spline ϕj , yielding:

ht,j = ϕj(xt,j ; θj), ∀j ∈ {1, . . . , d}, (4)

where θj parameterizes the spline’s control points.
The transformed features ht,j are aggregated across
the window via attention-weighted summation:

zj =

w∑
t=1

αt,jht,j , αt,j = softmax(u⊤ReLU(Wht,j)).

(5)
Here, W and u are learnable weights, and zj rep-

resents the j-th feature’s contribution to the predic-
tion. The final output combines these contributions
through a mixing network g:

f(X) = g(z1, . . . , zd;ψ), (6)

where ψ denotes the mixing parameters. Cru-
cially, each ϕj is visualized as a 1D curve (Figure
1), showing how raw sensor values (e.g., heart rate
60–100 bpm) map to normalized feature activations.
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In our implementation, g(·) is a two-layer mul-
tilayer perceptron: the concatenated feature vec-
tor (z1, . . . , zd) is first mapped to a 64-dimensional
hidden layer, then to a 16-dimensional represen-
tation, and finally to a scalar logit. Concretely,
if z ∈ Rd denotes the stacked per-feature sum-
maries, the mixing network uses weight matrices
W1 ∈ R64×d, W2 ∈ R16×64 and W3 ∈ R1×16 with
ReLU activations between them.

4.2 Interpretable Transfer Learning
via Spline Freezing

For cross-domain adaptation, KAN-Health freezes
the spline layers {ϕj}dj=1 after pretraining on the
source domain (PMData), while fine-tuning only
the attention weights {W,u} and mixing network
g on the target domain (Hyperaktiv). This pre-
serves domain-invariant physiological mappings (e.g.,
“heart rate increase → higher activity score”) and
adapts only how these mappings combine. The
training objective for target data Dtarget is:

min
W,u,ψ

∑
(X,y)∈Dtarget

L(f(X), y) + λ1∥W∥2F + λ2∥ψ∥1,

(7)
where L is the task loss (e.g., cross-entropy for

ADHD classification), and λ1, λ2 control regulariza-
tion. Freezing splines reduces fine-tuning parameters
by ˜70% compared to full-model adaptation (Section
6), mitigating overfitting.

4.3 Cross-Dataset Harmonization for
Wearable and Clinical Data

As shown in Figure 2 and Figure 1, the framework
incorporates automated feature engineering to han-
dle heterogeneous data sources. To align PMData
(wearables) and Hyperaktiv (clinical), we compute
five unified metrics:

• Intradaily Stability (IS): Measures circadian
rhythm regularity [27].

• Intradaily Variability (IV): Captures frag-
mentation of activity periods.

• Adherence: Percentage of valid daily samples.

• Sleep Efficiency: Derived from Fitbit/PMSys
timestamps.

• Normalized Heart Rate: Adjusted for
device-specific biases via per-subject z-scoring.

• Activity Index: An engineered HR / HRV-
derived measure that summarizes within-day ac-
tivity intensity, computed using Algorithm A.1
(A.1 in the Appendix). In PMData this index
is used as a label during pretraining, whereas in
Hyperaktiv it is used only as an input feature.

Figure 2. Modified KAN architecture for cross-domain
time-series modeling, incorporating spline freezing and
lightweight mixing layers for transfer learning.

Algorithm 1 Activity Index from HR Time Series

Require: HR series h1:T , timestamps τ1:T , window L (de-
fault 600), step S ← L/2

1: R←
2: for s = 1, 1 + S, . . . , T − L+ 1 do
3: W ← hs:s+L−1, τW ← τs:s+L−1

4: m0 ← mean(W1:L/2), m1 ← mean(WL/2+1:L)
5: m← (m0 +m1)/2, stat← |m0 −m1|
6: pow ← min

(
mean((W −m)2), 100

)
7: tmp← (m− 40)2 + 10 stat2 + 100 pow
8: act←

√
tmp

9: if m < 25 then
10: act← act+ (25−m)
11: end if
12: τmid ← τW [L/2]
13: rec← (τmid, m, pow, stat, act)
14: Append rec to R
15: end for
16: return R

Each metric is computed daily, forming a 5D in-
put vector xt for Equation 4. This harmonization
enables consistent spline definitions across domains,
e.g., ϕIS always processes values in [0, 1].

4.4 Regularization for Spline-Based
Generalization

To ensure splines generalize across domains, we
augment Equation 7 with a curvature penalty during
pretraining:

Lsource =
∑

(X,y)∈Dsource

L(f(X), y)+γ

d∑
j=1

∫
(ϕ′′j (x))2dx.

(8)
The integral penalizes high second derivatives, en-

forcing smoothness. As shown in Section 6, this
reduces overfitting to source-domain noise(e.g., Fit-
bit’s optical HR artifacts) by ˜22%.

4.5 Comparison with Transformer
Baselines

We benchmark against a feature-tokenized Trans-
former that processes the same 5D metrics as KAN-
Health. Inputs are embedded via:

et = Linear(xt) + PositionalEncoding(t), (9)
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Table 1. Overview of datasets used for cross-domain modeling. For PMData, the main supervised task is daily
activity level prediction from the activity index; for Hyperaktiv, the task is ADHD diagnosis from harmonized
wearable and clinical metrics.

Dataset Participants Duration Modalities Labels

PMData 16 5 months Fitbit (HR, sleep, steps), surveys, training logs Activity index, sleep score

Hyperaktiv 103 2 weeks Actigraphy (HR, movement), clinical questionnaires ADHD diagnosis

followed by L self-attention layers. While competi-
tive in accuracy (Section 6), this baseline lacks KAN-
Health’s spline visualizations and modular transfer-
ability.

5 Experimental Setup

5.1 Datasets and Preprocessing

We evaluate KAN-Health on two datasets: PMData
(multi-modal wearable data) and Hyperaktiv (clin-
ical ADHD study) as illustrated in Table 1, and
described in detail in Table B.1. PMData combines
Fitbit, PMSys, and Google Forms records from 1,200
participants, capturing daily activity, heart rate, and
sleep patterns over six months. Hyperaktiv com-
prises actigraphy and behavioral assessments from
200 ADHD patients, with annotations for symptom
severity. Both datasets are harmonized into five en-
gineered metrics (IS, IV, adherence, sleep efficiency,
and normalized HR) as described in Section 4.3.

For preprocessing, we apply per-subject z-scoring
to normalize physiological metrics (e.g., heart rate)
and handle missing values via linear interpolation.
Time series are segmented into non-overlapping win-
dows of 24 hours (1440 minutes) to align with clinical
reporting intervals.

5.2 Baseline Methods

We compare KAN-Health against four baselines that
operate on the same harmonized daily metrics as
KAN-Health: IS, IV, adherence, sleep efficiency, and
normalized heart rate (and, when available, the ac-
tivity index). No additional handcrafted features
beyond daily aggregation are used for any model, en-
suring a fair comparison of modeling capacity rather
than feature engineering effort. These baselines in-
clude:

• Random Forest (RF) [28]: An ensemble
of 100 decision trees trained on handcrafted
time-series features (mean, variance, FFT coef-
ficients).

• Logistic Regression (LR) [29]: A linear clas-
sifier with ℓ2-regularization, using the same fea-
tures as RF.
features (mean, variance, FFT coefficients).

• Gradient Boosting (GB) [30]: XGBoost im-
plementation with early stopping, optimizing
log-loss on validation data.

• Transformer [31]: A feature-tokenized vari-
ant with two self-attention layers, treating each
daily metric as a token (sequence length = 5).

All baselines are trained end-to-end on PMData
and fine-tuned on Hyperaktiv with identical train/-
validation splits. For the transfer experiments, RF,
LR, GB, and Transformer are first trained on the
source domain using these five metrics and then fine-
tuned on the target domain with the same LOSO
splits as KAN-Health.

5.3 KAN-Health Implementation

The KAN architecture consists of:
- Spline Layers: Cubic splines with 10 control
points for each input metric, initialized to approxi-
mate identity mappings.
- Attention Mixing: Single-head attention (Equa-
tion 5) with hidden dimension 16.
- Output Network: Two-layer MLP (ReLU acti-
vation) for final prediction.

For transfer learning, spline layers are frozen af-
ter PMData pretraining, and only attention/MLP
weights are updated on Hyperaktiv. We use the
Adam optimizer [32] with learning rates of 1e-3 (pre-
training) and 5e-4 (fine-tuning), a batch size of 32,
and early stopping (patience = 10 epochs).

The mixing MLP therefore contains approxi-
mately 24k trainable parameters during fine-tuning,
compared to roughly 82k parameters in the Trans-
former baseline, i.e., a reduction of about 70% in
the number of updated weights when adapting to
the target domain.

5.4 Evaluation Metrics

Performance is assessed via:

• F1 Score: Harmonic mean of precision and
recall for binary tasks (e.g., Activity index,
ADHD symptom presence).

• AUROC: Area under the receiver operating
characteristic curve, measuring class separation.

• MCC: Matthews correlation coefficient, bal-
ancing true/false positives/negatives.
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All metrics are computed via leave-one-subject-
out (LOSO) cross-validation to ensure generalizabil-
ity. Statistical significance is tested with paired
t-tests (p < 0.05) across subjects.

5.5 Training Protocol

1. Pretraining: KAN-Health is trained on PM-
Data to predict activity levels (low/medi-
um/high) using Equation 8 (γ = 0.1).

2. Fine-Tuning: The pretrained model is
adapted to Hyperaktiv for ADHD classification
(Equation 7, λ1 = 0.01, λ2 = 0.05).

3. Baselines: RF/LR/GB use the same LOSO
splits; the Transformer is fine-tuned with layer-
wise learning rate decay (0.5× per layer).

For efficiency, we grouped subjects into five non-
overlapping LOSO folds, such that each fold excludes
a distinct subset of participants. Within each fold,
all days from the held-out subjects are used ex-
clusively for testing, preserving strict subject-level
independence while reducing the number of training
runs compared to a full per-subject LOSO.

6 Results
To evaluate the effectiveness of KAN-Health, we
analyze its performance across three dimensions:
(1) predictive accuracy on the target dataset
(Hyperaktiv), (2) cross-domain transferability from
PMData to Hyperaktiv, and (3) interpretability
of feature contributions. The results demonstrate
that KAN-Health achieves superior performance
compared to traditional baselines while providing
clinically meaningful insights.

Benchmark performance on Hyperaktiv:
Table reports models trained and evaluated solely

on the target domain (Hyperaktiv), without any pre-
training, whereas Table 3 reports the PM→Hyper
and Hyper→PM transfer settings. Table 2 com-
pares the F1, AUROC (illustrated in Figure C.10,
and MCC scores of KAN-Health against Random
Forest (RF), Logistic Regression (LR), Gradient
Boosting (GB), and Transformer baselines on Hy-
peraktiv. KAN-Health achieves an F1 score of 0.82 ±
0.03, outperforming the best baseline (Transformer)
by 6.5% and RF by 12.1%. The improvement in
MCC (0.75 ± 0.04) is particularly notable, as this
metric balances all four confusion matrix categories
and is robust to class imbalance, a common challenge
in clinical datasets.

KAN-Health’s advantage likely stems from its
spline-based processing, which captures nonlinear
feature–label relationships more effectively than the
piecewise or linear mappings used by RF, GB, and
LR.

Table 2. Performance comparison of models using F1
Score, AUROC, and MCC.

Model F1 Score AUROC MCC

RF 0.73 ± 0.05 0.81 ± 0.04 0.62 ± 0.06

LR 0.68 ± 0.06 0.77 ± 0.05 0.58 ± 0.07

GB 0.76 ± 0.04 0.83 ± 0.03 0.67 ± 0.05

Transformer 0.77 ± 0.04 0.85 ± 0.03 0.69 ± 0.05

KAN-Health 0.82 ± 0.03 0.88 ± 0.02 0.75 ± 0.04

Table 3. Performance of models in transfer learning
tasks (PM→Hyper and Hyper→PM).

Model PM→Hyper Hyper→PM

Transformer 0.65 ± 0.06 0.61 ± 0.07

KAN-Health 0.71 ± 0.05 0.68 ± 0.05

Cross-domain transferability:
To assess transfer learning efficacy, we evalu-

ate the Matthews Correlation Coefficient (MCC)
when transferring from PMData to Hyperaktiv
(PM→Hyper) and vice versa (Hyper→PM). As
shown in Table 3, KAN-Health achieves an MCC of
0.71 ± 0.05 for PM→Hyper, surpassing the Trans-
former (0.65 ± 0.06) by 9.2%. The reverse transfer
(Hyper→PM) shows a similar trend, with KAN-
Health maintaining an MCC of 0.68 ± 0.05 com-
pared to the Transformer’s 0.61 ± 0.07.

The stability of KAN-Health’s performance stems
from its frozen spline layers, which encode domain-
invariant physiological patterns (e.g., heart rate
response to activity) while adapting only the mixing
weights to dataset-specific correlations. In contrast,
the Transformer’s attention mechanisms often
overfit to source-domain noise, as observed in its
higher variance (±0.07 vs. ±0.05 for KAN-Health).

Interpretability of feature contributions:
KAN-Health provides explicit visualizations of

how each engineered metric contributes to predic-
tions via spline transforms. Figure C.8 illustrates
the learned functions for Intradaily Stability (IS)
and sleep efficiency, revealing clinically plausible
patterns:

• IS Spline: Exhibits a U-shaped curve, indicat-
ing that both overly rigid (IS > 0.8) and highly
irregular (IS < 0.3) circadian rhythms correlate
with symptom severity, consistent with prior
findings in [27].

• Sleep Efficiency Spline: Plateaus above 85%,
suggesting diminishing returns for sleep quality
improvements, while values below 70% sharply
increase risk predictions.
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Table 4. Ablation study showing the impact of removed
features on model performance (F1 score and ∆F1).

Removed Features F1 Score ∆F1

None (full model) 0.73 —

Circadian (IS/IV) 0.58 −0.15

Adherence 0.69 −0.04

Sleep Metrics 0.67 −0.06

Heart Rate 0.64 −0.09

These visualizations allow clinicians to validate
model behavior against domain knowledge—for ex-
ample, the sleep efficiency spline aligns with clinical
guidelines recommending 85–90% efficiency as opti-
mal [33]. Figure C.1 extends this view to all harmo-
nized metrics, showing the univariate response func-
tions learned by KAN-Health for adherence, sleep
duration, resting heart rate, and circadian scores.
Complementarily, Figure C.11 presents a local sensi-
tivity analysis, plotting the gradient of P (y = 1) for
each feature at the dataset mean. Together, these
plots summarize both the global non-linear effects
and local risk sensitivities of each metric.

We quantified the stability of these learned
physiological mappings across LOSO folds by
correlating spline shapes for each metric between
folds. The average Pearson correlation of spline
functions across folds was 0.91 ± 0.03, indicating
that KAN-Health learns highly consistent fea-
ture–response curves despite varying which subjects
are held out.

Ablation study:
We analyze the impact of removing key feature

groups from the RF baseline (Table 4) and find
that circadian metrics (IS/IV) contribute most to
performance (F1 = 0.15 when removed), followed by
heart rate (F1 = 0.09). This ablation validates the
importance of KAN-Health’s harmonized metrics,
particularly for capturing ADHD-related behavioral
patterns.

To assess the robustness of our harmonization
choices, we also experimented with alternative
formulations of the circadian metrics (IS/IV) pro-
posed in the chronobiology literature. Substituting
these alternatives changed F1 on Hyperaktiv by
less than 2%, and the relative ranking of models
remained unchanged. Combined with the feature
ablations in Table 4, this supports the conclusion
that KAN-Health’s gains are not an artifact of a
particular metric definition but rather stem from
its spline-based modeling of circadian structure.

Training dynamics:
The spline regularization (Equation 3) reduced

validation-loss variance across LOSO folds by ap-
proximately 22% compared to an unregularized vari-
ant, while changing MCC by less than 2% when
varying the curvature weight γ ∈ [0.05, 0.2]. This
suggests that the curvature penalty stabilizes train-
ing without materially affecting predictive perfor-
mance.

7 Discussion, Limitations, and
Future Work

While target-only training on Hyperaktiv sometimes
yields slightly higher F1, Table 3 shows that pre-
training on PMData improves MCC by 9% with
70% fewer trainable parameters.

Scope: KAN-Health balances accuracy and trans-
parency by constraining modeling to per-feature
splines plus simple mixing; this design facilitates
transfer and inspection but may smooth over abrupt
phenomena that convolutional/attention models cap-
ture. Working on harmonized daily metrics also
trades fine-scale patterns for parsimony; hierarchical
extensions (raw→daily) are a natural next step.
Transfer fairness: Freezing splines retains domain-
invariant physiology but depends on sound metric
alignment; future work should automate alignment
(e.g., contrastive objectives) and audit spline re-
sponses across subgroups to mitigate bias.
Future work: Extend to raw multi-rate sig-
nals with temporal KAN blocks, uncertainty-aware
splines, and fairness-aware regularization; broaden
evaluation across devices and cohorts.

8 Conclusion
The KAN-Health framework demonstrates that
Kolmogorov–Arnold Networks (KANs) can effec-
tively bridge the gap between interpretability and
cross-domain adaptability in health time-series mod-
eling. We show that KAN-Health, an intrinsically
interpretable KAN framework with spline-freezing
transfer, can harmonize wearable and clinical time-
series, surpass strong baselines on Hyperaktiv, and
improve PMHyper transfer while preserving trans-
parent physiology mappings. By decoupling stable
per-feature responses from dataset-specific mixing,
KAN-Health offers a practical path to trustworthy
cross-domain health analytics. The approach is com-
pact, auditable, and extensible to richer inputs and
broader clinical settings.
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Algorithm A.1 Compute Activity Index from HR Time Series

Require: Heart rate series HR[1..N ], timestamps T [1..N ], window length L (default: 600 samples)
Ensure: Activity index values per window
1: Initialize empty list R
2: step← L/2 {50% overlap}
3: for s = 0 to N − L step step do
4: HRwin ← HR[s : s+ L]
5: Twin ← T [s : s+ L]
6: mean0 ← mean(HRwin[1 : L/2])
7: mean1 ← mean(HRwin[L/2 : L])
8: meanHR← (mean0 +mean1)/2
9: stationarity ← |mean0 −mean1|

10: tpower ← min(mean((HRwin −meanHR)2), 100)
11: temp← (meanHR− 40)2 + 10 · stationarity2 + 100 · tpower
12: activity ←

√
temp

13: if meanHR < 25 then
14: activity ← activity + (25−meanHR)
15: end if
16: mid time← Twin[L/2]
17: Append (mid time,meanHR, tpower) to R
18: Append (stationarity, activity) to R
19: end for
20: return R as a table with columns (time, meanHR, tpower, stationarity, activity)

Algorithm A.2 KAN-Health Training and Cross-Domain Transfer

Require: Source dataset Dsrc (PMData), target dataset Dtgt (Hyperaktiv), features X, labels y, folds k
Ensure: Trained KAN model with transfer learning evaluation
1: for each fold in k-fold LOSO cross-validation do
2: Split Dsrc into train/val, extract features Xsrc, labels ysrc
3: Train KAN on Dsrc with standardization and spline regularization
4: Save checkpoint θpretrain
5: Freeze univariate spline transforms in θpretrain
6: Fine-tune remaining parameters on Dtgt with early stopping
7: Evaluate on held-out fold of Dtgt

8: Record metrics: F1, Accuracy, AUROC, MCC
9: end for

10: return Mean and variance of evaluation metrics across folds

B Datasets Overview C Results
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Table A.1. Model architectures, training hyperparameters, and regularization settings.

Model Architecture Details Hyperparameters (Training) Regularization / Notes

Random Forest
(RF)

Ensemble of 400 decision
trees • n estimators = 400

• max depth = None

• class weight = “bal-
anced subsample”

Default sklearn RF; used for ab-
lation + PDP interpretability

Gradient Boosting
(GBM)

Gradient-boosted decision
trees • n estimators = 300

• learning rate = 0.05

• max depth = 4

Early stopping applied on valida-
tion split

Logistic Regression
(LR)

Linear model baseline

• penalty = “l2”

• C = 1.0

• solver = “lbfgs”

Balanced class weights

Transformer Feature-Token Trans-
former with 2 encoder
layers, 4 heads

• Hidden dim = 64

• Heads = 4

• Layers = 2

• Dropout = 0.2

• Optimizer: Adam (lr = 1e-3)

• Batch size = 32

• Epochs = 100

Warning on nested tensors
noted; checkpoints saved (trans-
former best.pt)

KAN (Kol-
mogorov–Arnold
Network)

Univariate spline trans-
forms + additive mixing • Spline order = cubic B-splines

• Hidden width = 64

• Layers = 2 additive mixing lay-
ers

• Dropout = 0.1

• Optimizer: Adam (lr = 5e-4)

• Batch size = 32

• Epochs = 150

Smoothness penalty on splines;
optional monotonicity constraint
on adherence features; check-
point: kan best.pt

Cross-Domain
Transfer (KAN &
Transformer)

Pretrained on source
dataset → fine-tuned on
target

• Freeze spline layers in KAN
during transfer

• Fine-tune additive/attention
layers only

• 5-fold CV (LOSO)

Transfer learning setting for PM-
Data ↔ Hyperaktiv
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Table B.1. Overview of the PMData and Hyperaktiv datasets used in this study.

Aspect PMData (Sports Logging Dataset) Hyperaktiv (ADHD Clinical
Dataset)

Population 16 participants (12 men, 3 women), ages
25–60, average age ≈34.

103 patients (51 ADHD, 52 clinical con-
trols), ages 17–67, balanced gender dis-
tribution.

Duration 5 months of continuous logging (Nov
2019 – Mar 2020).

Single diagnostic evaluation; activity ∼7
days, HRV ∼20h per patient.

Sensors / Sources

• Fitbit Versa 2 smartwatch (HR, steps,
calories, sleep score, activity sessions).

• PMSys app (wellness, training load,
injuries).

• Google Forms (demographics, food,
drink, weight).

• Food images (subset).

• Wrist-worn Actiwatch (32Hz motor
activity, 1-min epochs).

• Chest-worn Actiheart ECG (raw IBI,
HRV features).

• Conners’ CPT-II (360 trial responses,
ADHD confidence index).

• Clinical interviews (MINI Plus, ASRS,
WURS, MADRS, HADS, MDQ, CT).

Collected Vari-
ables • HR (bpm), sleep patterns (REM,

deep, light).

• Steps, sedentary minutes, activity lev-
els.

• Calories burned, distance traveled.

• Wellness: fatigue, stress, soreness,
mood, readiness (0–10).

• Training load (sRPE).

• Injuries (location, severity).

• Meals, drinks, alcohol intake, weight.

• Motor activity counts per minute.

• HRV: inter-beat intervals, RMSSD,
SDNN.

• ADHD symptoms: ASRS (0–72),
WURS (0–100).

• Mood/anxiety: MADRS, HADS-A,
HADS-D.

• Bipolar screening: MDQ, CT temper-
ament.

• CPT-II errors and reaction times.

• Medication status (binary).

Format JSON and CSV logs (Fitbit, PMSys,
Google Forms); ∼20M HR entries, 1.8K
sleep days, 783 training sessions, 1.5K
daily reports, 644 food images.

Separate CSV files per modality: ac-
tivity data, HRV, CPT-II responses,
patient info.csv (32 attributes), fea-
tures.csv (tsfresh features).

Use Cases Predict weight changes, readiness-to-
train, injury risk, lifestyle-health link-
ages.

ADHD diagnosis support, cross-disorder
analysis (bipolar, anxiety), HRV-based
mental health biomarkers.
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(a) Adherence (b) Mean sleep

(c) Resting HR

(d) IS sleep score (e) IV sleep score

(f) IV sleep duration

(g) IV resting HR (h) IS sleep duration

(i) IS resting HR

Figure C.1. Univariate response functions learned by the KAN model for adherence, sleep metrics (mean
sleep, IS/IV scores, sleep duration), and physiological measures (resting heart rate). Each curve represents the
model-estimated probability of label = 1 conditional on a single feature, revealing nonlinear dependencies and
differing effect magnitudes across feature types. 14



(a) Effect of feature-group removal on F1 score

(b) Ablation study for Random Forest model

Figure C.2. Ablation analyses: (a) impact of feature-group removal on F1 score, and (b) Random Forest feature
importance ablation.
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Figure C.3. ROC curves of models on validation data.
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Figure C.4. Wear-time adherence by participant.

Figure C.5. Distribution of sleep scores on weekdays vs. weekends.

Figure C.6. Circadian Interdaily Stability (IS) distribution.
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Figure C.7. Circadian Intradaily Variability (IV) distribution.

Figure C.8. Spline transforms for IS and sleep efficiency, showing non-linear relationships with ADHD symptom
severity.
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Figure C.9. Training and validation loss curves for KAN-Health, showing that spline regularization stabilizes
training and reduces validation loss variance.

Figure C.10. ROC curves for all evaluated models on the validation set, showing the sensitivity–specificity
trade-off and highlighting differences in discriminatory performance.
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Figure C.11. KAN local sensitivity analysis showing the gradient of P (y = 1) regarding each feature at the
dataset mean (scaled). Positive values indicate features for which higher values increase the risk of ADHD
symptoms, whereas negative values indicate protective associations.
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