
Protein Inverse Folding From Structure Feedback

Junde XU1,2 Zijun Gao1 Xinyi Zhou1 Jie Hu3 Xingyi Cheng 4

Le Song4 Guangyong Chen2 Pheng-Ann Heng1 Jiezhong Qiu2∗
1 CUHK 2Hangzhou Institute of Medicine, CAS 3 Zhejiang Lab 4 MBZUAI

qiujiezhong@him.cas.cn

Abstract

The inverse folding problem, aiming to design amino acid sequences that fold
into desired three-dimensional structures, is pivotal for various biotechnological
applications. Here, we introduce a novel approach leveraging Direct Preference
Optimization (DPO) to fine-tune an inverse folding model using feedback from a
protein folding model. Given a target protein structure, we begin by sampling candi-
date sequences from the inverse-folding model, then predict the three-dimensional
structure of each sequence with the folding model to generate pairwise structural-
preference labels. These labels are used to fine-tune the inverse-folding model
under the DPO objective. Our results on the CATH 4.2 test set demonstrate that
DPO fine-tuning not only improves sequence recovery of baseline models but
also leads to a significant improvement in average TM-Score from 0.77 to 0.81,
indicating enhanced structure similarity. Furthermore, iterative application of our
DPO-based method on challenging protein structures yields substantial gains, with
an average TM-Score increase of 79.5% with regard to the baseline model. This
work establishes a promising direction for enhancing protein sequence design
ability from structure feedback by effectively utilizing preference optimization†.

1 Introduction

Just as language serves as the foundation of human communication and social organization, proteins
constitute the fundamental molecular machinery governing life’s essential processes across all
biological systems. The emerging task of protein sequence design (inverse folding) aims to find
amino acid sequences that reliably fold into target three-dimensional architectures while exhibiting
predetermined functional capabilities. This paradigm has catalyzed transformative applications
spanning next-generation therapeutics development [31] to the creation of engineered biocatalysts
revolutionizing industrial processes [43].

Recent advances in protein inverse folding have shifted from physical methods to deep-learning-based
methods [3]. Traditional physics-based methods, such as those implemented in Rosetta [41], rely on
energy-based modeling to identify sequences compatible with a given structure. In contrast, deep
learning-based models have demonstrated significant progress by leveraging geometric structure
encoders and massive sequence datasets. Methods like ProteinMPNN [10], ESM-IF [17], and
LigandMPNN [11] employ SE(3)-equivariant networks [9] to capture the spatial properties of protein
backbones, enabling accurate and efficient sequence design. More recently, the availability of large-
scale protein sequence databases has spurred the development of protein language models such as
ESM-3 [16], ProGen2 [30], which learn rich sequence representations and show promise in generating
structurally compatible and functionally diverse protein sequences [36, 39].

∗Corresponding author.
†Code available at https://github.com/Eikor/iplm-rl

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

qiujiezhong@him.cas.cn
https://github.com/Eikor/iplm-rl

Inverse Folding
Model Folding Model

P S V K I G I I

M S V K G G Q I

Input Structure Designed Sequences

Inverse Folding Process Folding Process

Predicted Structures

…

TM-Align
P S KV I G I IChosen

M S V K G G Q IRejected
DPO

Optimization

Sort and split by structure similarity

P S V K I G I I

M S V K G G Q I

…
0.93

0.71

N sequences

N // 2

N // 2

TM-Score

Construct Training Pairs Iterative Design

Folding ModelInverse Folding
Model

Generate

Optimize
Multi-Round DPO

A

B C

…

𝑇 ∈ 𝒯

𝑓: 𝒮 → 𝒯𝑔: 𝒯 → 𝒮

𝑆 ∈ 𝒮

Figure 1: Overview of our methods. A. We connect the inverse-folding process and folding process
with DPO, utilizing the structure similarity (TM-Scores) predicted by the folding model to guide
the optimization of the inverse-folding model. B. We classify generated sequences into chosen
and rejected based on their TM-Scores. C. Multi-round DPO for iterative refinement of designed
sequences.

Current inverse folding models are typically formalized as generative models, which are trained
to maximize the conditional probability of protein sequences given their corresponding structures.
The underlying assumption is that proteins with similar sequences will also have similar structures.
This allows for the design of new proteins that fold into desired structures by sampling from the
learned generative model. However, previous studies [46, 22] have identified proteins with similar
sequences but significant differences in structure and function. This suggests that sequence similarity
(which is the learning objective of many inverse folding models) is not always a reliable indicator of
structural similarity. Moreover, generative models for sequences — whether for protein sequences
or text — may experience hallucinations and produce low-quality or repetitive responses. They can
also sometimes fail to follow instructions accurately [27, 5, 51, 49]. These challenges underscore the
need for further improvements to enhance the reliability and accuracy of these models. Due to these
challenges, practical protein design workflows [38, 40] often involve generating a large number of
sequences, followed by a sophisticated selection process to prioritize the most promising candidates.
Only then can costly experimental validation be conducted. While necessary, this approach introduces
additional steps and complexity into the protein design process, potentially limiting the broader
application of inverse folding algorithms.

Fortunately, recent advances in preference-based learning, represented by Direct Preference Opti-
mization (DPO) [37], offer an opportunity to mitigate those problems. These methods train models
on a pre-generated dataset, capture the preference information by constructing chosen and rejected
training pairs, and teach the model to classify good or bad responses. Some efforts have been made to
apply DPO on protein language models [28, 44] and even inverse folding models [47, 35]. However,
these existing efforts primarily rely on datasets derived from wet-lab experiments, where the function
or structure preferences are manually curated through costly biochemical assays. As a result, the
application of DPO and other preference-based training strategies has been restricted to small-scale
datasets, limiting the scope and generalizability of the resulting models. In contrast, recent break-
throughs in protein folding methods, such as AlphaFold [21], ESMFold [25], and RoseTTAFold [23]
have enabled fast, accurate, and in silico assessment of sequence-structure compatibility at scale.

Motivated by this, we explore a fully in silico training scheme that uses folding model feedback
to enhance the sequence design capabilities of inverse folding models. Specifically, we utilize an
inverse folding model to generate a diverse set of protein sequences. These sequences are then fed

2

into a folding model to predict their corresponding structures. We evaluate these structures w.r.t the
ground-truth structure using TM-Align [52] and classify the sequences into ’chosen’ and ’rejected’
based on the TM-Score. Finally, we employ Direct Preference Optimization (DPO) to fine-tune
the inverse folding model. Building on this, we extended our investigation to explore the effects
of multi-round DPO. Through extensive experiments, we demonstrate the effectiveness of using
folding model feedback within a DPO framework to improve inverse protein folding. Our DPO
models consistently achieve higher sequence recovery across all 3 datasets (CATH 4.2 [32], TS50
and TS500 [12]) compared to their baselines. Notably, a detailed study on the CATH 4.2 dataset
shows a steady improvement in structure similarity, suggesting that our method learns to prioritize
backbone and fold-related features. Furthermore, scaling experiments reveal that the quality of
contrastive samples is more crucial than sheer quantity for achieving high structural fidelity. Finally,
experiments of multi-round DPO showcase substantial gains in TM-Score on challenging protein
structures, evidencing the iterative refinement ability of our methods.

2 Preliminaries

Protein Folding and Protein Inverse Folding. The protein folding problem seeks to predict a
protein’s 3D structure given its sequence. The goal is to learn a mapping f : S → T , where S and
T are the spaces of protein sequences and structures, respectively. Inverse folding (aka “protein
sequence design”) predicts a protein’s sequence given its structure, which learns an inverse mapping
g : T → S from structure space T to sequence space S. In particular, denote D ⊂ T × S to be the
dataset of known structure–sequence pairs (e.g., from PDB or CATH). The inverse folding model
(parameterized by θ) is trained to maximize the conditional likelihood as follows:

max
θ

E(T,S)∼D [logPθ (s1, . . . , sL | T)] , (1)

where T ∈ T denote the protein structure, and S = {s1, s2, . . . , sL} denote the sequence of length
L. A common choice for factorizing the sequence probability is to adopt an autoregressive approach,
leading to what is often referred to as the language model loss:

Linv = − 1

L

L∑
i=1

logPθ

(
si
∣∣T, s<i

)
, (2)

which encourages the model to recover ground truth residues, conditioned on both the target structure
and previously predicted residues.

Reinforcement Learning from Human Feedback. Let πθ be the language model parameterized
by θ. The goal of Reinforcement Learning from Human Feedback (RLHF) [8, 33] is to fine-tune
large language models (LLMs) to better align with human preferences. Typically, given the prompt
x, the language model πθ(y|x) generates a response y, and human feedback in the form of pairwise
preferences between completions is used to train a reward function rϕ(x, y). This reward model
helps the LLM prioritize preferred completions yw over less preferred ones yl, with the probability of
preference modeled by:

p(yw > yl|x) = σ(rϕ(x, yw)− rϕ(x, yl)) (3)
where σ is the sigmoid function defined as σ(z) = 1

1+e−z . The objective is to maximize this
probability, and the reward function rϕ is learned by minimizing the negative log-likelihood over the
preference dataset Dpair:

LR(rϕ,Dpair) = −E(x,yw,yl)∼Dpair
[log σ(rϕ(x, yw)− rϕ(x, yl)] (4)

To prevent the fine-tuned model πθ from deviating too much from the initial supervised model πref, a
KL-divergence constraint is added, preserving linguistic quality while aligning with human prefer-
ences. However, RLHF can be complex and unstable. A more recent approach, Direct Preference
Optimization (DPO) [37], simplifies the process by directly optimizing for human preferences without
needing a reward model or reinforcement learning [42], offering a more streamlined alternative. The
DPO loss directly minimizes the negative log-likelihood of the preference model:

LDPO(πθ;πref) = E(x,yw,yl)∼Dpair

[
− log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)]
(5)

Here, β is a parameter that determines the level of information retention from the reference model,
helping to balance novelty and adherence to the reference behavior. This setup allows for a more
straightforward optimization process that is inherently more stable.

3

3 Methods

Constructing Preferences Datasets. Given a structure T drawn from dataset D, we first apply the
inverse-folding model πθ to sample N initial predictions,

{Sn}Nn=1 ∼
N∏

n=1

πθ(· |T) (6)

Next, structures corresponding to the sampled sequence Sn are predicted using a folding model,
Tn = g(Sn), where g is a protein folding model (e.g., ESMfold). The TM-Score cn ∈ [0, 1] was
then calculated with TMAlign [52] for each predicted structure in relation to its corresponding
ground-truth structure cn = TM-Score(Tn, T). To create balanced training pairs, the top-ranked 50%
of sequences are labeled as chosen, while the bottom 50% are labeled as rejected (Fig. 1). Formally,
for N generated sequences with TM-Scores {(Sn, cn)}Nn=1, we sort the sequences by the TM-Score
in a descending order and split into chosen Sw and rejected Sl as follows:

k = permute indices so that ck(1) ≥ ck(1) ≥ · · · ≥ ck(N). (7)

Then for j = 1, . . . , N
2 we have

(T, Sw
j , S

l
j) =

(
T, Sk(j), Sk(j+N

2)

)
(8)

Finally, our new preference dataset can be written as Dpair = {(T, Sw
j , S

l
j)}

N/2
j=1 . This equal split

ensures a balanced dataset for training.

Finetuning with DPO and SFT Loss. Unlike traditional NLP datasets, designed protein sequences
have a much smaller vocabulary and can share similar residues even when the TM-Score is low. As
the original DPO loss will minimize the probability of rejected responses, the probability of similar
parts will also be minimized, eventually causing model degeneration (similar to the alignment of
mathematical problems in NLP tasks, where the responses are similar despite the answer being wrong
[34]). A simple method to tackle this problem is to add an SFT loss as a regularization term. Given
the constructed preference dataset Dpair, the DPO loss on the inverse folding model πθ is:

LDPO(πθ;πref) = E(T,Sw,Sl)∼Dpair

[
− log σ

(
β log

πθ(S
w | T)

πref(Sw | T)
− β log

πθ(S
l | T)

πref(Sl | T)

)]
(9)

The final loss can be written as:

L(πθ;πref) = λ · E(T,Sw,Sl)∼Dpair
[−log(πθ(Sw | T))] + LDPO, (10)

where the λ is a super-parameter to control the contribution of rejected responses during training.

Iterative Training. To investigate whether our methods can consistently improve the performance in
a multi-round setting, we also employ an interactive training framework where the inverse folding
models are successively refined using preference data generated by their predecessors. For each
iteration t, the model πt

θ will first generate and construct preference data Dt
pair as described in Sec. 3,

the model is then updated to πt+1
θ with the DPO and SFT loss (Eq. 10) on generated dataset Dt

pair.
Crucially, the reference model πref is reinitialized with the weight of πt

θ at the start of each iteration,
ensuring consistency in preference alignment while avoiding catastrophic forgetting.

4 Experiments

4.1 Benchmark Performance

To assess the broad applicability of our method, we apply it to two representative protein design
models, ProteinMPNN [10] and InstructPLM [36], containing around 1 million and 7 billion parame-
ters. This setting helps verify the performance of our method across both large and compact model
architectures. Specifically, we first generate sequences and train models on the CATH 4.2 training
set and investigate the performance on the test set. To further probe generalization, we also evaluate
on two additional benchmarks, TS50 and TS500 [12], which comprise 50 and 470 diverse proteins,
and are often employed as additional benchmarks to further test generalization capability[53, 14, 15]

4

Table 1: Sequence design performance. We report the perplexity and recovery rate on the CATH
4.2, TS50, and TS500 datasets. The performance of our methods is shown in bold, while baselines
without fine-tuning are indicated with an underline.

Model CATH 4.2 TS50 TS500
Perplexity Recovery Perplexity Recovery Perplexity Recovery

ProteinMPNN [10] 5.41 40.27 5.10 44.72 4.57 46.58
PiFold [15] 4.55 51.66 3.86 58.72 3.44 60.42
LM-Design [53] 4.52 55.65 3.50 57.89 3.19 67.78
KW-Design [13] 3.46 60.77 3.10 62.79 2.86 69.19
InstructPLM [36] 2.63 53.58 2.46 60.20 2.14 66.13

ProteinMPNN-DPO 5.09 41.29 4.85 45.91 4.26 48.23
InstructPLM-DPO 2.71 55.21 2.52 62.01 2.17 66.37

Table 2: Structure similarity of designed sequences. We report the TM-Scores on different splits
of the CATH 4.2 test set, the best results are shown in bold.

Model Short Single-Chain All TM-Score< 0.5 TM-Score> 0.5

InstructPLM 0.54 0.56 0.77 0.37 0.87
SFT 0.54 0.57 0.78 0.39 0.87
DPO λ = 10 0.57 0.61 0.80 0.43 0.88

λ = 1 0.58 0.63 0.81 0.45 0.89
λ = 0 0.57 0.62 0.81 0.44 0.88

beyond the CATH dataset. Details of hyperparameters are shown in Tab. 7. An interesting observation
is that ProteinMPNN fails to converge on self-generated datasets (Sec. 3). We infer that the learning
capacity of ProteinMPNN is too small to learn from its own predictions. To tackle this problem, we
construct a simpler task, rather than fine-tune ProteinMPNN only on model predictions, we also add
wild-type sequences as additional chosen samples, details are provided in the Appendix A.4.

As Tab. 1 shows, both DPO models yield consistent gains over their respective baselines. Specifically,
InstructPLM-DPO raises recovery by 3.0% (from 53.58% to 55.21%), and similar gains are also
achieved in ProteinMPNN-DPO (from 40.27% to 41.29%). In terms of perplexity, it is no surprise
that InstructPLM-DPO has a slight increase, as the model is trained exclusively on self-generated
sequences, which inevitably cause a distribution shift from the reference model. However, despite
the distribution shift, the perplexity remains within competitive ranges. On the other hand, as
ProteinMPNN has an extra supervision of wild-type sequences, the perplexity of ProteinMPNN-DPO
successfully decreased. On TS50, InstructPLM-DPO increases recovery from 60.20 % to 62.01 %,
and on TS500 from 66.13 % to 66.37 %, while perplexity rises only 0.06 and 0.03, respectively.
ProteinMPNN-DPO also exhibits similar performance improvement, recovery rate increases from
44.72 to 45.91 on TS50, and even more steady increases from 46.58 to 48.23 on the TS500 dataset.
This confirms that preference optimization enhances design quality across both large and compact
model architectures.

4.2 DPO Achieves Higher Structure Similarity

To evaluate whether our methods acquire transferable, structure-related features solely from self-
generated training sequences, we investigate the structure similarity measured by TM-Score of
InstructPLM-DPO on the CATH 4.2 test set, all structures are predicted using ESMfold. As Tab. 2
shows, despite never seeing native test-set examples during training, InstructPLM-DPO yields
consistently higher TM-scores across all splits of the CATH 4.2 test set. Specifically, the overall
TM-Score reaches 0.81 for our best model, which witnesses a steady performance gain compared
with the baseline model (0.77). Moreover, for different splits of the test set, our methods improve the
baseline from 0.54 to 0.58 on the Short split, which contains small proteins less than 100 amino acids,
indicating a performance improvement of both short and long proteins. For Single-chain, the model
achieves an improvement of 12.5% compared to the baseline model (from 0.56 to 0.63). Notably,
all of the performance gains are acquired from the training set, the only supervision comes from the

5

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.2 −0.1 0 0.1 0.2

Δ mean Recovery

Δ
me
an
 T
M-
Sc
or
e

4a5p.A
1kvz.A

2ln7.A
3i5d.A

y = 0.79x+0.02
R2 = 0.19

4a5p.A

TM-Score: 0.94
Recovery: 0.49

TM-Score: 0.37
Recovery: 0.38

1kvz.A

TM-Score: 0.87
Recovery: 0.35

TM-Score: 0.51
Recovery: 0.36

TM-Score: 0.90
Recovery: 0.54

TM-Score: 0.55
Recovery: 0.57

3i5d.A

TM-Score: 0.77
Recovery: 0.29

2ln7.A

TM-Score: 0.36
Recovery: 0.30

TM
-S

co
re

TM
-S

co
re

Recovery Recovery

4a5p.A 1kvz.A

3i5d.A 2ln7.A

0

0.2

0.4

0.6

0.8

1

0.4 0.45 0.5 0.55

0

0.2

0.4

0.6

0.8

1

0.25 0.3 0.35 0.4

0

0.2

0.4

0.6

0.8

1

0.4 0.45 0.5 0.55

0

0.2

0.4

0.6

0.8

1

0.25 0.3 0.35 0.4

Figure 2: Per-structure changes in TM-score vs. changes in sequence recovery on the CATH 4.2
test set. Top left: Change in TM-Score (mean TM-Score over 10 predictions) vs. change in recovery
(mean Recovery over 10 predictions) for each structure. Top right: TM-Score versus recovery of
10 sequences sampled from the baseline and the DPO model, samples selected for visualization are
marked by circle. Bottom: Examples structure predicted by ESMfold, ground-truth structures are
shown in gray.

folding model. These improvements demonstrate the effectiveness and generalization ability of our
methods.

To better understand the role of chosen and rejected samples, we conducted an ablation study on
different weights of λ, where SFT indicates that only using chosen examples to train models (Eq. 10).
We also divide the test set into a low-similarity group and a high-similarity group based on the
baseline performance. As Tab. 2 shows, simply training models on the chosen sample will also
benefit the overall structure similarity (from 0.77 to 0.78), but is still left behind by jointly using
the chosen and rejected samples simultaneously. Introducing the rejected sample in optimization
leads to a significant performance gain, even under a chosen example dominant setting (λ = 10).
Specifically, the rejected sample is more useful in low-similarity samples (from 0.37 to 0.45), showing
that rejected samples help model lowering the probability of undesired generations. Increasing the
weight of rejected samples will further improve the performance (λ = 1 vs. λ = 10). However, the
performance starts to drop when the rejected samples outweigh (λ = 0) too much. These results
show the importance of balancing the contribution of chosen and rejected samples during training.

6

Re
co

ve
ry

 R
at

e

TM
-S

co
re

RM
SD

Steps Steps Steps

Re
co

ve
ry

 R
at

e

TM
-S

co
re

RM
SD

Samples Samples Samples

Figure 3: Performance at different training scales. The upper row shows protein design perfor-
mance changes at different training steps, and the lower row shows protein design performance at
different numbers of contrastive samples (N in Eq. 6) of each structure.

4.3 A Closer Look at Proteins Generated by DPO Model

To evaluate the impact of our methods on the DPO model, we analyzed the relationship between the
changes in structure similarity of sequences designed by InstructPLM-DPO, as measured by the TM-
Score (∆ mean TM-Score), and the corresponding changes in sequence recovery (∆ mean Recovery).
These changes were calculated by taking the mean of 10 independently generated sequence samples
for each protein structure in the CATH 4.2 test set. In general, a linear regression analysis reveals a
positive correlation (y = 0.79x+ 0.02), suggesting that improvements in sequence recovery tend to
be associated with enhanced structure similarity, which aligns with the intuitive expectation that better
sequence recovery often leads to more accurate folds (top left in Fig. 2). However, the low coefficient
of determination (R2 = 0.19) indicates a weak association. This implies that substantial increases
in TM-Score can frequently occur with relatively small changes in sequence recovery. For instance,
many exhibit large TM-score boosts (∆TM-Score > 0.20) with small sequence recovery change
(∆Recovery < 0.10). This is reasonable as no wild-type sequences are involved during the training
phase of InstructPLM-DPO. These observations suggest that our fine-tuning process prioritizes the
exploration of sequences that fold into more accurate structures, even if deviating from the wild-type
sequence.

To further illustrate this observation, we visualize 4 cases with significant structure similarity improve-
ments after fine-tuning, protein 4a5p.A, 1kvz.A, 2ln7.A, and 3i5d.A.(Fig. 2, top right and bottom.)
and provide sequence alignment information for these four cases in the Appendix B.4. The top right
panel of Fig. 2 shows TM-Scores and recovery rates of all 10 predictions of the baseline and DPO
models of 4 cases. The 2 cases in the top row (4a5p.A and 1kvz.A) show a clear trend of more
robust predictions, that InstructPLM-DPO can eliminate the low-quality predictions and strengthen
high-quality predictions, which aligns with our training target. Notably, the 2 cases of the lower
row (3i5d.A and 2ln7.A) evidenced the behavior that the DPO model is capable of generating more
structurally accurate sequences at the same level of sequence identity. For example, the prediction of
protein 3i5d.A of InstructPLM-DPO has a TM-Score of 0.90 at a recovery rate level of 0.56, while
the TM-Score of the baseline model at the same level of recovery rate (0.57) only has a TM-Score
of 0.55. Predictions of protein 2ln7.A also supports this trend, the fine-tuned prediction achieves a
TM-Score of 0.77 with a recovery rate of 0.29, showing notable increases in TM-Score at the same
recovery level.

7

Baseline
Fine-tuned

Low TM-Score High TM-Score

Figure 4: Multi-round result on 10 hard structures selected from CATH 4.2 test set. The plot
shows the TM-Scores of predicted structures from the final round.

4.4 DPO at Scale

Scaling has been shown to improve performance in large language models and, more recently, in
protein language models [2, 39, 6]. Post-training scaling techniques also yield gains in general
LLMs [24], but their impact on protein design remains unclear. Here, we systematically explore two
axes of scale in our framework: the number of training steps and the number of contrastive samples
per structure. To disentangle these factors, we ran two sets of experiments on the CATH 4.2 training
split: Training steps, We fixed the number of generated sequences at 20 (10 chosen vs. 10 rejected)
and evaluated performance at 0, 1 000, 2 000, and 4 000 update steps. Contrastive samples, We fixed
the training steps at 4 000 and varied the number of generated sequences (contrastive pairs) from 0 up
to 80 per structure. The baseline performance corresponds to step 0 and zero contrastive samples in
each scenario.

As illustrated in Fig. 3, increasing the number of training steps yields consistent improvements in both
sequence recovery and structural metrics (TM-score and RMSD), showing that the training process
keeps improving the performance of the model. However, improvements saturate at the training step
of 4000, indicating a performance bound that we can reach in this setting. In contrast, scaling up
the number of contrastive samples boosts recovery rate but degrades structural fidelity—TM-scores
decline and RMSD increases. A possible explanation is that larger contrastive sets dilute the useful
training signals by introducing too many low-quality samples, for example, rejected samples with
high TM-Scores, thus hindering the learning process eventually. These experiments highlight that
data quality outweighs sheer quantity. Our experiments shed light that future work should therefore
focus on enhanced sample selection or multi-objective scoring strategies to maintain high-quality
contrastive examples while preserving fold accuracy.

4.5 Iterative Protein Design

To evaluate the capacity for iterative improvement, we selected 10 difficult structures from the CATH
4.2 test set to assess the performance limits of our approach. First, we divided all structures into "Low
TM-Score" and "High TM-Score" groups based on the baseline performance. Within each group, 5
structures with the lowest TM-Scores were chosen. Implementation details, including the number of
rounds, generations, training steps per round, sampling temperatures, and top-p values, are detailed
in Tab. 7.

The final results, presented in Fig. 4, demonstrate a significant performance gain across all 10
structures. The mean TM-Score improved by 79.5%, rising from 0.39 to 0.70. The High TM-Score
group showed the most substantial improvement. Since the design model was already capable of
generating high-quality sequences for these structures, DPO effectively reduced the occurrence of low-
quality predictions. For instance, in designing proteins 4qiw.K and 1h3l.B, the baseline model could
produce sequences with TM-Scores exceeding 0.8. However, the overall performance was diminished
by a high proportion of low-quality predictions (over half with TM-Scores below 0.5). After fine-
tuning, the median TM-Score for 4 out of 5 structures in this group surpassed 0.8. Importantly,
the upper bound of design performance also increased, indicating that DPO not only minimizes

8

low-quality predictions but also more accurately aligns the space of high-quality predictions, enabling
the exploration of previously unseen, superior predictions. Structures in the Low TM-Score group
also exhibited substantial gains. Specifically, proteins 1cyu.A, 1fuw.A, 2kxg.A, and 1u96.A now
generate sequences with TM-Scores above 0.5, compared to a baseline TM-Score of approximately
0.3. However, the DPO model still faces challenges in designing protein 1mkn.A, suggesting that a
stronger baseline model may be necessary for such difficult cases. Finally, considering the limitation
of computational resources, we do not perform a larger scale of experiments in multi-round DPO.
Given the notable performance of iterative training, we believe this is a promising topic and leave it
for future work.

5 Related Works

Preference Optimization from AI Feedback. In response to the significant costs and limited
accessibility associated with curating high-quality datasets, AI feedback has emerged as a critical
component in preference fine-tuning. This approach leverages another LLM to predict the reward of
a target model’s response and subsequently fine-tunes the target model based on this AI-generated
feedback [4, 24]. More recently, methods such as self-play [7, 48] and self-rewarding [50] have moved
towards eliminating the reliance on external LLMs for feedback. For instance, SPIN [7] employs
an iterative framework akin to DPO, utilizing model-generated data as rejected responses paired
with human labels as the preferred responses, and iteratively refines the model. Self-rewarding [50]
further abstracts away the need for chosen human labels by using the target model itself to determine
preferred and dispreferred samples.

Preference Optimization in Protein Language Models. In contrast to the extensive exploration
of preference optimization in natural language processing, protein language models (pLMs) have
received comparatively less attention in this regard, primarily due to the scarcity of high-quality,
labeled datasets. Nevertheless, initial efforts are being made in this direction. Widatalla et al. [47]
proposed ProteinDPO to fine-tune ESM-IF for designing proteins with enhanced stability, while
Mistani et al. [28] applied DPO on ProtGPT2 for binder design. Distinct from these prior studies
that heavily depend on manually annotated datasets, our approach leverages synthetic data generated
by the target model itself. Concurrently, Stocco et al. [44] introduced DPO_pLM to align pLMs
on various desired properties, including structure similarity. However, their application of DPO
focused on ZymCTRL [29], a model specifically designed for functional enzyme design, whereas our
work explores a broader spectrum of protein design tasks. Similarly, Park et al. [35] explored the
application of DPO on ProteinMPNN for peptide design, which operates at a smaller scale in terms
of both data and model size compared to our methods.

6 Conclusion

Summary. We introduce a novel framework for optimizing inverse-folding models by the feedback
of the folding model through preference optimization. Our primary finding is the significant im-
provement in both the sequence recovery and the structure similarity of designed protein sequences,
as evidenced by extensive experiments on the CATH 4.2 dataset compared to the baseline model.
Moreover, the case study shows that our methods not only preserve high-quality predictions of the
baseline model while eliminating the low-quality predictions, but also generate more structurally
accurate samples even at the same level as the baseline model. This indicates that the model learns to
prioritize the underlying principles of protein folding.

Social impact. Our end-to-end, fully in silico optimization pipeline for protein inverse folding offers
significant benefits across healthcare, industry, and academic research. Notably, our work validates
the effectiveness of the optimization-from-feedback paradigm, suggesting that the pipeline is flexible
and can readily incorporate alternative forms of feedback beyond structural metrics, thereby enabling
the development of more powerful and versatile protein design models.

Limitations. While increasing the number of training steps generally leads to improved performance,
simply scaling the number of contrastive samples per structure can be detrimental to structure
similarity, even if it slightly boosts sequence recovery. This finding underscores a limitation of our
current approach. More sophisticated preference dataset construction strategies may further improve
the performance.

9

Acknowledgments and Disclosure of Funding

The work described in this paper was supported in part by the Research Grants Council of the Hong
Kong Special Administrative Region, China, under Project T45-401/22-N; and by the Hong Kong
Innovation and Technology Fund, under Project ITS/241/21. Jiezhong Qiu was supported by NSFC
62306290.

References
[1] Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf

Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
prediction of biomolecular interactions with alphafold 3. Nature, 630(8016):493–500, 2024.

[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[3] Katherine I Albanese, Sophie Barbe, Shunsuke Tagami, Derek N Woolfson, and Thomas Schiex.
Computational protein design. Nature Reviews Methods Primers, 5(1):13, 2025.

[4] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai:
Harmlessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

[5] Zechen Bai, Pichao Wang, Tianjun Xiao, Tong He, Zongbo Han, Zheng Zhang, and Mike Zheng
Shou. Hallucination of multimodal large language models: A survey. arXiv preprint
arXiv:2404.18930, 2024.

[6] Aadyot Bhatnagar, Sarthak Jain, Joel Beazer, Samuel C Curran, Alexander M Hoffnagle, Kyle
Ching, Michael Martyn, Stephen Nayfach, Jeffrey A Ruffolo, and Ali Madani. Scaling unlocks
broader generation and deeper functional understanding of proteins. bioRxiv, pages 2025–04,
2025.

[7] Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. arXiv preprint arXiv:2401.01335,
2024.

[8] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

[9] Taco Cohen and Max Welling. Group equivariant convolutional networks. In International
conference on machine learning, pages 2990–2999. PMLR, 2016.

[10] Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F
Milles, Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep
learning–based protein sequence design using proteinmpnn. Science, 378(6615):49–56, 2022.

[11] Justas Dauparas, Gyu Rie Lee, Robert Pecoraro, Linna An, Ivan Anishchenko, Cameron
Glasscock, and David Baker. Atomic context-conditioned protein sequence design using
ligandmpnn. Nature Methods, pages 1–7, 2025.

[12] Nuno A Fonseca, Rui Camacho, and AL Magalhaes. Amino acid pairing at the n-and c-
termini of helical segments in proteins. PROTEINS: Structure, Function, and Bioinformatics,
70(1):188–196, 2008.

[13] Zhangyang Gao, Cheng Tan, Xingran Chen, Yijie Zhang, Jun Xia, Siyuan Li, and Stan Z. Li.
KW-design: Pushing the limit of protein design via knowledge refinement. In The Twelfth
International Conference on Learning Representations, 2024.

[14] Zhangyang Gao, Cheng Tan, and Stan Z Li. Alphadesign: A graph protein design method and
benchmark on alphafolddb. arXiv preprint arXiv:2202.01079, 2022.

10

[15] Zhangyang Gao, Cheng Tan, and Stan Z Li. Pifold: Toward effective and efficient protein
inverse folding, 2022.

[16] Thomas Hayes, Roshan Rao, Halil Akin, Nicholas J Sofroniew, Deniz Oktay, Zeming Lin,
Robert Verkuil, Vincent Q Tran, Jonathan Deaton, Marius Wiggert, et al. Simulating 500 million
years of evolution with a language model. Science, page eads0018, 2025.

[17] Chloe Hsu, Robert Verkuil, Jason Liu, Zeming Lin, Brian Hie, Tom Sercu, Adam Lerer, and
Alexander Rives. Learning inverse folding from millions of predicted structures. International
Conference on Machine Learning, pages 8946–8970, 2022.

[18] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

[19] John Ingraham, Vikas Garg, Regina Barzilay, and Tommi Jaakkola. Generative models for
graph-based protein design. Advances in neural information processing systems, 32, 2019.

[20] Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael JL Townshend, and Ron Dror. Learn-
ing from protein structure with geometric vector perceptrons. arXiv preprint arXiv:2009.01411,
2020.

[21] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al.
Highly accurate protein structure prediction with alphafold. nature, 596(7873):583–589, 2021.

[22] Mickey Kosloff and Rachel Kolodny. Sequence-similar, structure-dissimilar protein pairs in the
pdb. Proteins: Structure, Function, and Bioinformatics, 71(2):891–902, 2008.

[23] Rohith Krishna, Jue Wang, Woody Ahern, Pascal Sturmfels, Preetham Venkatesh, Indrek Kalvet,
Gyu Rie Lee, Felix S Morey-Burrows, Ivan Anishchenko, Ian R Humphreys, et al. Generalized
biomolecular modeling and design with rosettafold all-atom. Science, 384(6693):eadl2528,
2024.

[24] Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Lu,
Colton Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, et al. Rlaif: Scaling reinforcement
learning from human feedback with ai feedback. arXiv preprint arXiv:2309.00267, 2023.

[25] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level
protein structure with a language model. Science, 379(6637):1123–1130, 2023.

[26] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[27] Ali Madani, Bryan McCann, Nikhil Naik, Nitish Shirish Keskar, Namrata Anand, Raphael R
Eguchi, Po-Ssu Huang, and Richard Socher. Progen: Language modeling for protein generation.
arXiv preprint arXiv:2004.03497, 2020.

[28] Pouria Mistani and Venkatesh Mysore. Preference optimization of protein language models as a
multi-objective binder design paradigm. arXiv preprint arXiv:2403.04187, 2024.

[29] Geraldene Munsamy, Ramiro Illanes-Vicioso, Silvia Funcillo, Ioanna T Nakou, Sebastian
Lindner, Gavin Ayres, Lesley S Sheehan, Steven Moss, Ulrich Eckhard, Philipp Lorenz, et al.
Conditional language models enable the efficient design of proficient enzymes. bioRxiv, pages
2024–05, 2024.

[30] Erik Nijkamp, Jeffrey A Ruffolo, Eli N Weinstein, Nikhil Naik, and Ali Madani. Progen2:
exploring the boundaries of protein language models. Cell systems, 14(11):968–978, 2023.

[31] Pascal Notin, Nathan Rollins, Yarin Gal, Chris Sander, and Debora Marks. Machine learning
for functional protein design. Nature biotechnology, 42(2):216–228, 2024.

11

[32] Christine A Orengo, Alex D Michie, Susan Jones, David T Jones, Mark B Swindells, and
Janet M Thornton. Cath–a hierarchic classification of protein domain structures. Structure,
5(8):1093–1109, 1997.

[33] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in neural information processing systems,
35:27730–27744, 2022.

[34] Arka Pal, Deep Karkhanis, Samuel Dooley, Manley Roberts, Siddartha Naidu, and Colin White.
Smaug: Fixing failure modes of preference optimisation with dpo-positive. arXiv preprint
arXiv:2402.13228, 2024.

[35] Ryan Park, Darren J Hsu, C Brian Roland, Maria Korshunova, Chen Tessler, Shie Mannor,
Olivia Viessmann, and Bruno Trentini. Improving inverse folding for peptide design with
diversity-regularized direct preference optimization. arXiv preprint arXiv:2410.19471, 2024.

[36] Jiezhong Qiu, Junde Xu, Jie Hu, Hanqun Cao, Liya Hou, Zijun Gao, Xinyi Zhou, Anni Li,
Xiujuan Li, Bin Cui, Fei Yang, Shuang Peng, Ning Sun, Fangyu Wang, Aimin Pan, Jie Tang,
Jieping Ye, Junyang Lin, Jin Tang, Xingxu Huang, Pheng Ann Heng, and Guangyong Chen.
Instructplm: Aligning protein language models to follow protein structure instructions. bioRxiv,
2024.

[37] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
Advances in Neural Information Processing Systems, 36, 2024.

[38] Albert Ros-Lucas, Nieves Martinez-Peinado, Jaume Bastida, Joaquim Gascón, and Julio Alonso-
Padilla. The use of alphafold for in silico exploration of drug targets in the parasite trypanosoma
cruzi. Frontiers in Cellular and Infection Microbiology, 12:944748, 2022.

[39] Jeffrey A. Ruffolo, Aadyot Bhatnagar, Joel Beazer, Stephen Nayfach, Jordan Russ, Emily Hill,
Riffat Hussain, Joseph Gallagher, and Ali Madani. Adapting protein language models for
structure-conditioned design. bioRxiv, 2024.

[40] Valeria Scardino, Juan I Di Filippo, and Claudio N Cavasotto. How good are alphafold models
for docking-based virtual screening? Iscience, 26(1), 2023.

[41] Christophe Schmitz, Robert Vernon, Gottfried Otting, David Baker, and Thomas Huber. Protein
structure determination from pseudocontact shifts using rosetta. Journal of molecular biology,
416(5):668–677, 2012.

[42] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[43] Radka Snajdrova, Rebecca Buller, Stefan Lutz, Jeffrey Moore, Romas Kazlauskas, and Uwe
Bornscheuer. Surfing the biocatalysis wave to new applications changed to: From nature to
industry: Harnessing enzymes for biocatalysis, as per request of editor. Science, 382(6673),
2023.

[44] Filippo Stocco, Maria Artigues-Lleixa, Andrea Hunklinger, Talal Widatalla, Marc Guell, and
Noelia Ferruz. Guiding generative protein language models with reinforcement learning. arXiv
preprint arXiv:2412.12979, 2024.

[45] Cheng Tan, Zhangyang Gao, Jun Xia, Bozhen Hu, and Stan Z Li. Global-context aware
generative protein design. ICASSP 2023-2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 1–5, 2023.

[46] Annabel E Todd, Christine A Orengo, and Janet M Thornton. Evolution of function in protein
superfamilies, from a structural perspective. Journal of molecular biology, 307(4):1113–1143,
2001.

[47] Talal Widatalla, Rafael Rafailov, and Brian Hie. Aligning protein generative models with
experimental fitness via direct preference optimization. bioRxiv, pages 2024–05, 2024.

12

[48] Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yiming Yang, and Quanquan Gu. Self-play
preference optimization for language model alignment. arXiv preprint arXiv:2405.00675, 2024.

[49] Qifan Yu, Juncheng Li, Longhui Wei, Liang Pang, Wentao Ye, Bosheng Qin, Siliang Tang,
Qi Tian, and Yueting Zhuang. Hallucidoctor: Mitigating hallucinatory toxicity in visual
instruction data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12944–12953, 2024.

[50] Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and
Jason Weston. Self-rewarding language models. arXiv preprint arXiv:2401.10020, 2024.

[51] Zhiyuan Zeng, Jiatong Yu, Tianyu Gao, Yu Meng, Tanya Goyal, and Danqi Chen. Evaluating
large language models at evaluating instruction following. arXiv preprint arXiv:2310.07641,
2023.

[52] Yang Zhang and Jeffrey Skolnick. Tm-align: a protein structure alignment algorithm based on
the tm-score. Nucleic acids research, 33(7):2302–2309, 2005.

[53] Zaixiang Zheng, Yifan Deng, Dongyu Xue, Yi Zhou, Fei Ye, and Quanquan Gu. Structure-
informed language models are protein designers. bioRxiv, pages 2023–02, 2023.

13

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We show how we use the folding model to optimize the inverse-folding through
DPO, improving the structure similarity of designed sequences.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the main limitations in Section 6
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

14

Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We build our methods on open-sourced algorithms and all hyperparameters
are provided in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15

Answer: [Yes]

Justification: We have released our code at https://github.com/Eikor/iplm-rl

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the training details in Section 4 and Appendix A

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Our study used a fixed seed for all experiments, following standards in protein
design tasks, and thus did not report statistical significance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

16

https://github.com/Eikor/iplm-rl
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments are done with 8*NVIDIA A100 GPUs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm the research conducted in the paper conform, in every respect,
with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts of our work in Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all datasets and models utilized in our experiments.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

18

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release our models and documents at https://github.com/Eikor/
iplm-rl.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

19

https://github.com/Eikor/iplm-rl
https://github.com/Eikor/iplm-rl

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This research does not involve LLMs as any important, original, or non-
standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Implementation Details

A.1 Generation Configs for Evaluation

To better evaluate the performance of DPO models, we generate 10 samples at a temperature of 0.15
for each structure in all datasets used during evaluation. We report the mean value of 10 predictions
for each metric.

A.2 Low-Rank adaptation

To keep the knowledge in the pre-trained model, we utilized LoRA [18] during the training process
of InstructPLM-DPO. The key idea of LoRA (Low-Rank Adaptation) is to enhance the adaptability
and efficiency of pre-trained models by integrating trainable low-rank matrices into existing model
weights, allowing for targeted modifications without retraining the entire model.For each layer in the
pre-trained model, let hn−1 ∈ Rl×d be the inputs of n-th layer, l is the sequence length, and d is the
hidden dimension. hn

qkv be the output of QKV projection module of nth layer, the updated output
hn∗
qkv can be written as

hn∗
qkv = hn

qkv +WB ×WA × hn−1, (11)

where WA ∈ Rr×d and WB ∈ Rd×r are LoRA weights, which we initialized randomly from a
Gaussian distribution with mean zero and standard deviation of 0.01. We set the rank r as 16 by
default, resulting in a fraction of 0.1% of trainable total parameters. The strategy helps us balance
model expressiveness with computational efficiency.

A.3 Hyperparameters

We use two different training configs for single-round training and multi-round training. The main
difference lies in the generation setting and training steps. Specifically, for the construction of the
single-round dataset, we generate 20 responses for each structure, with temperature at 1.0 and top p
at 0.9. For multi-round, in order to encourage model exploration, we set the temperature at 1.1 and
top p at 1 and generate 200 responses for each structure. For DPO training, we use AdamW [26] as
optimizer. We set β to 0.5 for all experiments. We train our model on 8 * Nvidia A100 GPUs with a
batch size of 128. Other parameters are summarized in Tab. 7.

A.4 Preference Optimization of ProteinMPNN

To train the ProteinMPNN model, we slightly changed our dataset curation process and constructed
a simpler task. Specifically, we set a new threshold tr = 0.8 to control the process of classifying
samples into chosen and rejected. Instead of training on all predictions like InstructPLM, we only
trained ProteinMPNN on the predictions with a TM-Score lower than tr. Meanwhile, the wild-type
sequence has also been introduced as a chosen sample during training. As Fig. 5 shows, when trained
on the original task (3) the model failed to converge, whereas the model successfully trained on a
simpler task.

B Additional Results

B.1 Compare with Other Baselines

We provide a more detailed comparison with other baselines in Tab. 6.

B.2 Evaluation using AlphaFold 3

To examine the robustness of our method across different structure predictors, we evaluated designs
generated by our baseline and fine-tuned models using AlphaFold 3 [1]. Specifically, for each test
structure where multi-round DPO was applied, we folded 10 designed sequences using AlphaFold
3, resulting in 200 sequences in total (100 from the baseline and 100 from the fine-tuned model).
We report the average TM-Score and RMSD per structure, along with standard deviations, in the
table 3 These results confirm that the improvements achieved by our method are consistent across

21

different folding models, suggesting that our approach captures structure-relevant features beyond
model-specific feedback.

B.3 Performance on CATH 4.3

To further assess the robustness of our method, we additionally evaluate it on selected structures from
the newer CATH 4.3 release (Table 4). Specifically, we selected protein domains from newly added
Classes in CATH 4.3 that are not present in CATH 4.2, ensuring no overlap with the training data
not just at the Fold level, but at the broader Class level (the Fold and Class level of protein structure
classification can be find in [32]). After filtering out sequences longer than 512 residues, we obtained
a test set comprising 750 diverse and challenging structures. Compared to the original CATH 4.2
test set, which differs from training data at the Topology (Fold) level, this new dataset represents
a more stringent test of generalization. The results show that our fine-tuned model consistently
outperforms the baseline across all metrics. This performance gap is especially notable given the
increased structural diversity and novelty in the CATH 4.3 set.

B.4 Sequence Alignment of Visualized Samples

We performed sequence alignment (Fig. 7 to 10) of visualized samples in Fig. 2, illustrating each
residue as a colored box to highlight matches (green), mismatches, and uncertain positions (gray).
The results show that our fine-tuning process prioritizes the generation of sequences that fold into
more accurate structures, even if it means deviating from the native sequence (low recovery rate).

B.5 Improvements on different fold types.

We conducted a detailed analysis where we grouped the test structures in CATH 4.2 according to their
Class annotations (Mainly Alpha, Mainly Beta, Alpha-Beta, and Few Secondary Structures).
The average TM-scores before and after DPO fine-tuning are summarized in Table 5. As shown, DPO
fine-tuning brings consistent improvements across all fold types, with especially notable gains in the
Mainly Alpha and Mainly Beta categories. This demonstrates that our method not only improves
structural quality overall but also robustly across a diverse range of protein topologies.

B.6 More Results on Iterative Design.

For additional clarity, we monitor the running TM-Scores and recoveries of all 10 structures during
training in Fig. 6. The plot demonstrates a clear upward trend, with substantial gains in the early
rounds, followed by a gradual saturation effect as the model converges towards higher structure
similarity. Concurrently, the recovery rate remains at a relatively low level, further emphasizing our
method’s ability to prioritize structural fidelity over sequence similarity, leading to the discovery of
alternative sequences that fold more accurately.

22

Table 3: Performance on the CATH 4.2 test split.

Model ESMFold AlphaFold3
TM-Score RMSD TM-Score RMSD

InstructPLM 0.40 3.42 0.43 3.09
InstructPLM-DPO 0.70 2.25 0.68 2.29

Table 4: Performance on newly introduced Classes of CATH 4.3 dataset with respect to CATH 4.2.

Model Recovery TM-Score RMSD

InstructPLM 41.85 0.57 2.89
InstructPLM-DPO 43.62 0.60 2.79

Table 5: TM-Score comparison across different fold types.

Model Mainly Alpha Mainly Beta Alpha Beta Few Secondary Structures

InstructPLM 0.61 0.76 0.84 0.63
InstructPLM-DPO 0.66 0.80 0.86 0.65

23

Table 6: Sequence design performance on CATH 4.2 test set. We report the perplexity and
recovery rate on the CATH 4.2 test set. The performance of our methods is shown in bold, while
baselines without fine-tuning are indicated with an underline. We copied the results from [15] and
reproduced the results of InstructPLM and ProteinMPNN in a unified codebase.

Model Perplexity on CATH 4.2↓ Recovery Rate on CATH 4.2↑
Short Single-chain All Short Single-chain All

StructGNN [19] 8.29 8.74 6.40 29.44 28.26 35.91
GraghTrans [19] 8.39 8.83 6.63 28.14 28.46 35.82
GCA [45] 7.09 7.49 6.05 32.62 31.10 37.64
GVP [20] 7.23 7.84 5.36 30.60 28.95 39.47
AlphaDesign [14] 7.32 7.63 6.30 34.16 32.66 41.31
ProteinMPNN [10] 8.82 9.17 5.41 28.83 27.20 40.27
ESM-IF [17] 6.93 6.65 3.96 35.28 33.78 48.95
PiFold [15] 6.04 6.31 4.55 39.84 38.53 51.66
LM-Design [53] 6.77 6.46 4.52 37.88 42.47 55.65
InstructPLM [36] 3.22 3.17 2.63 40.88 40.87 53.58
KW-Design [13] 5.48 5.16 3.46 44.66 45.45 60.77

ProteinMPNN-DPO 8.40 8.50 5.09 29.19 27.41 41.29
InstructPLM-DPO 3.54 3.43 2.71 43.34 43.44 55.21

Name Single-round Multi-round

Temperature 1 1.1
Top p 0.9 1.0
N 20 200

Number of rounds 1 20
DPO β 0.5 0.5
Learning rate 1e-5 1e-5
Optimizer AdamW AdamW
Adam β1 0.9 0.9
Adam β2 0.999 0.999
Adam ϵ 1e-8 1e-8
Batch size 128 128
LoRA r 16 16
LoRA α 16 16
Training steps 4000 200

Table 7: Training configs

Hard Task Simple Task

Training Steps

1K 3K 5K 1K 3K 5K 1K 3K 5K

Training Steps Training Steps

Lo
ss

Re
wa

rd
 A

cc
ur

ac
y

Ma
rg

in

0.5

0.55

0.6

0.65

0.7

0.5

0.6

0.7

0.8

0.9

1

0

0.2

0.4

0.6

0.8

Figure 5: Metrics of ProteinMPNN training process.

24

TM-Score

Recovery

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20

Rounds

Figure 6: TM-Score and recovery rate changes across each round of iterative refinement.

1-50
M Q D W A T F K K K H L T D T W D V D C D N L M P T S L F D C K D K N T F I Y S L P G P V K A L C RWild Type
G L T A D D F R K Y H L A D S E T I D C D K L L P T D L F K N L D S V V Y I V T D P A P F A A E A Kbaseline
G L T A E D F R K Y H L S D S E T I D C D K L L P T S L F S N L D S V V Y I V T D P K P F L A E C Kfine-tuned

51-100
G V I F S A D V L S N S E F Y L A E C N V K P R K P C K Y K L K K S S N R I C I R C E H E L P V H FWild Type
G V E K E K V I V T S K E Y K V T S C V K L P N K P C V F T L K K S E D T I C V K V S D N K P V E L
G V S S E K T I T T S T E Y T V T S C T K L P N K P C T F T L T H S T S T I C V S C S N N K P V Y L

101-107
A G V G I C PWild Type
V G V G S C A
V G L N T C V

1kvz.A

Figure 7: Sequence alignment of 1kvz.A. Baseline recovery rate: 0.36, TM-Score: 0.51. Finetuned
recovery rate: 0.35, TM-Score 0.87.

1-50
G S H M S S Q T E H K E G E K V A M L N I P K L K K K F S I Y W G A D D A T L K K G V G M F V S D VWild Type
M A H H H H H H E H E H G H E H A H L T L P D L E L T L D L V A G A D W E S E G E G V G A A V S D Dbaseline
M A H H H H H H E H E E G A S L L D L T L P K T E E T Y D L V Y G A D Y E S E G S E V G L A V S D Dfine-tuned

51-100
T T T P S G G G H T V L S G H R D T V F T D L G Q L K E K D T L V L E Y D N K T Y T Y E I Q K I W IWild Type
V A L P E G D A A T V L V A R E A E E E D E D G L F S A D T T F V V E Y D D E E Y E Y E V I E V F D
V K L P T G D A S F V L V S S L L T S R N E S G L Y S S D S S F E V S Y N D K T Y T Y K V T K V F T

101-147
T H A D D R T V I I K K E E P I L T L T T C Y P F D Y I G D A P D R Y I I E A K L T G S Y S KWild Type
V L A D D E E E L E E L E E P E L V V I G G E P E E E E G E E P E L V V I E A E E E E E E E E
A D S D D S S V L K K Y D S P E L T I V S G S P S S V K G L S P E L K V V E S S K T S S S S G

2ln7.A

Figure 8: Sequence alignment of 2ln7.A. Baseline recovery rate: 0.30, TM-Score: 0.36. Finetuned
recovery rate: 0.29, TM-Score 0.77.

25

1-50
_ _ _ _ _ _ _ _ _ _ R F T Q A L V I A Y V I G Y V C V Y N K G Y Q D T D T V L S S V T T K V K G I AWild Type
M K L F S S L Y D K T L E W S A H R H A V W G C L L V S F S E A V V F P I P P D V L L I P V V G T Cbaseline
M T L F K S A A K T L R S L S A V K A F V F G N L F V N L Q G N R V K D E V K S E T K T E V K G T Cfine-tuned

51-100
L T N T S E L G E R I W D V A D Y I I P P Q E D G S F F V L T N M I I T T N Q T Q S K C A E N P T PWild Type
R V N W W R L G L V T F T A S V L G G P L A Y F G S F W L L T N L I V P L S Q R L A A S A A L P S P
T V N D E K K G K K T Y N A K N D G I P L K E D G D F F I A T N E I V T T D Q T A S T G A A L P S P

101-150
A S T C T S H R D C K R G F N D A R G D G V R T G R C V S Y S A S V K T C E V L S W C P L E K I V DWild Type
E T L C R D D S D C V E G N D A R L G D G V C V G E C V S Y S S S E S T C E V V A W C P L E K E V L
E T L C E S D S D C I E G N D S I I G N G V C I G E C V S Y S K T W K T C Q V E S W C P R T V D V K

151-200
P P N P P L L A D A E N F T V L I K N N I R Y P K F N F N K R N I L P N I N S S Y L T H C V F S R KWild Type
P P R P P L L A E A E N F T V L I K N N I E F P K F N Y H K R N I L P H I S D S Y L K H C Q F S R D
P P S P P D F S D A A D F T V F I K N L V R F P K F N V S K R N I R P N I N E T Y L K K C V Y D K E

201-250
T D P D C P I F R L G D I V G E A E E D F Q I M A V R G G V M G V Q I R W D C D L D M P Q S W C V PWild Type
T D P Y C P I F R L G D I V G A A K E N F Q E M A V E G G V M G I Q I K W N C D L D M P A S E C V P
K H P Y C P I F R I G D M V G A A K E N F L E M A V K G G S I G I F I N W N C D L D L P D S E C K P

251-300
R Y T F R R L D N K D P D N N V A P G Y N F R F A K Y Y K N S D G T E T R T L I K G Y G I R F D V MWild Type
K Y S F R R L D N K D P E N S V S P G Y N F R F A K Y Y K D S S G K E S R T L I K A Y G I R F D I M
K Y S F R R L D S K N P E N S S A P G Y N F R F A K Y Y K T S D G K E S R T L I K A Y G I R F D I I

301-350
V F G Q A G K F N I I P T L L N I G A G L A L L G L V N V I C D W I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _Wild Type
V F G K A G K F D I I P T M I N I G S G L A L L G V A T V L C D V I V L Y C M K K R Y Y Y R E K K Y
V F G T A G K F S I V P T I V N L G A G L A L L G V A T V L C D I I V L Y C M K K K Y Y Y R E K K Y

351-356
_ _ _ _ _ _Wild Type
K Y V E D Y
K Y V E D Y

3i5d.A

Figure 9: Sequence alignment of 3i5d.A. Baseline recovery rate: 0.57, TM-Score: 0.55. Finetuned
recovery rate: 0.54, TM-Score 0.90.

1-50
_ _Wild Type
M P L P L E E I P P L L K E P L I R E A L L E D L G R A G D I T T D A I I S S S V Q V E A S V S A Rbaseline
M P L P L E L I P P E L K E P L L L K F K N E F N K D D E W N D L V K W I S S K F S I V E S V Y F Efine-tuned

51-100
_ _ _ S S E T V P L I L L F A E N _ _ _ A N D M E G L I E R I R S Q F F I D Y G V R L P T I L Y R TWild Type
Q D I V L C G I P L I L E L A N L F I D D S S W E D L V E D I S S R F F I D Y G V K L P E I K L S F
E I K P L E K I P L I L K L S N L Y I D D E K W N D L V K W I S S K F S I D F G V K L P E I K L S Y

101-150
S N E L K V D D I V L L I N E V R A D S F N I Y F D K V C I _ _ _ _ _ _ _ _ _ _ _ _ _ _ V S T S Y NWild Type
S D S L S V E E I V L Y I K E V L S S S F L I D F N S I C I S S S L F Y L P L S S S L F F S T S F D
S D S L S I E E I V L Y I E E V E S S S F E I D F N A I C I S E E L V Y Y P L E I S E F V S T S F E

151-200
E R V I S W V D V _ _ _ _ _ _ _ _ _ _ _ _ I K S A Q D E F Y H Q L S Q A L L N N I N E I F G I Q E TWild Type
E S S F S W V S S P I S L F L S S V S S S S S S S S S S F Y S M L S S S L L S S I S L I F S I S S T
E S T F S W I S E P I Y L L L N N V K N S S F S S E E F F Y K M L S S S L L D N I D L I F D I E S T

201-250
K N M L D Q F E N R Y P D L L K E V F R H V T I Q R I S E V L Q R L L G E N I S V R N L K L I M E SWild Type
L S L L S S F S L F F P S L L S S V F S S V S I L S I S S V L S L L L S S S I S I S S L K S I L S S
L K L L S K F K L N Y P K L L D K V Y K Y V S I K E I S Q V L Q M L L S E N I S I K D L K L I M E S

251-300
L A L W A P R E K D V I T L V E H V R A S L S R Y I C S K I A V S G E I K V V M L S G Y I E D A I RWild Type
L S L F S P S L S S I V I L V S S V L S S L S S S I S S L F S S L G S I S L V S L S S L I F S S I L
L S L Y S P K E K D I I I L V E H V R M S L K R Y I C S N I S E E G K L N V V M L S S E I E N S I R

301-350
K G I R Q T _ _ _ _ _ _ N M D I E V S D E V M E T L A H A L R E L R N A K K N F V L L V S V D I R RWild Type
S S I S L L S L S S S F S S S I S L S S S V L S L L S I S S L L S L L L S S S F S L L S L S S I S S
N G I R Q T S L S S I Y S S S I S I D S L I L E K L Y K S L K S L N L S N S N F V L L T S V D I R R

351-383
F V K R L I D N R F K S I L V I S Y A E I D E A Y T I N V L K T IWild Type
F V S S L I S S S S S S I S S I S L V S L S S L S S I S I L S L S
Y V R K L I E S K F S S I K V I S Y Q E I S S D F K I N V L G K I

4ap5.A

Figure 10: Sequence alignment of 4ap5.A. Baseline recovery rate: 0.38, TM-Score: 0.37. Finetuned
recovery rate: 0.49, TM-Score 0.94.

26

	Introduction
	Preliminaries
	Methods
	Experiments
	Benchmark Performance
	DPO Achieves Higher Structure Similarity
	A Closer Look at Proteins Generated by DPO Model
	DPO at Scale
	Iterative Protein Design

	Related Works
	Conclusion
	Implementation Details
	Generation Configs for Evaluation
	Low-Rank adaptation
	Hyperparameters
	Preference Optimization of ProteinMPNN

	Additional Results
	Compare with Other Baselines
	Evaluation using AlphaFold 3
	Performance on CATH 4.3
	Sequence Alignment of Visualized Samples
	Improvements on different fold types.
	More Results on Iterative Design.

