

000 TRAIN-BEFORE-TEST 001 HARMONIZES LANGUAGE MODEL RANKINGS 002

003 **Anonymous authors**

004 Paper under double-blind review

005 ABSTRACT

006 Existing language model benchmarks provide contradictory model rankings, even
007 for benchmarks that aim to capture similar skills. This dilemma of conflicting
008 rankings hampers model selection, clouds model comparisons, and adds confusion
009 to a growing ecosystem of competing models. In this paper, we take a different
010 perspective on model comparison: instead of relying on out-of-the-box perfor-
011 mance via direct evaluation, we compare *model potential* by providing each model
012 with identical benchmark-specific fine-tuning before evaluation. We call this ap-
013 proach *train-before-test*. Our primary contribution is a comprehensive empirical
014 evaluation of model potential across 24 benchmarks and 61 models. First, we
015 demonstrate that model potential rankings obtained through train-before-test ex-
016 hibit remarkable consistency across all benchmarks. Whereas traditional rankings
017 demonstrate little external validity under direct evaluation, they enjoy a significant
018 degree of external validity when applying train-before-test: model potential rank-
019 ings transfer gracefully from one benchmark to another. Second, train-before-test
020 restores the connection between perplexity and downstream task performance, lost
021 under direct evaluation. Remarkably, even pre-finetuning perplexity of a base
022 model predicts post-finetuning downstream performance, suggesting that rank-
023 ing consistency reflects inherent model potential rather than fine-tuning artifacts.
024 Finally, train-before-test reduces the model-score matrix to essentially rank one,
025 indicating that model potential is dominated by one latent factor, uncovered by train-
026 before-test. **While direct evaluation remains useful for assessing deployment-ready**
027 **performance, train-before-test provides a complementary lens for understanding**
028 **achievable performance of models after adaptation.**

033 1 INTRODUCTION

034 Existing language model benchmarks provide contradictory model rankings, even for benchmarks
035 that aim to capture similar skills (Liang et al., 2023; Beeching et al., 2023; Fourrier et al., 2024).
036 This inconsistency poses a serious challenge: how can we reliably compare, rank, and select models
037 when different benchmarks yield conflicting information? While this ranking disagreement is often
038 attributed to the diverse capabilities of large language models (Ruan et al., 2024), it creates a
039 conundrum in practice that muddles model development decisions (Zhang & Hardt, 2024).
040

041 Current evaluation methodology works from *direct evaluation*, probing models via black-box function
042 calls. However, large language models are trained on diverse, often proprietary data mixes that vary
043 significantly across models (Grattafiori et al., 2024; Gemma et al., 2024; Guha et al., 2025). Recent
044 work showed that this leads to the problem of *training on the test task* (Dominguez-Olmedo et al.,
045 2024): the extent to which a model has encountered data similar to the test task during training
046 confounds model comparisons, rankings, and scaling laws (Kaplan et al., 2020). Put simply, an
047 otherwise inferior model may have simply prepared better for a specific task.

048 In this paper, we take a fresh perspective on evaluation methodology: in contrast with direct evaluation,
049 we compare *model potential* by giving each model the same task-specific fine-tuning. We call this
050 approach *train-before-test*. Its goal is to achieve valid model comparisons by ensuring that all models
051 receive equal preparation for the test.

052 **We envision train-before-test as a tool for reliable model selection for downstream adaptations.**
053 Increasingly, practitioners select one from many available models with the goal of adapting for a

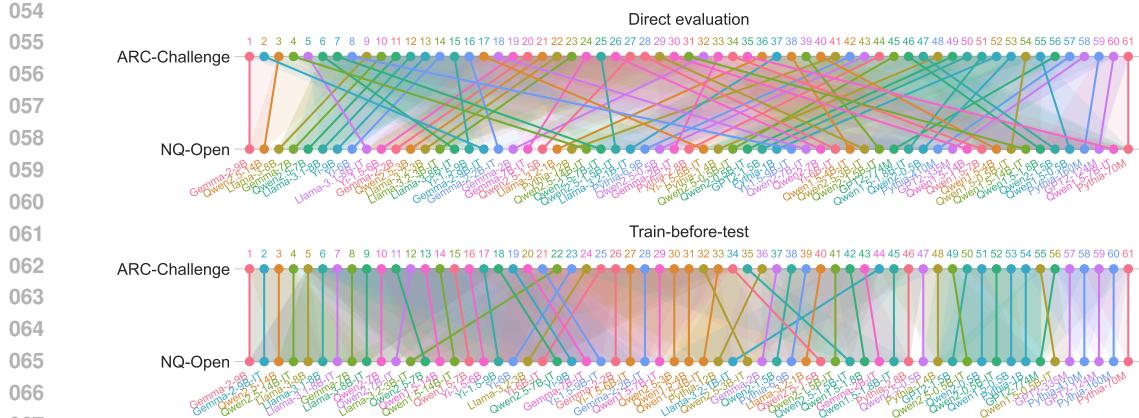


Figure 1: Rankings of 61 language models on two question-answering benchmarks: Natural Questions Open and ARC Challenge. **Top:** Direct evaluation leads to inconsistent rankings. Although both benchmarks test for question-answering ability, the resulting model rankings show substantial disagreement. **Bottom:** Train-before-test aligns model rankings. **Note:** For each of the two plots, we greedily align model rankings as much as possible without violating confidence intervals, thus revealing only those ranking changes that are statistically significant. See Appendix C.1.

specific task. Under direct evaluation the best model to begin with may no longer be the best model after task-specific preparation. In contrast, we show that train-before-task yields model comparisons and rankings that enjoy broad external validity.

1.1 OUR CONTRIBUTIONS

Direct evaluation leads to ranking disagreement even between related tasks. We demonstrate that the prevalent direct evaluation scheme results in strong disagreement between model ranking across various benchmarks. We show that this strong ranking disagreement persists even when restricting to benchmarks that aim to capture similar tasks. Moreover, rankings still strongly disagree when evaluating models from the same family. The situation presents a serious conundrum for model selection: Under direct evaluation, benchmarks fail to give reliable and actionable insights for model choosing among multiple alternatives.

Train-before-test leads to consistent model potential rankings. We comprehensively evaluate train-before-test across 24 benchmark datasets and 61 large language models. By fine-tuning each model on identical task-relevant data before evaluation, we uncover remarkably consistent model potential rankings. Ranking agreement between benchmarks, measured by Kendall’s tau, improves for 274 out of 276 benchmark pairs, with the average Kendall’s τ increasing from 0.52 to 0.76. Figure 1 illustrates the result for one typical pair of benchmarks. This consistency suggests that model potential, unlike out-of-the-box performance, has external validity (Salaudeen et al., 2025) and transfers gracefully across different tasks.

Model potential aligns perplexity rankings with downstream tasks. Perplexity benchmarks used to be popular, but fell out of favor for public benchmarking and model comparison because of the apparent disconnect between perplexity and downstream task performance (Wei et al., 2022; Ganguli et al., 2022; Liu et al., 2023; Magnusson et al., 2023; Lourie et al., 2025a). We indeed validate this disconnect when comparing model families under direct evaluation. However, train-before-test restores this fundamental relationship in two ways. First, we show that post-fine-tuning perplexity rankings align well with post-fine-tuning downstream task rankings, creating consistency between training objectives and task performance. Second, and more remarkably, for base (non-instruction-tuned) models, even pre-fine-tuning perplexity predicts post-fine-tuning downstream performance. This suggests that the ranking consistency we observe reflects inherent model potential rather than artifacts of fine-tuning.

108 **Train-before-test sheds light on the latent factors of benchmark scores.** Consider the large
 109 benchmark-model score matrix, where each entry (i, j) corresponds to the performance of model j
 110 on a benchmark i . Several works have considered this matrix for different reasons and found that it is
 111 approximately low rank (Ruan et al., 2024; Owen, 2024; Burnell et al., 2023), but not quite. The first
 112 singular value is dominant and correlates with pre-training compute. However, the other components
 113 aren't negligible, and their interpretation remains unclear. We show that train-before-test clarifies this
 114 state of affairs. After train-before-test, the benchmark-model matrix is essentially rank one. The first
 115 principal component accounts for 86% of the explained variance across all models, and for 93% of
 116 the variance for a single model family. This suggests that model potential is dominated by a single
 117 latent factor, while the additional components observed in direct evaluation may reflect task-specific
 118 training exposure.

2 RELATED WORK

123 Benchmarking has played a central role in the advancement of machine learning (Liberman, 2010;
 124 Hardt & Recht, 2022). While absolute model performance is often fragile to even seemingly minor
 125 changes in evaluation data (Candela et al., 2009; Torralba & Efros, 2011; AlBadawy et al., 2018;
 126 Taori et al., 2020; Tsipras et al., 2020), relative model performance—that is, model rankings—tends
 127 to transfer surprisingly well across classical benchmarks (Yadav & Bottou, 2019; Recht et al., 2019;
 128 Miller et al., 2020). For instance, prior work (Kornblith et al., 2019; Barbu et al., 2019) has shown
 129 that model rankings on ImageNet (Deng et al., 2009) also transfer to other image classification and
 130 object recognition benchmarks. Moreover, Salaudeen & Hardt (2024) demonstrated that ImageNet
 131 rankings remain robust even under major dataset variations. This transferability of model rankings
 132 is highly desirable, as it indicates that progress on specific benchmarks reliably reflects broader
 133 scientific advancements (Liao et al., 2021; Hardt, 2025).

134 However, the emergence of foundation models has dramatically transformed the benchmarking
 135 landscape compared to the ImageNet era (Liang et al., 2023; Srivastava et al., 2022; Weidinger et al.,
 136 2025). With huge training costs and much improved capabilities (Yang et al., 2025; Grattafiori et al.,
 137 2024; Ramesh et al., 2021; Gemini, 2023; OpenAI, 2023), practitioners now lean towards directly
 138 evaluating LLMs across a wide range of different benchmarks, in the hope of obtaining a more
 139 comprehensive assessment of their capabilities (Liang et al., 2023; Suzgun et al., 2022; Hendrycks
 140 et al., 2020; Beeching et al., 2023; Fourrier et al., 2024). This shift introduces new challenges, as
 141 model rankings across different tasks may vary significantly (Huan et al., 2025; Lourie et al., 2025b).
 142 Zhang & Hardt (2024) draw an analogy between multi-task benchmarks and voting systems (Arrow,
 143 1951), revealing that a multi-task benchmarking approach with diverse rankings inherently lacks
 144 robustness to minor changes and thus cannot provide a stable unified ranking.

145 This lack of unified ranking is sometimes seen as a desirable feature within the community (Liang
 146 et al., 2023). Some argue that variability reflects the multifaceted strengths and weaknesses of LLMs,
 147 suggesting that users should select the best model tailored to their specific needs (Ghosh et al.,
 148 2024; Zhang et al., 2024b; Shnitzer et al., 2023). For example, a user who focuses on mathematical
 149 tasks could prioritize the math benchmark to choose the optimum model. However, there are two
 150 significant concerns regarding this approach: First, the user-driven selection strategy poses challenges
 151 for model developers. Given the resource-intensive nature of LLM development (Guo et al., 2025), it
 152 is impractical to release a different model for every potential use case. Moreover, developers typically
 153 aim to create a general-purpose model (Yang et al., 2025; Grattafiori et al., 2024); however, such a
 154 desideratum is often difficult to reliably measure due to the inconsistent rankings observed across
 155 benchmarks. Second, we demonstrate in this paper that benchmarks within the same task category
 156 can still exhibit substantial discrepancies in model rankings.

157 One potential reason for the observed inconsistencies in model rankings is that models vary substantially
 158 in their training data (Gadre et al., 2023; Albalak et al., 2025). In particular, Dominguez-Olmedo
 159 et al. (2024) show that models vary in their degree of preparedness for popular benchmarks, which
 160 confounds model evaluations. [Inspired by this finding, we investigate a different question: if varying
 161 preparedness confounds evaluations, can equalizing preparedness harmonize contradictory model
 162 rankings across benchmarks?](#) We therefore introduce the notion of train-before-test, wherein we
 163 fine-tune each model on the corresponding training set so every model arrives well prepared. Through

162
163
164 Table 2: Models considered, categorized by model family.
165
166
167
168
169
170
171

Family	Model Name Suffix
LLAMA-	3-8B, 3.1-8B, 3.2-1B, 3.2-3B, 3-8B-IT, 3.1-8B-IT, 3.2-1B-IT, 3.2-3B-IT 1.5-0.5B, 1.5-1.8B, 1.5-4B, 1.5-7B, 1.5-14B, 2-0.5B, 2-1.5B, 2-7B, 2.5-0.5B, 2.5-1.5B,
QWEN-	2.5-3B, 2.5-7B, 2.5-14B, 1.5-0.5B-IT, 1.5-1.8B-IT, 1.5-4B-IT, 1.5-7B-IT, 1.5-14B-IT, 2-0.5B-IT, 2-1.5B-IT, 2-7B-IT, 2.5-0.5B-IT, 2.5-1.5B-IT, 2.5-3B-IT, 2.5-7B-IT, 2.5-14B-IT
GEMMA-	2B, 7B, 2-2B, 2-9B, 2B-IT, 7B-IT, 2-2B-IT, 2-9B-IT
GPT2-	124M, 335M, 774M, 1.5B
PYTHIA-	70M, 160M, 410M, 1B, 1.4B, 2.8B, 6.9B, 12B
YI-	6B, 9B, 6B-IT, 1.5-6B, 1.5-9B, 1.5-6B-IT, 1.5-9B-IT

172
173
174 comprehensive evaluations across 24 benchmarks, we demonstrate that train-before-test harmonizes
175 otherwise contradictory model rankings, establishing it as a practical evaluation methodology.
176177 While extensive literature exists on investigating different fine-tuning strategies for LLMs (Zhang
178 et al., 2024a; Zeng et al., 2025; Lester et al., 2021), this lies outside the scope of our investigation.
179 Instead, we apply standardized fine-tuning (Mangrulkar et al., 2022) as an evaluation tool to give
180 all models equivalent preparation before testing. Another relevant area is the literature on scaling
181 laws (Kaplan et al., 2020). Lin et al. (2024) predict full-finetuning performance of a single model from
182 partial finetuning on one task using their rectified scaling law. Zhang et al. (2024a) study how different
183 factors scale within individual tasks. These scaling law approaches model performance changes using
184 model-specific and task-dependent parameters. In contrast, we investigate how standardized fine-
185 tuning harmonizes model rankings across diverse benchmarks in the wild, examining 61 models from
186 six families across 24 tasks spanning multiple categories. Complementary to our focus, Heineman
187 et al. (2025) analyzes the statistical reliability of existing benchmarks, while Gu et al. (2024) proposes
188 a standardized evaluation protocol to reduce variability arising from formatting and scoring choices.189
190

3 EXPERIMENTS

191
192

3.1 EXPERIMENT SETTING

193
194 **Benchmark selection.** We begin our
195 study with the lm-eval-harness package
196 (Gao et al., 2023), which offers a com-
197 prehensive suite of language model
198 benchmarks. To accommodate the train-before-
199 test methodology which requires a dedi-
200 cated training set for fine-tuning, we first
201 identify benchmarks that provide at least
202 1,000 training examples. This yields a total
203 of 37 benchmarks, which we broadly
204 categorize into 28 likelihood-based and 9
205 generation-based benchmarks.206 Generation-based benchmarks are often computationally intensive to evaluate, as base models
207 typically generate text until reaching their maximum sequence length. These benchmarks are also
208 over-challenging for smaller models with limited parameters, such as GPT-2 (Radford et al., 2019).
209 Therefore, we select only NQ-Open and GSM8K from the generation-based benchmarks. Among the
210 likelihood-based benchmarks, we further exclude six due to observed anomalies during fine-tuning,
211 such as a lack of performance improvement in over 20% of models. See Appendix A.1 for details.212 Our final selection consists of 24 benchmarks covering diverse domains and task types. These
213 benchmarks are primarily multiple-choice question answering benchmarks, with accuracy as the task
214 metric. We categorize all benchmarks by their descriptions, see Table 1. If a benchmark does not
215 come with a validation split, we randomly allocate 20% of the training data as the validation set. To
save computational resources, we cap the number of training data at 50,000, validation data at 1,000,
and testing data at 10,000.193 Table 1: We categorize benchmarks into language un-
194 derstanding (LU), commonsense reasoning (CR), ques-
195 tion answering (QA), physics/biology/chemistry (PBC),
196 math (Math), and medicine (Med).

Category	Benchmarks
LU	MNLI, QNLI, RTE, CoLA, SST-2, MRPC, QQP, WiC, ANLI
CR	Winogrande, CommonsenseQA, Hellaswag, Social-IQA
QA	OpenBookQA, NQ-Open, BoolQ, ARC-Easy, ARC-Challenge
PBC	SciQ, PiQA
Math	MathQA, GSM8K
Med	MedMCQA, HeadQA

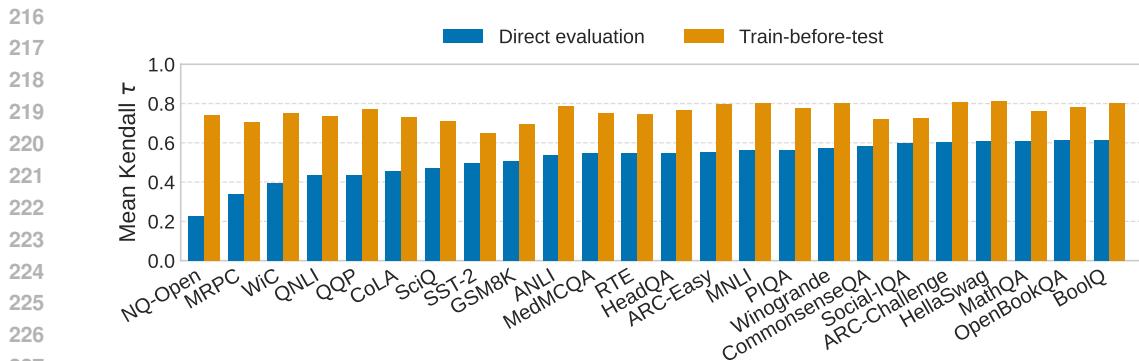


Figure 2: Mean ranking agreement between each benchmark and all others. We calculate Kendall’s τ between each benchmark and every other benchmark, and then average the results. **Compared to direct evaluation, train-before-test consistently improves ranking agreement.** A detailed comparison of Kendall’s τ values for every benchmark pair is provided in Appendix B.1. On average, the overall average Kendall’s τ is 0.52 for direct evaluation and 0.76 for train-before-test.

Model selection. We consider 61 language models across six model families: LLAMA (Grattafiori et al., 2024), QWEN (Yang et al., 2025), GEMMA (Gemma et al., 2024), PYTHIA (Biderman et al., 2023), GPT-2 (Radford et al., 2019) and YI (Young et al., 2024). Due to computational constraints, we select models with no more than 14B parameters. See Table 2 for the full list. We include both base and instruction-tuned models, and use the suffix `-IT` to denote instruction-tuned models.

Evaluation setup. We evaluate the 61 models across all 24 benchmarks using both direct evaluation and train-before-test evaluation. We use the `lm-eval-harness` library for evaluation. We evaluate models zero-shot (Brown et al., 2020). For direct evaluation, we simply evaluate the model as it is. For train-before-test, we fine-tune models for five epochs using learning rates in $\{1e-5, 2e-5, 5e-5\}$, separately. The best performing checkpoint is then selected based on performance on a separate validation set, yielding $61 \times 24 = 1,464$ fine-tuned models in total. We use parameter-efficient fine-tuning (PEFT) (Hu et al., 2021; Mangrulkar et al., 2022). See more details in Appendix A.2. Each fine-tuned model is then evaluated on the corresponding benchmark’s test set. For each benchmark, we rank models according to their performance. We then measure the ranking correlation across pairs of benchmarks using Kendall’s τ (Kendall, 1938).

3.2 DOWNSTREAM RANKING AGREEMENT

As depicted in Figure 2, direct evaluation shows only modest ranking agreement between the 24 benchmarks, with an average Kendall’s τ of 0.52. This lack of agreement across benchmarks complicates model assessment and makes it challenging to aggregate results into a meaningful overall ranking (Zhang & Hardt, 2024). In contrast, the train-before-test methodology leads to a substantial improvement in ranking agreement. Under this approach, 274 out of 276 benchmark pairs show higher Kendall’s τ scores, with the average τ rising from 0.52 to 0.76. This stronger consistency suggests that model potential ranking on one benchmark is likely to generalize to others, including practitioners’ own cases, which simplifies model comparison and selection. Notably, benchmarks that appeared to be outliers under direct evaluation, such as NQ-Open and MRPC, demonstrate much greater ranking consistency under train-before-test. For example, the average Kendall’s τ between NQ-Open and all other benchmarks improves from 0.23 to 0.74.

We further split all benchmarks into six categories (e.g., language understanding, math), see Table 1. For each category pair, we report in Figure 3 the intra-category average ranking correlations and inter-category average ranking correlations across all relevant benchmark pairs. Consistent with our previous findings, we observe reasonably poor ranking agreements across categories under direct evaluation. While one might expect high intra-category agreement—after all, tasks within the same category tend to be relatively similar—direct evaluation results in low intra-category agreement in many cases. For example, the intra-category mean Kendall’s τ is 0.54 for language understanding and 0.55 for math. This further underscores the difficulty of selecting models based on direct evaluation.

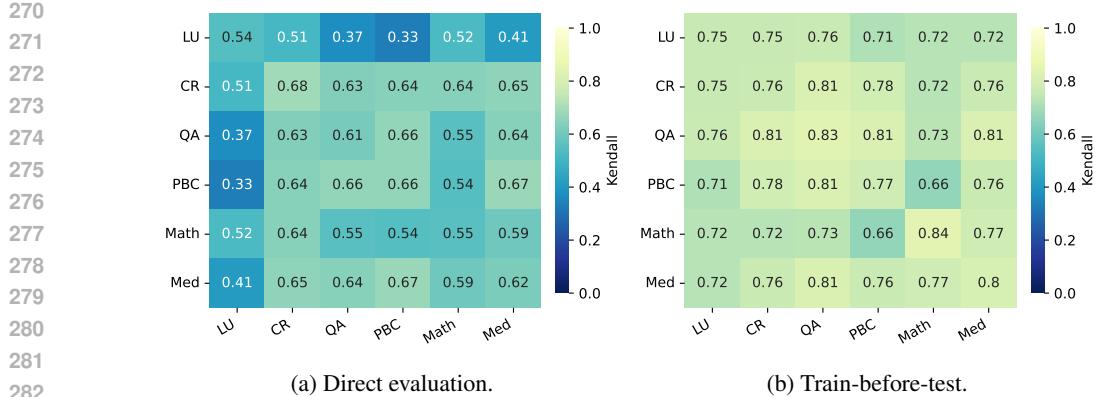


Figure 3: Cross-category ranking agreement for direct evaluation (left) and train-before-test (right). We categorize benchmarks into language understanding (LU), commonsense reasoning (CR), question answering (QA), physics/biology/chemistry (PBC), math (Math), and medicine (Med), see Table 1. Kendall's τ is averaged across all pairs of benchmarks that belong to two given categories. The diagonal entries represent intra-category agreement and the others represent inter-category agreement. **Train-before-test improves both intra- and inter-category ranking agreement in all instances.**

Even if the goal is to choose a model that excels within a specific domain, the low intra-category agreement makes this decision challenging.

In contrast, train-before-test boosts both intra- and inter-category consistency. For example, the intra-category mean Kendall's τ for language understanding raises from 0.52 to 0.75, as well as from 0.55 to 0.84 for the math category. Moreover, agreement between categories is often nearly as high as agreement within categories. This suggests that models with higher potential in one domain tend to also perform well across other domains after adaptation.

3.3 PERPLEXITY AGREEMENT

We now study the agreement between downstream benchmark rankings and perplexity rankings on general domain corpora. To do so, we collect three corpora from Wikipedia, StackExchange, and arXiv, retaining only contents from 2025. Because all models used were released before 2025, they could not have seen these texts during pretraining. Specifically, we collect 3,366 documents for Wiki, 6,001 for StackExchange and 44,384 for arXiv. These datasets are split into training, validation, and testing sets, in an 8:1:1 ratio.

We measure perplexity in bits per byte, using the `lm-eval-harness` library. We then compute models rankings based on the perplexity evaluations, and compare the rankings with those of the downstream benchmarks considered in earlier sections. We exclude the four GEMMA models from these results, as `lm-eval-harness` provides unreliable perplexity measurements for GEMMA models due to its rolling window implementation. See Appendix B.2 for details.

The results are presented in Figure 4. In contrast to downstream tasks, perplexity rankings demonstrate strong agreement both under direct evaluation and train-before-test. Specifically, the average Kendall's τ between the perplexity rankings is 0.76 for direct evaluation and 0.78 for train-before-test. We hypothesize that this reasonably strong agreement arises due to the smooth relationship between perplexity evaluations (Brandfonbrener et al., 2024; Mayilvahanan et al., 2025).

When comparing ranking agreement between perplexity evaluations and downstream benchmarks, we find that agreement is low under direct evaluation, with a mean Kendall's τ of 0.48. This lack of agreement is concerning, as it signals a disconnect between the language modelling pre-training objective and downstream benchmark performance. Fortunately, we find that our train-before-test methodology improves ranking agreement substantially, with the mean Kendall's τ ranking correlation between perplexity rankings and benchmark rankings rising to 0.74. This finding is reassuring: a light amount of fine-tuning on task data is sufficient to align the language modeling training objective with downstream performance. Moreover, we find that ranking agreement between perplexity and

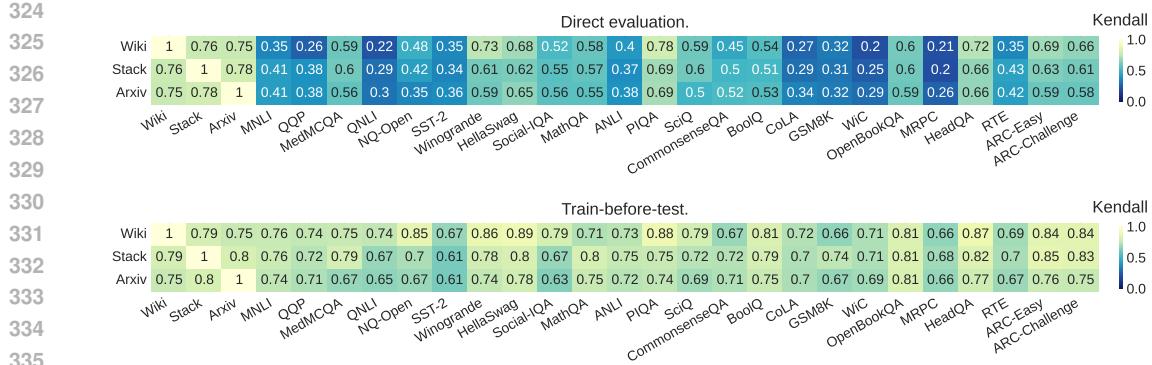


Figure 4: Ranking agreement between perplexity rankings and downstream benchmark rankings under direct evaluation (top) and train-before-test (bottom). Perplexity rankings are consistent with each other under both evaluation schemes, with an average Kendall's τ of 0.76 and 0.78, respectively. However, for direct evaluation, agreement between perplexity rankings and downstream rankings is low, with an average Kendall's τ of just 0.48. Fortunately, **train-before-test results in higher agreement between perplexity and downstream**, increasing average Kendall's τ to 0.74.

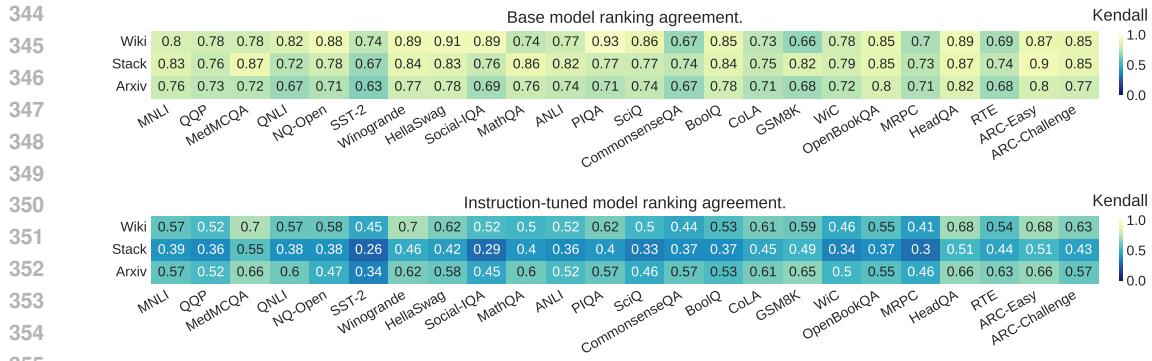


Figure 5: Ranking agreement between perplexity rankings **before fine-tuning** (direct evaluation) and downstream benchmark rankings **after fine-tuning** (train-before-test) for base models (top) and instruction-tuned models (bottom). Unlike Figure 4 where both rankings in each comparison use the same evaluation scheme, here we test whether pre-fine-tuning perplexity can predict post-fine-tuning downstream performance. Base models show strong correlation (average Kendall's τ = 0.78), suggesting perplexity is a good predictor of model potential. This indicates that the **ranking consistency we observe reflects inherent model potential rather than artifacts introduced by fine-tuning**. Instruction-tuned models show much weaker correlation (average Kendall's τ = 0.51).

downstream evaluations is roughly similar to agreement across downstream evaluations. This suggests that, despite perplexity typically not being used for benchmarking purposes, it can be as effective a ranking metric as benchmark evaluations.

Drawing inspiration from prior work (Liu et al., 2023; Xia et al., 2023; Gadre et al., 2024; Du et al., 2024; Zhang et al., 2024a), we further examine the correlation between model rankings according to *average* perplexity across the three text corpora and *average* downstream performance across the 24 benchmarks. Gadre et al. (2024) show that, when models are trained on the same pretraining data, perplexity is well-correlated with aggregate benchmark performance. Our setup differs in that we consider a diverse set of model families, each trained on different pretraining data. Under direct evaluation, we find that the ranking correlation is modest, with a Kendall's τ of only 0.55. We hypothesize that this relatively weak agreement is due to differences in pretraining data and instruction tuning, resulting in varying levels of exposure to benchmark tasks during training (Dominguez-Olmedo et al., 2024). Fortunately, when applying our train-before-test methodology, the ranking

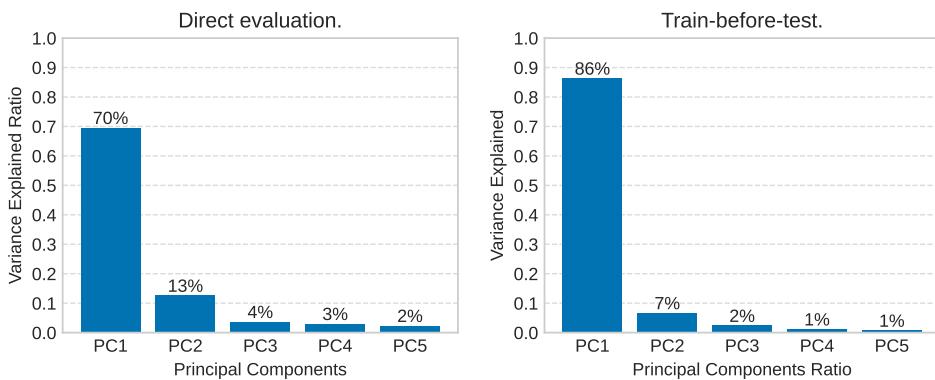


Figure 6: Explained variance ratios of the top five principal components of the benchmark score matrix, under direct evaluation (left) and train-before-test (right). Train-before-test substantially increases the amount of variance explained by the first principal component, from 70% to 86%. **This indicates the model potential is dominated by one single latent factor.**

correlation between average perplexity and average downstream performance improves substantially, with Kendall’s τ increasing from 0.55 to 0.84.

We additionally examine the agreement between perplexity prior to fine-tuning and downstream task performance after fine-tuning. That is, between direct evaluation perplexity rankings and train-before-test downstream performance rankings. We plot such ranking agreement in Figure 5, dividing models into base models and instruction-tuned models. For base models, perplexity prior to fine-tuning is a strong indicator of model potential on downstream tasks, with an average Kendall’s τ of 0.78. This indicates that, for base models, direct evaluation of perplexity is already a reasonably reliable metric for ranking models. Moreover, it indicates that the ranking consistency we observe reflects inherent model potential rather than artifacts introduced by fine-tuning.

However, the same does not hold for instruction-tuned models (average Kendall’s $\tau = 0.51$). Instruction-tuning renders perplexity rankings unreliable, as ranking agreement is low across the board. This is to be expected: instruction fine-tuning tends to increase both benchmark performance (\uparrow) and perplexity (\downarrow) on general text corpora, thus clouding the relationship between perplexity and downstream evaluations. Fortunately, as shown earlier, train-before-test restores high ranking agreement between perplexity evaluations and downstream performance.

3.4 LOW-RANKED MODEL SCORE MATRIX

So far, we have shown that comparing model potential using the train-before-test yields consistent rankings across benchmarks. We now examine the implications of this finding by analyzing the resulting matrix of model scores, where each entry (i, j) corresponds to the performance of model j on a benchmark i . We use Principal Component Analysis (PCA) to examine the structure of the model score matrix.

Figure 6 shows the explained variance ratios of the first five principal components. These results support previous findings that the score matrix is of low rank (Ruan et al., 2024). Under direct evaluation, the first five components account for 91% of the total variance. A similar trend is observed for train-before-test scores, where the first five components explain 97% of the variance. Notably, under train-before-test, the first principal component (PC1) captures a much larger share of the variance: 86%, compared to 70% for direct evaluation.

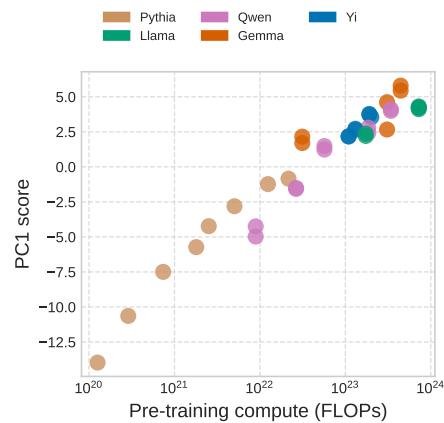


Figure 7: PC1 scores under train-before-test align with the pre-training compute.

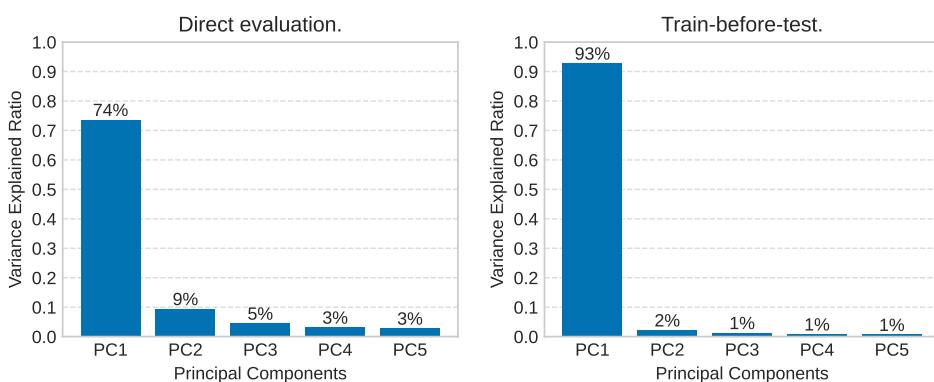


Figure 8: Explained variance ratios of the top five principal components of the QWEN score matrix. For train-before-test, the explained variance ratio of PC1 increases to 93%. **Controlling the model family to QWEN has made the score matrix essentially rank one.**

Prior works interpret PC1 scores under direct evaluation as an indication of general capability, with later principal components denoting domain-specific capabilities not captured by PC1 (e.g., reasoning ability, coding ability) (Ruan et al., 2024; Burnell et al., 2023). Unlike out-of-the-box performance, which is controlled by multiple factors (Ruan et al., 2024; Burnell et al., 2023), model potential is dominated by one single principal axis. This dramatic change indicates that train-before-test removes confounding factors, such as differential exposure to benchmark-related data during pretraining, that create artificial diversity in rankings. It is of no surprise that PC1 also positively correlates with pre-training compute, as shown in Figure 7¹, which have been identified as crucial to model performances (Kaplan et al., 2020; Hoffmann et al., 2022). See detailed PC1 scores in Figure 11.

Case study for Qwen models. We repeat our PCA analysis on the score matrix containing only QWEN models, depicted in Figure 8 (see other models in Appendix B.7). Remarkably, we find that PC1 for train-before-test explains 93% of the variance, roughly as much as the variance explained by the top five principal components under direct evaluation. That is, whereas for direct evaluation the score matrix is low-rank; train-before-test renders the score matrix essentially rank one.

4 DISCUSSION, LIMITATIONS, AND CONCLUSION

Train-before-test fundamentally reframes how we interpret model evaluation. Whereas direct evaluation yields benchmark-specific rankings that often contradict one another, train-before-test harmonizes rankings across a wide array of tasks and datasets. This shift from measuring out-of-the-box *performance* to comparing achievable *potential* equips the community with a more stable and externally valid evaluation methodology.

This emphasis on model potential is particularly valuable for scenarios involving model development and adaptation. Practitioners frequently need to make decisions during model development—selecting checkpoints mid-pre-training or choosing a base model for further instruction tuning or domain-specific adaptation. In these scenarios, direct evaluation, while useful for assessing deployment readiness, is of limited relevance and utility. A model that performs poorly on direct evaluation might excel when adapted to new tasks. Train-before-test, by contrast, shows that rankings on any task will also generalize to others, offering more promising guidance for model selection.

One might argue that ranking consistency is unnecessary if we can simply choose benchmarks close to a given downstream application. However, our findings highlight three challenges with that view. First, even benchmarks that purport to measure the same skill (e.g., question answering) produce contradictory rankings under direct evaluation. Second, no benchmark perfectly captures the specifics of an application, making some degree of generalization unavoidable. Third, in real deployments, models are often adapted to varying degrees, making the *potential* the relevant signal for comparison.

¹We only plot models whose number of training tokens is publicly available. See Table 4 for details.

486 **Limitations.** Train-before-test requires fine-tuning models on task-specific data before evaluation,
 487 which certainly increases the evaluation cost. However, this investment yields dividends through
 488 improved reliability. Our findings suggest that fewer benchmarks suffice under train-before-test, as
 489 rankings from one benchmark reliably transfer to others. This reduction in required evaluations can
 490 offset the per-benchmark cost increase. **Second, despite significant improvements in cross-benchmark**
 491 **ranking consistency, the ranking agreements remain imperfect. The residual imperfect correlation may**
 492 **arise from incomplete adaptation with PEFT (Mangrulkar et al., 2022) or irreducible measurement**
 493 **noise (Fisher & Sen, 1994; Heineman et al., 2025).** Third, unfortunately, many benchmarks no longer
 494 come with training data, making it more difficult to apply train-before-test. In light of our findings, we
 495 recommend that future benchmarks provide fine-tuning data for the benchmark. A fourth limitation
 496 is that some commercial model providers do not easily allow fine-tuning of their models. We contend
 497 that in this case the problem is with the model provider. There is clearly scientific value in creating an
 498 ecosystem of models that can be fine-tuned. Train-before-test evaluation creates additional incentives
 499 for making models easy to fine-tune.

500 **Conclusion.** Overall, train-before-test complements existing evaluation practices by distinguishing
 501 between *performance* and *potential*. Importantly, potential comparison is not intended to replace
 502 direct evaluation—both serve distinct purposes. Direct evaluation remains useful for understanding
 503 immediate deployment readiness, while potential comparison provides insights into adaptability and
 504 development prospects. Together, they offer a more complete picture of model capabilities. We
 505 believe that adopting train-before-test as a standard alongside direct evaluation can significantly
 506 improve the reliability, interpretability, and practical utility of the model evaluation ecosystem.

507 REFERENCES

509 Ehab A AlBadawy, Ashirbani Saha, and Maciej A Mazurowski. Deep learning for segmentation of
 510 brain tumors: Impact of cross-institutional training and testing. *Medical physics*, 45(3):1150–1158,
 511 2018.

512 Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi Wang,
 513 Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, et al. A survey on data selection
 514 for language models. *Transactions on Machine Learning Research*, 2025.

516 Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.
 517 Mathqa: Towards interpretable math word problem solving with operation-based formalisms, 2019.
 518 URL <https://arxiv.org/abs/1905.13319>.

520 Kenneth J. Arrow. *Social Choice and Individual Values*. Wiley, 1951. URL <https://api.semanticscholar.org/CorpusID:144910513>.

523 Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund, Josh
 524 Tenenbaum, and Boris Katz. Objectnet: A large-scale bias-controlled dataset for pushing the limits
 525 of object recognition models. *Advances in neural information processing systems*, 32, 2019.

526 Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen
 527 Rajani, Omar Sanseviero, Lewis Tunstall, and Thomas Wolf. Open llm leaderboard. https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard, 2023.

530 Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo Giampiccollo, and Bernardo Magnini. The
 531 fifth PASCAL recognizing textual entailment challenge. In *Text Analysis Conference (TAC)*, 2009.

532 Stella Biderman, Hailey Schoelkopf, Quentin G. Anthony, Herbie Bradley, Kyle O'Brien, Eric
 533 Hallahan, Mohammad Aftab Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff,
 534 Aviya Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large
 535 language models across training and scaling. *ArXiv*, abs/2304.01373, 2023. URL <https://api.semanticscholar.org/CorpusID:257921893>.

538 Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
 539 physical commonsense in natural language, 2019. URL <https://arxiv.org/abs/1911.11641>.

540 David Brandfonbrener, Nikhil Anand, Nikhil Vyas, Eran Malach, and Sham Kakade. Loss-to-loss
 541 prediction: Scaling laws for all datasets. *arXiv preprint arXiv:2411.12925*, 2024.

542

543 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
 544 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
 545 Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
 546 Jeff Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Matousz Litwin, Scott Gray,
 547 Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
 548 and Dario Amodei. Language models are few-shot learners. *ArXiv*, abs/2005.14165, 2020. URL
 549 <https://api.semanticscholar.org/CorpusID:218971783>.

550

551 Ryan Burnell, Hank Hao, Andrew R. A. Conway, and José Hernández Orallo. Revealing the
 552 structure of language model capabilities. *ArXiv*, abs/2306.10062, 2023. URL <https://api.semanticscholar.org/CorpusID:259202736>.

553

554 J Quiñonero Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D Lawrence. Dataset shift
 555 in machine learning. *The MIT Press*, 1:5, 2009.

556

557 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
 558 Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions, 2019. URL
 559 <https://arxiv.org/abs/1905.10044>.

560

561 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
 562 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
 563 *arXiv:1803.05457v1*, 2018.

564

565 Karl Cobbe, Vineet Kosaraju, Mo Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
 566 Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman.
 567 Training verifiers to solve math word problems. *ArXiv*, abs/2110.14168, 2021. URL <https://api.semanticscholar.org/CorpusID:239998651>.

568

569 Ido Dagan, Oren Glickman, and Bernardo Magnini. The PASCAL recognising textual entailment
 570 challenge. In *Machine learning challenges. evaluating predictive uncertainty, visual object*
 571 *classification, and recognising textual entailment*, pp. 177–190. Springer, 2006.

572

573 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
 574 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 575 pp. 248–255. Ieee, 2009.

576

577 William B Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
 578 In *Proceedings of the International Workshop on Paraphrasing*, 2005.

579

580 Ricardo Dominguez-Olmedo, Florian E Dorner, and Moritz Hardt. Training on the test task confounds
 581 evaluation and emergence. *arXiv preprint arXiv:2407.07890*, 2024.

582

583 Zhengxiao Du, Aohan Zeng, Yuxiao Dong, and Jie Tang. Understanding emergent abilities of
 584 language models from the loss perspective. In *The Thirty-eighth Annual Conference on Neural*
 585 *Information Processing Systems*, 2024.

586

587 Nicholas I. Fisher and Pranab Kumar Sen. Probability inequalities for sums of bounded random vari-
 588 ables. 1994. URL <https://api.semanticscholar.org/CorpusID:123205318>.

589

590 Clémentine Fourrier, Nathan Habib, Alina Lozovskaya, Konrad Szafer, and Thomas Wolf. Open
 591 llm leaderboard v2. https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard, 2024.

592

593 Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao Nguyen,
 594 Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, Eyal Orgad, Rahim Entezari,
 595 Giannis Daras, Sarah Pratt, Vivek Ramanujan, Yonatan Bitton, Kalyani Marathe, Stephen Muss-
 596 mann, Richard Vencu, Mehdi Cherti, Ranjay Krishna, Pang Wei Koh, Olga Saukh, Alexander J.
 597 Ratner, Shuran Song, Hannaneh Hajishirzi, Ali Farhadi, Romain Beaumont, Sewoong Oh, Alexan-
 598 dros G. Dimakis, Jenia Jitsev, Yair Carmon, Vaishaal Shankar, and Ludwig Schmidt. Datacomp:
 599 In search of the next generation of multimodal datasets. *ArXiv*, abs/2304.14108, 2023. URL
 600 <https://api.semanticscholar.org/CorpusID:258352812>.

594 Samir Yitzhak Gadre, Georgios Smyrnis, Vaishaal Shankar, Suchin Gururangan, Mitchell Worts-
 595 man, Rulin Shao, Jean-Pierre Mercat, Alex Fang, Jeffrey Li, Sedrick Scott Keh, Rui Xin, Mar-
 596 ianna Nezhurina, Igor Vasiljevic, Jenia Jitsev, Alexandros G. Dimakis, Gabriel Ilharco, Shuran
 597 Song, Thomas Kollar, Yair Carmon, Achal Dave, Reinhard Heckel, Niklas Muennighoff, and
 598 Ludwig Schmidt. Language models scale reliably with over-training and on downstream tasks.
 599 *ArXiv*, abs/2403.08540, 2024. URL <https://api.semanticscholar.org/CorpusID:268379614>.
 600

601 Deep Ganguli, Danny Hernandez, Liane Lovitt, Amanda Askell, Yuntao Bai, Anna Chen, Tom
 602 Conerly, Nova Dassarma, Dawn Drain, Nelson Elhage, et al. Predictability and surprise in large
 603 generative models. In *Proceedings of the 2022 ACM Conference on Fairness, Accountability, and*
 604 *Transparency*, pp. 1747–1764, 2022.

605

606 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
 607 Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
 608 Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
 609 Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
 610 language model evaluation, 12 2023. URL <https://zenodo.org/records/10256836>.

611 Gemini. Gemini: A family of highly capable multimodal models. *arXiv*, 2023.

612

613 Gemma, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
 614 raju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma 2:
 615 Improving open language models at a practical size. *arXiv preprint arXiv:2408.00118*, 2024.

616

617 Adhiraj Ghosh, Sebastian Dziadzio, Ameya Prabhu, Vishaal Udandarao, Samuel Albanie, and
 618 Matthias Bethge. Onebench to test them all: Sample-level benchmarking over open-ended
 619 capabilities. *arXiv preprint arXiv:2412.06745*, 2024.

620

621 Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third PASCAL recognizing
 622 textual entailment challenge. In *Proceedings of the ACL-PASCAL workshop on textual entailment*
 623 and paraphrasing

624 pp. 1–9. Association for Computational Linguistics, 2007.

625

626 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 627 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
 628 models. *arXiv preprint arXiv:2407.21783*, 2024.

629

630 Yuling Gu, Oyvind Tafjord, Bailey Kuehl, Dany Haddad, Jesse Dodge, and Hanna Hajishirzi.
 631 Olmes: A standard for language model evaluations. *ArXiv*, abs/2406.08446, 2024. URL <https://api.semanticscholar.org/CorpusID:270391754>.

632

633 Etash Kumar Guha, Ryan Marten, Sedrick Scott Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal,
 634 Marianna Nezhurina, Jean-Pierre Mercat, Trung Vu, Zayne Sprague, Ashima Suvarna, Ben Feuer,
 635 Liangyu Chen, Zaid Khan, Eric Frankel, Sachin Grover, Caroline Choi, Niklas Muennighoff,
 636 Shiye Su, Wanja Zhao, John Yang, Shreyas Pimpalaonkar, Kartik Sharma, Charlie Cheng-
 637 Jie Ji, Yichuan Deng, Sarah Pratt, Vivek Ramanujan, Jon Saad-Falcon, Jeffrey Li, Achal Dave,
 638 Alon Albalak, Kushal Arora, Blake Wulfe, Chinmay Hegde, Greg Durrett, Sewoong Oh, Mohit
 639 Bansal, Saadia Gabriel, Aditya Grover, Kai-Wei Chang, Vaishaal Shankar, Aaron Gokaslan,
 640 Mike A. Merrill, Tatsumori Hashimoto, Yejin Choi, Jenia Jitsev, Reinhard Heckel, Maheswaran
 641 Sathiamoorthy, Alexandros G. Dimakis, and Ludwig Schmidt. Openthoughts: Data recipes for
 642 reasoning models. *ArXiv*, abs/2506.04178, 2025. URL <https://api.semanticscholar.org/CorpusID:279154475>.

643

644 Daya Guo, Dejian Yang, Huawei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 645 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 646 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

647

648 Moritz Hardt. The emerging science of machine learning benchmarks. Online at <https://mlbenchmarks.org>, 2025. Manuscript.

649

650 Moritz Hardt and Benjamin Recht. *Patterns, predictions, and actions: Foundations of machine*
 651 *learning*. Princeton University Press, 2022.

648 David Heineman, Valentin Hofmann, Ian Magnusson, Yuling Gu, Noah A. Smith, Hanna Hajishirzi,
 649 Kyle Lo, and Jesse Dodge. Signal and noise: A framework for reducing uncertainty in language
 650 model evaluation. *ArXiv*, abs/2508.13144, 2025. URL <https://api.semanticscholar.org/CorpusID:280676983>.
 651

652 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Xiaodong Song, and
 653 Jacob Steinhardt. Measuring massive multitask language understanding. *ArXiv*, abs/2009.03300,
 654 2020. URL <https://api.semanticscholar.org/CorpusID:221516475>.
 655

656 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 657 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
 658 Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia
 659 Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and L. Sifre.
 660 Training compute-optimal large language models. *ArXiv*, abs/2203.15556, 2022. URL <https://api.semanticscholar.org/CorpusID:247778764>.
 661

662 J. Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
 663 Chen. Lora: Low-rank adaptation of large language models. *ArXiv*, abs/2106.09685, 2021. URL
 664 <https://api.semanticscholar.org/CorpusID:235458009>.
 665

666 Maggie Huan, Yuetai Li, Tuney Zheng, Xiaoyu Xu, Seungone Kim, Minxin Du, Radha Pooven-
 667 dran, Graham Neubig, and Xiang Yue. Does math reasoning improve general llm capabilities?
 668 understanding transferability of llm reasoning. *arXiv preprint arXiv:2507.00432*, 2025.
 669

670 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
 671 Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
 672 *arXiv preprint arXiv:2001.08361*, 2020.

673 Maurice G Kendall. A new measure of rank correlation. *Biometrika*, 30(1-2):81–93, 1938.

674 Maurice G Kendall. The treatment of ties in ranking problems. *Biometrika*, 33(3):239–251, 1945.

675 Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models transfer better?
 676 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 677 2661–2671, 2019.

678 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
 679 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
 680 Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
 681 Petrov. Natural questions: A benchmark for question answering research. *Transactions of the
 682 Association for Computational Linguistics*, 7:452–466, 2019. doi: 10.1162/tacl_a_00276. URL
 683 <https://aclanthology.org/Q19-1026/>.
 684

685 Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
 686 tuning. In *Conference on Empirical Methods in Natural Language Processing*, 2021. URL
 687 <https://api.semanticscholar.org/CorpusID:233296808>.
 688

689 Hector J Levesque, Ernest Davis, and Leora Morgenstern. The Winograd schema challenge. In *AAAI
 690 Spring Symposium: Logical Formalizations of Commonsense Reasoning*, volume 46, pp. 47, 2011.

691 Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
 692 Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of language
 693 models. *Annals of the New York Academy of Sciences*, 1525:140 – 146, 2023. URL <https://api.semanticscholar.org/CorpusID:253553585>.
 694

695 Thomas Liao, Rohan Taori, Inioluwa Deborah Raji, and Ludwig Schmidt. Are we learning yet? a
 696 meta review of evaluation failures across machine learning. In *Thirty-fifth Conference on Neural
 697 Information Processing Systems Datasets and Benchmarks Track (Round 2)*, 2021.

698 Mark Liberman. Obituary: Fred Jelinek. *Computational Linguistics*, 36(4):595–599, 2010.
 699

700

702 Haowei Lin, Baizhou Huang, Haotian Ye, Qinyu Chen, Zihao Wang, Sujian Li, Jianzhu Ma, Xiaojun
 703 Wan, James Zou, and Yitao Liang. Selecting large language model to fine-tune via rectified
 704 scaling law. *ArXiv*, abs/2402.02314, 2024. URL <https://api.semanticscholar.org/CorpusID:267411718>.

705

706 Hong Liu, Sang Michael Xie, Zhiyuan Li, and Tengyu Ma. Same pre-training loss, better downstream:
 707 Implicit bias matters for language models. In *International Conference on Machine Learning*, pp.
 708 22188–22214. PMLR, 2023.

709

710 Nicholas Lourie, Michael Y. Hu, and Kyunghyun Cho. Scaling laws are unreliable for down-
 711 stream tasks: A reality check. *ArXiv*, abs/2507.00885, 2025a. URL <https://api.semanticscholar.org/CorpusID:280148143>.

712

713 Nicholas Lourie, Michael Y. Hu, and Kyunghyun Cho. Scaling laws are unreliable for downstream
 714 tasks: A reality check. *arXiv preprint arXiv:2507.00885*, 2025b.

715

716 Ian Magnusson, Akshita Bhagia, Valentin Hofmann, Luca Soldaini, A. Jha, Oyvind Tafjord, Dustin
 717 Schwenk, Pete Walsh, Yanai Elazar, Kyle Lo, Dirk Groeneveld, Iz Beltagy, Hanna Hajishirzi,
 718 Noah A. Smith, Kyle Richardson, and Jesse Dodge. Paloma: A benchmark for evaluating language
 719 model fit. *ArXiv*, abs/2312.10523, 2023. URL <https://api.semanticscholar.org/CorpusID:266348815>.

720

721 Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
 722 Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. <https://github.com/huggingface/peft>, 2022.

723

724 Prasanna Mayilvahanan, Thaddäus Wiedemer, Sayak Mallick, Matthias Bethge, and Wieland Brendel.
 725 Llms on the line: Data determines loss-to-loss scaling laws. In *Forty-second International
 726 Conference on Machine Learning*, 2025.

727

728 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
 729 electricity? a new dataset for open book question answering. In Ellen Riloff, David Chiang,
 730 Julia Hockenmaier, and Jun’ichi Tsujii (eds.), *Proceedings of the 2018 Conference on Empirical
 731 Methods in Natural Language Processing*, pp. 2381–2391, Brussels, Belgium, October–November
 732 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1260. URL <https://aclanthology.org/D18-1260/>.

733

734 John Miller, Karl Krauth, Benjamin Recht, and Ludwig Schmidt. The effect of natural distribution
 735 shift on question answering models. In *International conference on machine learning*, pp. 6905–
 736 6916. PMLR, 2020.

737

738 Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela. Adversarial
 739 nli: A new benchmark for natural language understanding, 2020. URL <https://arxiv.org/abs/1910.14599>.

740

741 OpenAI. Gpt-4 technical report. *arXiv*, 2023. URL <http://arxiv.org/abs/2303.08774>.

742

743 David Owen. How predictable is language model benchmark performance? *ArXiv*, abs/2401.04757,
 744 2024. URL <https://api.semanticscholar.org/CorpusID:266902823>.

745

746 Ankit Pal, Logesh Kumar Umapathi, and Malaikannan Sankarasubbu. Medmcqa : A large-scale
 747 multi-subject multi-choice dataset for medical domain question answering, 2022. URL <https://arxiv.org/abs/2203.14371>.

748

749 Mohammad Taher Pilehvar and Jose Camacho-Collados. Wic: the word-in-context dataset for
 750 evaluating context-sensitive meaning representations. *arXiv preprint arXiv:1808.09121*, 2018.

751

752 Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
 753 models are unsupervised multitask learners. In *OpenAI Technical Report*, 2019. URL <https://api.semanticscholar.org/CorpusID:160025533>. OpenAI technical report.

754

755 Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
 756 for machine comprehension of text. In *Proceedings of EMNLP*, pp. 2383–2392. Association for
 757 Computational Linguistics, 2016.

756 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
 757 and Ilya Sutskever. Zero-shot text-to-image generation. *ArXiv*, abs/2102.12092, 2021. URL
 758 <https://api.semanticscholar.org/CorpusID:232035663>.

759 Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
 760 generalize to imagenet?, 2019. URL <https://arxiv.org/abs/1902.10811>.

762 Yangjun Ruan, Chris J. Maddison, and Tatsunori B. Hashimoto. Observational scaling laws and
 763 the predictability of language model performance. *ArXiv*, abs/2405.10938, 2024. URL <https://api.semanticscholar.org/CorpusID:269899695>.

765 Olawale Salaudeen and Moritz Hardt. Imagenot: A contrast with imagenet preserves model rankings.
 766 *arXiv preprint arXiv:2404.02112*, 2024.

768 Olawale Salaudeen, Anka Reuel, Ahmed M. Ahmed, Suhana Bedi, Zachary Robertson, Sudharsan
 769 Sundar, Ben Domingue, Angelina Wang, and Oluwasanmi Koyejo. Measurement to meaning:
 770 A validity-centered framework for ai evaluation. *ArXiv*, abs/2505.10573, 2025. URL <https://api.semanticscholar.org/CorpusID:278715024>.

772 Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialqa: Commonsense
 773 reasoning about social interactions, 2019. URL <https://arxiv.org/abs/1904.09728>.

775 Tal Shnitzer, Anthony Ou, M'irian Silva, Kate Soule, Yuekai Sun, Justin Solomon, Neil
 776 Thompson, and Mikhail Yurochkin. Large language model routing with benchmark datasets.
 777 *ArXiv*, abs/2309.15789, 2023. URL <https://api.semanticscholar.org/CorpusID:263151991>.

779 Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Ng, and
 780 Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
 781 In *Proceedings of EMNLP*, pp. 1631–1642, 2013.

783 Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
 784 Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond
 785 the imitation game: Quantifying and extrapolating the capabilities of language models.
 786 *ArXiv*, abs/2206.04615, 2022. URL <https://api.semanticscholar.org/CorpusID:263625818>.

788 Mirac Suzgun, Nathan Scales, Nathanael Scharli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
 789 Akanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging big-bench
 790 tasks and whether chain-of-thought can solve them. In *Annual Meeting of the Association for Com-
 791 putational Linguistics*, 2022. URL <https://api.semanticscholar.org/CorpusID:252917648>.

793 Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
 794 answering challenge targeting commonsense knowledge, 2019. URL <https://arxiv.org/abs/1811.00937>.

797 Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht, and Ludwig Schmidt.
 798 Measuring robustness to natural distribution shifts in image classification. *Advances in Neural
 799 Information Processing Systems*, 33:18583–18599, 2020.

800 Antonio Torralba and Alexei A Efros. Unbiased look at dataset bias. In *CVPR 2011*, pp. 1521–1528.
 801 IEEE, 2011.

802 Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Andrew Ilyas, and Aleksander Madry. From
 803 imagenet to image classification: Contextualizing progress on benchmarks. In *International
 804 Conference on Machine Learning*, 2020. URL <https://api.semanticscholar.org/CorpusID:218862858>.

807 David Vilares and Carlos Gómez-Rodríguez. HEAD-QA: A healthcare dataset for complex reasoning.
 808 In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pp.
 809 960–966, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/
 P19-1092. URL <https://www.aclweb.org/anthology/P19-1092>.

810 Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network acceptability judgments.
 811 *arXiv preprint 1805.12471*, 2018.

812

813 Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
 814 Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
 815 *Transactions on Machine Learning Research*, 2022.

816 Laura Weidinger, Deborah Raji, Hanna Wallach, Margaret Mitchell, Angelina Wang, Olawale
 817 Salaudeen, Rishi Bommasani, Sayash Kapoor, Deep Ganguli, Sanmi Koyejo, and William Isaac.
 818 Toward an evaluation science for generative ai systems. *ArXiv*, abs/2503.05336, 2025. URL
 819 <https://api.semanticscholar.org/CorpusID:276884979>.

820

821 Johannes Welbl, Nelson F. Liu, and Matt Gardner. Crowdsourcing multiple choice science questions,
 822 2017. URL <https://arxiv.org/abs/1707.06209>.

823

824 Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus for
 825 sentence understanding through inference. In *Proceedings of NAACL-HLT*, 2018.

826

827 Mengzhou Xia, Mikel Artetxe, Chunting Zhou, Xi Victoria Lin, Ramakanth Pasunuru, Danqi Chen,
 828 Luke Zettlemoyer, and Veselin Stoyanov. Training trajectories of language models across scales.
 829 In *The 61st Annual Meeting Of The Association For Computational Linguistics*, 2023.

830

831 Chhavi Yadav and Léon Bottou. Cold case: The lost mnist digits. In *Neural Information Processing
 832 Systems*, 2019. URL <https://api.semanticscholar.org/CorpusID:166227957>.

833

834 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 835 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 836 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
 837 Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
 838 Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
 839 Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
 840 <https://arxiv.org/abs/2412.15115>.

841

842 Alex Young, Bei Chen, Chao Li, Chengan Huang, Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng
 843 Zhu, Jianqun Chen, Jing Chang, Kaidong Yu, Peng Liu, Qiang Liu, Shawn Yue, Senbin Yang,
 844 Shiming Yang, Tao Yu, Wen Xie, Wenhao Huang, Xiaohui Hu, Xiaoyi Ren, Xinyao Niu, Pengcheng
 845 Nie, Yuchi Xu, Yudong Liu, Yue Wang, Yuxuan Cai, Zhenyu Gu, Zhiyuan Liu, and Zonghong
 846 Dai. Yi: Open foundation models by 01.ai. *ArXiv*, abs/2403.04652, 2024. URL <https://api.semanticscholar.org/CorpusID:268264158>.

847

848 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
 849 really finish your sentence?, 2019. URL <https://arxiv.org/abs/1905.07830>.

850

851 Xinyue Zeng, Haohui Wang, Junhong Lin, Jun Wu, Tyler Cody, and Dawei Zhou. Lensllm: Unveiling
 852 fine-tuning dynamics for llm selection. *ArXiv*, abs/2505.03793, 2025. URL <https://api.semanticscholar.org/CorpusID:278367792>.

853

854 Biao Zhang, Zhongtao Liu, Colin Cherry, and Orhan Firat. When scaling meets llm finetuning:
 855 The effect of data, model and finetuning method. *ArXiv*, abs/2402.17193, 2024a. URL <https://api.semanticscholar.org/CorpusID:268032247>.

856

857 Guanhua Zhang and Moritz Hardt. Inherent trade-offs between diversity and stability in multi-task
 858 benchmarks. *arXiv preprint arXiv:2405.01719*, 2024.

859

860 Jieyu Zhang, Weikai Huang, Zixian Ma, Oscar Michel, Dong He, Tanmay Gupta, Wei-Chiu Ma, Ali
 861 Farhadi, Aniruddha Kembhavi, and Ranjay Krishna. Task me anything. *ArXiv*, abs/2406.11775,
 862 2024b. URL <https://api.semanticscholar.org/CorpusID:270560772>.

863

864 **A ADDITIONAL EXPERIMENT SETTING**
865866 **A.1 BENCHMARK SELECTION**
867868 We begin our study with the `lm-eval-harness` package (Gao et al., 2023), which offers a com-
869 prehensive suite of language model benchmarks. To accommodate the train-before-test methodology
870 which requires a dedicated training set for fine-tuning, we first identify benchmarks that provide at
871 least 1,000 training examples. This yields a total of 37 benchmarks.872 These benchmarks can be broadly categorized as 28 likelihood-based and 9 generation-based bench-
873 marks. Likelihood-based evaluations test for the likelihood of different completions given some
874 input string; for example, different answer choices given a multiple-choice input question. Since the
875 number of completions is usually small, likelihood-based evaluations are generally compute-efficient.
876877 Generation-based evaluations, in contrast, generate some output response given an input query. If
878 responses tend to be long, then generation-based evaluations naturally become compute-intensive.
879 This is particularly true for base models, which are usually not trained for instruction following and
880 therefore continue to generate tokens until hitting their maximum token limit. These generation-based
881 benchmarks are also over-challenging for smaller models with limited parameters, such as GPT-
882 2 (Radford et al., 2019). Therefore, we exclude seven generation-based benchmarks, Drop, CoQA,
883 ReCoRD, bAbi, WebQA, TriviaQA and F1d-Default. Nevertheless, we retain two widely
884 used generation-based benchmarks, GSM8K and NQ-Open, in our experiments.885 We additionally excluded five benchmarks due to anomalies observed during fine-tuning:
886 MedQA-4Options, LogiQA, Mutual, Mela-EN, and Swag. For these benchmarks, more
887 than 20% of models, most of which are small models with fewer than 0.5B parameters, showed
888 no performance improvement after fine-tuning. We also excluded Paws-EN, as its corresponding
889 model ranking under direct evaluation was negatively correlated (Kendall’s τ less than zero) with 23
890 out of 24 other benchmarks. We attribute this anomaly to the unusual prompting template used by
891 `lm-eval-harness`.892 Our final selection includes 24 benchmarks: MNLI (Williams et al., 2018), QNLI (Rajpurkar et al.,
893 2016), RTE (Dagan et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009), CoLA (Warstadt
894 et al., 2018), SST-2 (Socher et al., 2013), MRPC (Dolan & Brockett, 2005), QQP, WiC (Pilehvar
895 & Camacho-Collados, 2018), ANLI (Nie et al., 2020), Winogrande (Levesque et al., 2011),
896 CommonsenseQA (Talmor et al., 2019), Hellaswag (Zellers et al., 2019), Social-IQA (Sap
897 et al., 2019), OpenBookQA (Mihaylov et al., 2018), NQ-Open (Kwiatkowski et al., 2019),
898 BoolQ (Clark et al., 2019), ARC-Easy, ARC-Challenge (Clark et al., 2018), SciQ (Welbl
899 et al., 2017), PiQA (Bisk et al., 2019), MathQA (Amini et al., 2019), GSM8K (Cobbe et al., 2021),
900 MedMCQA (Pal et al., 2022), HeadQA (Vilares & Gómez-Rodríguez, 2019).901 **A.2 EVALUATION SETUP**
902903 For our train-before-test evaluations, we fine-tune each model for five epochs and select the best-
904 performing checkpoint based on evaluations on a separate validation set. We use the AdamW
905 optimizer with a weight decay of 0.01. For each model-benchmark combination, we perform a
906 hyperparameter search over three learning rates $\{1e-5, 2e-5, 5e-5\}$ and select the optimal one
907 based on validation performance. To reduce memory consumption, we employ parameter-efficient
908 fine-tuning (PEFT) (Hu et al., 2021; Mangrulkar et al., 2022). We use a LoRA configuration with
909 rank 8, $\alpha = 32$, and dropout 0.1. Most of our experiments are conducted on Quadro RTX 6000, Tesla
910 V100-SXM2-32GB and NVIDIA A100-SXM4-80GB GPUs.911 In cases where models show no performance improvement after fine-tuning, we report their pre-
912 fine-tuning results. This scenario is rare and typically occur with smaller models (less than 500M
913 parameters) that lack the capacity to perform certain tasks, resulting in near-random performance
914 both before and after fine-tuning. Additionally, since all training datasets in our study are publicly
915 available, some models may have encountered this data during pre-training, potentially limiting the
916 benefits of additional fine-tuning.917 For instruction-tuned models, we evaluate performance both with and without chat templates, selecting
918 the configuration that yields better results. Specifically, during direct evaluation, we assess model

918 performance on the validation set under both conditions and apply the better-performing configuration
919 to the test set. In the train-before-test setting, we similarly fine-tune two variants: one with training
920 data formatted using chat templates and one without. We then select the approach that achieves the
921 best performance on the validation set for final evaluation.

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

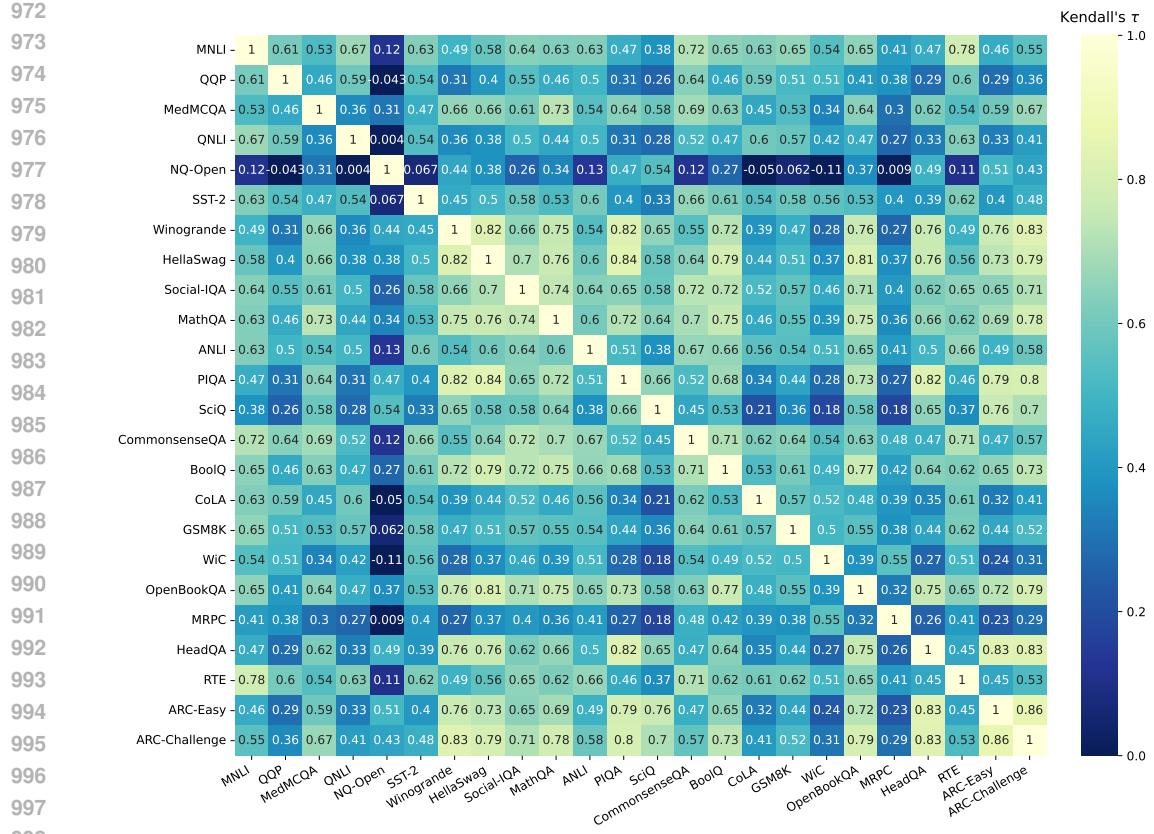


Figure 9: Cross benchmark ranking agreement under direct evaluation. Benchmarks are sorted based on the training dataset size. Kendall's τ is calculated for every benchmark pair.

B ADDITIONAL EXPERIMENT RESULTS

B.1 DOWNSTREAM RANKING AGREEMENT

We plot detailed pairwise ranking correlation agreement between benchmarks in Figure 9 (direct evaluation) and 10 (train-before-test), corresponding to Figure 2 in the main text.

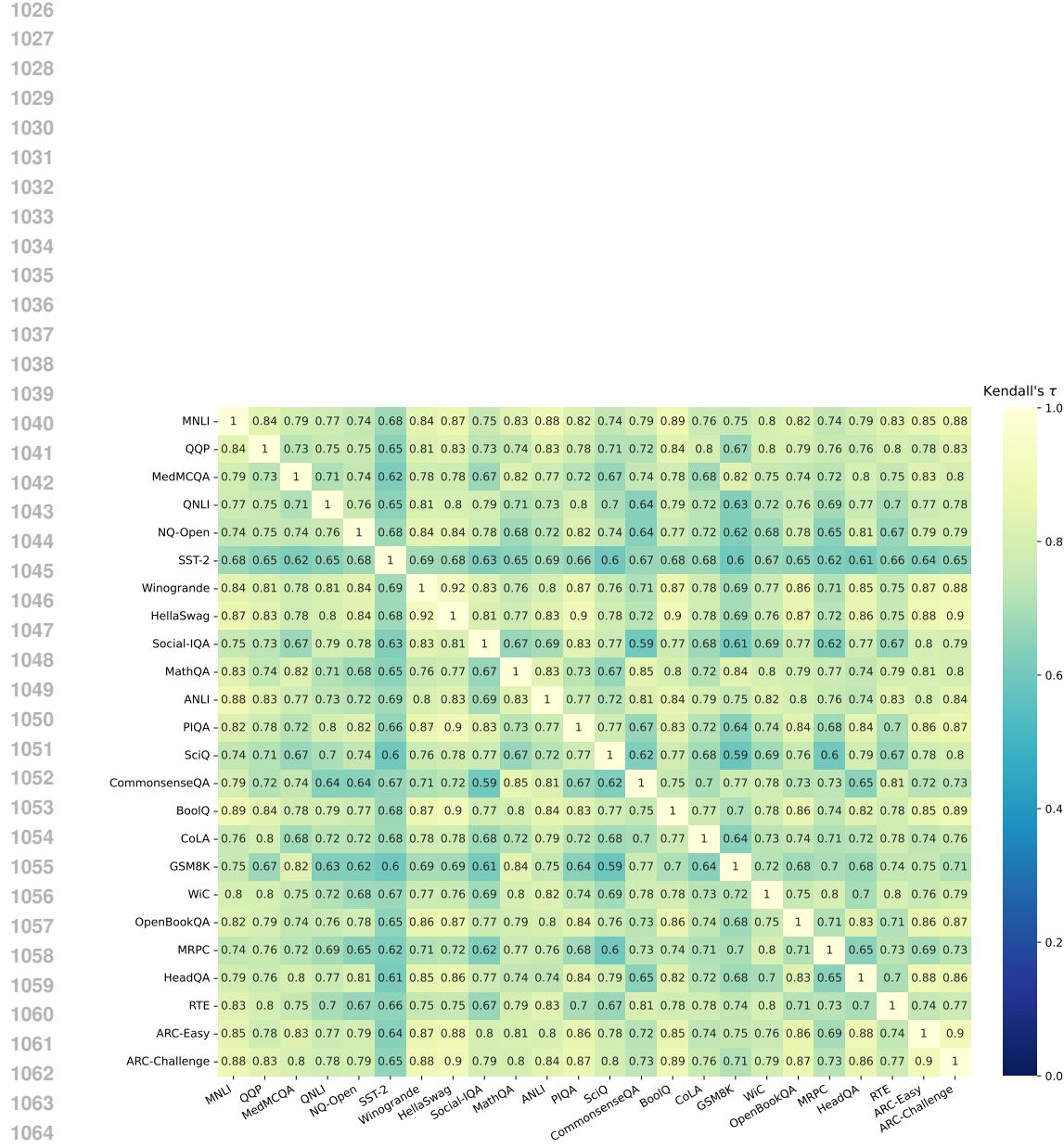


Figure 10: Cross benchmark ranking agreement under train-before-test. Benchmarks are sorted based on the training dataset size. Kendall's τ is calculated for every benchmark pair.

1080 Table 3: Bits per byte (BPB) of eight excluded GEMMA models compared to PYTHIA-410M across
 1081 the three newly collected corpora. The GEMMA models exhibit abnormally high BPB values on Wiki
 1082 and Stack, likely due to the greater average sequence length in these two datasets. Specifically,
 1083 Arxiv has an average of 163 words per document, compared to 250 for Stack and 1502 for Wiki.

	Arxiv	Wiki	Stack
GEMMA-2B	0.766	1.578	1.139
GEMMA-2B-IT	0.770	1.524	1.222
GEMMA-7B	1.013	4.780	4.053
GEMMA-7B-IT	1.053	18.711	20.958
GEMMA-2-2B	0.730	1.784	1.340
GEMMA-2-2B-IT	0.705	1.191	0.997
GEMMA-2-9B	0.709	2.216	1.685
GEMMA-2-9B-IT	0.638	1.234	0.978
PYTHIA-410M	0.791	1.065	0.945

B.2 PERPLEXITY RANKING AGREEMENT

In this work, we collect three corpora from Wikipedia, StackExchange, and arXiv. We only collect documents from 2025. More specifically, we collect 3,366 documents for Wiki, 6,001 for StackExchange and 44,384 documents for arXiv. These datasets are split into training, validation, and testing sets, in an 8:1:1 ratio. For arXiv, we utilize only the paper abstracts, while for StackExchange, we use only the questions. Consequently, the average document length is 163 words for arXiv, 250 words for StackExchange, and 1,502 words for Wikipedia.

We exclude GEMMA models from our perplexity agreement experiments, as lm-eval-harness provides unreliable perplexity measurements for GEMMA models². We report the bits per byte (BPB) for the GEMMA models in Table 3. While the BPB values for GEMMA on arXiv (the dataset with the shortest average sequence length) are mostly reasonable, the performance on StackExchange and Wikipedia is notably worse, even compared to smaller models like PYTHIA-410M.

This anomaly stems from how lm-eval-harness handles long sequences via a rolling window mechanism. Unlike other models, GEMMA requires every input sequence to begin with the BOS token. If this constraint is not met, perplexity degrades significantly. Consequently, when processing long sequences that are chunked into multiple windows, GEMMA’s performance degrades.

B.3 PC1 SCORE UNDER TRAIN-BEFORE-TEST

We plot the PC1 scores under train-before-test in Figure 11. We also provide the pre-training compute details for models with publicly available training token counts, as shown in Table 4.

²See discussion at <https://github.com/huggingface/transformers/issues/29250>.

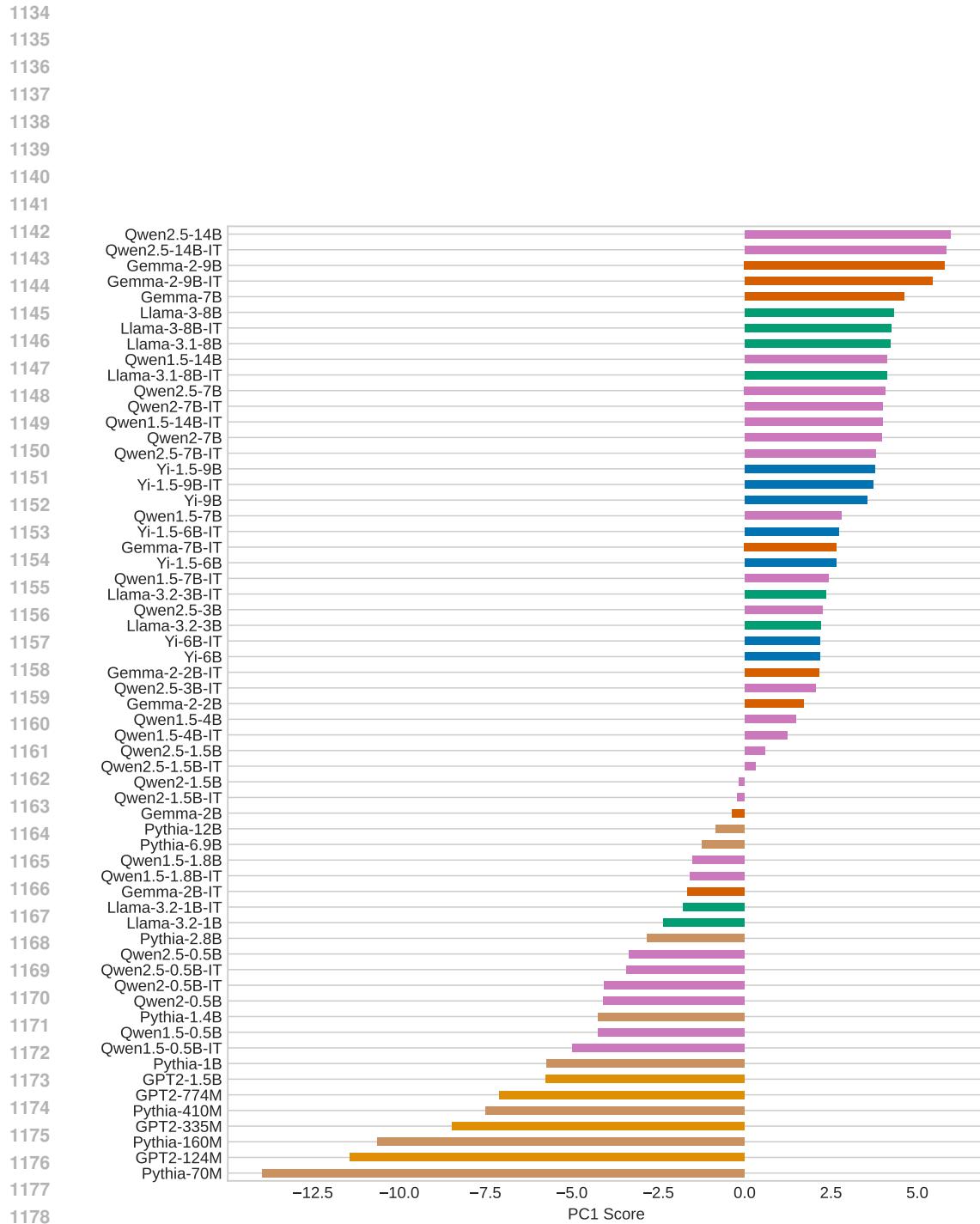


Figure 11: PC1 scores under train-before-test.

1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195

1196 Table 4: The models used in Figure 7. The number of training tokens of these models is publicly
 1197 available. We compute the number of pre-training FLOPs as $6 \times \#Parameters \times \#Tokens$.

1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

Model	#Parameters (B)	#Tokens (B)	#FLOPs (10^18)
Llama-3-8B	8.03	15000.0	722700.00
Llama-3-8B-IT	8.03	15000.0	722700.00
Llama-3.1-8B	8.03	15000.0	722700.00
Llama-3.1-8B-IT	8.03	15000.0	722700.00
Llama-3.2-3B	3.21	9000.0	173340.00
Llama-3.2-3B-IT	3.21	9000.0	173340.00
Qwen1.5-0.5B	0.62	2400.0	8928.00
Qwen1.5-1.8B	1.84	2400.0	26496.00
Qwen1.5-4B	3.95	2400.0	56880.00
Qwen1.5-7B	7.72	4000.0	185280.00
Qwen1.5-14B	14.20	4000.0	340800.00
Qwen1.5-0.5B-IT	0.62	2400.0	8928.00
Qwen1.5-1.8B-IT	1.84	2400.0	26496.00
Qwen1.5-4B-IT	3.95	2400.0	56880.00
Qwen1.5-7B-IT	7.72	4000.0	185280.00
Qwen1.5-14B-IT	14.20	4000.0	340800.00
Gemma-7B	8.54	6000.0	307440.00
Gemma-7B-IT	8.54	6000.0	307440.00
Gemma-2-2B	2.61	2000.0	31320.00
Gemma-2-2B-IT	2.61	2000.0	31320.00
Gemma-2-9B	9.24	8000.0	443520.00
Gemma-2-9B-IT	9.24	8000.0	443520.00
Pythia-70M	0.07	300.0	126.00
Pythia-160M	0.16	300.0	288.00
Pythia-410M	0.41	300.0	738.00
Pythia-1B	1.00	300.0	1800.00
Pythia-1.4B	1.40	300.0	2520.00
Pythia-2.8B	2.80	300.0	5040.00
Pythia-6.9B	6.90	300.0	12420.00
Pythia-12B	12.00	300.0	21600.00
Yi-6B	6.06	3000.0	109080.00
Yi-6B-IT	6.06	3000.0	109080.00
Yi-9B	8.83	3800.0	201324.00
Yi-1.5-6B	6.06	3600.0	130896.00
Yi-1.5-6B-IT	6.06	3600.0	130896.00
Yi-1.5-9B	8.83	3600.0	190728.00
Yi-1.5-9B-IT	8.83	3600.0	190728.00

1242 Table 5: We calculate Kendall’s τ between each benchmark and every other benchmark, and then
 1243 average the results.

	Direct evaluation (0 shot)	Direct evaluation (5 shot)	Train-before-test
1246 NQ-Open	0.23	0.44	0.74
1247 MRPC	0.34	0.39	0.71
1248 WiC	0.39	0.58	0.75
1249 QNLI	0.43	0.58	0.74
1250 QQP	0.43	0.62	0.77
1251 CoLA	0.45	0.65	0.73
1252 SciQ	0.47	0.49	0.71
1253 SST-2	0.50	0.62	0.65
1254 GSM8K	0.51	0.62	0.70
1255 ANLI	0.54	0.56	0.78
1256 MedMCQA	0.55	0.66	0.75
1257 RTE	0.55	0.59	0.74
1258 HeadQA	0.55	0.62	0.77
1259 ARC-Easy	0.55	0.63	0.80
1260 MNLI	0.56	0.63	0.80
1261 PIQA	0.56	0.62	0.78
1262 Winogrande	0.58	0.63	0.80
1263 CommonsenseQA	0.58	0.65	0.72
1264 Social-IQA	0.60	0.67	0.73
1265 ARC-Challenge	0.61	0.70	0.81
1266 HellaSwag	0.61	0.65	0.81
1267 MathQA	0.61	0.67	0.76
1268 OpenBookQA	0.61	0.64	0.78
1269 BoolQ	0.61	0.68	0.80

B.4 FEW-SHOT EVALUATION

We perform a 5-shot direct evaluation for all 61 models on 24 benchmarks to examine its impact (Gu et al., 2024) on cross-benchmark ranking agreement. The overall average Kendall’s τ is 0.52 for direct evaluation (0-shot), 0.61 for direct evaluation (5-shot), and 0.76 for train-before-test (0-shot). Train-before-test outperforms 5-shot direct evaluation on 89% of benchmark pairs. We also present the mean ranking agreement between each benchmark and all others in Table 5. Train-before-test achieves better ranking agreement across all benchmarks. We view in-context learning as a weaker form of task preparation compared to fine-tuning—both give models task preparation, but fine-tuning is more thorough.

B.5 IMPACT OF TEST SET SIZE

We experiment only with benchmarks with more than 2,000 test samples to understand how irreducible statistical noise (Fisher & Sen, 1994; Heineman et al., 2025) in test sets affects ranking agreement. The remaining benchmarks include MNLI, QQP, MedMCQA, QNLI, NQ-Open, HellaSwag, MathQA, BoolQ, HeadQA, and ARC-Easy. The overall average Kendall’s τ across all benchmark pairs is 0.51 for direct evaluation (0-shot), 0.63 for direct evaluation (5-shot), and 0.80 for train-before-test. In other words, while the test set size impacts the statistical significance of the test scores, the cross-benchmark ranking agreement remains largely unchanged.

1296 Table 6: The overall average Kendall’s τ across all benchmark pairs for models in each size bin.
1297

1298	Model size (B)	Direct evaluation	Train-before-test
1299	[0, 1)	0.38	0.65
1300	[1, 2)	0.53	0.56
1301	[2, 3)	0.45	0.70
1302	[6, 7)	0.34	0.42
1303	[7, 8)	0.19	0.28
1304	[9, 10)	0.15	0.43
1305	All models	0.52	0.76

1307
1308
1309
1310
1311 B.6 RANKING AGREEMENT FOR MODELS OF THE SAME SIZE1312 We group models into size bins, each containing at least 5 models, and compute the average Kendall’s
1313 τ across all benchmark pairs for each bin (Table 6). Train-before-test consistently enhances ranking
1314 consistency compared to direct evaluation in every bin. The lower consistency observed when
1315 controlling for model size (compared to 0.76 for all models) is expected. Model potential strongly
1316 correlates with pretraining compute, as shown in Section 3.4, so removing size variation reduces the
1317 primary signal that distinguishes models.1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

1350

Table 7: The overall average Kendall’s τ across all benchmark pairs for each model family.

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

Table 8: Explained variance ratios for the top five principal components of the score matrix for each model family, under direct evaluation and train-before-test, respectively.

Model Family	Direct Evaluation					Train-Before-Test				
	PC1	PC2	PC3	PC4	PC5	PC1	PC2	PC3	PC4	PC5
LLAMA	69%	21%	4%	3%	2%	90%	4%	3%	1%	1%
PYTHIA	61%	12%	9%	8%	6%	89%	8%	2%	1%	1%
QWEN	74%	9%	5%	3%	3%	93%	2%	1%	1%	1%
GEMMA	58%	27%	6%	4%	2%	92%	3%	2%	2%	1%
YI	48%	21%	12%	10%	6%	67%	17%	7%	5%	3%
ALL MODELS	70%	13%	4%	3%	2%	86%	7%	2%	1%	1%

B.7 RANKING AGREEMENT FOR MODELS OF THE SAME FAMILY

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404 C ACCOUNTING FOR STATISTICAL SIGNIFICANCE
14051406 C.1 RANKING ALIGNMENT IN FIGURE 1
14071408 We plot the rankings of 61 language models on two question-answering benchmarks: Natural
1409 Questions Open and ARC Challenge in Figure 1. We greedily align each ranking as much as possible
1410 without violating confidence intervals, thus revealing only those ranking changes that are statistically
1411 significant. See Algorithm 3 for more details.1412 C.2 DOWNSTREAM RANKING AGREEMENT
14131414 We additionally supplement the experiments presented in the main text by modifying the ranking
1415 correlation metric to account for statistical significance in the benchmark evaluations. Specifically,
1416 we use Kendall’s τ -b (Kendall, 1945), which adjusts for ties in rankings. We consider two models
1417 tied on a given benchmark if their performance difference is not statistically significant at the 95%
1418 confidence level. We assess statistical significance using a t-test based on the standard error of the
1419 mean performances.1420 We reproduce the ranking correlation figures of the main text using the modified Kendall’s τ which
1421 treats non-statistically significant performance differences as ties. See Figure 12 and 13; as well
1422 as Figure 14 and Figure 15 for more detailed results. We observe that accounting for statistical
1423 significance in models’ performance differences leads to slightly higher ranking correlations, as
1424 measured by Kendall’s τ -b. For direct evaluation, average agreement increases from 0.52 to 0.58.
1425 For train-before-test, average agreement increases from 0.76 to 0.77. Therefore, train-before-test
1426 continues to lead to large improvements in ranking agreement (from Kendall’s τ -b 0.58 to 0.77).
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

1458

1459

1460

Algorithm 1: build_partial_order(scores, stderrs)**Input:** Model performance scores and standard errors**Output:** Directed graph G representing significant model orderingsInitialize graph G with models as nodes**foreach** pair of distinct models (m_1, m_2) **do** **if** m_1 is significantly better than m_2 **then** Add directed edge $(m_1 \rightarrow m_2)$ to G **return** G

1469

1470

1471

1472

1473

1474

Algorithm 2: parallel_greedy_rank(models, G_1 , G_2 , score₁, score₂)**Input:** List of models, two directed graphs G_1 , G_2 , and two score series**Output:** Two lists representing the parallel ranking order for each taskInitialize vanillaRank₁, \leftarrow rankdata(score₁), vanillaRank₂ \leftarrow rankdata(score₂)Initialize available₁ and available₂ as models with zero in-degree in G_1 and G_2 Initialize empty lists order₁, order₂**for** $i = 1$ to number of models **do**

Initialize empty list pairs

foreach m_1 in available₁ **do** **foreach** m_2 in available₂ **do** Compute cost for pair (m_1, m_2) based on: (1) Placement of m_1 in order₂ and m_2 in order₁ (2) Whether $m_1 = m_2$ (prefer matching) (3) Combined vanilla ranks: vanillaRank₂[m_1] + vanillaRank₁[m_2] Append $(cost, m_1, m_2)$ to pairs

Sort pairs by cost (ascending)

 Select (m_1, m_2) with minimal cost Append m_1 to order₁, m_2 to order₂ Remove m_1 from G_1 and update available₁ Remove m_2 from G_2 and update available₂**return** order₁, order₂

1495

1496

1497

1498

1499

1500

Algorithm 3: rank_models(score₁, stderr₁, score₂, stderr₂)**Input:** Scores and standard errors for two tasks**Output:** Parallel rankings for both tasks $G_1 \leftarrow$ build_partial_order(score₁, stderr₁) $G_2 \leftarrow$ build_partial_order(score₂, stderr₂) $(order_1, order_2) \leftarrow$ parallel_greedy_rank(models, G_1 , G_2 , score₁, score₂)rank₁[m] = position of m in order₁ (starting from 1)rank₂[m] = position of m in order₂ (starting from 1)**return** rank₁, rank₂

1509

1510

1511

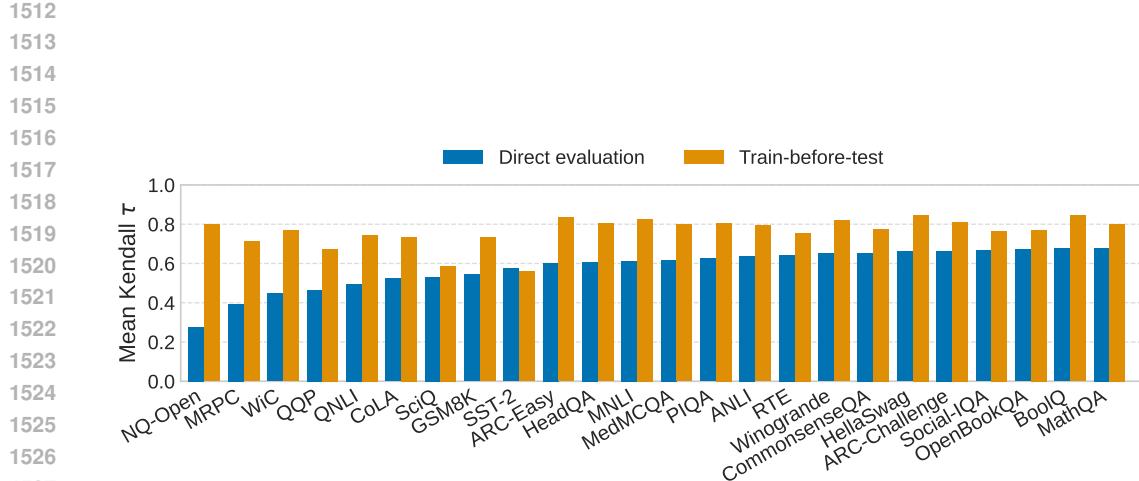


Figure 12: Mean ranking agreement between each benchmark and all others, measured by Kendall’s τ -b, with non-statistically significant performance differences being treated as ties. We calculate Kendall’s τ -b between each benchmark and every other one, and then average. Compared to direct evaluation, train-before-test consistently improves ranking agreement—often by a large margin. On average, the overall average Kendall’s τ is 0.58 for direct evaluation and 0.77 for train-before-test.

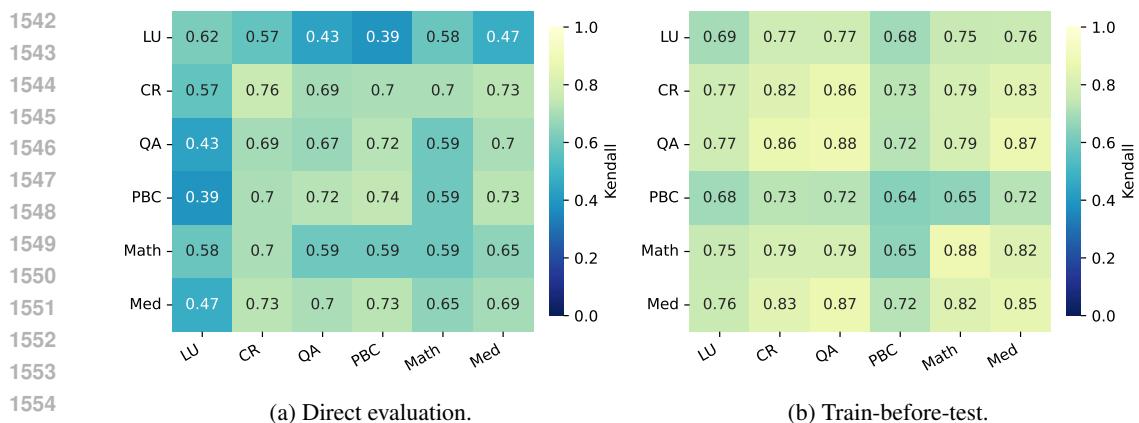


Figure 13: Cross-category ranking agreement for direct evaluation (left) and train-before-test (right), measured by Kendall’s τ -b, with non-statistically significant performance differences being treated as ties. We consider language understanding (LU), commonsense reasoning (CR), question answering (QA), physics/biology/chemistry (PBC), math (Math), and medicine (Med) categories. Kendall’s τ -b is averaged across all pairs of benchmarks that belong to two given categories. The diagonal represents the intra-category agreement and the others represent the inter-category agreement. train-before-test improves both intra- and inter-category ranking agreement in all instances.

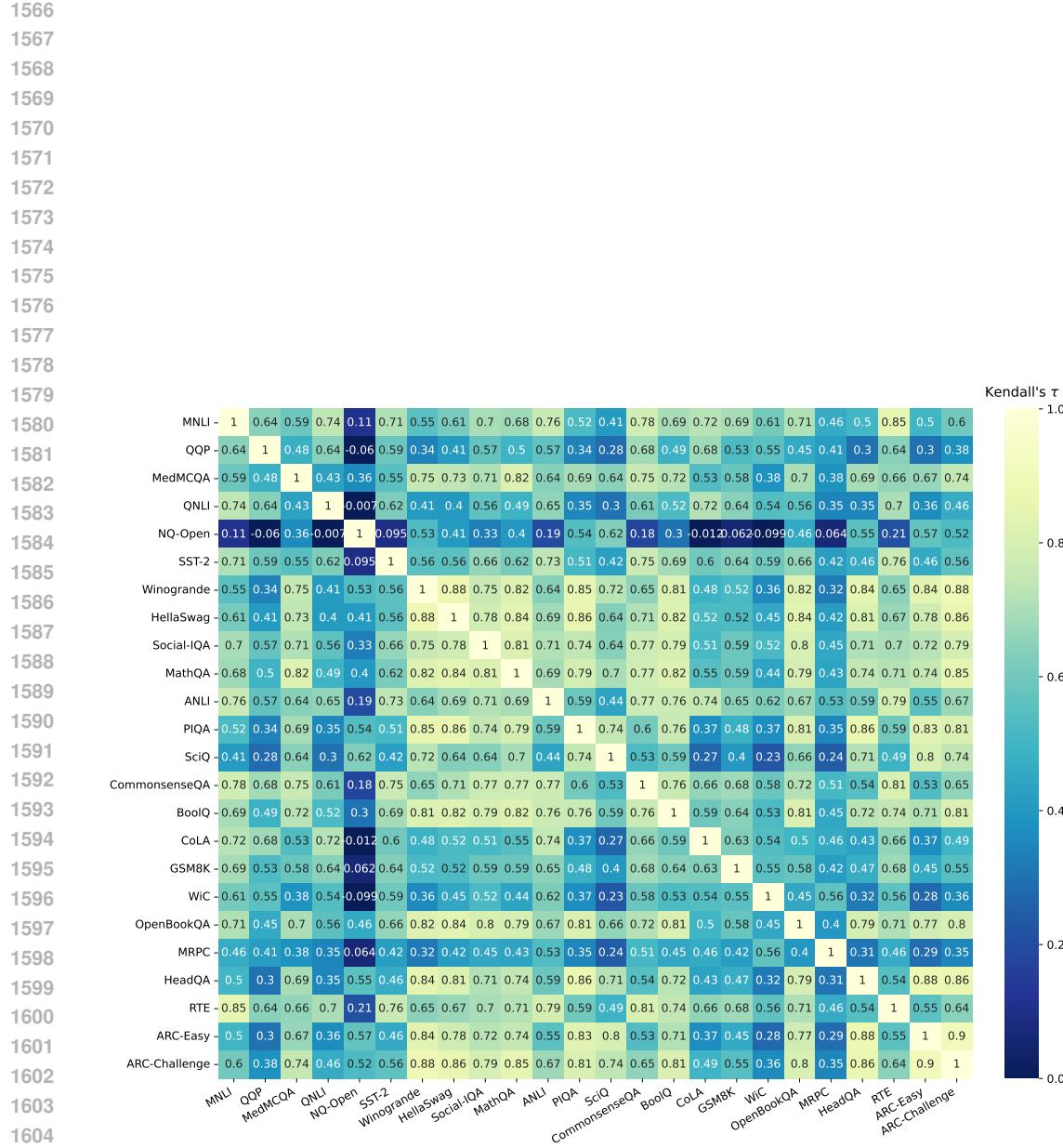
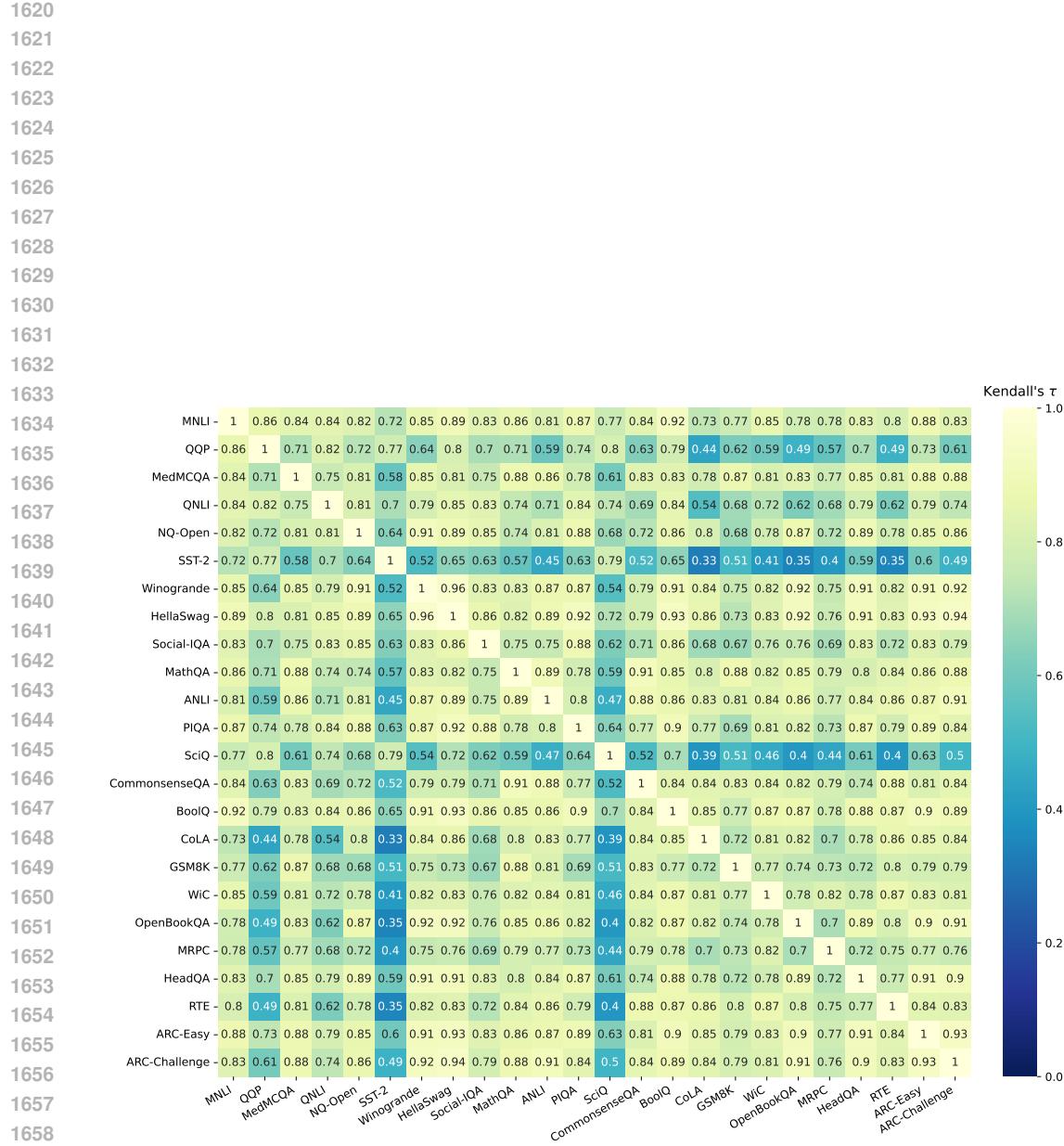


Figure 14: Cross benchmark ranking agreement under direct evaluation, measured by Kendall's τ_{ab} with insignificant model comparisons treated as ties.



1674 **D BROADER IMPACTS**
16751676 We do not anticipate any direct societal impacts from this work, such as potential malicious or
1677 unintended uses, nor do we foresee any significant concerns involving fairness, privacy, or security
1678 considerations. Additionally, we have not identified potential harms resulting from the application of
1679 this technology.1680
1681 **E REPRODUCIBILITY STATEMENT**
16821683 Detailed experimental settings are in Section 3.1 and Appendix A. We also include all code and data
1684 in the supplementary material and will open-source them upon acceptance.
16851686 **F THE USE OF LARGE LANGUAGE MODELS**
16871688 In this paper, we use large language models to aid and polish writing. Large language models are not
1689 used for retrieving related work or generating research ideas.
16901691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727