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ABSTRACT

Existing language model benchmarks provide contradictory model rankings, even
for benchmarks that aim to capture similar skills. This dilemma of conflicting
rankings hampers model selection, clouds model comparisons, and adds confusion
to a growing ecosystem of competing models. In this paper, we take a different
perspective on model comparison: instead of relying on out-of-the-box perfor-
mance via direct evaluation, we compare model potential by providing each model
with identical benchmark-specific fine-tuning before evaluation. We call this ap-
proach train-before-test. Our primary contribution is a comprehensive empirical
evaluation of model potential across 24 benchmarks and 61 models. First, we
demonstrate that model potential rankings obtained through train-before-test ex-
hibit remarkable consistency across all benchmarks. Whereas traditional rankings
demonstrate little external validity under direct evaluation, they enjoy a significant
degree of external validity when applying train-before-test: model potential rank-
ings transfer gracefully from one benchmark to another. Second, train-before-test
restores the connection between perplexity and downstream task performance, lost
under direct evaluation. Remarkably, even pre-finetuning perplexity of a base
model predicts post-finetuning downstream performance, suggesting that rank-
ing consistency reflects inherent model potential rather than fine-tuning artifacts.
Finally, train-before-test reduces the model-score matrix to essentially rank one,
indicating that model potential is dominated by one latent factor, uncovered by train-
before-test. While direct evaluation remains useful for assessing deployment-ready
performance, train-before-test provides a complementary lens for understanding
achievable performance of models after adaptation.

1 INTRODUCTION

Existing language model benchmarks provide contradictory model rankings, even for benchmarks
that aim to capture similar skills (Liang et al.l 2023 |Beeching et al., |2023; [Fourrier et al., [2024)).
This inconsistency poses a serious challenge: how can we reliably compare, rank, and select models
when different benchmarks yield conflicting information? While this ranking disagreement is often
attributed to the diverse capabilities of large language models (Ruan et al., [2024), it creates a
conundrum in practice that muddles model development decisions (Zhang & Hardt, 2024).

Current evaluation methodology works from direct evaluation, probing models via black-box function
calls. However, large language models are trained on diverse, often proprietary data mixes that vary
significantly across models (Grattafiori et al., 2024} |Gemma et al.} 2024} |Guha et al.}2025)). Recent
work showed that this leads to the problem of training on the test task (Dominguez-Olmedo et al.|
2024): the extent to which a model has encountered data similar to the test task during training
confounds model comparisons, rankings, and scaling laws (Kaplan et al.| |2020). Put simply, an
otherwise inferior model may have simply prepared better for a specific task.

In this paper, we take a fresh perspective on evaluation methodology: in contrast with direct evaluation,
we compare model potential by giving each model the same task-specific fine-tuning. We call this
approach train-before-test. Its goal is to achieve valid model comparisons by ensuring that all models
receive equal preparation for the test.

We envision train-before-test as a tool for reliable model selection for downstream adaptations.
Increasingly, practitioners select one from many available models with the goal of adapting for a
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Figure 1: Rankings of 61 language models on two question-answering benchmarks: Natural Ques-
tions Open and ARC Challenge. Top: Direct evaluation leads to inconsistent rankings. Although
both benchmarks test for question-answering ability, the resulting model rankings show substantial
disagreement. Bottom: Train-before-test aligns model rankings. Note: For each of the two plots,
we greedily align model rankings as much as possible without violating confidence intervals, thus
revealing only those ranking changes that are statistically significant. See Appendix @

specific task. Under direct evaluation the best model to begin with may no longer be the best model
after task-specific preparation. In contrast, we show that train-before-task yields model comparisons
and rankings that enjoy broad external validity.

1.1 OUR CONTRIBUTIONS

Direct evaluation leads to ranking disagreement even between related tasks. We demonstrate
that the prevalent direct evaluation scheme results in strong disagreement between model ranking
across various benchmarks. We show that this strong ranking disagreement persists even when
restricting to benchmarks that aim to capture similar tasks. Moreover, rankings still strongly disagree
when evaluating models from the same family. The situation presents a serious conundrum for model
selection: Under direct evaluation, benchmarks fail to give reliable and actionable insights for model
choosing among multiple alternatives.

Train-before-test leads to consistent model potential rankings. We comprehensively evaluate
train-before-test across 24 benchmark datasets and 61 large language models. By fine-tuning each
model on identical task-relevant data before evaluation, we uncover remarkably consistent model
potential rankings. Ranking agreement between benchmarks, measured by Kendall’s tau, improves
for 274 out of 276 benchmark pairs, with the average Kendall’s 7 increasing from 0.52 to 0.76.
Figure [T] illustrates the result for one typical pair of benchmarks. This consistency suggests that
model potential, unlike out-of-the-box performance, has external validity (Salaudeen et al.| 2025) and
transfers gracefully across different tasks.

Model potential aligns perplexity rankings with downstream tasks. Perplexity benchmarks used
to be popular, but fell out of favor for public benchmarking and model comparison because of the
apparent disconnect between perplexity and downstream task performance (Wei et al., [2022} |Ganguli
et al.l 2022} [Liu et al.| [2023; Magnusson et al., 2023} [Lourie et al., [2025a). We indeed validate
this disconnect when comparing model families under direct evaluation. However, train-before-test
restores this fundamental relationship in two ways. First, we show that post-fine-tuning perplexity
rankings align well with post-fine-tuning downstream task rankings, creating consistency between
training objectives and task performance. Second, and more remarkably, for base (non-instruction-
tuned) models, even pre-fine-tuning perplexity predicts post-fine-tuning downstream performance.
This suggests that the ranking consistency we observe reflects inherent model potential rather than
artifacts of fine-tuning.



Under review as a conference paper at ICLR 2026

Train-before-test sheds light on the latent factors of benchmark scores. Consider the large
benchmark-model score matrix, where each entry (i, j) corresponds to the performance of model j
on a benchmark 7. Several works have considered this matrix for different reasons and found that it is
approximately low rank (Ruan et al.| [2024; |Owen) 2024} Burnell et al., 2023), but not quite. The first
singular value is dominant and correlates with pre-training compute. However, the other components
aren’t negligible, and their interpretation remains unclear. We show that train-before-test clarifies this
state of affairs. After train-before-test, the benchmark-model matrix is essentially rank one. The first
principal component accounts for 86% of the explained variance across all models, and for 93% of
the variance for a single model family. This suggests that model potential is dominated by a single
latent factor, while the additional components observed in direct evaluation may reflect task-specific
training exposure.

2 RELATED WORK

Benchmarking has played a central role in the advancement of machine learning (Liberman, [2010;
Hardt & Recht] 2022)). While absolute model performance is often fragile to even seemingly minor
changes in evaluation data (Candela et al., 2009; [Torralba & Efros| 2011; /AlBadawy et al.l 2018
Taori et al.,2020; Tsipras et al., 2020), relative model performance—that is, model rankings—tends
to transfer surprisingly well across classical benchmarks (Yadav & Bottou, [2019; Recht et al., 2019
Miller et al., [2020). For instance, prior work (Kornblith et al., 2019; Barbu et al.,[2019) has shown
that model rankings on ImageNet (Deng et al., 2009) also transfer to other image classification and
object recognition benchmarks. Moreover, Salaudeen & Hardt| (2024) demonstrated that ImageNet
rankings remain robust even under major dataset variations. This transferability of model rankings
is highly desirable, as it indicates that progress on specific benchmarks reliably reflects broader
scientific advancements (Liao et al.| [2021; [Hardtl [2025)).

However, the emergence of foundation models has dramatically transformed the benchmarking
landscape compared to the ImageNet era (Liang et al., 2023 Srivastava et al., [2022; [Weidinger et al.|
2025)). With huge training costs and much improved capabilities (Yang et al., 2025} |Grattafiori et al.}
2024; |Ramesh et al., [2021; \Gemini}, 2023 |OpenAlL [2023), practitioners now lean towards directly
evaluating LLMs across a wide range of different benchmarks, in the hope of obtaining a more
comprehensive assessment of their capabilities (Liang et al., 2023 |Suzgun et al.,|2022; Hendrycks
et al., 2020; Beeching et al., |2023}; [Fourrier et al.,|2024). This shift introduces new challenges, as
model rankings across different tasks may vary significantly (Huan et al., 2025} [Lourie et al.l 2025b).
Zhang & Hardt| (2024) draw an analogy between multi-task benchmarks and voting systems (Arrow,
1951), revealing that a multi-task benchmarking approach with diverse rankings inherently lacks
robustness to minor changes and thus cannot provide a stable unified ranking.

This lack of unified ranking is sometimes seen as a desirable feature within the community (Liang
et al.,|2023). Some argue that variability reflects the multifaceted strengths and weaknesses of LLMs,
suggesting that users should select the best model tailored to their specific needs (Ghosh et al.|
2024} [Zhang et al., [2024b; [Shnitzer et al.| 2023)). For example, a user who focuses on mathematical
tasks could prioritize the math benchmark to choose the optimum model. However, there are two
significant concerns regarding this approach: First, the user-driven selection strategy poses challenges
for model developers. Given the resource-intensive nature of LLM development (Guo et al.| [2025), it
is impractical to release a different model for every potential use case. Moreover, developers typically
aim to create a general-purpose model (Yang et al., |2025; |Grattafiori et al., [2024); however, such a
desideratum is often difficult to reliably measure due to the inconsistent rankings observed across
benchmarks. Second, we demonstrate in this paper that benchmarks within the same task category
can still exhibit substantial discrepancies in model rankings.

One potential reason for the observed inconsistencies in model rankings is that models vary substan-
tially in their training data (Gadre et al., 2023;|Albalak et al.,[2025)). In particular,[Dominguez-Olmedo
et al.[(2024) show that models vary in their degree of preparedness for popular benchmarks, which
confounds model evaluations. Inspired by this finding, we investigate a different question: if varying
preparedness confounds evaluations, can equalizing preparedness harmonize contradictory model
rankings across benchmarks? We therefore introduce the notion of train-before-test, wherein we
fine-tune each model on the corresponding training set so every model arrives well prepared. Through
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Table 2: Models considered, categorized by model family.

Family =~ Model Name Suffix
LraMA- 3-8B,3.1-8B, 3.2-1B, 3.2-3B, 3-8B-IT, 3.1-8B-IT, 3.2-1B-IT, 3.2-3B-IT

1.5-0.5B, 1.5-1.8B, 1.5-4B, 1.5-7B, 1.5-14B, 2-0.5B, 2-1.5B, 2-7B, 2.5-0.5B, 2.5-1.5B,
QWEN-  2.5-3B, 2.5-7B, 2.5-14B, 1.5-0.5B-IT, 1.5-1.8B-IT, 1.5-4B-IT, 1.5-7B-IT, 1.5-14B-IT,

2-0.5B-IT, 2-1.5B-IT, 2-7B-IT, 2.5-0.5B-IT, 2.5-1.5B-IT, 2.5-3B-IT, 2.5-7B-IT, 2.5-14B-IT
GEMMA- 2B, 7B, 2-2B, 2-9B, 2B-IT, 7B-IT, 2-2B-IT, 2-9B-IT

GPT2- 124M, 335M, 774M, 1.5B
PYTHIA- 70M, 160M, 410M, 1B, 1.4B, 2.8B, 6.9B, 12B
YI- 6B, 9B, 6B-IT, 1.5-6B, 1.5-9B, 1.5-6B-IT, 1.5-9B-IT

comprehensive evaluations across 24 benchmarks, we demonstrate that train-before-test harmonizes
otherwise contradictory model rankings, establishing it as a practical evaluation methodology.

While extensive literature exists on investigating different fine-tuning strategies for LLMs (Zhang
et al.| [2024a; Zeng et al., |2025} [Lester et al., [2021)), this lies outside the scope of our investigation.
Instead, we apply standardized fine-tuning (Mangrulkar et al., 2022)) as an evaluation tool to give
all models equivalent preparation before testing. Another relevant area is the literature on scaling
laws (Kaplan et al.,[2020)). [Lin et al.|(2024])) predict full-finetuning performance of a single model from
partial finetuning on one task using their rectified scaling law. Zhang et al.|(2024a)) study how different
factors scale within individual tasks. These scaling law approaches model performance changes using
model-specific and task-dependent parameters. In contrast, we investigate how standardized fine-
tuning harmonizes model rankings across diverse benchmarks in the wild, examining 61 models from
six families across 24 tasks spanning multiple categories. Complementary to our focus, Heineman
et al.| (2025) analyzes the statistical reliability of existing benchmarks, while|Gu et al.| (2024) proposes
a standardized evaluation protocol to reduce variability arising from formatting and scoring choices.

3 EXPERIMENTS

3.1 EXPERIMENT SETTING

Benchmark selection. We begin our Table 1: We categorize benchmarks into language un-
study with the Im-eval-harness pack- derstanding (LU), commonsense reasoning (CR), ques-
age (Gao et al [2023)), which offers a com- tion answering (QA), physics/biology/chemistry (PBC),
prehensive suite of language model bench- math (Math), and medicine (Med).
marks. To accommodate the train-before-
test methodology which requires a dedi-  Category | Benchmarks
cated training set for fine-tuning, we first LU MNLI, QNLI, RTE, CoLA, SST-2, MRPC, QQP, WiC, ANLI
ldentlfy benchmarks that prOVide at least CR Winogrande, CommonsenseQA, Hellaswag, Social-IQA
1,000 training examples. Th]S ylelds a to- QA OpénBookQA, NQ-Open, BoolQ, ARC-Easy, ARC-Challenge
tal of 37 benchmarks, which we broadly =~ ¢ | e2@ o2

. . . . Math MathQA, GSM8K
categorize into 28 likelihood-based and 9 |, MedMCOR, HeadOh
generation-based benchmarks.

Generation-based benchmarks are often computationally intensive to evaluate, as base models
typically generate text until reaching their maximum sequence length. These benchmarks are also
over-challenging for smaller models with limited parameters, such as GPT-2 (Radford et al.||2019).
Therefore, we select only NO—-Open and GSM8K from the generation-based benchmarks. Among the
likelihood-based benchmarks, we further exclude six due to observed anomalies during fine-tuning,
such as a lack of performance improvement in over 20% of models. See Appendix [A.T]for details.

Our final selection consists of 24 benchmarks covering diverse domains and task types. These
benchmarks are primarily multiple-choice question answering benchmarks, with accuracy as the task
metric. We categorize all benchmarks by their descriptions, see Table[l] If a benchmark does not
come with a validation split, we randomly allocate 20% of the training data as the validation set. To
save computational resources, we cap the number of training data at 50,000, validation data at 1,000,
and testing data at 10,000.
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Figure 2: Mean ranking agreement between each benchmark and all others. We calculate Kendall’s 7
between each benchmark and every other benchmark, and then average the results. Compared
to direct evaluation, train-before-test consistently improves ranking agreement. A detailed
comparison of Kendall’s 7 values for every benchmark pair is provided in Appendix [BI} On average,
the overall average Kendall’s 7 is 0.52 for direct evaluation and 0.76 for train-before-test.

Model selection. We consider 61 language models across six model families: LLAMA
et al.,2024), QWEN (Yang et al.| 2025), GEMMA (Gemma et al.,[2024), PYTHIA
2023), GPT-2 (Radford et al.,[2019) and Y1 (Young et al.,[2024). Due to computational constraints,
we select models with no more than 14B parameters. See Table[2] for the full list. We include both
base and instruction-tuned models, and use the suffix -IT to denote instruction-tuned models.

Evaluation setup. We evaluate the 61 models across all 24 benchmarks using both direct evaluation
and train-before-test evaluation. We use the lm—eval-harness library for evaluation. We evaluate
models zero-shot (Brown et all[2020). For direct evaluation, we simply evaluate the model as it is. For
train-before-test, we fine-tune models for five epochs using learning rates in {1e — 5, 2e — 5, 5e — 5},
separately. The best performing checkpoint is then selected based on performance on a separate
validation set, yielding 61 x 24 = 1,464 fine-tuned models in total. We use parameter-efficient
fine-tuning (PEFT) (Hu et al} 2021} Mangrulkar et al.| 2022). See more details in Appendix[A.2] Each
fine-tuned model is then evaluated on the corresponding benchmark’s test set. For each benchmark,
we rank models according to their performance. We then measure the ranking correlation across pairs
of benchmarks using Kendall’s 7 [1938).

3.2 DOWNSTREAM RANKING AGREEMENT

As depicted in Figure[2} direct evaluation shows only modest ranking agreement between the 24
benchmarks, with an average Kendall’s 7 of 0.52. This lack of agreement across benchmarks
complicates model assessment and makes it challenging to aggregate results into a meaningful overall
ranking (Zhang & Hardt, [2024)). In contrast, the train-before-test methodology leads to a substantial
improvement in ranking agreement. Under this approach, 274 out of 276 benchmark pairs show
higher Kendall’s 7 scores, with the average 7 rising from 0.52 to 0.76. This stronger consistency
suggests that model potential ranking on one benchmark is likely to generalize to others, including
practitioners’ own cases, which simplifies model comparison and selection. Notably, benchmarks
that appeared to be outliers under direct evaluation, such as NO-Open and MRPC, demonstrate much
greater ranking consistency under train-before-test. For example, the average Kendall’s T between
NQ-Open and all other benchmarks improves from 0.23 to 0.74.

We further split all benchmarks into six categories (e.g., language understanding, math), see Table[T}
For each category pair, we report in Figure [3| the intra-category average ranking correlations and
inter-category average ranking correlations across all relevant benchmark pairs. Consistent with our
previous findings, we observe reasonably poor ranking agreements across categories under direct
evaluation. While one might expect high intra-category agreement—after all, tasks within the same
category tend to be relatively similar—direct evaluation results in low intra-category agreement in
many cases. For example, the intra-category mean Kendall’s 7 is 0.54 for language understanding and
0.55 for math. This further underscores the difficulty of selecting models based on direct evaluation.
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(a) Direct evaluation. (b) Train-before-test.

Figure 3: Cross-category ranking agreement for direct evaluation (left) and train-before-test (right).
We categorize benchmarks into language understanding (LU), commonsense reasoning (CR), question
answering (QA), physics/biology/chemistry (PBC), math (Math), and medicine (Med), see Tablem
Kendall’s 7 is averaged across all pairs of benchmarks that belong to two given categories. The
diagonal entries represent intra-category agreement and the others represent inter-category agreement.
Train-before-test improves both intra- and inter-category ranking agreement in all instances.

Even if the goal is to choose a model that excels within a specific domain, the low intra-category
agreement makes this decision challenging.

In contrast, train-before-test boosts both intra- and inter-category consistency. For example, the
intra-category mean Kendall’s 7 for language understanding raises from 0.52 to 0.75, as well as from
0.55 to 0.84 for the math category. Moreover, agreement between categories is often nearly as high
as agreement within categories. This suggests that models with higher potential in one domain tend
to also perform well across other domains after adaptation.

3.3 PERPLEXITY AGREEMENT

We now study the agreement between downstream benchmark rankings and perplexity rankings on
general domain corpora. To do so, we collect three corpora from Wikipedia, StackExchange, and
arXiv, retaining only contents from 2025. Because all models used were released before 2025,
they could not have seen these texts during pretraining. Specifically, we collect 3,366 documents
for Wiki, 6,001 for StackExchange and 44,384 for arXiv. These datasets are split into training,
validation, and testing sets, in an 8:1:1 ratio.

We measure perplexity in bits per byte, using the Im-eval-harness library. We then compute
models rankings based on the perplexity evaluations, and compare the rankings with those of the
downstream benchmarks considered in earlier sections. We exclude the four GEMMA models from
these results, as lm-eval-harness provides unreliable perplexity measurements for GEMMA
models due to its rolling window implementation. See Appendix [B.2]for details.

The results are presented in Figure[d] In contrast to downstream tasks, perplexity rankings demon-
strate strong agreement both under direct evaluation and train-before-test. Specifically, the average
Kendall’s 7 between the perplexity rankings is 0.76 for direct evaluation and 0.78 for train-before-test.
We hypothesize that this reasonably strong agreement arises due to the smooth relationship between
perplexity evaluations (Brandfonbrener et al.l 2024 Mayilvahanan et al., 2025).

When comparing ranking agreement between perplexity evaluations and downstream benchmarks,
we find that agreement is low under direct evaluation, with a mean Kendall’s 7 of 0.48. This lack
of agreement is concerning, as it signals a disconnect between the language modelling pre-training
objective and downstream benchmark performance. Fortunately, we find that our train-before-test
methodology improves ranking agreement substantially, with the mean Kendall’s 7 ranking correlation
between perplexity rankings and benchmark rankings rising to 0.74. This finding is reassuring: a
light amount of fine-tuning on task data is sufficient to align the language modeling training objective
with downstream performance. Moreover, we find that ranking agreement between perplexity and
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Figure 4: Ranking agreement between perplexity rankings and downstream benchmark rankings
under direct evaluation (top) and train-before-test (bottom). Perplexity rankings are consistent with

each other under both evaluation schemes, with aj

n average Kendall’s 7 of 0.76 and 0.78, respectively.

However, for direct evaluation, agreement between perplexity rankings and downstream rankings
is low, with an average Kendall’s 7 of just 0.48. Fortunately, train-before-test results in higher

agreement between perplexity and downstrea

m, increasing average Kendall’s 7 to 0.74.
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Figure 5: Ranking agreement between perplexity rankings before fine-tuning (direct evaluation)
and downstream benchmark rankings after fine-tuning (train-before-test) for base models (top)

and instruction-tuned models (bottom). Unlike

Figure [4 where both rankings in each comparison

use the same evaluation scheme, here we test whether pre-fine-tuning perplexity can predict post-
fine-tuning downstream performance. Base models show strong correlation (average Kendall’s 7 =
0.78), suggesting perplexity is a good predictor of model potential. This indicates that the ranking
consistency we observe reflects inherent model potential rather than artifacts introduced by
fine-tuning. Instruction-tuned models show much weaker correlation (average Kendall’s 7 = 0.51).

downstream evaluations is roughly similar to agre
that, despite perplexity typically not being used
ranking metric as benchmark evaluations.

ement across downstream evaluations. This suggests
for benchmarking purposes, it can be as effective a

Drawing inspiration from prior work (Liu et all|

2023}, [Xia et al} 2023} [Gadre et al., 2024} Du et al)}

2024} [Zhang et all[20244), we further examine t

he correlation between model rankings according to

average perplexity across the three text corpora and average downstream performance across the

24 benchmarks. |Gadre et al. (2024} show that,

when models are trained on the same pretraining

data, perplexity is well-correlated with aggregate benchmark performance. Our setup differs in
that we consider a diverse set of model families, each trained on different pretraining data. Under
direct evaluation, we find that the ranking correlation is modest, with a Kendall’s 7 of only 0.55. We

hypothesize that this relatively weak agreement is
tuning, resulting in varying levels of exposure

due to differences in pretraining data and instruction

to benchmark tasks during training

Olmedo et al}, [2024). Fortunately, when applying our train-before-test methodology, the ranking
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Figure 6: Explained variance ratios of the top five principal components of the benchmark score
matrix, under direct evaluation (left) and train-before-test (right). Train-before-test substantially
increases the amount of variance explained by the first principal component, from 70% to 86%. This
indicates the model potential is dominated by one single latent factor.

correlation between average perplexity and average downstream performance improves substantially,
with Kendall’s 7 increasing from 0.55 to 0.84.

We additionally examine the agreement between perplexity prior to fine-tuning and downstream task
performance after fine-tuning. That is, between direct evaluation perplexity rankings and train-before-
test downstream performance rankings. We plot such ranking agreement in Figure 5} dividing models
into base models and instruction-tuned models. For base models, perplexity prior to fine-tuning is a
strong indicator of model potential on downstream tasks, with an average Kendall’s 7 of 0.78. This
indicates that, for base models, direct evaluation of perplexity is already a reasonably reliable metric
for ranking models. Moreover, it indicates that the ranking consistency we observe reflects inherent
model potential rather than artifacts introduced by fine-tuning.

However, the same does not hold for instruction-tuned models (average Kendall’s 7 = 0.51).
Instruction-tuning renders perplexity rankings unreliable, as ranking agreement is low across the
board. This is to be expected: instruction fine-tuning tends to increase both benchmark performance
(1) and perplexity (J) on general text corpora, thus clouding the relationship between perplexity
and downstream evaluations. Fortunately, as shown earlier, train-before-test restores high ranking
agreement between perplexity evaluations and downstream performance.

3.4 LOW-RANKED MODEL SCORE MATRIX

So far, we have shown that comparing model potential Pythia Qwen W Vi
using the train-before-test yields consistent rankings o vama - Gemma

across benchmarks. We now examine the implications ®
of this finding by analyzing the resulting matrix of 50 o®
model scores, where each entry (¢, j) corresponds to 25 8, MN®
the performance of model j on a benchmark 7. We use 0.0

Principal Component Analysis (PCA) to examine the
structure of the model score matrix.

PC1 score

Figure [6] shows the explained variance ratios of the first -75
five principal components. These results support previ-
ous findings that the score matrix is of low rank (Ruan
et al., 2024). Under direct evaluation, the first five
components account for 91% of the total variance. A 10% 107 102 10% 10
similar trend is observed for train-before-test scores, Pre-training compute (FLOPs)
where the first five components explain 97% of the vari-

ance. Notably, under train-before-test, the first principal Figure 7: PC1 scores under train-before-test
component (PC1) captures a much larger share of the align with the pre-training compute.
variance: 86%, compared to 70% for direct evaluation.
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Figure 8: Explained variance ratios of the top five principal components of the QWEN score matrix.
For train-before-test, the explained variance ratio of PC1 increases to 93%. Controlling the model
family to QWEN has made the score matrix essentially rank one.

Prior works interpret PC1 scores under direct evaluation as an indication of general capability, with
later principal components denoting domain-specific capabilities not captured by PC1 (e.g., reasoning
ability, coding ability) (Ruan et al.| 2024} Burnell et al., 2023)). Unlike out-of-the-box performance,
which is controlled by multiple factors (Ruan et al.}|2024; Burnell et al.| 2023)), model potential is
dominated by one single principal axis. This dramatic change indicates that train-before-test removes
confounding factors, such as differential exposure to benchmark-related data during pretraining,
that create artificial diversity in rankings. It is of no surprise that PC1 also positively correlates
with pre-training compute, as shown in Figure m which have been identified as crucial to model
performances (Kaplan et al.,[2020; |Hoffmann et al.| 2022)). See detailed PC1 scores in Figure @

Case study for Qwen models. We repeat our PCA analysis on the score matrix containing only
QWEN models, depicted in Figure 8 (see other models in Appendix [B.7). Remarkably, we find that
PC1 for train-before-test explains 93% of the variance, roughly as much as the variance explained by
the top five principal components under direct evaluation. That is, whereas for direct evaluation the
score matrix is low-rank; train-before-test renders the score matrix essentially rank one.

4  DISCUSSION, LIMITATIONS, AND CONCLUSION

Train-before-test fundamentally reframes how we interpret model evaluation. Whereas direct evalua-
tion yields benchmark-specific rankings that often contradict one another, train-before-test harmonizes
rankings across a wide array of tasks and datasets. This shift from measuring out-of-the-box perfor-
mance to comparing achievable potential equips the community with a more stable and externally
valid evaluation methodology.

This emphasis on model potential is particularly valuable for scenarios involving model development
and adaptation. Practitioners frequently need to make decisions during model development—selecting
checkpoints mid—pre-training or choosing a base model for further instruction tuning or domain-
specific adaptation. In these scenarios, direct evaluation, while useful for assessing deployment
readiness, is of limited relevance and utility. A model that performs poorly on direct evaluation might
excel when adapted to new tasks. Train-before-test, by contrast, shows that rankings on any task will
also generalize to others, offering more promising guidance for model selection.

One might argue that ranking consistency is unnecessary if we can simply choose benchmarks close
to a given downstream application. However, our findings highlight three challenges with that view.
First, even benchmarks that purport to measure the same skill (e.g., question answering) produce
contradictory rankings under direct evaluation. Second, no benchmark perfectly captures the specifics
of an application, making some degree of generalization unavoidable. Third, in real deployments,
models are often adapted to varying degrees, making the potential the relevant signal for comparison.

'We only plot models whose number of training tokens is publicly available. See Tablefor details.
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Limitations. Train-before-test requires fine-tuning models on task-specific data before evaluation,
which certainly increases the evaluation cost. However, this investment yields dividends through
improved reliability. Our findings suggest that fewer benchmarks suffice under train-before-test, as
rankings from one benchmark reliably transfer to others. This reduction in required evaluations can
offset the per-benchmark cost increase. Second, despite significant improvements in cross-benchmark
ranking consistency, the ranking agreements remain imperfect. The residual imperfect correlation may
arise from incomplete adaptation with PEFT (Mangrulkar et al., 2022) or irreducible measurement
noise (Fisher & Sen,|1994; Heineman et al.,|2025)). Third, unfortunately, many benchmarks no longer
come with training data, making it more difficult to apply train-before-test. In light of our findings, we
recommend that future benchmarks provide fine-tuning data for the benchmark. A fourth limitation
is that some commercial model providers do not easily allow fine-tuning of their models. We contend
that in this case the problem is with the model provider. There is clearly scientific value in creating an
ecosystem of models that can be fine-tuned. Train-before-test evaluation creates additional incentives
for making models easy to fine-tune.

Conclusion. Overall, train-before-test complements existing evaluation practices by distinguishing
between performance and potential. Importantly, potential comparison is not intended to replace
direct evaluation—both serve distinct purposes. Direct evaluation remains useful for understanding
immediate deployment readiness, while potential comparison provides insights into adaptability and
development prospects. Together, they offer a more complete picture of model capabilities. We
believe that adopting train-before-test as a standard alongside direct evaluation can significantly
improve the reliability, interpretability, and practical utility of the model evaluation ecosystem.
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A ADDITIONAL EXPERIMENT SETTING

A.1 BENCHMARK SELECTION

We begin our study with the lm-eval-harness package (Gao et al.,2023), which offers a com-
prehensive suite of language model benchmarks. To accommodate the train-before-test methodology
which requires a dedicated training set for fine-tuning, we first identify benchmarks that provide at
least 1,000 training examples. This yields a total of 37 benchmarks.

These benchmarks can be broadly categorized as 28 likelihood-based and 9 generation-based bench-
marks. Likelihood-based evaluations test for the likelihood of different completions given some
input string; for example, different answer choices given a multiple-choice input question. Since the
number of completions is usually small, likelihood-based evaluations are generally compute-efficient.

Generation-based evaluations, in contrast, generate some output response given an input query. If
responses tend to be long, then generation-based evaluations naturally become compute-intensive.
This is particularly true for base models, which are usually not trained for instruction following and
therefore continue to generate tokens until hitting their maximum token limit. These generation-based
benchmarks are also over-challenging for smaller models with limited parameters, such as GPT-
2 (Radford et al.,[2019). Therefore, we exclude seven generation-based benchmarks, Drop, CoQa,
ReCoRD, bAbi, WebQA, TriviaQA and F1d-Default. Nevertheless, we retain two widely
used generation-based benchmarks, GSM8K and NQ-Open, in our experiments.

We additionally excluded five benchmarks due to anomalies observed during fine-tuning:
MedQA-40ptions, LogiQA, Mutual, Mela-EN, and Swag. For these benchmarks, more
than 20% of models, most of which are small models with fewer than 0.5B parameters, showed
no performance improvement after fine-tuning. We also excluded Paws—EN, as its corresponding
model ranking under direct evaluation was negatively correlated (Kendall’s 7 less than zero) with 23
out of 24 other benchmarks. We attribute this anomaly to the unusual prompting template used by
Im-eval-harness.

Our final selection includes 24 benchmarks: MNLI (Williams et al., |2018), ONLT (Rajpurkar et al.,
2016), RTE (Dagan et al.,[2006; (Giampiccolo et al., [ 2007; Bentivogli et al.,[2009), CoLA (Warstadt
et al.l 2018), SST-2 (Socher et al., 2013)), MRPC (Dolan & Brockett, [2005), 0QP, wiC (Pilehvar
& Camacho-Collados}, 2018)), ANLI (Nie et al., 2020), Winogrande (Levesque et al., |2011),
CommonsenseQA (Talmor et al.|[2019), Hellaswag (Zellers et al., [2019), Social-IQA (Sap
et al) [2019), OpenBookQA (Mihaylov et all [2018), NO-Open (Kwiatkowski et al. [2019),
BoolQ (Clark et al., 2019), ARC-Easy, ARC-Challenge (Clark et al., [2018), SciQ (Welbl
et al.l2017), PTOA (Bisk et al.,[2019), Mat hQA (Amini et al.l 2019), GSM8K (Cobbe et al.,[2021)),
MedMCQA (Pal et al.,2022), HeadQA (Vilares & Gomez-Rodriguez,|[2019)).

A.2 EVALUATION SETUP

For our train-before-test evaluations, we fine-tune each model for five epochs and select the best-
performing checkpoint based on evaluations on a separate validation set. We use the AdamW
optimizer with a weight decay of 0.01. For each model-benchmark combination, we perform a
hyperparameter search over three learning rates {1e — 5, 2e — 5, 5e — 5} and select the optimal one
based on validation performance. To reduce memory consumption, we employ parameter-efficient
fine-tuning (PEFT) (Hu et al.| 2021; Mangrulkar et al.| 2022), We use a LoRA configuration with
rank 8, o = 32, and dropout 0.1. Most of our experiments are conducted on Quadro RTX 6000, Tesla
V100-SXM2-32GB and NVIDIA A100-SXM4-80GB GPUs.

In cases where models show no performance improvement after fine-tuning, we report their pre-
fine-tuning results. This scenario is rare and typically occur with smaller models (less than S00M
parameters) that lack the capacity to perform certain tasks, resulting in near-random performance
both before and after fine-tuning. Additionally, since all training datasets in our study are publicly
available, some models may have encountered this data during pre-training, potentially limiting the
benefits of additional fine-tuning.

For instruction-tuned models, we evaluate performance both with and without chat templates, selecting
the configuration that yields better results. Specifically, during direct evaluation, we assess model
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performance on the validation set under both conditions and apply the better-performing configuration
to the test set. In the train-before-test setting, we similarly fine-tune two variants: one with training
data formatted using chat templates and one without. We then select the approach that achieves the
best performance on the validation set for final evaluation.
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Figure 9: Cross benchmark ranking agreement under direct evaluation. Benchmarks are sorted based
on the training dataset size. Kendall’s 7 is calculated for every benchmark pair.

B ADDITIONAL EXPERIMENT RESULTS

B.1 DOWNSTREAM RANKING AGREEMENT

We plot detailed pairwise ranking correlation agreement between benchmarks in Figure [9] (direct
evaluation) and [T0] (train-before-test), corresponding to Figure 2]in the main text.
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Figure 10: Cross benchmark ranking agreement under train-before-test. Benchmarks are sorted based
on the training dataset size. Kendall’s 7 is calculated for every benchmark pair.
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Table 3: Bits per byte (BPB) of eight excluded GEMMA models compared to PYTHIA-410M across
the three newly collected corpora. The GEMMA models exhibit abnormally high BPB values on Wik i
and Stack, likely due to the greater average sequence length in these two datasets. Specifically,
Arxiv has an average of 163 words per document, compared to 250 for Stack and 1502 for Wiki.

Arxiv Wiki Stack

GEMMA-2B 0.766 1.578 1.139
GEMMA-2B-IT 0.770 1.524 1.222
GEMMA-7B 1.013 4780  4.053

GEMMA-7B-IT 1.053 18.711 20.958
GEMMA-2-2B 0.730 1.784 1.340
GEMMA-2-2B-IT 0.705 1.191 0.997
GEMMA-2-9B 0.709 2.216 1.685
GEMMA-2-9B-IT 0.638 1.234 0.978

PYTHIA-410M 0.791 1.065  0.945

B.2 PERPLEXITY RANKING AGREEMENT

In this work, we collect three corpora from Wikipedia, StackExchange, and arXiv. We only
collect documents from 2025. More specifically, we collect 3,366 documents for Wiki, 6,001
for StackExchange and 44,384 documents for arXiv. These datasets are split into training,
validation, and testing sets, in an 8:1:1 ratio. For arXiv, we utilize only the paper abstracts, while
for StackExchange, we use only the questions. Consequently, the average document length is 163
words for arXiv, 250 words for St ackExchange, and 1,502 words for Wik ipedia.

We exclude GEMMA models from our perplexity agreement experiments, as lm—-eval-harness
provides unreliable perplexity measurements for GEMMA modelsﬂ We report the bits per byte (BPB)
for the GEMMA models in Table[3] While the BPB values for GEMMA on arXiv (the dataset with
the shortest average sequence length) are mostly reasonable, the performance on St ackExchange
and Wikipedia is notably worse, even compared to smaller models like PYTHIA-410M.

This anomaly stems from how 1m-eval-harness handles long sequences via a rolling window
mechanism. Unlike other models, GEMMA requires every input sequence to begin with the BOS
token. If this constraint is not met, perplexity degrades significantly. Consequently, when processing
long sequences that are chunked into multiple windows, GEMMA’s performance degrades.

B.3 PC1 SCORE UNDER TRAIN-BEFORE-TEST

We plot the PC1 scores under train-before-test in Figure[TT] We also provide the pre-training compute
details for models with publicly available training token counts, as shown in Table ]

2See discussion at https://github.com/huggingface/transformers/issues/29250,
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Table 4: The models used in Figure [/l The number of training tokens of these models is publicly
available. We compute the number of pre-training FLOPs as 6 x #Parameters x #Tokens.

Model #Parameters (B) #Tokens (B) #FLOPs (10"18)
Llama-3-8B 8.03 15000.0 722700.00
Llama-3-8B-IT 8.03 15000.0 722700.00
Llama-3.1-8B 8.03 15000.0 722700.00
Llama-3.1-8B-IT 8.03 15000.0 722700.00
Llama-3.2-3B 3.21 9000.0 173340.00
Llama-3.2-3B-IT 3.21 9000.0 173340.00
Qwenl.5-0.5B 0.62 2400.0 8928.00
Qwenl.5-1.8B 1.84 2400.0 26496.00
Qwenl.5-4B 3.95 2400.0 56880.00
Qwenl.5-7B 7.72 4000.0 185280.00
Qwenl.5-14B 14.20 4000.0 340800.00
Qwenl.5-0.5B-1T 0.62 2400.0 8928.00
Qwenl.5-1.8B-IT 1.84 2400.0 26496.00
Qwenl.5-4B-IT 3.95 2400.0 56880.00
Qwenl.5-7B-1T 7.72 4000.0 185280.00
Qwenl.5-14B-IT 14.20 4000.0 340800.00
Gemma-7B 8.54 6000.0 307440.00
Gemma-7B-IT 8.54 6000.0 307440.00
Gemma-2-2B 2.61 2000.0 31320.00
Gemma-2-2B-IT 2.61 2000.0 31320.00
Gemma-2-9B 9.24 8000.0 443520.00
Gemma-2-9B-IT 9.24 8000.0 443520.00
Pythia-70M 0.07 300.0 126.00
Pythia-160M 0.16 300.0 288.00
Pythia-410M 0.41 300.0 738.00
Pythia-1B 1.00 300.0 1800.00
Pythia-1.4B 1.40 300.0 2520.00
Pythia-2.8B 2.80 300.0 5040.00
Pythia-6.9B 6.90 300.0 12420.00
Pythia-12B 12.00 300.0 21600.00
Yi-6B 6.06 3000.0 109080.00
Yi-6B-IT 6.06 3000.0 109080.00
Yi-9B 8.83 3800.0 201324.00
Yi-1.5-6B 6.06 3600.0 130896.00
Yi-1.5-6B-1T 6.06 3600.0 130896.00
Yi-1.5-9B 8.83 3600.0 190728.00
Yi-1.5-9B-IT 8.83 3600.0 190728.00
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Table 5: We calculate Kendall’s 7 between each benchmark and every other benchmark, and then
average the results.

Direct evaluation (0 shot) Direct evaluation (5 shot)  Train-before-test

NQ-Open 0.23 0.44 0.74
MRPC 0.34 0.39 0.71
WicC 0.39 0.58 0.75
ONLI 0.43 0.58 0.74
QQP 0.43 0.62 0.77
CoLA 0.45 0.65 0.73
SciQ 0.47 0.49 0.71
SST-2 0.50 0.62 0.65
GSMS8K 0.51 0.62 0.70
ANLI 0.54 0.56 0.78
MedMCQA 0.55 0.66 0.75
RTE 0.55 0.59 0.74
HeadQA 0.55 0.62 0.77
ARC-Easy 0.55 0.63 0.80
MNLI 0.56 0.63 0.80
PIQA 0.56 0.62 0.78
Winogrande 0.58 0.63 0.80
CommonsenseQA 0.58 0.65 0.72
Social-IQA 0.60 0.67 0.73
ARC-Challenge 0.61 0.70 0.81
HellaSwag 0.61 0.65 0.81
MathQA 0.61 0.67 0.76
OpenBookQA 0.61 0.64 0.78
BoolQ 0.61 0.68 0.80

B.4 FEW-SHOT EVALUATION

We perform a 5-shot direct evaluation for all 61 models on 24 benchmarks to examine its impact (Gu|
on cross-benchmark ranking agreement. The overall average Kendall’s 7 is 0.52 for
direct evaluation (0-shot), 0.61 for direct evaluation (5-shot), and 0.76 for train-before-test (0-shot).
Train-before-test outperforms 5-shot direct evaluation on 89% of benchmark pairs. We also present
the mean ranking agreement between each benchmark and all others in Table 5] Train-before-test
achieves better ranking agreement across all benchmarks. We view in-context learning as a weaker
form of task preparation compared to fine-tuning—both give models task preparation, but fine-tuning
is more thorough.

B.5 IMPACT OF TEST SET SIZE

We experiment only with benchmarks with more than 2,000 test samples to understand how irreducible
statistical noise (Fisher & Sen|[1994;[Heineman et al.} 2025)) in test sets affects ranking agreement. The
remaining benchmarks include MNLI, QQP, MedMCOQA, ONLI, NO-Open, HellaSwag, MathQA,
BoolQ, HeadQA, and ARC-Easy. The overall average Kendall’s 7 across all benchmark pairs is
0.51 for direct evaluation (0-shot), 0.63 for direct evaluation (5-shot), and 0.80 for train-before-test.
In other words, while the test set size impacts the statistical significance of the test scores, the
cross-benchmark ranking agreement remains largely unchanged.
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Table 6: The overall average Kendall’s 7 across all benchmark pairs for models in each size bin.

Model size (B) Direct evaluation Train-before-test

[0,1) 0.38 0.65
[1,2) 0.53 0.56
[2,3) 0.45 0.70
[6,7) 0.34 0.42
[7,8) 0.19 0.28
[9,10) 0.15 0.43
All models 0.52 0.76

B.6 RANKING AGREEMENT FOR MODELS OF THE SAME SIZE

We group models into size bins, each containing at least 5 models, and compute the average Kendall’s
7 across all benchmark pairs for each bin (Table[6)). Train-before-test consistently enhances ranking
consistency compared to direct evaluation in every bin. The lower consistency observed when
controlling for model size (compared to 0.76 for all models) is expected. Model potential strongly
correlates with pretraining compute, as shown in Section [3.4] so removing size variation reduces the
primary signal that distinguishes models.
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Table 7: The overall average Kendall’s 7 across all benchmark pairs for each model family.

Model family Direct evaluation = Train-before-test

LLAMA 0.51 0.65
PYTHIA 0.25 0.88
QWEN 0.57 0.79
GEMMA 0.43 0.77
Y1 0.25 0.30

All models 0.52 0.76

Table 8: Explained variance ratios for the top five principal components of the score matrix for each
model family, under direct evaluation and train-before-test, respectively.

Train-Before-Test

| Direct Evaluation
Model Family ‘ PCl1 PC2 PC3 PC4 PCS5 ‘ PCl1 PC2 PC3 PC4 PC5

LLAMA 69% 21% 4% 3% 2% | 90% 4% 3% 1% 1%
PYTHIA 61% 12% 9% 8% 6% | 89% 8% 2% 1% 1%
QWEN 74% 9% 5% 3% 3% |93% 2% 1% 1% 1%
GEMMA 8% 271% 6% 4% 2% | 2% 3% 2% 2% 1%

Y1 8% 21% 12% 10% 6% | 67% 17% T% 5% 3%

ALL MODELS | 70% 13% 4% 3% 2% | 8% 1% 2% 1% 1%

B.7 RANKING AGREEMENT FOR MODELS OF THE SAME FAMILY

We group models by the model family, each containing at least 5 models, and compute the average
Kendall’s 7 across all benchmark pairs for each family (Table [7). Train-before-test consistently
achieves higher ranking consistency than direct evaluation for every family. The only anomaly occurs
in the YT models, where ranking consistency by train-before-test is also quite low. This is possibly
due to the pretraining compute for all considered Y1-models being very similar; see Table ]

We further conduct the PCA analysis in Section [3.4]for each model family, and report the explained
variance ratios by the top five principal components. PC1 explains over 89% of the variance in four
out of five families under the train-before-test scenario, exceeding 86% for all models. This suggests
that differences among model families, including architectural choices and training data composition,
may account for the remaining variance captured in higher-order principal components.
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C ACCOUNTING FOR STATISTICAL SIGNIFICANCE

C.1 RANKING ALIGNMENT IN FIGURE[T]

We plot the rankings of 61 language models on two question-answering benchmarks: Natural
Questions Open and ARC Challenge in Figure [T} We greedily align each ranking as much as possible
without violating confidence intervals, thus revealing only those ranking changes that are statistically
significant. See Algorithm [3|for more details.

C.2 DOWNSTREAM RANKING AGREEMENT

We additionally supplement the experiments presented in the main text by modifying the ranking
correlation metric to account for statistical significance in the benchmark evaluations. Specifically,
we use Kendall’s 7-b (Kendall, |1945)), which adjusts for ties in rankings. We consider two models
tied on a given benchmark if their performance difference is not statistically significant at the 95%
confidence level. We assess statistical significance using a t-test based on the standard error of the
mean performances.

We reproduce the ranking correlation figures of the main text using the modified Kendall’s 7 which
treats non-statistically significant performance differences as ties. See Figure [12]and [I3} as well
as Figure [T4] and Figure [T3] for more detailed results. We observe that accounting for statistical
significance in models’ performance differences leads to slightly higher ranking correlations, as
measured by Kendall’s 7-b. For direct evaluation, average agreement increases from 0.52 to 0.58.
For train-before-test, average agreement increases from 0.76 to 0.77. Therefore, train-before-test
continues to lead to large improvements in raking agreement (from Kendall’s 7-b 0.58 to 0.77).
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Algorithm 1: build_partial_order(scores, stderrs)

Input: Model performance scores and standard errors
OQutput: Directed graph G representing significant model orderings
Initialize graph G with models as nodes
foreach pair of distinct models (m1, m2) do
if mq is significantly better than mo then
L | Add directed edge (m1 — m2) to G

return G

Algorithm 2: parallel_greedy_rank(models, G'1, G2, scorey, scores)

Input: List of models, two directed graphs G1, G2, and two score series
Output: Two lists representing the parallel ranking order for each task
Initialize vanillaRank;, < rankdata(score;), vanillaRanksy < rankdata(scores)
Initialize available; and availables as models with zero in-degree in G; and G»
Initialize empty lists order;, orders
for i = 1 to number of models do
Initialize empty list pairs
foreach mq in available; do
foreach mo in availables do
Compute cost for pair (m1, mso) based on:
(1) Placement of m in orders and my in order;
(2) Whether m1 = my (prefer matching)
(3) Combined vanilla ranks: vanillaRanks[mq]+ vanillaRankq[ms]
Append (cost, my, my) to pairs

Sort pairs by cost (ascending)

Select (mq, mg) with minimal cost

Append m; to order;, mg to ordery
Remove m, from G; and update available;
Remove my from G5 and update availables

return order;, orders

Algorithm 3: rank_models(score;, stderr;, scores, stderrs)

Input: Scores and standard errors for two tasks
Output: Parallel rankings for both tasks
G1 + build_partial_order(scoreq, stderry)
G5 < build_partial_order(scores, stderrs)
(ordery,ordersy) < parallel_greedy_rank(models, G1, Ga, scorep, scores)
ranki[m] = position of m in order; (starting from 1)
ranks[m] = position of m in orders (starting from 1)
return ranki, ranks
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Figure 12: Mean ranking agreement between each benchmark and all others, measured by Kendall’s
tau-b, with non-statistically significant performance differences being treated as ties. We calculate
Kendall’s 7-b between each benchmark and every other one, and then average. Compared to direct
evaluation, train-before-test consistently improves ranking agreement—often by a large margin. On
average, the overall average Kendall’s 7 is 0.58 for direct evaluation and 0.77 for train-before-test.
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(a) Direct evaluation. (b) Train-before-test.

Figure 13: Cross-category ranking agreement for direct evaluation (left) and train-before-test (right),
measured by Kendall’s tau-b, with non-statistically significant performance differences being treated
as ties. We consider language understanding (LU), commonsense reasoning (CR), question answering
(QA), physics/biology/chemistry (PBC), math (Math), and medicine (Med) categories. Kendall’s
T-b is averaged across all pairs of benchmarks that belong to two given categories. The diagonal
represents the intra-category agreement and the others represent the inter-category agreement. train-
before-test improves both intra- and inter-category ranking agreement in all instances.
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1660  Figure 15: Cross benchmark ranking agreement under train-before-test, measured by Kendall’s tau-b
1661 with insignificant model comparisons treated as ties.
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D BROADER IMPACTS

We do not anticipate any direct societal impacts from this work, such as potential malicious or
unintended uses, nor do we foresee any significant concerns involving fairness, privacy, or security
considerations. Additionally, we have not identified potential harms resulting from the application of
this technology.

E REPRODUCIBILITY STATEMENT

Detailed experimental settings are in Section [3.1]and Appendix [A] We also include all code and data
in the supplementary material and will open-source them upon acceptance.

F THE USE OF LARGE LANGUAGE MODELS

In this paper, we use large language models to aid and polish writing. Large language models are not
used for retrieving related work or generating research ideas.
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