Under review as a conference paper at ICLR 2025

PLANNING IN A RECURRENT NEURAL NETWORK THAT
PLAYS SOKOBAN

Anonymous authors
Paper under double-blind review

ABSTRACT

How a neural network (NN) generalizes to novel situations depends on whether
it has learned to select actions heuristically or via a planning process. |Guez et al.
(2019 “An investigation of model-free planning”) found that a recurrent NN (RNN)
trained to play Sokoban appears to plan, with extra computation steps improving
the RNN’s success rate. We replicate and expand on their behavioral analysis,
finding the RNN learns to give itself extra computation steps in complex situations
by “pacing” in cycles. Moreover, we train linear probes that predict the future
actions taken by the network and find that intervening on the hidden state using
these probes controls the agent’s subsequent actions. Leveraging these insights,
we perform model surgery, enabling the convolutional NN to generalize beyond
its 10 x 10 architectural limit to arbitrarily sized inputs. The resulting model
solves challenging, highly off-distribution levels. We open-source our model and
code, and believe the neural network’s small size (1.29M parameters) makes it an
excellent model organism to deepen our understanding of learned planning.

1 INTRODUCTION

In many tasks, the performance of both humans and some neural networks (NNs) improves with more
reasoning: whether by giving a human time to think before making a chess move, or by prompting or
training a large language model (LLM) to reason step by step (Kojima et al.| 2022; (OpenAll 2024)).

Among other reasoning capabilities, goal-oriented reasoning is particularly relevant to Al alignment.
So-called “mesa-optimizers” — Als that have learned to pursue goals through internal reasoning
(Hubinger et al.| 2019) — may internalize goals different from the training objective, leading to
harmful misgeneralization (D1 Langosco et al., 2022} Shah et al.||2022). Understanding how popular
NNs without a special inductive bias learn to plan and represent the planning objective could be key
to detect, prevent or correct goal misgeneralization.

Within goal-oriented reasoning, we distinguish between plans and search algorithms. A plan is an
internal representation of a sequence of the actions which an agent will take. A search algorithm is an
algorithm that considers many plans, evaluates them according to their predicted outcomes, and picks
the plan evaluated as best. Search algorithms perform better the more plans they can evaluate and,
with enough compute, generalize very well to novel problem instances (Russell & Norvig}, 2009).

In this work, we investigate search and planning in a Deep Recurrent ConvLSTM (DRC) that plays
Sokoban, a challenging puzzle game that remains a benchmark for planning algorithms (Peters et al.|
2023)) and reinforcement learning (Chung et al., [2024). |Guez et al.|(2019) formulated the DRC, an
architecture without any special inductive bias towards planning. Despite that, they argue that it
performs search internally, because 1) the DRC performs unusually well in procedural environments,
2) it generalizes well from a small variety of levels, and 3) it solves about 5% more levels with extra
compute at test time.

1.1 CONTRIBUTIONS

The main contribution of this work is providing conclusive evidence that the DRC internally represents
a plan. Firstly, we find where the plan is represented in the activations using linear probes
(classifiers trained on NN activations) like concurrent work (Anonymous} 2025). Secondly, we show

Under review as a conference paper at ICLR 2025

that intervening on the probe logits to change the plan causes the agent to execute the new plan. In
other words, the plan representation is causal.

We provide evidence that the DRC improves its plan with more computation, and that it has learned
to use this capability when it needs to, and not just when forced by no-ops. Firstly, we observe that the
length of the plan and its accuracy at predicting future actions both increase over time. Secondly, we
observe that the DRC sometimes takes actions which return to previous states of the environment, in
effect wasting time. This overwhelmingly happens at the beginning of episodes and can be substituted
by no-ops. Additionally, the average per-step increase in plan length and improvement in plan
F1-score is larger during cycles than during non-cycles, even controlling for cycles being at the
beginning of episodes. Altogether this suggests that utilizing additional computation to improve the
plan (e.g. by creating state cycles) is part of the network’s behavior and not an accident.

Thirdly, we find several pieces of evidence which add weight to the hypothesis that the DRC agent is
performing a search algorithm of some kind. However, we cannot rule out the DRC using heuristics
that produce plans and take multiple steps to compute. We find behaviors that are more likely if the
DRC is doing search: Giving the RNN time to think with no-ops disproportionately
helps with levels that are hard (fig. [T} bottom-left) and have longer solutions (fig. [3] right), or that
require waiting many steps before the first reward (fig. 5] left). We can use the representations in
the DRC’s convolutions to generalize beyond the 10 x 10 grids in the training dataset to larger,
more challenging levels (fig. [2] right). This illustrates that the DRC’s representations can generalize
out-of-distribution very well and, as |Guez et al.| (2019) argued, search generalizes very well in
procedural environments.

Finally, we fully open-source all training and interpretability data, tools, and trained models, unlike
previous work. We believe the DRC is an excellent model organism for understanding planning in
sophisticated neural networks. Its behavior is complex enough to be interesting and its size (1.29M
parameters) is small enough to be tractable to reverse engineer. We hope that future work can use
these open-source resources to find conclusive evidence of search and understand how NN learn to
implement it.

% solved
i
(w)

(3]
[}
— 1

S
1

hard

valid_medium

S
L

T T T
70M 500M 1B 1.5B 2B
Environment steps, training

Planning Effect
(9]

Figure 1: Top left: Proportion of medium-difficulty validation levels solved vs. environment steps
used in training. Curves show the DRC’s performance with a specific number of thinking steps (forced
no-op actions) at episode start, along with a ResNet baseline. Bottom left: Estimated planning effect:
the 8-steps minus the 0-steps curve. We see that planning emerges in the first 70M steps and keeps
increasing for the hard levels (red), but decreases for medium levels (blue). Right: Linear probe
predictions (arrows) for the direction the box will move in. Opacity is proportional to the number of
steps in the episode in which the probe predicted a particular arrow. Correct predictions are in green
and incorrect in red, the red predictions show other plausible plans for Box 4. This probe causally
affects the actions of the agent, as described in sectionﬂ Boxes are numbered in the order in which
they arrive at their final target.

Under review as a conference paper at ICLR 2025

DRC(3, 3) architecture

Action Probe
135 params

1 1
61 61 ’uﬁ Global n
s s Frobe

Figure 2: Left: The DRC(3, 3) architecture from : 3 layers of convolutions with
an LSTM structure are repeated 3. The embedded observation feeds into every layer, and the last
layer’s output feeds into the first. Blue: we train two types of linear probes on the grid-cells of the 3D
recurrent hidden states of the network (section E) Red: The DRC(3, 3) is limited to 10 x 10 grids by
a fixed-dimension MLP. By replacing the MLP block with simple linear probes to predict action, the
ConvLSTM backbone generalizes to much more challenging settings than the 10 x 10 training set
grids (section . Right: XSokoban-31, which the DRC(3, 3) solves after replacing the MLP.

2 SETTING UP THE TEST SUBJECT

We train an agent closely following the setup from|Guez et al.| (2019), using the IMPALA
reinforcement learning (RL) algorithm with Guez et al.’s Deep Repeating ConvLSTM
(DRC) recurrent architecture. We also train a ResNet baseline. We open-source both the trained
networks and training codeﬂ. For more details about architectures and training, see appendix

DRC(D, N) architecture. Most of this paper focuses on the behavior and representations of a
DRC(3, 3) neural network @ . The core of this network is a D-layer ConvLSTM
2015)), which is repeatedly applied N times per environment step (fig. [2] left). The output
of the last ConvLSTM layer (the Dth layer) is fed to the input at the next tick, effectively giving the
network D - N layers of sequential computation to output the next action. We take D = 3, N = 3.

A linear combination of the mean- and max-pooled activations of the ConvLSTM is also fed to the
next step, thus letting it communicate quickly across the receptive field (known as pool-and-inject).
An encoder block consisting of two 4 x 4 convolutions processes the input, which is also fed to each
ConvLSTM layer. At the end, an MLP with 256 hidden units transforms the flattened ConvLSTM
outputs into the policy (actor) and value function (critic) heads.

Dataset. Sokoban is a grid puzzle game with walls, floors, movable boxes, and target tiles. The
player’s goal is to push all boxes onto target tiles while navigating walls. We use the Boxoban
dataset 2018), consisting of 10 x 10 procedurally generated Sokoban levels, each with 4
boxes and targets. The edge tiles are always walls, so the playable area is 8 x 8. Boxoban separates
levels into train, validation and test sets, with three difficulty levels: unfiltered, medium, and hard.
Guez et al (2019) generated these sets by filtering levels that cannot be solved by progressively
better-trained DRC networks, so easier sets occasionally contain difficult levels. In this paper, we use
the unfiltered-train (900k levels) set to train networks. To evaluate them, we use the unfiltered-test
(1k levelsﬂ medium-validation (50k levels), and hard (~3.4k levels) sets, which do not overlap. To
test DRC(3, 3) generalization to different sizes, we use the levels collected by Porsteinsson|(2009)

(see appendix [B).

Environment. The observations are 10 x 10 RGB images, normalized by dividing each component
by 255. Each type of tile is represented by a pixel of a different color (Schrader, [2018), an example is

"URL references removed during double-blind review.
2We use unfiltered-test rather than unfiltered-validation so the numbers are directly comparable to

(2019).

Under review as a conference paper at ICLR 2025

in fig.[T2] The player can move in cardinal directions (Up, Down, Left, Right). The reward is -0.1 per
step, 1 for placing a box on a target, -1 for taking it off, and 10 for finishing the level by placing all of
the boxes. The time limit for evaluation is 120 steps, though large levels in section[6.2Juse 1000 steps.

3 HYPOTHESES AND TOOLS

3.1 TooLs

Probes. In the interpretability literature, a probe is a simple (usually linear) model which is trained
to predict some label (often called the ‘concept’) based on intermediate activations of a NN (Alain &
Bengiol 2016; Belinkovl, 2016). If a simple model is able to predict a relatively complex concept, it
must mean that those activations represent this concept in a very accessible way. The accuracy of a
probe on a dataset is exactly the conditional V-entropy in the theory of usable information (Xu et al.,
2020), where V is the model class of the probe.

In this paper we train two kinds of probes (fig. [2] left), both in the model class of logistic regression:
grid-wise probes (the input are channels in a single location, one probe output per grid position) and
global probes (the input is the entire layer’s activations). See section

Checking probe causality. Probes can tell you whether a model is computing some representation,
but not whether it is used for further processing. Probes often predict labels which are related to
the representations the model uses to compute further steps, but which are not the representations
themselves. This is more of a problem the more complex the model class V is.

Li et al.| (2023)) propose a solution to check whether their nonlinear probes are capturing what the
model uses in its computation. During a forward pass of the NN, set the activations to a value that
would make the output of the probe something different, and check whether the NN behavior changes
accordingly.

3.2 HYPOTHESES: DEFINING PLANNING AND SEARCH

Guez et al| (2019) presented behavioral evidence that the DRC internally executes a planning
algorithm, but they did not make precise what this means exactly. To be concrete, we distinguish
between two types of (related) planning-like algorithms, and give their informal definitions here.

Definition 1 (Plan). A plan of a NN is a collection of future actions {ay for allt > to}, that is
causally represented in the NN activations z, at time 1.

Definition 2 (Causally represented). Given a simple model classes for plans and whether they are
selected V), Vs, a plan is causally represented if

1. The plan {at}+>t, can be extracted from the current NN state zy, using a model v € V.

2. If this plan is selected, its sequence of actions {ay }+~+, predicts what the NN actually does
with high precision and recall.

3. Modifying z:, changes the realized actions of the NN (future a; when running the policy) in
a manner consistent with the predictive model v.

Definition 3 (Search). A search algorithm is an algorithm that, for at least some time steps, includes
the following steps: 1) generate several possible plans, 2) evaluate the value of each plan according
to an approximation of its consequences (with a model of the world or otherwise), and 3) pick the
plan with the best value.

An algorithm does not need to evaluate every single intermediate state to be search, nor does its
evaluation need to be perfect. Many conceivable ways of evaluating plans only use parts of a model
of the world, or use heuristics to evaluate the plans. The important characteristic of search here is the
explicit representation and choice between several possible plans.

Using these definitions, we can write hypotheses that make increasingly concrete claims.

Hypothesis 1 (The DRC(3, 3) has a plan). The actions of the DRC(3, 3) are determined by a plan
that is always selected (V, = logistic regression,Vs = {1}). This plan predicts and causes the
actual sequence of actions the DRC takes.

Under review as a conference paper at ICLR 2025

Hypothesis 2 (Plan improves with computation). On average, each iteration of the DRC(3, 3) brings
the plan closer to the actual sequence of actions the DRC executes.

Hypothesis 3 (Pacing to improve plans). Sometimes, the DRC(3, 3) takes more steps than would be
optimal to push a box. When that happens, it is usually so that the DRC has computation to come up
with a plan that solves the level, rather than because it is an incompetent agent.

We generated hypothesis [3] from anecdotal observations of DRC behavior. It makes sense to think
before box pushes because they are potentially irreversible, and even if reversible one box push takes
4 steps to correct (3 to go around the box and 1 to push it back).

This last hypothesis we do not test for directly. Instead, we provide circumstantial evidence for it in
the same manner as|Guez et al.| (2019).

Hypothesis 4. The NN is doing search: it has several plans, and selects among them based on their
value.

4 THE DRC(3,3) CAUSALLY REPRESENTS ITS PLAN

This section tests hypothesis I} We present probes which predict the future actions of the DRC(3, 3)
and other various future features of the environment. Of these, the one which predicts the future
direction boxes will move in has a strong causal effect in the actions of the DRC. Following the
standard of evidence in [Li et al.[(2023)), we declare this conclusive evidence that the DRC(3, 3)
represents and uses plans. The spatial structure of the probes and some of the targets are due to
Anonymous|(2025).

By intervening on the probes, we are able to lock the DRC into a plan when there are two options of
equal value. However in most cases, if we stop intervening on the RNN activations with a suboptimal
plan, the DRC comes up with a better plan online and follows it. We have some evidence for the
DRC(3, 3) considering multiple plans: for example, in the level in fig.|1|(right) the box probe first
considers moving box 4 down and right (shown in red), but then rethinks that and ends up taking
different actions. However, we have been unable to find multiple simultaneous representations of
plans, or anything that would decide between them such as the value of the plans. In all, this section
provides very little evidence in favor of search, but conclusive evidence for a causal plan.

4.1 PROBE METHODOLOGY: TRAINING, INTERVENTION AND TARGETS

Training. We train logistic or linear regression probes with L1 decay to predict various features of
the environment from the agent’s activations. We train on two types of inputs. 1) Grid-wise inputs
(Anonymous, 20235)): each square in the 10 x 10 grid is a different data point, potentially with a
different label depending on location and timestep. The input is the 64-dimensional LSTM state
(h, ¢) at a square, usually concatenated for the 3 layers. 2) Global inputs: Each time step produces
only one data point. The probes take as input the 64 channels of all of the squares in the 10x10
grid, resulting in a 6400-dimensional input for each layer. In both cases, the per-layer activations are
concatenated for probes that are trained on multiple layers.

The dataset consists of states collected by evaluating the DRC(3, 3) on the hard Boxoban levels,
excluding the first 5 steps of each episode because the plan is still forming. For multi-class probes,
training and F1 scores are computed as one-vs-all: the presence of absence of a particular class is the
probe label. We search the best learning rate and L1 decay with grid-search by evaluating the F1 on a
validation split of 20% of timesteps from the hard levels. We take the first 1000 medium-validation
levels as our test set to report the results (table|[I).

Causal intervention. Given a probe that is predictive of future behavior, we edit the agent’s
activations such that the probe predicts the behavior we desire to induce. To the extent that the agent
carries out the edited behavior, we can conclude that it executes a plan encoded in the linear direction
of the probe.

For a linear probe on the activations i with parameter vector p, we intervene in order to increase the
logits for a particular behavior, given by p - h (we omit a scalar intercept for brevity). Unlike previous
work in steering vectors for LLMs (Turner et al.| [2023; Rimsky et al., [2023; |Li et al.,|2024), we found

Under review as a conference paper at ICLR 2025

that simply adding a perturbation equal to a fixed multiple of p caused the policy to degenerate and
choose random actions. We instead add an adaptively-scaled multiple of p to the activations, chosen
to minimize the change in the activations while still causing the probe’s logit to be greater than a
desired amount a.. More precisely, we find arg miny, |2’ — h||3, with the constraint that A’ - p > «.
The solution to this is b’ = h + pmax(0,« — (h - p)), where p = p/||p||3.

Targets. We choose targets that plausibly encode the steps of a plan. Most of these labels are for
grid-wise probes, but the pacing and value probes are global. The direction probes are very similar to
Anonymous|(2025)).

» Agent-Directions probe: This probe has 5 outputs: NV (No Visit), UP, DOWN, LEFT,
RIGHT. The probe takes as input the 64-dim hidden state activations at a square (z, y) at
timestep ;. If the agent visits the square (x,y) at a future timestep ¢ > ¢;, then the probe
predicts the corresponding direction that the agent takes from that square. For squares that
are visited multiple times in the future, the direction corresponding to the first future visit is
taken as the target. If a square is never visited in a future timestep, the probe predicts NV.
There is one single multinomial probe, for all time steps and locations (x,).

* Boxes-Directions probe: This probe is similar to the above probe, except that it is trained to
predict the direction in which any of the four boxes will move at a given square in the future.
The rationale for this probe is that the boxes, and constraints on their movement given by
obstacles, are the main difficulty with Sokoban puzzles.

* Next-Box probe: Predicts 1 on the square of the box that the agent will move next and 0 for
every other square.

* Next-Target probe: Predicts 1 on the square of the target that the agent will put a box in
next, and O for every other square.

» Pacing probe: The global label is 1 if the agent is currently in a cycle, and 0 otherwise.

* Value probe: The global label is the numerical value that the critic head outputs.

Table 1: Causal and predictive probe results. Confidence is one of the mean estimator percentiles
[2.5%,97.5%], whichever is furthest from the mean, estimated using 1000 bootstrap resamples. The
AVERAGE causal probe uses 24k data points for evaluation, and the BEST-CASE probe uses 8k. The
data points are sampled from the first 1000 medium validation levels.

PROBE TARGET | PREDICTIVE PROBE RESULTS (A) | CAUSAL PROBE RESULTS (B)
SPARSE PROBES CAUSAL EFFECT

BEST F1 F1 Lo-NORM « AVERAGE BEST-CASE
Box-directions 86.4+0.1 | 73.1£0.1 63 | 30 43.7+0.6 77.8+0.9
Agent-directions | 72.3+0.1 | 61.3£0.1 121 | 10 7.1+£0.3 20.7£0.7
Next box 74.2+04 | 69.7£0.5 51 | 40 5.5+1.0 15.14+2.5
Next target 54.3+0.5 | 44.0+0.5 32 | 30 4.6+ 0.8 13.24+2.0
Pacing 31.0£1.8 | 31.0x£1.5 5| — — —

4.2 PROBE EVALUATION AND CAUSALITY

Probe predictive power. Most probes are quite predictive, as seen in table (1] The exception is
the pacing probe, with F; = 31.0%, which is not much better than the constant 1 probe, which has
Fy = 12.8%. This leads us to conclude that the DRC(3, 3) does not represent whether it is in a cycle
or not. See fig. E] (right) and fig. E]for visualizations of agent-direction and box-direction probe%l

For the value function probe, we compute the fraction of variance explained R2. If we train a
global probe, R? is very high: 97.7%—-99.7% depending on the layer. However, grid-wise probes
obtain much worse but still passable results: 41.0%—-79.2% depending on layer. We visually checked
whether the grid-wise probe reads off the values of different plans, but could not find any such pattern.

3The supplementary material provides visualization videos of all the probes across several levels.

Under review as a conference paper at ICLR 2025

80 —r 10'0 7] K—/_’—/
=] J
g — DRC g 72 5
2 70 1 ResNet 6 \"c’ — Precision
= 307 | — Positive squares ° 40 Recall
60 55 Chain length — F1
— T T T T 1 ' UL B BN N B 20 UL LA L BN NN B
024681012 16 1 23 456 1 23 456
Thinking steps Thinking steps with internal ticks

Figure 3: Success rate of the DRC, and plan quality as measured by box-direction probes (section ,
all increase with thinking steps. We measure plan quality by 1) summing the length of chains of
probe-predicted directions, which start in boxes, and 2) simply counting the number of squares in
which the box-direction probe predicts something. The F1 score of the box-direction probe also
increases over time, suggesting that the DRC builds the plan in that time. The right plot also includes
plan quality evaluation on the three sequential ticks per environment step of the DRC(3, 3) network.

Almost all the performance of the global probe is recovered by training on the mean-pooled inputs:
95.2%-99.5%. It is likely that the global and mean-pooled value probes are indirectly counting the
number of squares the agent will step on, which almost fully determines the value, and we know is
possible due to the future-direction probes.

Only the Box-Directions probe is strongly causal. We measure how causal the probes are by
intervening at every step on the hidden state h, c at the layer the probe was trained on, following the
procedure in sectiond.T|and checking whether the agent follows that action. We report the result in
table[I{b) by performing a grid-search over the strength of intervention « and picking the best value.
Despite our adaptive scaling of the intervention, a high value of « can still disturb the agent such that
it starts performing random actions whereas a low value of o may not be sufficient to cause the agent
to follow the intended behavior. Most of the probes are not causal: only the “boxes directions” probe
(used in fig. [T is causal while the “agent-direction” probe mildly causal.

Even then, we have observed that it can only change boxes directions when they would not deadlock
the level in a naive way. That is, if you try to make the model push a box onto a wall, such that
the box would not be able to reach a target anymore, it does not. For this reason, we introduce the
Best-case causal effect in table[T(b): try all three directions that are not the actual direction that the
box follows, and count the probe as “causal” if it works for any of them (e.g. because they do not
naively deadlock the level).

5 PLAN IMPROVEMENT AND PURPOSEFUL EXTRA COMPUTATION

This section tests hypotheses [2]and [3} whether the plan improves with computation and whether the
DRC purposefully spends time before irreversible actions to improve it.

Plan improvement. If hypothesis [2is true, then the ability of probe-extracted plans to predict
DRC actions should increase when it is given extra computation with no-ops. Figure 3] (right) shows
exactly this effect: the plan starts out very incorrect, and quickly becomes much more reliable.

Figure [3|(middle) shows that plans also get more complex: the length of the plans also increases over
time, at least until 6 which the probe predicts a direction grows over time.

5.1 AGENT “PACES” TO GET MORE COMPUTATION

On occasion, the DRC exhibits a curious behavior: the agent “paces” in a cycle, returning to the same
location, without touching any box. The per-step penalty makes this behavior naively sub-optimal,
because it does not advance the puzzle state.

Under review as a conference paper at ICLR 2025

Since the DRC(3, 3)’s performance improves with thinking steps, could the agent be using pacing
to gain computation time to improve its plan and so avoid irreversible actions which may block the
solution? The following evidence suggests the agent has developed this meta-strategy:

The agent paces mostly at the start of episodes. In some levels, a single sub-optimal step can lock
the level, which makes calculating a valid plan in early steps beneficial. Figure [4| (left) shows most
cycles start in the first 5 steps of the episode, and (middle) forcing the model to think for six steps
eliminates about 75% of these early cycles.

Thinking steps almost entirely substitute pacing We run the DRC(3, 3) on medium-validation
levels and record when and where cycles occur. We merge all cycles which overlap with other cycles,
for a total of 13 702 cycles.

We then make the DRC take NV thinking steps just before it would start a cycle of length N. As shown
in fig. [(right), these thinking steps replace the cycles: comparing the cycle and the substitution, the
DRC follows the same trajectory for at least 60% of the levels and for a minimum of 30 stepsﬂ

If our hypothesis that cycles are utilized for thinking holds true, we would expect to see uninterrupted
periods of action after each cycle. In the N steps after an N-step cycle concludes, 98.8% of
trajectories have no cycles. When substituting them for NOOPs, this becomes 82.4%, lower but still
much higher than 0%; indicating that thinking steps largely remove the NN’s perceived need for
cycles.

Plan quality over time. If the DRC uses cycles as a way to improve its plan when needed, we
would expect the F1 score of plans to be lower at the beginning of cycles than during non-cycles.

We have seen that there are large effects on the F1 score of the plan from the timestep. We correct for
this by pairing each cycle sample with a non-cycle sample as follows: if a cycle starts at time ¢g, we
sample another level uniformly at random, conditional on ¢y not being the start of a cycle. We use the
hard level set. Using this protocol, the F1 score at the start of cycles is 51.42%, whereas at the start
of non-cycles it is 57.80% (error bars pending but small).

We would also expect the increase in F1 score for every step to be larger in the cycles case. And it is:
the F1 score increases 0.93% = 0.13% per step in the case of cycles, and 0.45% =+ 0.11% in the case
of non-cycles. Figure[I6contains the histogram, and we can see that the distributions mostly match
except the per-step improvement of cycles is right-skewed. This is some indication that ’cycles’ are a
bad proxy for when the DRC is in thinking mode, which also explains the failure of the pacing probe
in section A1l

Is the higher F1 score for cycles because they are closer to the end-of-episode and have fewer things
to predict? No: we can compare how many squares the plan grows by for every step of cycles and
non-cycles. On average, the plan grows by 2.03 squares in the case of cycles, and 1.37 for non-cycles.

Every test that we conduct here has a small but unmistakable effect in favor of hypothesis [3]

6 BEHAVIORAL EVIDENCE OF SEARCH

6.1 EFFECTS OF THINKING TIME: NON-MYOPIC NETWORK

First, we examine the effect of thinking time: introducing no-ops at the beginning of an episode,
while letting the DRC process its hidden state. As in|Guez et al.| (2019)), adding 6 extra thinking
steps lets the DRC(3, 3) solve an extra 4.7% of levels, slightly decreasing when going up to 16 steps

(fig. 3} left).

We find that the extra thinking time disproportionately helps with more difficult levels, as measured
by longer optimal solutions (fig.[5} right). We also checked whether thinking time correlates with the
number of nodes expanded by an A* search, but it does not (fig.[T3).

Thinking time helps varying amounts depending on training time and level difficulties: fig. [I| (bottom
left) shows that most of the planning effect steeply appears during the first 70M steps of learning.

*For context, the median solution length for train-unfiltered is exactly 30 steps.

Under review as a conference paper at ICLR 2025

— 8k
..... 1 . 7] 80 T
02 Median: 4 8 o g\
o Mean: 8.3 > 8751
g - 4k 1 =70 -
[5) (]
A S g
E ok - S 65
4 X
0 T T T T T T 60 _I T T T
0 20 40 0 2 4 6 8 12 0 10 20 30
Cycle start timestep Steps to think Trajectory length after cycle

Figure 4: Left: Histogram of cycle start times on the medium-difficulty validation levels. Middle:
Total number of cycles the agent takes in the first 5 steps across all episodes in medium-difficulty
validation levels with N initial thinking steps. Right: on all levels, we replace N-length cycles
with N thinking steps and check the proportion of trajectories which are equal between these two
treatments, for x steps after the cycle.

x

Q 4 i < 60

§ S0 — Box4 &

by 40 1] —~ Box3 2

9) | = 351

i) i 4 — Box1 =

% 20 ?0 50

2 10 T——"TT] Z

= 0246 8 12 02 4 6 8 12 0 2 46 812N
Thinking steps Solved at thinking step

(a) On all levels (b) On solved levels

Figure 5: Left: Average time step to place each box B; on target for different numbers of thinking
steps. (a) Averages across all levels where the box B; is placed on target by DRC with NV thinking
steps. (b) Averages for all levels solved by 6 thinking steps but not solved by 0 thinking steps. More
thinking steps makes the DRC avoid greedy strategies in favor of long-term return. Right: Average
optimal solution length of levels grouped by the number of thinking steps at which the level is first
solved. Levels that take longer to solve tend to be harder. NS stands for “not solved”.

Over the remaining training time, the RNN benefits more from thinking steps for the hard levels, but
less for the medium levels; indicating perhaps that it learns better heuristics for them.

We also find that thinking time disproportionately helps with levels in which the agent can greedily
put a box to target early, but where doing so is detrimental to solving the level. Figure[5](left, b) shows
this: with 0 thinking steps, the first box is pushed to target on average 4 steps too early; compared to
the solution reached at 6 thinking steps. Some of this is driven by the forced thinking steps preventing
the DRC(3, 3) from taking a catastrophic action in the first few moves. However, the average time
to first box is more than 6, even for 0 thinking steps, so there must also be many cases in which the
6 extra thinking steps give the NN time to find a better solution, rather than just preventing it from
greedily pushing the first box. It must also be less greedy for boxes 2-3.

6.2 GENERALIZING BEYOND 10 x 10 INPUTS AND TRAINING EXAMPLES

This section goes beyond the capabilities of DRC(3, 3) as a black-box unit. By looking for inter-
pretable features in the activations of the ConvLSTM core, we found that layer 3, at the last tick, has
four channels which represent the next action to take. Since the network up until the ConvLSTM

Under review as a conference paper at ICLR 2025

core is completely convolutional, we can evaluate it on inputs of any size — unlike DRC(3, 3) as a
whole, which only works on 10 x 10 inputs, and is trained only on levels with four boxes.

Spatial aggregation. We start with the Layer 3 grid-wise binary next-action probes for each action
from table For each spatial location, these predict the action the DRC(3, 3) will take in this
step. We aggregate the spatial grid-wise predictions with three different methods: mean-pooling,
max-pooling, and the proportion of locations with positive probe readouts for a particular action. We
learn their relative weights and a bias for each action by optimizing the cross-entropy loss against
the actions predicted by the MLP block. We use the Adam optimizer with learning rate £ = 103,
annealed linearly to O for 10000 steps. Table [5|lists the learned parameters, which place most weight
on the mean-pooling aggregation rule. The training set consists of 3000 levels, 1000 from each of the
Boxoban unfiltered, medium, and hard training sets.

Results. The aggregated features obtain 83% and 77.9% accuracy at predicting the MLP’s action
output on the training set and the medium-difficulty validation levels, respectively. This is less than
expected given the 90%-+ F1 scores of individual action probes in table[10}

The adjusted ConvLSTM is able to solve many levels that are out-of-distribution: larger than 10 x 10
in both dimensions, and with more than four boxes, e.g. those in fig. 2| (right) and fig. [8| Out of
our test set collected from [Porsteinsson| (2009), it can solve 59/480 levels with both dimensions
> 10, 30/203 levels with only one dimension > 10 and 180/482 levels with both dimensions < 10.
Appendix [B|has a breakdown by level collection.

7 RELATED WORK

Interpreting agents and planning. Several works have attempted to find the mechanism by which
a simple neural network does planning in mazes (Mini et al.| [2023; [Knutson et al., 2024} Brinkmann
et al.| 2024)), gridworlds (Bloom & Colognesel 2023)), and graph search (Ivanitskiy et al.,2023)). Men
et al.| (2024) investigates LLM reasoning in a simple block-stacking task. We believe the DRC we
present is a clearer example of an agent than what these works focus on, and should be similarly
possible to interpret.

Concurrent work (Anonymous) 2025)) interprets another DRC Sokoban agent and can also predict
future actions. That team invented grid-wise probes and the Agent-Directions and Box-Directions
targets.

Other works interpret superhuman game-playing agents. [Jenner et al.| (2024) find evidence of
lookahead in Leela Chess Zero (Team, [2018)), without predicting future actions. McGrath et al.
(2021)); |Schut et al.| (2023)) find interpretable concepts in AlphaZero (Silver et al., 2017).

Probing for world models. Planning usually requires a model of the world. L1 et al.| (2023)); Nanda
et al.| (2023b); [Karvonen| (2024) examine agents trained to predict possible moves in games, and are
able to probe for the board state. 'Wijmans et al.|(2023) also probe the state of navigation neural
networks. Gurnee & Tegmark](2023) find a representation of positions in Earth for location-associated
tokens in an LLM.

Goal misgeneralization and mesa-optimizers for alignment. From the alignment perspective, Als
optimizing monomaniacally for a goal have long been a concern (e.g.| Yudkowsky}, [2006; |Omohundro,
2008 see the preface of Russell, 2019). In a machine learning paradigm (Hubinger et al.,|2019), the
goal of the training system is not necessarily optimized; instead, the NN may optimize for a related
or different goal (Di Langosco et al.l[2022; Shah et al., 2022) or for no goal at all.

Neural network architectures that reason. Many papers try to enhance NN thinking by altering
the training setup or architecture. |Schwarzschild et al.|(2021bja); Bansal et al.| (2022)) improve and
evaluate a specific kind of RNN training that produces algorithmic thinking, though Knutson et al.
(2024)) argue that they do not generalize enough and thus do not implement the correct algorithm.
Other works endow RNNs with variable amounts of computation per step, with (Chung et al., 2024)
or without (Graves| 2016) an explicit world model.

10

Under review as a conference paper at ICLR 2025

Systematic Generalization. Previous work has identified certain conditions like diverse datapoints
and egocentric environments, under which neural networks generalize systematically (Lake & Baroni|
2023} [Hill et al., 20205 Mutti et al.,2022)). Similar interpretability work as ours can be done across
many such neural networks to find common planning mechanisms and the conditions in which they
emerge.

8 CONCLUSION

We replicated a small RL-based Sokoban agent, whose performance benefits from increased compute
in the form of externally imposed no-op steps (Guez et al.,|2019). We find that the agent learns to
explicitly exploit this capability by pacing, which substitutes for the external no-op thinking steps.
Extra computation helps with longer levels and those that require non-myopic thinking.

We show that the agent causally represents plans (sequences of actions to take). The most fundamental
plan representation we find is the box-direction probes, which can predict and control where the agent
pushes a box. By building up a chain of box probe steps over time, the agent is able to figure out
how to place boxes to solve the level. Secondarily, we find agent-direction probes that take lower
precedence than the box-direction probes, but can control the agent moves in isolated setups. We
additionally find that the box probe chains get longer and longer with more thinking steps (fig. 3).

Finally, we find that extracting a decision from the plan takes place almost entirely within the
ConvLSTM, with the MLP doing little more than decoding it. To demonstrate this, we show that the
agent can generalize to levels bigger than what it had ever seen during training by manually replacing
its MLP decoder based on our mechanistic understanding.

We hope the model organism we trained and open-source will catalyze research into NN that learn
to plan, and to understand their inner objectives.

REPRODUCIBILITY STATEMENT

We provide the code and the trained models in the supplementary materials. We open-source our
code and trained model(s). Additionally, sections [2] 4.1 and appendices and [F] describe the
specific experimental details and settings we used to carry out our experiments.

REFERENCES

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier probes.
CoRR, 2016. URL http://arxiv.org/abs/1610.01644v4.

Authors Anonymous. Interpreting emergent planning in model-free reinforcement learning. Submitted
to ICLR, 2025. URL https://openreview.net/forum?id=DzGe40glxsl

Arpit Bansal, Avi Schwarzschild, Eitan Borgnia, Zeyad Emam, Furong Huang, Micah Goldblum, and
Tom Goldstein. End-to-end algorithm synthesis with recurrent networks: Extrapolation without
overthinking. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
Advances in Neural Information Processing Systems, 2022. URL https://openreview)
net/forum?id=PP jSKy40XUB.

Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and advances. Computational
Linguistics, pp. 1-12, 2016.

Joseph Bloom and Paul Colognese. Decision transformer interpretability, 2023.
URL https://www.lesswrong.com/posts/bBuBDJBYHt39Q5z%y/
decision-transformer—-interpretability.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, et al. Towards monosemanticity: Decompos-
ing language models with dictionary learning. Transformer Circuits Thread, 2, 2023.

Jannik Brinkmann, Abhay Sheshadri, Victor Levoso, Paul Swoboda, and Christian Bartelt. A
mechanistic analysis of a transformer trained on a symbolic multi-step reasoning task. arXiv, 2024.
URLhttp://arxiv.org/abs/2402.11917v2l

11

http://arxiv.org/abs/1610.01644v4
https://openreview.net/forum?id=DzGe40glxs
https://openreview.net/forum?id=PPjSKy40XUB
https://openreview.net/forum?id=PPjSKy40XUB
https://www.lesswrong.com/posts/bBuBDJBYHt39Q5zZy/decision-transformer-interpretability
https://www.lesswrong.com/posts/bBuBDJBYHt39Q5zZy/decision-transformer-interpretability
http://arxiv.org/abs/2402.11917v2

Under review as a conference paper at ICLR 2025

Bilal Chughtai, Lawrence Chan, and Neel Nanda. A toy model of universality: Reverse engineering
how networks learn group operations. arXiv, 2023. URL http://arxiv.org/abs/2302|
03025v1.

Stephen Chung, Ivan Anokhin, and David Krueger. Thinker: Learning to plan and act. Advances
in Neural Information Processing Systems, 36, 2024. URL https://openreview.net/
forum?id=mumEBlOar 7.

Mayank Daswani and Jan Leike. A definition of happiness for reinforcement learning agents. arXiv,
2015. URL http://arxiv.org/abs/1505.04497v1l

Lauro Langosco Di Langosco, Jack Koch, Lee D Sharkey, Jacob Pfau, and David Krueger. Goal
misgeneralization in deep reinforcement learning. In International Conference on Machine
Learning, pp. 12004-12019. PMLR, 2022. URL https://proceedings.mlr.press/
v162/langosco22a.htmll

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, lain Dunning, Shane Legg, and Koray Kavukcuoglu. IMPALA:
Scalable distributed deep-RL with importance weighted actor-learner architectures. arXiv, 2018.
URLhttp://arxiv.org/abs/1802.01561v3.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. arXiv preprint
arXiv:2406.04093, 2024.

Alex Graves. Adaptive computation time for recurrent neural networks. arXiv, 2016. URL http:
//arxiv.org/abs/1603.08983v6l

Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sebastien Racaniere, Theophane Weber,
David Raposo, Adam Santoro, Laurent Orseau, Tom Eccles, Greg Wayne, David Silver, Timothy
Lillicrap, and Victor Valdes. An investigation of model-free planning: boxoban levels, 2018. URL
https://github.com/deepmind/boxoban—levels/.

Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sébastien Racaniere, Théophane Weber,
David Raposo, Adam Santoro, Laurent Orseau, Tom Eccles, Greg Wayne, David Silver, and
Timothy Lillicrap. An investigation of model-free planning. arXiv, 2019. URL http://arxiv}
org/abs/1901.03559v2.

Wes Gurnee and Max Tegmark. Language models represent space and time. CoRR, 2023. URL
http://arxiv.org/abs/2310.02207v3.

Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas
Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2023. URL
http://github.com/google/flax.

Felix Hill, Andrew Lampinen, Rosalia Schneider, Stephen Clark, Matthew Botvinick, James L.
McClelland, and Adam Santoro. Environmental drivers of systematicity and generalization
in a situated agent. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=Sk1GryBtwr.

Shengyi Huang, Jiayi Weng, Rujikorn Charakorn, Min Lin, Zhongwen Xu, and Santiago Ontafién.
Cleanba: A reproducible and efficient distributed reinforcement learning platform, 2023. URL
https://arxiv.org/abs/2310.00036.

Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey. Sparse
autoencoders find highly interpretable features in language models. In The Twelfth International
Conference on Learning Representations, 2023.

Evan Hubinger, Chris van Merwijk, Vladimir Mikulik, Joar Skalse, and Scott Garrabrant. Risks
from learned optimization in advanced machine learning systems. 2019. URL https://arxiv,
org/abs/1906.01820.

12

http://arxiv.org/abs/2302.03025v1
http://arxiv.org/abs/2302.03025v1
https://openreview.net/forum?id=mumEBl0arj
https://openreview.net/forum?id=mumEBl0arj
http://arxiv.org/abs/1505.04497v1
https://proceedings.mlr.press/v162/langosco22a.html
https://proceedings.mlr.press/v162/langosco22a.html
http://arxiv.org/abs/1802.01561v3
http://arxiv.org/abs/1603.08983v6
http://arxiv.org/abs/1603.08983v6
https://github.com/deepmind/boxoban-levels/
http://arxiv.org/abs/1901.03559v2
http://arxiv.org/abs/1901.03559v2
http://arxiv.org/abs/2310.02207v3
http://github.com/google/flax
https://openreview.net/forum?id=SklGryBtwr
https://arxiv.org/abs/2310.00036
https://arxiv.org/abs/1906.01820
https://arxiv.org/abs/1906.01820

Under review as a conference paper at ICLR 2025

Michael Ivanitskiy, Alexander F Spies, Tilman Riuker, Guillaume Corlouer, Christopher Mathwin,
Lucia Quirke, Can Rager, Rusheb Shah, Dan Valentine, Cecilia Diniz Behn, Katsumi Inoue,
and Samy Wu Fung. Linearly structured world representations in maze-solving transformers.
In UniReps: the First Workshop on Unifying Representations in Neural Models, 2023. URL
https://openreview.net/forum?id=pZakRK1QHU.

Erik Jenner, Shreyas Kapur, Vasil Georgiev, Cameron Allen, Scott Emmons, and Stuart Russell.
Evidence of learned look-ahead in a chess-playing neural network. CoRR, 2024. URL http:
//arxiv.org/abs/2406.00877v1l

Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical exploration of recurrent
network architectures. In Francis Bach and David Blei (eds.), International Conference on
Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp. 2342-2350,
Lille, France, 07-09 Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/
Jjozefowiczl5.htmll

Adam Karvonen. Emergent world models and latent variable estimation in chess-playing language
models. CoRR, 2024. URL http://arxiv.org/abs/2403.15498v2.

Brandon Knutson, Amandin Chyba Rabeendran, Michael Ivanitskiy, Jordan Pettyjohn, Cecilia Diniz-
Behn, Samy Wu Fung, and Daniel McKenzie. On logical extrapolation for mazes with recurrent
and implicit networks. CoRR, 2024. URL http://arxiv.org/abs/2410.03020v1l

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in Neural Information Processing Systems, 35:
22199-22213,2022. URL https://openreview.net/pdf?id=e2TBb5y0yFf.

Brenden M. Lake and Marco Baroni. Human-like systematic generalization through a meta-learning
neural network. Nature, 623(7985):115-121, 2023. doi: 10.1038/s41586-023-06668-3. URL
https://doi.org/10.1038/541586-023-06668-3.

Tamera Lanham, Anna Chen, Ansh Radhakrishnan, Benoit Steiner, Carson Denison, Danny Hernan-
dez, Dustin Li, Esin Durmus, Evan Hubinger, Jackson Kernion, et al. Measuring faithfulness in
chain-of-thought reasoning. CoRR, 2023. URL https://arxiv.org/abs/2307.13702,

Kenneth Li, Aspen K Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin
Wattenberg. Emergent world representations: Exploring a sequence model trained on a syn-
thetic task. In International Conference on Learning Representations, 2023. URL https
//openreview.net/forum?id=DeG07_TcZvT.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time
intervention: Eliciting truthful answers from a language model. Advances in Neural Information
Processing Systems, 36, 2024.

Thomas McGrath, Andrei Kapishnikov, Nenad Tomasev, Adam Pearce, Demis Hassabis, Been Kim,
Ulrich Paquet, and Vladimir Kramnik. Acquisition of chess knowledge in AlphaZero. Proceedings
of the National Academy of Sciences of the United States of America, 119, 2021.

Tianyi Men, Pengfei Cao, Zhuoran Jin, Yubo Chen, Kang Liu, and Jun Zhao. Unlocking the future:
Exploring look-ahead planning mechanistic interpretability in large language models. CoRR, 2024.
URLhttp://arxiv.org/abs/2406.16033v1.

Ulisse Mini, Peli Grietzer, Mrinank Sharma, Austin Meek, Monte MacDiarmid, and Alexander Matt
Turner. Understanding and controlling a maze-solving policy network. arXiv, 2023. URL
http://arxiv.org/abs/2310.08043v1.

Mirco Mutti, Riccardo De Santi, Emanuele Rossi, Juan Felipe Calderon, Michael M. Bronstein, and
Marcello Restelli. Invariance discovery for systematic generalization in reinforcement learning.
In ICML 2022: Workshop on Spurious Correlations, Invariance and Stability, 2022. URL
https://openreview.net/forum?id=yqgpzlyHz98A.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability, 2023a. URL https://arxiv.org/abs/2301,
05217.

13

https://openreview.net/forum?id=pZakRK1QHU
http://arxiv.org/abs/2406.00877v1
http://arxiv.org/abs/2406.00877v1
https://proceedings.mlr.press/v37/jozefowicz15.html
https://proceedings.mlr.press/v37/jozefowicz15.html
http://arxiv.org/abs/2403.15498v2
http://arxiv.org/abs/2410.03020v1
https://openreview.net/pdf?id=e2TBb5y0yFf
https://doi.org/10.1038/s41586-023-06668-3
https://arxiv.org/abs/2307.13702
https://openreview.net/forum?id=DeG07_TcZvT
https://openreview.net/forum?id=DeG07_TcZvT
http://arxiv.org/abs/2406.16033v1
http://arxiv.org/abs/2310.08043v1
https://openreview.net/forum?id=yqpz1yHz98A
https://arxiv.org/abs/2301.05217
https://arxiv.org/abs/2301.05217

Under review as a conference paper at ICLR 2025

Neel Nanda, Andrew Lee, and Martin Wattenberg. Emergent linear representations in world models
of self-supervised sequence models. CoRR, 2023b. URL http://arxiv.org/abs/2309.
00941v2.

Stephen M. Omohundro. The basic Al drives. In Proceedings of the 2008 Conference on Artificial
General Intelligence 2008: Proceedings of the First AGI Conference, pp. 483-492, NLD, 2008.
IOS Press. ISBN 9781586038335.

OpenAl. Introducing OpenAl ol-preview, 2024. URL https://openai.com/index/
introducing-openai-ol-preview/.

Ethan Perez and Robert Long. Towards evaluating ai systems for moral status using self-reports.
CoRR, 2023. URL http://arxiv.org/abs/2311.08576v1.

Niklas Sandhu Peters, Marc Alexa, and Special Field Neurotechnology. Solving sokoban efficiently:
Search tree pruning techniques and other enhancements, 2023. URL https://doc.neuro,
tu-berlin.de/bachelor/2023-BA-NiklasPeters.pdf.

Jacob Pfau, William Merrill, and Samuel R. Bowman. Let’s think dot by dot: Hidden computa-
tion in transformer language models. arXiv, 2024. URL |http://arxiv.org/abs/2404,
15758v1l

Philip Quirke and Fazl Barez. Understanding addition in transformers. arXiv preprint
arXiv:2310.13121,2023. URL http://arxiv.org/abs/2310.13121v9l

Nina Rimsky, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Matt Turner.
Steering Llama 2 via Contrastive Activation Addition. arXiv, 2023. URL https://arxiv.
org/abs/2312.06681.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall Press, Upper
Saddle River, NJ, USA, 3rd edition, 2009. ISBN 9780136042594.

Stuart Russell. Human compatible: artificial intelligence and the problem of control. Penguin, 2019.

Jérémy Scheurer, Mikita Balesni, and Marius Hobbhahn. Large language models can strategically
deceive their users when put under pressure. arXiv, 2023. URL http://arxiv.org/abs/
2311.07590v3l

Max-Philipp B. Schrader. gym-sokoban, 2018. URL https://github.com/mpSchrader/
gym-sokoban.

Lisa Schut, Nenad Tomasev, Tom McGrath, Demis Hassabis, Ulrich Paquet, and Been Kim. Bridging
the human-ai knowledge gap: Concept discovery and transfer in alphazero. CoRR, 2023. URL
http://arxiv.org/abs/2310.16410v1l

Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Arpit Bansal, Zeyad Emam, Furong Huang, Micah
Goldblum, and Tom Goldstein. Datasets for studying generalization from easy to hard examples.
CoRR, 2021a. URL http://arxiv.org/abs/2108.06011v2.

Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Furong Huang, Uzi Vishkin, Micah Goldblum,
and Tom Goldstein. Can you learn an algorithm? generalizing from easy to hard problems with
recurrent networks. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, 2021b. URL https://openreview)
net/forum?id=Tsp2PL7-GQ.

Eric Schwitzgebel and Mara Garza. A defense of the rights of artificial intelligences. Midwest Studies
In Philosophy, 39(1):98-119, 2015. doi: 10.1111/misp.12032. URL http://www.facultyl
ucr.edu/~eschwitz/SchwitzPapers/AIRights—-150915.html

Rohin Shah, Vikrant Varma, Ramana Kumar, Mary Phuong, Victoria Krakovna, Jonathan Uesato, and
Zac Kenton. Goal misgeneralization: why correct specifications aren’t enough for correct goals.
arXiv preprint arXiv:2210.01790, 2022. URL https://arxiv.org/abs/2210.01790.

14

http://arxiv.org/abs/2309.00941v2
http://arxiv.org/abs/2309.00941v2
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/
http://arxiv.org/abs/2311.08576v1
https://doc.neuro.tu-berlin.de/bachelor/2023-BA-NiklasPeters.pdf
https://doc.neuro.tu-berlin.de/bachelor/2023-BA-NiklasPeters.pdf
http://arxiv.org/abs/2404.15758v1
http://arxiv.org/abs/2404.15758v1
http://arxiv.org/abs/2310.13121v9
https://arxiv.org/abs/2312.06681
https://arxiv.org/abs/2312.06681
http://arxiv.org/abs/2311.07590v3
http://arxiv.org/abs/2311.07590v3
https://github.com/mpSchrader/gym-sokoban
https://github.com/mpSchrader/gym-sokoban
http://arxiv.org/abs/2310.16410v1
http://arxiv.org/abs/2108.06011v2
https://openreview.net/forum?id=Tsp2PL7-GQ
https://openreview.net/forum?id=Tsp2PL7-GQ
http://www.faculty.ucr.edu/~eschwitz/SchwitzPapers/AIRights-150915.htm
http://www.faculty.ucr.edu/~eschwitz/SchwitzPapers/AIRights-150915.htm
https://arxiv.org/abs/2210.01790

Under review as a conference paper at ICLR 2025

Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-
chun Woo. Convolutional LSTM network: A machine learning approach for pre-
cipitation nowcasting. Advances in Neural Information Processing Systems, 28,
2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/
file/07563a3fe3bbe7e3bal84431ad9d055af-Paper.pdfl

David Silver, Thomas Hubert, Julian Schrittwieser, loannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Si-
monyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general reinforcement
learning algorithm. CoRR, 2017. URL http://arxiv.org/abs/1712.01815v1,

Peter Singer. Animal liberation. In Ethics: Contemporary Readings, pp. 284-292. Routledge, 2004.

Alex Tamkin, Mohammad Taufeeque, and Noah Goodman. Codebook features: Sparse and discrete
interpretability for neural networks. In Proceedings of the 41st International Conference on
Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp. 47535-47563.
PMLR, 21-27 Jul 2024. URL https://proceedings.mlr.press/v235/tamkin24al
htmll

Leela Chess Zero Team. Leela chess zero, 2018. URL https://lczero.orgq.

Borgar Porsteinsson. Sokoban: levels, 2009. URL http://borgar.net/programs/
sokoban/.

Brian Tomasik. A dialogue on suffering subroutines, 2015. URL https://longtermriskl
org/a-dialogue-on-suffering-subroutines/.

Alex Turner, Lisa Thiergart, David Udell, Gavin Leech, Ulisse Mini, and Monte MacDiarmid.
Activation addition: Steering language models without optimization. arXiv e-prints, pp. arXiv—
2308, 2023.

Jiayi Weng, Min Lin, Shengyi Huang, Bo Liu, Denys Makoviichuk, Viktor Makoviychuk, Zichen Liu,
Yufan Song, Ting Luo, Yukun Jiang, Zhongwen Xu, and Shuicheng Yan. EnvPool: A highly parallel
reinforcement learning environment execution engine. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems,
volume 35, pp. 22409-22421. Curran Associates, Inc., 2022. URL https://openreview,
net/forum?id=BubxnHpuMbG.

Erik Wijmans, Manolis Savva, Irfan Essa, Stefan Lee, Ari S. Morcos, and Dhruv Batra. Emergence
of maps in the memories of blind navigation agents. In International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=1Tt4KjHSsyll

Yilun Xu, Shengjia Zhao, Jiaming Song, Russell Stewart, and Stefano Ermon. A theory of usable infor-
mation under computational constraints. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=rleBeyHFDH.

Eliezer Yudkowsky. Artificial intelligence as a positive and negative factor in global risk. In Nick
Bostrom and Milan M. CirkoviC (eds.), Artificial Intelligence as a positive and negative factor in
global risk, 2006. URL https://api.semanticscholar.org/CorpusID:2629818\

Zigian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. The clock and the pizza: Two stories in
mechanistic explanation of neural networks. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=S5wmbQclWe.

A TRAINING THE TEST SUBJECT

DRC(D, N) architecture. |Guez et al.|(2019) introduced the Deep Repeating ConvLSTM (DRC),
whose core consists of D convolutional LSTM layers with 32 channels and 3 x 3 filters, each applied
N times per time step. Our DRC(3, 3) — or just DRC for brevity — has 1.29M parameters. Before the
LSTM core, two convolutional layers (without nonlinearity) encode the observation with 4 x 4 filters.

15

https://proceedings.neurips.cc/paper_files/paper/2015/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf
http://arxiv.org/abs/1712.01815v1
https://proceedings.mlr.press/v235/tamkin24a.html
https://proceedings.mlr.press/v235/tamkin24a.html
https://lczero.org
http://borgar.net/programs/sokoban/
http://borgar.net/programs/sokoban/
https://longtermrisk.org/a-dialogue-on-suffering-subroutines/
https://longtermrisk.org/a-dialogue-on-suffering-subroutines/
https://openreview.net/forum?id=BubxnHpuMbG
https://openreview.net/forum?id=BubxnHpuMbG
https://openreview.net/forum?id=lTt4KjHSsyl
https://openreview.net/forum?id=r1eBeyHFDH
https://api.semanticscholar.org/CorpusID:2629818
https://openreview.net/forum?id=S5wmbQc1We

Under review as a conference paper at ICLR 2025

The LSTM core uses 3 x 3 convolutional filters, and a nonstandard tanh on the output gate
(Jozefowicz et al., 2015)). Unlike the original ConvLSTM (Shi et al.,|2015)), the input to each layer of
a DRC consists of several concatenated components:

* The encoded observation is fed into each layer.

* To allow spatial information to travel fast in the ConvLSTM layers, we apply pool-and-inject
by max- and mean-pooling the previous step’s hidden state. We linearly combine these
values channel-wise before feeding them as input to the next step.

* To avoid convolution edge effects from disrupting the LSTM dynamics, we feed ina 12 x 12
channel with zeros on the inside and ones on the boundary. Unlike the other inputs, this one
is not zero-padded, maintaining the output size.

ResNet architecture. This is a convolutional residual neural network, also from|Guez et al.| (2019).
It serves as a non-recurrent baseline that can only think during the forward pass (no ability to think
for extra steps) but is nevertheless good at the game. The ResNet consists of 9 blocks, each with
4 x 4 convolutional filters. The first two blocks have 32 channels, and the others have 64. Each block
consists of a convolution, followed by two (relu, conv) sub-blocks, each of which splits off and is
added back to the trunk. The ResNet has 3.07M parameters.

Value and policy heads. After the convolutions, an affine layer projects the flattened spatial output
into 256 hidden units. We then apply a ReLU and two different affine layers: one for the actor (policy)
and one for the critic (value function).

RL training. We train each network for 2.003 billion environment stepsf] using IMPALA (Espeholt
et al.| 2018} [Huang et al.| 2023)). For each training iteration, we collect 20 transitions on 256 actors
using the network parameters from the previous iteration, and simultaneously take a gradient step.
We use a discount rate of v = 0.97 and V-trace A = 0.5. The value and entropy loss coefficients are
0.25 and 0.01. We use the Adam optimizer with a learning rate of 4 - 10~%, which linearly anneals to
4 - 107 at the end of training. We clip the gradient norm to 2.5 - 10~%. Our hyperparameters are
mostly the same as|Guez et al.| (2019); see appendix [A.T]

A* solver. We used the A* search algorithm to obtain optimal solutions to each Sokoban puzzle.
The heuristic was the sum of the Manhattan distances of each box to its nearest target. Solving a
single level on one CPU takes anywhere from a few seconds to 15 minutes[]

A.1 TRAINING HYPERPARAMETERS

All networks were trained with the same hyperparameters, which were tuned on a combination of the
ResNet and the DRC(3, 3). These are almost exactly the same as|Guez et al.|(2019), allowing for
taking the mean of the per-step loss instead of the sum.

Time limits. During training, we want to prevent strong time correlations between the returns, so
the gradient steps are not correlated over time. For this reason, the time limit for each episode is
uniformly random between 91 and 120 time steps.

Loss. The value and entropy coefficients are 0.25 and 0.01 respectively. It is very important to not
normalize the advantages for the policy gradient step.

Gradient clipping and epsilon The original IMPALA implementation, as well as |Huang et al.
(2023), sum the per-step losses. We instead average them for more predictability across batch sizes,
so we had to scale down some parameters by a factor of 1/640: Adam ¢, gradient norm for clipping,
and L2 regularization).

3A rounding error caused this to exceed 2B (appendix .
The A* solutions may be of independent interest, so we make them available atht tps : //huggingface |
co/datasets/AlignmentResearch/boxoban—-astar—-solutions/.

16

https://huggingface.co/datasets/AlignmentResearch/boxoban-astar-solutions/
https://huggingface.co/datasets/AlignmentResearch/boxoban-astar-solutions/

Under review as a conference paper at ICLR 2025

Weight initialization. We initialize the network with the Flax (Heek et al., 2023) default: normal
weights truncated at 2 standard deviations and scaled to have standard deviation 4/1/fan_in. Biases
are initialized to 0. The forget gate of LSTMs has 1 added to it (Jozefowicz et al.||2015]). We initialize
the value and policy head weights with orthogonal vectors of norm 1. Surprisingly, this makes the
variance of these unnormalized residual networks decently close to 1.

Adam optimizer. As our batch size is medium-sized, we pick 51 = 0.9, S = 0.99. The
denominator epsilon is € = 1.5625 - 10~7. Learning rate anneals from 4 - 10~ at the beginning to
4 -107 at 2,002,944,000 steps.

L2 regularization. In the training loss, we regularize the policy logits with L2 regularization with
coefficient 1.5625 x 10~5. We regularize the actor and critic heads’” weights with L2 at coefficient
1.5625 x 10~8. We believe this has essentially no effect, but we left it in to more closely match Guez
et al.[(2019).

Software. We base our IMPALA implementation on Cleanba (Huang et al.,[2023)). We implemented
Sokoban in C++ using Envpool (Weng et al.l 2022) for faster training, based on gym-sokoban
(Schrader, 2018]).

A.2 NUMBER OF TRAINING STEPS

In the body of the paper we state the networks train for 2.003B steps. The exact number is
2002 944 000 steps. Our code and hyperparameters require that the number of environment steps be
divisible by 5120 = 256 environments x 20 steps collected, because that is the number of steps in
one iteration of data collection.

However, 2B is divisible by 5 120, so there is no need to add a remainder. We noticed this mistake
once the networks already have trained. It is not worth retraining the networks from scratch to fix this
mistake.

At some point in development, we settled on 80 025 600 to approximate 80M while being divisible
by 256 x 20 and 192 x 20. Perhaps due to error, this mutated into 1 001 472 000 as an approximation
to 1B, which directly leads to the number we used.

A.3 LEARNING CURVE COMPARISON

It is difficult to fully replicate the results by |Guez et al.|(2019). |Chung et al|(2024) propose an
improved method for RL in planning-heavy domains. They employ the IMPALA DRC(3, 3) as a
baseline and plot its performance in|Chung et al.| (2024, Figure 5). They plot two separate curves
for DRC(3, 3): that from |Guez et al.| (2019), and a decent replicated baseline. The baseline is
considerably slower to learn and peaks at lower performance.

We did not innovate in RL, so were able to spend more time on the replication. We compare our
replication to|Guez et al.|(2019) in appendix which shows that the learning curves for DRC(3, 3)
and ResNet are compatible, but not the one for DRC(1,1). Our implementation also appears much
less stable, with large error bars and large oscillations over time. We leave addressing that to future
work.

The success rate in appendix is computed over 1024 random levels, unlike the main body of
the paper. Table[3|reports test and validation performance for the DRC and ResNet seeds which we
picked for the paper body.

The parameter counts (table [2)) are very different from what [Guez et al. (2019) report. In private
communication with the authors, we confirmed that our architecture has a comparable number of
parameters, and some of the originally reported numbers are a typographical error.

B GENERALIZING THE DRC(3, 3) TO LARGER LEVELS

We license the levels by [Porsteinsson|(2009) as GPLv3, and make them available in the supplementary
material. The performance of the DRC(3, 3) on each set of levels is in table The sets with higher

17

Under review as a conference paper at ICLR 2025

Table 2: Parameter counts for each architecture.

Architecture Parameter count

DRC(3,3) 1,285,125 (1.29M)
DRC(1,1) 987,525 (0.99M)
ResNet: 3,068,421 (3.07M)

1.00 08
g
2 095 T 0.6
2 S
3 o £
2 0.90 N T 204
E . (\,\"" — drc 33 2
7 o resnet S 02
= 0857 s dre_11)
=== deepmind
0.80 T T T T T 0.0 T T T T T
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
Environment steps, training 1e9 Environment steps, training 1e9

Figure 6: Success rate for Test-unfiltered and Validation-medium levels vs. environment steps of
training. Each architecture has 5 random seeds, the solid line is the pointwise median and the shaded
area spans from the minimum to the maximum. The dotted lines are data for the performance of
architectures extracted from the (Guez et al.,[2019) PDF file. The values are slightly different from
what fig. [3]and section [6]report because they are calculated on a random sample of 1024 levels (24
levels are repeated for test-unfiltered, which only has 1000 levels).

Table 3: Success rate and return of DRC and ResNet on the unfiltered test set at various training
environment steps.

TRAINING ENV TEST UNFILTERED VALID MEDIUM
STEPS RESNET DRC(3, 3) RESNET DRC(3, 3)
SUCCESS RETURN SUCCESS RETURN SUCCESS RETURN SUCCESS RETURN
100M 87.8 8.13 954 9.58 18.6 -6.59 47.9 -0.98
500M 93.1 9.24 97.9 10.21 39.7 -2.64 66.6 2.62
1B 954 9.75 99.2 10.47 50.0 -0.64 704 3.40
2B 97.9 10.29 99.3 10.52 59.4 1.16 76.6 4.52

18

Under review as a conference paper at ICLR 2025

scores are also those which humans find easier: for example, “Dimitri & Yorick” was made for
children by Jacques Duthen and consists entirely of relatively small levels (largest is 12 x 10) with at
most 5 boxes. The sets where the DRC(3, 3) solves nothing are also difficult for the authors of this
paper.

We tried giving the DRC(3, 3) from 2 to 128 extra thinking steps for these levels, incrementing in
powers of two. For most sets, we find some benefit to 2-4 thinking steps, but no more. The sole
exception is XSokoban, which contains one level (fig.[8{c)) which requires 128 steps of thinking to
solve.

We encourage the reader to go to the website by [Porsteinsson| (2009) and try solving the levels.

(a) Microban, level 105 (b) Microban, level 144 (c) Mas Sasquatch, level 15

Figure 7: Thinking steps are not always useful: For level (a), the network succeeds with 0 to 16
thinking steps, but fails with 32 or more thinking steps. Levels (b) and (c) are too difficult for the
DRC(3, 3), and it always fails on them independent of thinking steps, though it comes up with decent

partial solutions. All levels from [Porsteinsson| (2009).

(a) Sokoban Jr. 2, level 17 (b) Microban, level 145 (c) XSokoban, level 30

Figure 8: Some levels require thinking steps for success: For level (a), the network always succeeds.
For level (b), it succeeds at 32 or more thinking steps. For level (c), it needs 128 thinking steps to

succeed. All levels from [Porsteinsson| (2009)).

C BISTABLE AND UNSTABLE PLANS IN TOY ENVIRONMENTS

The causal intervention results from table [T]show that the box-directions probe is much more causal
than the agent-directions probe. We further study this in an isolated setting. Figure[9](left) shows a
level with only a single box next to a target, where the agent has only two equally good paths it can
follow. Without intervening, the agent first takes the path on the right by moving three steps, while
the agent-direction probe grows towards the box. After the first three moves, the chain connects. The
agent then takes a U-turn to follow the path on left. This is very unlike the optimal behavior, which is
to commit to any path and follow it.

19

Under review as a conference paper at ICLR 2025

Table 4: Performance of the DRC(3, 3) on each set of levels by (Porsteinsson, [2009). The “Max
solved” columns represent the proportion of levels solved at the number of steps in the “at steps”
column, which is the highest solved proportion for each number of thinking steps tried.

ALL LEVELS LEVELS LARGER THAN 10 x 10
LEVEL COLLECTION # SOLVED MAX SLV. MAX AT # SOLVED MAX SLV. MAX AT
Dimitri & Yorick 61 83.6% 88.5% 16 0 — — —
Sokoban Jr. 1 60 80.0% 81.7% 2 19 73.7% 73.7% 0
Howard’s 3rd set 40 60.0% 62.5% 4 1 0.0% 0.0% 0
Simple sokoban 61 54.1% 60.7% 16 51 47.1% 54.9% 16
Sokoban Jr. 2 54 48.1% 50.0% 2 40 45.0% 47.5% 2
Microban 155 23.9% 24.5% 4 17 59% 11.8% 2
Deluxe 55 21.8% 23.6% 2 1 0.0% 0.0% 0
Sokogen 990602 78 20.5% 23.1% 8 0o — — —
Yoshio Automatic 52 13.5% 17.3% 2 0 — — —
Sasquatch I1I 16 6.2% 6.2% 0 8 0.0% 0.0% 0
Howard’s 1st set 100 5.0% 6.0% 2 54 0.0% 0.0% 0
Howard’s 2nd set 40 5.0% 10.0% 4 22 0.0% 0.0% 0
Microcosmos 40 5.0% 7.5% 4 0 — — —
Still more levels 35 2.9% 2.9% 0 34 2.9% 2.9% 0
Sasquatch IV 36 2.8% 2.8% 0 20 0.0% 0.0% 0
Xsokoban 40 2.5% 5.0% 128 39 2.6% 5.1% 128
Sasquatch 49 2.0% 4.1% 4 39 0.0% 2.6% 4
David Holland 1 10 0.0% 0.0% 0 5 0.0% 0.0% 0
David Holland 2 10 0.0% 0.0% 0 9 0.0% 0.0% 0
Howard’s 4th set 32 0.0% 0.0% 0 30 0.0% 0.0% 0
Mas Sasquatch 50 0.0% 0.0% 0 43 0.0% 0.0% 0
Nabokosmos 40 0.0% 0.0% 0 0 — — —
Sokoban 50 0.0% 0.0% 0 48 0.0% 0.0% 0

We can get the agent to commit to one path early by intervening with the agent-direction probe on
any of the two paths on the first step only, as shown in fig. [9] (middle). When we construct a similar
level where there are two equally good paths for a box to follow, we find that the agent-direction
probe is no longer causal; but the boxes direction probe does get the agent to commit. Figure 0] (right)
shows an almost empty level. When we intervene with the box-directions probe on the first four
steps, the agent follows the laid out path in those steps, but then quickly switches to a more optimal
path with fewer turns. The laid out path (not taken, shown in red) is not followed after stopping the
intervention.

This analysis provides strong evidence that the network primarily builds upon the boxes directions
represented in the activations and relies on the agent-direction when the boxes directions do not
inform the subsequent actions.

D CASE STUDIES

Case Study: Thinking makes some levels solvable fig.[10(a). For example, thinking lets the DRC
solve fig.[I0[a). In the no-thinking condition, the DRC first pushes box C' one square to the right. It
then goes back to push A to a, but it has now become impossible to push box B onto b. In contrast,
after thinking, the DRC pushes A to « first, which lets it solve the level.

Case Study: Thinking speeds up solving fig. [I0(b). fig.[I0(b) illustrates a scenario where the
agent happens. In the no-thinking condition, the DRC takes many steps back and forth before pushing
any boxes. First it goes down to ¥, up to ¢, then down onto z, back up to y and to z again. It then
proceeds to solve the rest of the puzzle: push box A onto a, prepare box B on x and box C' where
B originally was, push in boxes B, C and finally D. In the thinking condition, the DRC makes a
beeline for A and then plays the same solution.

Case Study: Thinking slows downfig.[10[c). Figure[I0fc) illustrates a scenario where thinking
time results in a slower solution. In the no thinking condition, the DRC starts by pushing box C into

20

Under review as a conference paper at ICLR 2025

1] 1 K
-1-1-1-1---- oo L L P L E L T PE LR LT L

Figure 9: Left: A custom level where the agent has two equally good paths to follow. The arrows
show the prediction of the agent-direction probe with opacity proportional to the number of times
an arrow was predicted across all the steps. The green and red arrows are correct and incorrect
predictions, respectively. The agent behaves suboptimally by returning to the start and going left after
first going right for three steps. Middle: The agent takes the path on the right after intervening with
the corresponding arrows using the agent-direction probe on the first step. The same happens on the
left if we intervene on that path without the suboptimal steps right of the undisturbed agent. Right:
An empty level with box-directions probe intervening on the first four steps which are followed
correctly by the agent on those four steps. When the intervention is removed on the fifth step, the
agent computes the simpler path in green and doesn’t follow the path laid out earlier (in red).

DEC B ACDB
A

(a) file O, level 18 (b) file 0, level 53 (c) file O, level 153

think think

hink
unsolved "3 solved — solved faster — solved slower

Figure 10: Case studies of three medium-validation levels demonstrating different behaviors after 6
thinking steps. Colors are as in fig.[T2] Boxes and targets are paired in upper- and lower-case letters
respectively, such that the DRC’s best solution places boxes on targets in alphabetical order. Videos
available at this https URL. Levels solved faster obtain higher return as the agent incurs the per-step
penalty fewer times. Note that the letters used are for reference and not a property of Sokoban.

position y, then pushes boxes A, then B into place. On the way back down, the DRC pushes C onto ¢
and finally D onto d. In contrast, in the thinking condition, the DRC goes the other way and starts by
pushing B onto b. The subsequent solution (A, C, then D) is the same, but the DRC has wasted time
trekking back from B to A.

E PROBE TRAINING

Probe architecture We train multiple different linear probes on the hidden states h and cell states
c activations of the network. The probes are trained either on the states of the individual layers or
by concatenating the states of all the three layers. We collect the activations of the model by letting
it play through the hard levels. The training set for the probes are constructed by taking a random
sample of cached levels and including all the timesteps in the level excluding the first five timesteps.
We exclude these intial steps as we believe they can be noisy as the network comes up with the stategy
to solve the levels.

21

https://drive.google.com/drive/folders/1qtxG5B_WGLHE2BusqkCBnpdSZCoQmYM6

Under review as a conference paper at ICLR 2025

Targets Unsolved Targets Solved Targets
Observation L2F278 L2F212 L2F179

L

Figure 11: Visualization of some interpretable features from the SAE of last layer. These features
also appear monosemantically in the channels. The precision, recall, and F1 score for the features are
reported in table [0}

The probes are trained with logistic regression with L1 decay using the Scikit-Learn library. We do
a grid-search on the learning rate and the L1 weight decay to select the probe that has the highest
F1-score on a validation set.

For multi-class probe targets, each potential output class [is treated like a different data point. That
is: for each label [, we consider a prediction positive if the highest probe logit is for label /, and
negative otherwise. We consider a data point positive iff the true label is label [. Then, we compute
the confusion matrix and the F1 score from the n - [data points.

Table 5: Weight and bias for transforming direction probes to predictions

Mean Max Positive proportion
Weight 1.2086 -0.0582 0.2070

Up Down Left Right
Bias 0.3337 -0.0921 -0.0632 -0.0539

F LOOKING FOR INTERPRETABLE FEATURES WITH SPARSE AUTOENCODERS
(SAES)

In order to search for more monosemantic and interpretable features in the network, we train sparse-
autoencoders (SAEs) (Huben et al.| 2023; Bricken et al., [2023)) on the individual squares in the h
hidden state of the network consisting of 32 neurons. Thus, we get a 10 x 10 visualization for each
SAE feature as shown in Figurem} We use the top-k activation function (Gao et al.,[2024} |Tamkin
et al.,|2024) for the SAE as it is currently the state-of-the-art method to train SAEs and is easier to
work with as it directly sets the Ly norm of the SAE activations. The hyperparameter search space
for training the SAE is provided in Table[6] We train separate SAEs for each layer with the specified
hyperparameters and pick the one that achieves greater than 90% explained variance while having
interpretable features assessed through manual visual inspection. We release these trained SAEs and
probes in the same huggingface repo as our trained DRC networks. E]

We provide examples of some of the interpretable features from an SAE trained on the last layer
with £ = 8 in table [/| with corresponding visualization in fig. For the “Target”, “Unsolved”,
and “Solved” concepts (table E]), we observed cases where the SAE feature is offset from the ground
truth by 1 square in either horizontal or vertical directions. The level setup includes a permanent
one-square outer-edge wall, so this offset never results in an out-of-bounds issue. We evaluated these
potential “Offset” variants for the Target, Unsolved, and Solved concepts.

"nttps://huggingface.co/AlignmentResearch/learned-planner

22

https://huggingface.co/AlignmentResearch/learned-planner

Under review as a conference paper at ICLR 2025

All of the features in the SAE that we find to be interpretable are already embedded in individual
channels. These channels are either as monosemantic as the SAE features, or in some cases more
monosemantic as measured by the F1 score. Table[I0|reports the precision, recall, and F1 scores for
the action features as evaluated through channels, SAE neurons, and linear probe trained against the
ground truth action predictions. Table [9reports the same scores for additional interpretable features.
The SAE action features have lower F1 scores than channels by a margin of 5.9% on average. On the
other hand, the linear probes trained across all channels of the hidden state have similar F1 scores as
the specified channels indicating that the channels are monosemantic and cannot be improved upon
by combining various channels using a linear probe.

Table 6: Hyperparameter search space for training SAE

HYPERPARAMETER \ SEARCH SPACE

k (4,8,12,16}
learning rate {le —5,5¢ — 5,1e — 4,5¢ — 4, 1le — 3}
expansion factor {16, 32,64}

Table 7: SAE Feature Concepts

CONCEPT | DESCRIPTION

Target The 4 target squares (static)

Unsolved Targets and boxes that aren’t solved
Solved Solved target squares with a box on them
Agent Up The agent will move Up next step

Agent Down | The agent will move Down next step
Agent Left The agent will move Left next step
Agent Right | The agent will move Right next step

Table 8: Breakdown of levels by category at 6 thinking steps.

LEVEL CATEGORIZATION PERCENTAGE
Solved, previously unsolved 6.87
Unsolved, previously solved 2.23
Solved, with better returns 18.98
Solved, with the same returns 50.16
Solved, with worse returns 5.26
Unsolved, with same or better returns 15.14
Unsolved, with worse returns 1.36

G ADDITIONAL QUANTITATIVE BEHAVIOR FIGURES AND TABLES

H ADDITIONAL RELATED WORK

Ethical treatment of AIs. Do Als deserve moral consideration? [Schwitzgebel & Garza (2015)
argue that very human-like Als are conceivable and clearly deserve rights. [Tomasik| (2015)) suggests
that most Als deserve at least a little consideration, like biological organisms of any species (Singer,
2004). But what does it mean to treat an Al ethically? Daswani & Leike|(2015)) argue that the way
to measure pleasure and pain in a reinforcement learner is not by its absolute amount of return, but
rather by the temporal difference (TD) error: the difference between its expectations and the actual
return it obtained. If the internals of the NN have a potentially different objective (Hubinger et al.,
2019; D1 Langosco et al.,|2022), then the TD error should come from a place other than the critic
head. Research into learned search algorithms is an early step toward finding the learned-reward

23

Under review as a conference paper at ICLR 2025

Table 9: Scores for SAE and Channel features

CONCEPT OFFSET (dy, dz) | CHANNEL | SAE FEATURE

NUMBER PREC REC F1 \ NUMBER PREC REC F1

Target (1,0) | L3C17 97.8 9777 97.8 | L3F278 97.8 98.1 98.0
Unsolved targets and boxes 0,0) | L3C7 949 90.8 92.8 | L3F212 953 86.6 90.7
Solved targets 0,0) | -L3C7 91.6 94.6 93.0 | L3F179 91.7 915 91.6

Table 10: Action features scores across channels, probes, and SAE features

FEATURE | CHANNEL | SAE FEATURE | PROBE

| NUMBER PREC REC F1 | NUMBER PREC REC F1 | PREC REC F1
Up L3C29 957 88.1 91.7 | L3F270 939 762 84.1 97.5 86.5 91.7
Down L3C8 98.4 80.8 88.8 | L3F187 98.0 79.1 87.6 97.6 869 919
Left L3C27 85.5 84.6 85.1 | L3F244 96.1 632 762 83.5 86.6 85.0
Right L3C3 97.0 869 91.7 | L3F385 946 785 858 97.6 874 922

internal TD error, if it exists. This could be a higher-assurance complement to simply asking the Al
(Perez & Long, [2023)).

Chain-of-thought faithfulness. Large language models use chain of thought, but are they faithful
to it, or do they think about their future actions in other ways (Lanham et al.| 2023} [Pfau et al.}[2024)?
One could hope that LLMs perform all long-term reasoning in plain English, allowing unintended
human consequences to be easily monitored, as in|Scheurer et al.| (2023)).

Fully reverse engineering small networks. Many works reverse engineer all of, or most of, a
small NN that does an algorithmic task (Nanda et al., |2023a; |Chughtai et al.| [2023; |[Zhong et al.}
2023} IQuirke & Barez, 2023)).

24

Under review as a conference paper at ICLR 2025

IilililFIIIEIIII 0

Figure 12: Left: A Sokoban level from the hard set. Right: the same level as the NN sees it, one
pixel per tile. Walls are black, boxes are brown, targets are pink and the robot is green.

EOPT 4 den &
&= L Fu
* 5% resnet = I
110k 1 g 0.50 1 & 1 F
i — 0-50 + drcll F +
% § = ar
Z 100k 2 025 ! 1
[5) 5] i
.
o 90k 1 » (.00 1+ 1 E
> T T T T T T
< 0.0 0.5 1.0 0.0 0.5 1.0
80k 1 : : : : : : Success (test unfiltered) Success (hard)

0 2 4 6 8
Solved at steps to think

12 unsolved

Figure 13: Number of thinking steps required to
solve the level vs. number of nodes A* needs
to expand to solve it. The trend is increasing
at the end but very unclear, indicating different
heuristics used by the DRC and A*.

Figure 14: Success rate on datasets of various
difficulty, for various checkpoints of each archi-
tecture. This deviates very little from a curve,
which shows that ResNets and DRCs which are
equally good at the easier sets are also equally
good at the harder sets. Perhaps DRC(1,1) is a
slight exception, but it also performs much worse
than the others overall (see appendix [A.3).

Same state

R 0.80
Median: 2

Mean: 6.2 0.75 4

0.70

0.65 -

Same state
0.80

0.75

T T

T
0 10 20 30

0.60 T
0 25 50 75 100 0 10
Cycle length

(a) Cycle length distribution

Steps after cycle

(b) with cycles from all levels

T T

20 30 Steps after cycle

(c) with cycles from those levels that
were solved by the agent

Figure 15: We replace N-length cycles with N thinking steps and check for the same state after some
timesteps. (a) A histogram of cycle lengths in the medium-validation set. (b, ¢) After replacing a
cycle with the same length in thinking steps, are all the states the same for the next x steps?

25

Under review as a conference paper at ICLR 2025

0.06 - Cycles
Non-cycles
0.04
0.02
0.00 - ‘
-1 -0.5 0 0.5 1

Delta F1 score

(a) Pacing behavior on file 0, level 53. On the (b) Change in per-step F1 score of box-directions probe for moves
given starting observation, the agent paces in cycles and outside cycles on medium-difficulty validation levels.
around 4 spaces in the first 9 steps and then The non-cycle moves were recorded from the same distribution of
goes on to solve the level. Video for the level timesteps where cycles occur but from levels without a cycle at
is available at this url (removed for double- those steps. Mean per-step change in F1 for cycle and non-cycle
blind review). steps are 1.40% =+ 0.06% and 0.84% =+ 0.04% respectively.

Figure 16: Illustration of cycles and F1 scores

26

	Introduction
	Contributions

	Setting up the test subject
	Hypotheses and Tools
	Tools
	Hypotheses: defining planning and search

	The DRC(3, 3) causally represents its plan
	Probe methodology: training, intervention and targets
	Probe evaluation and causality

	Plan improvement and purposeful extra computation
	Agent ``paces'' to get more computation

	Behavioral evidence of search
	Effects of thinking time: non-myopic network
	Generalizing beyond 10 x 10 inputs and training examples

	Related work
	Conclusion
	Training the test subject
	Training hyperparameters
	Number of training steps
	Learning curve comparison

	Generalizing the DRC(3, 3) to larger levels
	Bistable and unstable plans in toy environments
	Case Studies
	Probe Training
	Looking for interpretable features with Sparse Autoencoders (SAEs)
	Additional quantitative behavior figures and tables
	Additional related Work

