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Abstract

While efficient distribution learning is no doubt
behind the groundbreaking success of diffusion
modeling, its theoretical guarantees are quite lim-
ited. In this paper, we provide the first rigorous
analysis on approximation and generalization abil-
ities of diffusion modeling for well-known func-
tion spaces. The highlight of this paper is that
when the true density function belongs to the
Besov space and the empirical score matching
loss is properly minimized, the generated data
distribution achieves the nearly minimax optimal
estimation rates in the total variation distance and
in the Wasserstein distance of order one. Further-
more, we extend our theory to demonstrate how
diffusion models adapt to low-dimensional data
distributions. We expect these results advance
theoretical understandings of diffusion modeling
and its ability to generate verisimilar outputs.

1. Introduction

Diffusion modeling, also called score-based generative mod-
eling (Sohl-Dickstein et al., 2015; Song & Ermon, 2019;
Song et al., 2020; Ho et al., 2020; Vahdat et al., 2021) has
achieved state-of-the-art performance in image (Song et al.,
2020; Dhariwal & Nichol, 2021), video (Ho et al., 2022),
and audio (Chen et al., 2020; Kong et al., 2020).

Borrowing explanation from the unifying framework of
Song et al. (2020), diffusion modeling first gradually adds
noise to the data distribution, and transforms the distribu-
tion to a predefined noise distribution. This time evolution,
called the forward process, can be formulated as a stochastic
differential equation (SDE) that is data independent. On
the other hand, we can consider the time-reversal of the
SDE, and by following this so-called backward process, one
can generate data from noise. Importantly, the drift term
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of the backward process is dependent on the data distribu-
tion, specifically on the gradient of the logarithmic density
(score) at each time of the forward process.

In practice, however, we have only access to the true distri-
bution through a finite number of sample. For this reason,
the score of the diffusion process from the empirical dis-
tribution is utilized instead (Vincent, 2011; Sohl-Dickstein
etal., 2015; Song & Ermon, 2019). Moreover, for compu-
tational efficiency, the empirical score is further replaced
by a neural network (score network) that is close to the
empirical score in terms of some loss function using score
matching techniques (Hyvirinen & Dayan, 2005; Vincent,
2011). In this way, diffusion modeling implicitly learns the
true distribution via learning of the empirical score.

Then the following natural question immediately arises:

Is diffusion modeling a good distribution estimator? In
other words, how can the estimation error of the generated
data distribution be explicitly bounded by the number of the
training data and in a data structure dependent way?

On the effect of score approximation errors Existing
literature has analyzed the estimation error with either of the
two assumptions on the accuracy of score approximation.
(i) One popular assumption is that the error of the loss func-
tion in score matching is sufficiently small, which was first
used by Song et al. (2020) to bound the Kullback—Leibler
(KL) divergence for continuous-time dynamics via Girsanov
theorem. Recently, the polynomial bound has appeared in
discrete-time, meaning that the polynomial order of the error
in score estimate at each step and number of steps suffice to
obtain the final estimation error in the total variation (TV)
distance (Lee et al., 2022b). Lee et al. (2022b) assumed
the smoothness and log-Sobolev inequality (LSI) for the
true density, and Chen et al. (2023b) and Lee et al. (2022a)
eliminated the LSI but still with the smoothness. Also, fol-
lowing Song et al. (2020), Pidstrigach (2022) considered the
true distribution on a manifold. (ii) Another assumption is
to bound the difference between the score and the network
at each time and point. De Bortoli et al. (2021) (also with
dissipativily) and De Bortoli (2022) (under the manifold
hypothesis) derived non-polynomial bounds in TV and in
the Wasserstein distance of order one (W), respectively.

Generalization error analyses However, most of the liter-
ature assumes availability of the true score, and thus whether
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the score is appropriately approximated with a finite number
of sample has been unaddressed, and therefore a doubt in
reality of the above assumptions undermines the value of
the resulting estimation error bounds. As the only exception,
De Bortoli (2022) derived the n~'/% bound in W; for n
data and a d-dimensional distribution. However, in their
analysis, the neural network is assumed to almost perfectly
fit the empirical score and the estimation bound depends
on the convergence rate of the empirical distribution to the
true one (Weed & Bach, 2019). Because of the same lower
bound for the convergence of empirical measures (Dudley,
1969), their n~'/¢ bound is essentially unimprovable with
any structural assumption on the data distribution. There-
fore, it is impossible to extend their result to formal density
estimation problems, where the faster convergence rates de-
pending on the smoothness of the true density are expected.
We also mention generalization error analysis mainly on
each one discretized step by Block et al. (2020), but they
do not explicitly state the final estimation error and their
intermediate bounds depend on the unknown Rademacher
complexity which should be sufficiently large so that the
hypothesis class well approximates the true score.

Thus, the fundamental question on the performance of diffu-
sion models as a distribution learner largely remains open.

1.1. Our contributions

In this paper, we establish a statistical learning theory for
diffusion modeling. The convergence rate of the estimation
error is derived assuming that the true density belongs to
well-known function spaces and deep neural network is em-
ployed as an estimator. Surprisingly, we find that diffusion
modeling can achieve the nearly minimax estimation rates.
The contributions of this paper are detailed as follows:

(i) We give the explicit form of approximation of the score
with a neural network and derive the error bound in
L?(p;) at each t, where the initial density is supported
in [—1,1]%, in the Besov space Bj ,([-1,1]%), and
smooth in the boundary.

(ii)) We convert the approximation error analysis into the es-
timation error bounds. We deriv&tlhgbound of n~ %
in TV. Moreover, the rate of n~ 4+2s in W7 is derived
for an arbitrary fixed 6 > 0 under the modified score
matching, via careful discussion of stochastic calculus.
As a result, the obtained estimation rates are nearly
minimax optimal, theoretically proving the success of
diffusion models.

(iii) By extending our theory, we also demonstrate that
the diffusion models avoid the curse of dimensionality
under the manifold hypothesis, considering when the
true data is distributed over the low-dimensional plane.
This is a special case of De Bortoli (2022) but our
bound is by far tight in this case.

1.2. Other related works

Recently, minimax estimation rates in the Wasserstein dis-
tance have been investigated by several works (empirical
distribution (Weed & Bach, 2019; Singh & Péczos, 2018;
Lei, 2020); smooth density (Liang, 2017; Singh et al.,
2018; Schreuder et al., 2021)); Besov space (Niles-Weed &
Berthet, 2022)). Niles-Weed & Berthet (2022) utilized the
wavelet basis for the Besov space, while Liang (2017) used
neural networks as an estimator motivated by Generative
Adversarial Networks (GAN) (Goodfellow et al., 2020).

We would like to emphasize that our work is not replacement
of wavelet expansion of Niles-Weed & Berthet (2022) with
neural networks. In diffusion modeling, we first minimize
the squared-error-like score matching loss, and then consider
the estimation error. This makes existing sharp bounds in
W unavailable. Contrary to the analysis of GAN, where
the minimax problem of the final goal directly relates to
W1, analysis of diffusion models requires conversion of the
score approximation error to the estimation error.

What we are built on is rather the theory of function estima-
tion with deep neural networks in LP norms (Barron, 1993;
Yarotsky, 2017; Petersen & Voigtlaender, 2018; Suzuki,
2018; Schmidt-Hieber, 2020; Hayakawa & Suzuki, 2020).
Our approximation result can be seen as an extension of
the B-spline basis expansion used in Suzuki (2018). On
the other hand, our generalization bound relies on Schmidt-
Hieber (2020); Hayakawa & Suzuki (2020).

2. Preliminaries

Diffusion modeling We basically follow the notation of
De Bortoli (2022). (Bt)o 7 and f;: [0,T] — R4 denote
d-dimensional Brownian motion and a weighting function.
We use p; for the distribution of X;, and therefore py is the
data distribution. As a forward process (Xy)(, 7 in R, we
consider the following Ornstein—Ulhenbeck (OU) process:
dX; = =i Xedt + /28:dB;,  Xo ~ po.
Then we have that X;|Xo ~ N (m; Xy, o), where m; =
exp(— fg Bsds),0? = 1 — exp(—2 fot Bsds). Note that
1 —my ~tAlando; ~ v/t A1l Under mild assumptions
on pg (Haussmann & Pardoux, 1986), valid for our setting,
the backward process (Y;)[o,r) With Y; = X7_, satisfies

dYy =Pz (Yi+2Vlogpr_,(Yy))dt+ /267 _,dB;,
Yo ~ p7

V log p:(z) is called the score, which is replaced by the
score network §(x, t) trained with finite sample. Also, be-
cause p; approaches N(0, I;), we take T = O(1) and re-
place the initial noise distribution of Yy by N (0, I4). Then
the modified backward process (Yt)[oj] is defined as
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AV, =Br_,(Vi+25(V;, T — t))dtﬂ/%dBt,
}A/E) NN(O, Id).
Score matching The score network is ideally selected

from the hypothesis S to minimize the denoising score
matching loss

Ey [A(t)[EIO [Efﬂmo[ns(xt?t) - VIngt(xtl‘rO)'F]]:lL ()

where t ~ Unif[0,T],z0 ~ po,zilro ~ pi(mi|mo)
and A is a weighting function. Training with finite data

{0} (zo, R po) selects § to minimize the following
loss, which replaces E,,, by the sample mean:

3

=1

At)||s(ze, t) = Viog pe(we|2o,:)||%]. (2)

t~Un1f T T]

xt"“pt(xtl-'fo i)

Here p(x¢|z0,;) corresponds to N (m;Xo ;,0), and this
empirical loss can be evaluated with an arbitrary accuracy.
We clip the integral interval by T' > 0 because generally
the score blows up as t — 0 and (1) gets oo for any neural
network. We let A(t) = 1 when there is no other remark.

We remark that the expectations with respect to ¢ and x;
can be replaced with finite sample of ¢ and x;, as will be
detailed in Section 4.1. However, we then inevitably need
polynomial number of sample (¢, x;) for each x¢ ;, or an
artifactual modification on the distribution of ¢, mainly due
to the unboundedness of the score.

Class of neural networks As usual in approximation with
neural networks (Yarotsky, 2017; Liang, 2017), the hypothe-
sis S set in score matching is a class of deep neural network
with the ReLU activation ReLU(z) = max{0, 2} (operated
element-wise for a vector) (Nair & Hinton, 2010; Glorot
et al., 2011) with a sparsity constraint (on the number of
non-zero parameters). The score network is a function from
(r,t) eRYx R, toy € R4

Definition 2.1. A class of neural networks ®(L, W, S, B)
with height L, width W, sparsity constraint S, and norm con-
straint B is defined as ®(L, W, S, B) := {(AFReLU(-) +

b)) oo (AW + bMWY AD e RWxWin (i) ¢
RWirt, S (JAD [l + [6P]fo) < S, max; [|AD o V
16| < B}.

We remark that our results for Fully-connected Neural Net-
work (FNN) is easily translated into other architectures. For
example, variants of U-Net (Ronneberger et al., 2015) used
in practice (Song & Ermon, 2019; Ho et al., 2020; Ramesh
et al., 2022) are a kind of Convolutional Neural Network
(CNN) and we can utilize rich literature on converting the
approximation results for FNN into those for CNN (Oono &
Suzuki, 2019; Zhou, 2020; Petersen & Voigtlaender, 2020).

Density estimation in the Besov space As a class of the
true density, the Besov space is introduced via the modulus
of smoothness. We assume that €2 be a cube in R9.

Definition 2.2. For a function f € LP(Q) for some p €
(0, o], the r-th modulus of smoothness of f is defined by

wr,p(fvt)=usup 1AR(N)lp,  where A (f)(z)

h ‘QSt
¥ (;)(—l)r_jf(x +jh) (ifx + jh € Q for all j)
0 (otherwise).

Definition 2.3 (Besov space B;',q(Q)). For 0 < p,q <

00,8 > 0,7 := |s| + 1, let the seminorm | - |55  be
1
Floe = LU @0, (20)7 )7 (g.< )
e SUPyso b Wi (f, 1) (g = o0).
The norm of the Besov space B,  is defined by
HfllB* = |Ifllp + |f|5; > and we have B; , = {f €

LP(Q)]'[|f |55, < oo}

Considering the Besov space, many well-known function
classes can be discussed in a unified manner. Let us take
several examples. For a € Z4, let 9% = 9" J—(x). The

agf..ai‘;
Holder space for s € Ryo \ Zy is a set of
|s] times differentiable functions C*®(Q) =
{(F: 2 = Rl [flles = maxjq<s[|0fllc +

0% f(x)—0%
MaX|q|=|s| SUP, yen W < oo} for
s € Ryg \ Z4. The Sobolev space for s € N;1 < p < 00
is a set of s times differentiable functions W () :=
{£: Q= Bl [fllws = (o<, 19°FI2)F < o0}. Then
the following relationships are due to Amann et al. (1983):

s Fors €N, By () = W5(Q) = B, ,.(Q).
* B3,(Q) = W3(Q).
e Fors € Ruo \ Zy, C*(Q) = B5, ().

If s > d/p, B, () is continuously embedded in the set
of the continuous functions. Otherwise, the elements in
the space is no longer continuous. Our result is valid for
B, () with s > d(1/p — 1/2), and thus can include
discontinuous functions, unlike existing bounds assuming
Lipschitzness (Lee et al., 2022b;a; Chen et al., 2023b).

In this problem settings, we evaluate how close the distri-
bution of }A/TfT can be to the true distribution pg. As a per-
formance measure of the distribution estimator, we employ
both the total variation distance (TV) and the Wasserstein
distance of order one (7). In Section 6, where the data is
assumed to lie in a low dimensional manifold, we focus on
the Wasserstein distance. This is because the generated dis-
tribution is never absolutely continuous with respect to the
true distribution, and thus the robustness of the Wasserstein
distance to small parallel shift of the distribution is essential
to yield a non-trivial bound not oco.
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2.1. Assumptions

Here we formally state our minimal assumptions. Let d be
a dimenision of the space, n be a number of sample, and
0<p,qg<o0,s>0withs > (1/p—1/2), be parameters
of the Besov space. Our main assumption is as follows.

Assumption 2.4. The true density pg is supported on
[—1,1]%, upper and lower bounded by C; and C’;l on the
support, respectively. Also, pg, when limited to [—1, 1],
belongs to U (B; ,([—1,1]%); C) for some constant C.

U (-; C) denotes the ball of radius C', sometimes written as
U(-) by omitting a constant C. We additionally make two
technical assumptions. One is the smoothness of 3.

Assumption 2.5. 3.: [0,T] — R, (t > () satisfies 0 <
B < B < Band B € UC™([0,T]);1) as a function of
te[0,7).

The other is the smoothness of the true density py on the
boundary region. Let aq be a sufficiently small value defined

1,
later, for example, ag =~ n~ 25 in Theorem 4.3.

Assumption 2.6. pg, when limited to [—1, 1]%\ [~ 1+ag, 1 —
ao]?, belongs to U(C=([~1,1]%\ [~1 + ag, 1 — ag]?)).

This is to construct the score network in the region where p;
is not lower bounded. This is necessarily because in density
estimation lower boundedness is typically assumed (Tsy-
bakov, 2009) and without lower boundedness the minimax
optimal rates sometimes get worse than otherwise (Niles-
Weed & Berthet, 2022). This assumption can be replaced
by sufficiently slow decay of the density, such as LSI used
in Lee et al. (2022b). We also note that this modification
does not harm the minimax rate.

3. Approximation of the true score

In this section, we consider approximating the true score
V log p; via a deep neural network and derive the approxi-
mation error bound. Throughout this section, we fix § > 0
arbitrarily and take N > 1 as a parameter that determines
the size of the network. We assume Assumption 2.6 with
ag = N—"7" and take T = poly(N~1), and T ~ log N.
The main contribution of this section is the following.
Theorem 3.1. There exists a neural network @score €
®(L, W, S, B) that satisfies, for all t € [T,T),

N7 log(N
[ 2@ et t) = st Pz s 2D,
x t
Here, L,W,S and B are evaluated as L =
O(log* N), |[Ws = O(Nlog® N), S = O(Nlog® N),
and B = exp(O(log N - loglog N)). Moreover, we can

. . —1 1
take Pscore sAtisfying || dscore (s t)|lco = O(o; ~ log? N).

The formal proof can be found in Appendix B.

3.1. Proof overview

In order to obtain this result, the approximation should be
constructed in the following ways. (i) It should reflect the
structure of po(z), especially the fact of po(z) € U(B;, ).
(ii) It should give a good approximation of the score over
all t € [T, T). To address these issues, we construct a novel
basis decomposition in the space of R? x [T, T, specifically
designed for the score approximation. Moreover, as usual
in approximation theory (Yarotsky, 2017; Schmidt-Hieber,
2020), each basis can be realized by a neural network very
efficiently, meaning that a polylogarithmic-sized network
suffices with respect to the permissible error.

Approximation via the diffused B-spline Basis We
consider the approximation for ¢ < 1. First remind
the B-spline basis decomposition of the Besov functions
(DeVore & Popov, 1988; Suzuki, 2018). Let N (x) =
1 (x € [0,1]),0 (otherwise). The cardinal B-spline of or-
der 1 is defined by N;(z) = N« N x---x N(x), where
[+1 times convolution

(f xg)(z) = [ f(x —t)g(t)dt. Then, the tensor product
B-spline basis in R? is defined for k € N¢ and j € Z% as
M (x) = Hle N (2%ix — j;). It is known that a function
f in the Besov space is approximated by a super-position of
M;‘f,j(x) as fn = Z(k,j) a(k,j>M§,j($)~

Lemma 3.2 (Informal version of Lemma F.11; Suzuki
(2018)). For any po € U(B, ), there exists a super-
position fn of N tensor-product B-spline bases satisfying

lpo — Fnllze S N/ f5;,-

Inspired by this, we introduce our basis decomposition. Be-
cause of X;|Xo ~ N (mXo, o), we can write p; as

1 llz — mt’y||2>
———exp| ———=— | dy.
od(2m)e ( 207

pla) = [ i)

=:K¢(z|y)

Because the transition kernel K;(x|y) linearly applies to pg
and po is approximated by fx = 35 ) a5 M ;(x), we
come up with the following approximation of p;:

pe(z) = Z (k.5 /Mﬁj(y)K(ﬂy)dy

(k.3)

=:Ey j (z,t)

Moreover, E}, ; is further decomposed as

Ek,j (‘T7 t)
N2z, — j;) (z; — muy;)?
= exp(— dz; .
E/ oV 2T p( 20,52 )

:ZD),;J (a?,, ,t)
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We name Dy, ; as the diffused B-spline basis and Ej, ; as
the tensor product diffused B-spline basis. We show that
there exists a neural network that approximates Dy, ; and
Ey, ; very efficiently. Our construction then goes as follows.
We construct networks approximating m; and o;.

Lemma 3.3 (See also Lemma B.1). Under Assumption 2.6,
there exists neural networks ¢, (t), ¢ (t) € (L, W, B, S)
that approximates m; and oy up to € for all t > 0,
where L = O(log?(e™")), |[W |l = O(log?(e™1)), S =
O(log*(e™1)), and B = O(log(s~1)).

Next we clip the integral interval of Dy, ; and approximate
the integrand by a rational function of (z, m;, ;). Then the
following is obtained as an informal version of Lemma B.3.

Lemma 3.4. For € > 0, there exists a neural network
érpB: R x Ry — R? that satisfies ||¢rps(z,t) —
Ey ](IC t)”oo § €. Here, ¢TDB S (I)(L W, S, B) with
L = O(log'(e™)), W]l = O(og’(c™")),s =
O(log®(e™")), B = exp(O(log(e ") log log(e1))).

Here ¢rpp approximates Ej j(z,t) given (xz,my,oy).
Then we use ¢rpp(x, dm(t), ¢s(t)) as the approximation
of Ej j(z,t), and p,(z) is finally approximated. Similar
approximation can also be made for Vp,(x), and the score

_ Vp (z)
pt(z)

is finally approximated together with V log p;(x)
and we obtain the bound as in Theorem 3.1.

We remark that the bounds on the network class param-
eters given above are slightly larger than that for the B-
spline basis (Suzuki (2018)) because approximating in-
tegrals and exponential functions (Appendix F.3) and ra-
tional functions (Appendix F.2) is more difficult than re-
alizing the B-spline basis via polynomials. Especially,
B = exp(O(loge~tlogloge!)) is from approximation
of exponential functions. Because B affects the general-
ization error only in a log B term (see Lemma 4.2), this
super-polynomial scaling does not much affects the the final
estimation errors.

We also remark that, in this construction, the approximation
error for Vp;(x) is amplified in the area where p;(z) < 1.
This is why we need the higher-order smoothness of pg in
the area with distance less than O(+/%) from the edge of the
support (Assumptlon 2.6). This approach is used durmg
te[l,3N~ 6] and it suffices to set ag to ag = N~ "7".

Utilizing the smoothness induced by the noise The
above approach enables approximation of the score int < 1,
when the score is highly non-smooth, by using the structure
of pg. On the other hand, after a certain period of time,
the shape of p; gets almost like a Gaussian, very smooth
and easy to be approximated. This paragraph extends the
previous approach and gives an alternative approximation
based on the smoothness induced by the noise, yielding a
tighter bound.

We begin with evaluating the derivatives of p; w.r.t. £.

Lemma 3.5. Forany k € Z, there exists a constant C,
depending only on k, d, and C such that

8z,;1 8r,,2 e az7kpt(x) §

0

We have that ||p., [wr = O(t,~2) for t, > 0 from this,
and that Wz’f — B;f,oo. For ¢t > t,, consider p; as the
diffused distribution from p,_, instead of py. We can show
that V log p; can be approximated with a neural network

. . . /—2k/d
with the size N’, with an L2 error of O (N —— -t k)
t

If N’ and k are sufﬁciently large, this is tighter than the

previous bound of % This argument is formalized as

follows. In Appendlx B this is presented as Lemma B.7.

Lemma 3.6. Let N > 1 and N’ > t.Y?N9/2, Sup-
pose t, > N—(2=9)/ Then there exists a neural network
€ ®(L,W, S, B) that satisfies

score

_2(s+1)
N

d
[ Pl 0) = st 0P €
T t
fort € [2t.,T). Specifically, L = O(log*(N)), [|[W s =
O(N),S = O(N’), and B = exp(O(log N loglog N)).

Setting t, = N~ *7* and N’ = N in this lemma, we obtain
the bound in Theorem 3.1 after ¢ 2> ¢,, without Assump-
tion 2.6. Moreover, further exploiting this lemma later plays
an important role for achieving the minimax optimal estima-
tion rate in the W distance.

4. Generalization of the score network

This section converts Theorem 3.1 into the generalization
bound of the score networlg._ JWe assume n > 1 and As-
sumption 2.6 with ag = n~ @+2s and take N = n~%/(d+29)
T = poly(N~') = poly(n=!),and T ~ log N ~ logn.
The formal proofs are found in Appendix C. We begin with
the following fact (Lemma C.3; Vincent (2011)).

Lemma 4.1. The following holds for all s(x,t) and t > 0:
[ [ () = 1o 1 alo) ol
zJy

= [ Iste) = Vlogpu(a) Pma)ds + Cu.

Here C} is a constant depending on p;. According to this,
minimizing (1) is equivalent to minimizing the difference
between the network and the score in L?(p;).

Let us define

T
Ls(z) :/t_T/Hs(mt,t)—Vlogpt(xtpc)||2pt(xt|x)dxtdt,
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so that the expected loss (1) and the empirical loss are
written as E,.p,[¢(z)] and 237 16(:@-), respectively.
For the hypothesis S which we specify later, we define
L = {ls| s € S}. Define the empirical loss minimizer
5 € argmingegs % > i Ls(x0,5). This section evaluates the
difference between the empirical loss and (1) for $. To eval-
uate the difference, we need to bound (i) ||¢||~ uniformly
over L and (ii) the covering number of L.

(i) Bounding sup-norm According to Theorem 3.1,

$(x,t) can be taken so that ||5(-,t)|lcc < @. Thus
we limit ®(L, W, S, B) of Theorem 3.1 into

L

2

log

Si={0 € (LW, 5 B)l 4 B)lo S — 53

Then Appendix C.1 shows that,

sup  sup  Ly(xo) < log®n.

$ES woe[—1,1)¢

(ii) Covering number evaluation By Lemma 3 of Suzuki
(2018) and the fact that ||/;]| o is bounded by || s/ up to
poly(n), we obtain the following.

Lemma 4.2. The covering number of L is evaluated by

log N'(L, || - [l oo (1-1,1j4),€) S SLlog(e ™ L||W||os Bn).

The proof is found in Appendix C.2. Applying this to The-
orem 3.1, the covering number is bounded by log N <
N(log'® N +1og"? Nloge™1).

According to the above discussion, we finally obtain the
generalization bound. The next bound is an extension of
Schmidt-Hieber (2020); Hayakawa & Suzuki (2020). While
they considered the minimizer of the mean squared-loss, we
consider the minimizer of the mean of £(x;).

Theorem 4.3. The minimizer of the empirical score selected
from S satisfies that

o | /
<g//

4 $Pes [l g
n

— Vlog pi(z)|*pe(x)dtdz | (3)

— Vlog pi(z)|[3pe () dadt

+ 9.

The first term is bounded by N N(log(T/T) + (T —
T)), according to Theorem B.8. Applying sup,cq [[4]/c0 S
log? n and log N < N (log** N + log!? N loge ') for the
second term and setting N = ¢ = n~%/(2s+4) yield that

3) < n- T log'®n. %)

4.1. Sampling ¢ and z; instead of taking expectation

Since our main interest lies in the sample complexity, and
for simple presentation, we have considered the situation
where £(x) can be exactly evaluated. However, in usual
implementation (Sohl-Dickstein et al., 2015; Song & Ermon,
2019), two expectations in (2) with respect to ¢ and x;
are also replaced by sampling for computational efficiency.
Here we also introduce two ways to replace the expectation
by a finite sample of ¢ and x;.

Approximation via polynomial-size sample Let us sam-

ple (ij,tj,z;) from i; ~ Unif({1,2,---,n}), ¢,
Unif(T,T), and x; ~ p;; (2]x0,:). Then we let 5 as

argmm— Z lls(x;,t;

and evaluate the difference between

— Vlogp, (zj]zo,)|”

n

% Z ls(x;) — argmin— Zé x;). )

n
i=1 s€S i=1

The complete proof and formal statement can be
found in Theorem C.6 of Appendix C.4, and here
we provide the proof sketch. = We first show that
Is(z;,t5) Vlogpi;(zj]wo,;)|| is  sub-Gaussian
(Lemma C.5). Here, we simply interpret this as
ls(z;,t;) — Viogpy, (zj]zo0,)| = O(t 2) < (’)(Z_%)
with hlgh probability to proceed. Then by a sim-
ilar argument that derived Theorem 4.3, we can
bound (5) by O(T#) N satisfies
logN < nzFa log® n. In order to make (5) as small as
(4), we need to take M = n - I_l. Thus, for each zg ;,
O(T™") = poly(n~') sample of (;, 2|z ;) should be
considered. We remark that the reason why we need
polynomial-size sample is mainly due to the scale of
lIs(z;,t;) — Vlogpe, (z5]zo.;)1*.

Here,

Modifying the distribution of f{ One may think whether
it is possible to consider only one path for each sample g ;.
Here, the main problem is that the variance of ||s(x;,t;) —
V log py, (x;]20,:,)||* can grow to infinity as ¢; approaches
to 0. To address this issue, we sample ¢; from p(t) o

ULSST] gng modify A(t) as A(t) = M8T/L while i,

are sampled as previously. Then, we have that

Eij b0, (M) l|s(x5, )=V log pe; (25]20,:)|17]
:%Zé(xm
i=1

and that A(t;)[[s(ze,,t;) — Vlegpy, (y,[woq)[? =
O(1) holds with hlgh probablllty (because ||s(xj,t;) —
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Vlog py, (xj]zo, 1J)|| (t_l) and that A(t;) < 1/¢)).
In this way of sampling, we let S as

argmm—z/\ s(zj,t5) — Vlogpy, (z]xo, L])”Q

and evaluate the difference (5). Finally, using a similar argu-

ment for Theorem 4.3, we again obtain that (5) is bounded
A 3 ~ sd .

by O(%) < O(%5). Taking M = n suffices to make

this difference as small as (4).

5. Estimation error analysis

This section finally evaluates the goodness of diffusion mod-
eling as a density estimator. As a small modification, if
(Vo rlloc = 2, then we reset it to Yo ¢ = 0. This does
not increase the estimation error because || Xolloo < 1 a.s..

We introduce (Yt)t:o , that replaces Yy ~ N(0, I) in the
definition of (Y;);_¢= by Yy ~ ps.

5.1. Estimation rates in TV

First, we consider the bound in the total variation distance
in the same manner as Song & Ermon (2019); Chen et al.
(2023b). Formal proofs are found in Appendix D.2. The
estimation error in TV is decomposed as

E[TV(Xo, Yg_1)] < E[TV(Xo, X1)]
+ E[TV(X7, N (0, 14))] + E[TV (Y7 _p, Y5_p)].

The first term comes from truncation of the backward pro-
cess and is bounded by /Tn®™) according to Theorem D.2.
The second term corresponds to truncation of the forward
process or the difference between YT o and YT 7> and

is bounded by exp(—T) due to Lemma D.3. For the final

term, Girsanov’s theorem with some modification (Proposi-
tion D.1) bounds the third term by

T
By [ o [I3(e,0)-V logp (@)t 6)
t=T
The convexity of \/ and the generalization bound of the
score network (4) yields (6) < n- @i log9 n. Now, we
formalize our estimation error bound.
Theorem 5.1. Let T =n"°" and T =

slogn

Bld+2s)"

Then,
E[TV(Xo,Y7_p)] S n =/ D log®n.

On the other hand, we can show that the estimation problem
in the Besov space has the following lower bound. The
proof is found in Proposition D.4.

Proposition 5.2. For 0 < p,q < 0o, s > 0, and s >
max{d(% — 1),0}, we have that

inf sup E[TV(a,p)] Zn "+,
© PEB; ,

where [i runs over all estimators based on n observations.

Therefore, we have proved that diffusion modeling achieves
the minimax estimation rate for the Besov space B, , in the
total variation distance up to the logarithmic factor.

5.2. Estimation rates in W;

We also gonsider the estimation rate in 1//;. Because both
Xo and Yz _ - have bounded supports, Theorem 5.1 directly

yields the convergence rate of n =%/ (25t log” n. However,
it is known from Niles-Weed & Berthet (2022) that the
minimax estimation rate in W is faster than this.

Proposition 5.3 (Niles-Weed & Berthet (2022)). Let p,q >
1,s>0andd > 2.

inf sup E[Wi(i,p)] zn*(5+1)/(2s+d)7
B peB; ,

where [i runs over all estimators based on n observations.
Moreover, if 1 <p < oo, 1< qg< 00, 5>0,andd > 3,
there exists an estimator [i, that achieves this minimax rate.

Then are diffusion models sub-optimal in this case? In
the following, we show the surprising fact that diffusion
modeling also achieves the nearly minimax optimal rate, if
some modification applied.

Theorem 5.4. For any fixed § > 0, we can train the score
network with n(>> 1) sample and with that we have

(s+1-9)

E[W1(Xo, Ye_p)] S v .

Appendix D.2 proves this theorem. The natz term, an

arbitrarily small difference from the optimal rate of n™~ ¥z ,
appears because in Lemma 3.6 score approximation at time ¢
requires the network size N’ to be slightly larger than ¢ ~%/2.
This slight difference should be n©(®), yielding the n 7=
term. While /i, in Proposition 5.3 is the wavelet estimator
that explicitly approximates pg, diffusion models estimate
the score at different time to implicitly learn py, making
the analysis more difficult and requiring us to use this term.
Removing this term is future work.

Switching score networks We now sketch our strategy.
First, let us carefully consider where we lose the estima-
tion rate, going back to the approximation error analy-
sis Section 3. Although we used Theorem 3.1 for all
T < t < T, Lemma 3.6 tells us that if t > N—% ~

n- 25+d we can make the approximation error smaller

2(s+1) 72((13‘:;1)
- da s
than & = =
T Tt

with a smaller network of size
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N’ < N. This means that we have used a sub-optimal net-

— 2-6 . . .
work for ¢ 2 n~ @25 in terms of both approximation and
generalization errors.

Based on this discussion, we divide the time into tg = T <
t1 = 277/_‘12%255 < - < g, = T — T with ti+1/ti =
const. < 2 (i > 1). The number of intervals amounts to
K, = O(logn). We consider to train a tailored network for
each time interval [¢;, ¢;+1] and to switch them for different
intervals. Lemma 3.6 yields that for ¢ > 1 these exists a
network s; € ®(L;, W;, S;, W;) such that

_2(s+1)
d+2s

(t € [ti, tit1]),

Ewwpt [HSZ(J?, t)_v 1ngt( )H ]

t
with L = O(log*(N)),[W|e = O(NN),S =
O(t; 2 N°%/2), and B = exp(O(log* N)). Therefore, we
choose a sequence of score networks §; so that 5; minimizes
the score matching loss restricted to [t;, t;11]:
[lls(e,) =

Z tNUl’llf ti t]+1]

IfNPf(fﬁflxo 3)

Similarly to Theorem 4.3, Theorem C.4 yields that the fol-
lowing generalization error bound for ¢ > 1:

tit1
E{Iw}?:j [/ E, [||§i(a:,t)—v logpt(x)Hth]] 7
: t=t;

V log i (2¢|z0,5) 7).

. —4/2, @5 1ogl0 .
< (n_ 2t ) n t; " nT@ 2 log n ~O(ti/ot2_).
o i

=0(1)

Fort < n_;%;s, we use a network trained via the score
matching loss restricted to [t;, t;11]. Thus, (7) fori = 0 is
bounded by O (nfd%) similarly to (4).

One may think that the above improvement would be useless
because the error caused at ¢ < n7d2+;265 has the n—25/(d+25)
rate and dominates the estimation error. However, another
important observation is that the Wasserstain distance is a
transportation distance. The score estimation error at time
closer to ¢t = 0 less contributes to the estimation error, be-
cause the distance how much each path evolves is small
from that time. As we will see, the idea of improving accu-
racy for large ¢ indeed yields the minimax optimal rate in
Wi.

To utilize this observation, let us consider a sequence of
stochastic processes. Let (Y3) 7 = (ﬁ(o))[oj], and for
i>1,let (}7("))[077] be a stochastic process which uses the
true score during [0, T'—¢;] and the estimated score § during
[T —t;,T — T, and Yo(i) ~ pz. Then, we have that

E[W1 (Xo, Yz_p)] < EIW1(Xo, X7)] ®

+EW1 (Yo_g, Yo_p))] + EWL (Yo_g, Yo_p))-

The first term is bounded by /T _due to (91) and the sec-
ond term is bounded by exp(—7') due to Lemma D.6.
The last term E[W1 (Y7 _4, Y71 )] is upper bounded by

K, (i—1) (2)
Y B (YT, Y,

lemma, an informal version of Lemma D.7.
Lemma 5.5. Fori=1,2,---, K,, we have that

M(Vr ) V7 ) < 01

ti
ti—lE{wo,i}?:1 [/t . E
=li—1

RHS is decomposed to the two factors: the score matching
loss during [t;_1,t;] and 1/Z;. The latter corresponds to how
much Y; moves fromt = T — t; to T — T. This bound
represents that, as ¢; — 0, while score matching gets more
difficult, its contribution to the W7 error is reduced. The
formal proof requires construction of a path-wise transporta-
tion map; see the proof for Lemma D.7.

)]. Then, we use the following

« [[|15(z, )=V log p; (z)*dt] | .

Putting it all together, we finally yields Theorem 5.4, the
nearly minimax optimal rate in W7. Specifically, if we
ignore logarithmic factors, (8) is bounded by

\f + exp(=T) + Vton~ i
_ 5d

_2(s+1) . d/2n2<d+2s) _ s1-6

+§ Vit dt2s 757@ a¥2s |

n

2(s+1) (s+1)logn
— dt2s = S
where weset T =n" and T = B(d+2s) *

Remark 5.6. Although we used differently optimized mul-
tiple networks, it is also possible that such modification
is implicitly made in reality. The first evidence is implicit
reguralization, where sparsify of the solution is induced by
learning procedures (Gunasekar et al., 2017; Arora et al.,
2019; Soudry et al., 2018). When the sub-networks for
differnt time intervals are learned in parallel via the score
matching at once (1), these theory suggests the good score
network is obtained without explicit regularization like our
switching procedure. Another evidence is that in practice
the weight function A\(¢) sometimes increases as t gets large
(Song & Ermon, 2019; Song et al., 2020), suggesting that the
quality of the score network at larger ¢ is more emphasized.

5.3. Discussion on the discretization error

Although the continuous time SDE is mainly focused on for
simple presentation, we can also take the discretization error
into consideration. We here only provide the summary, and
the details are presented in Appendix D.3. Lettg =T <
t < <tg, = T be the time steps with n = 41 — k.
We train the score network as the minimizer of

n K-1

SN nElls(ay, 1) — Viogpr

i=1 k=0

o (@ 20.0) 7]
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Here the expectation is taken with respect to zz_, —~
P7_t, (¥7_4, |0,4). Then consider the following process

(Kd)?fo with Y ~ NV(0,1,): fort € [T —t;, T — ti11],
AV =gV +28(Ye_, T — t:))dt +B7_,dB,

This is just replacement of the drift term at ¢ by that at
the last discretized step, and we can obtain Yn(k+1) from
Y1 as easy as the classical Euler-Maruyama discretization
because Y, ;1) conditioned on Y;, is a Gaussian. This
is also adopted in De Bortoli (2022); Chen et al. (2023b).
However, De Bortoli (2022) requires 7; < exp(—n®W))
and Chen et al. (2023b) assumes Lipschitzness of the score,
which does not necessarily hold in our setting.

We can show the following discretization error bound:

Theorem 5.7. Let T = n~CW and T = 582 Then,

E[TV(Xo, Y%j_z)] SO MPT 3 +nam) .

Thus, taking np = T~ %=/t = poly(n~") suffices
to ignore the discretization error.

6. Error analysis with intrinsic dimensionality

Although the obtained rates in Section 5 are minimax opti-
mal, they still suffer from the curse of dimensionality: the
exponent of the convergence rates depend on d. In statis-
tics, one approach to avoid this curse of dimensionality
is to assume mixed or anisotropic smoothness (Ibragimov
& Khas’minskii, 1984; Meier et al., 2009; Suzuki, 2018;
Suzuki & Nitanda, 2021), and our theory directly applies
to them. On the other hand, the manifold hypothesis, that
the distributions of real-world data lie in low dimensional
manifolds, has been proposed (Tenenbaum et al., 2000; Fef-
ferman et al., 2016), and this is another assumption that
can avoid the curse of dimensionality: convergence rates
dependent not on the dimension d of the space itself but on
the manifold’s dimension d’ can be derived Schmidt-Hieber
(2019); Nakada & Imaizumi (2020).

As for the diffusion models, despite its statistical impor-
tance, none of the literature has shown that diffusion models
can ease the curse of dimensionality; in the first place, the
density estimation problem itself has never been considered.

We introduce several recent works that investigated the con-
vergence of diffusion modeling under the manifold hypoth-
esis. Pidstrigach (2022) discussed the effects of the score
approximation, but their bounds are not quantitative and
does not consider the estimation rate. De Bortoli (2022)
considered the estimation rates, but the approximation error
should be exponentially small with respect to the desired es-
timation rate. Batzolis et al. (2022) experimentally showed
that diffusion modeling learns the dimension of the under-
lying manifold and the dimension of the manifold can be
estimated from the trained diffusion models.

From now, we define the specific class of density function
with intrinsic dimensionality and show the estimation rate.

Let d’ < d be an integer and A € R?*? be a matrix made
of orthogonal column vectors with the norm one. We con-
sider the d’-dimensional subspace V := {y € R? | 3z €
RY s.t. y = Az} where the true density has its support, i.e.,
d’ represents the intrinsic dimensionality. Together with
Assumption 2.5, we assume the followings.

Assumption 6.1. The true density py is a probability
measure that is absolutely continuous with respect to the
Lebesgue measure on the sub-space V. Its probability den-
sity function as a function on the canonical coordinate sys-
tem of the subspace V' is denoted by g.

Assumption 6.2. ¢ is upper and lower bounded by
Cy and C7', respectively. Moreover, ¢ belongs to

U(BS i [-1,1]7).

P4’
Assumption 6.3. ¢ belongs to U(C®([—1,1]¢ \ [-1 +
ag, 1 — ao]d,)) with ag = n=7

We now state our result as follows:

Theorem 6.4. For any fixed 6 > 0, we can train the score
network with n(>> 1) sample so that

_ (s+1-6)
d’+2s |

EW1 (X0, Yg_p)] S

Appendix E provides the complete proof. Contrary to The-
orem 5.1, the upper bound here depends on d’ (not on d).
Thus, we can conclude that the diffusion models can avoid
the curse of dimensionality.

7. Conclusion

This paper analyzed diffusion modeling as a distribution
learner from the viewpoint of statistical learning theory and
derived several estimation rates. When the true density
belongs to the Besov space and deep neural networks are
appropriately minimized, diffusion modeling can achieve
nearly minimax optimal estimation rates in TV and W;.

To approximate the score, the novel basis is introduced,
which we call the diffused B-spline basis. The bound in
W1 is derived by carefully balancing the difficulty in score
matching and how much the error in score matching at
each time affects the W, distance. We also demonstrated
that diffusion models can avoid the curse of dimensionality
under the manifold hypothesis.

This paper did not discuss any optimization aspect of diffu-
sion modeling. We leave this problem as future work.
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Additional remarks

Remark on the concurrent work of Chen et al. (2023a) After the submission of this paper to ICML 2023 (deadline: Jan.
26, 2023) and Me-FoMo (ICLR 2023 workshop, deadline: Feb. 3, 2023), the preprint named as Approximation, Estimation
and Distribution Recovery of Diffusion Models on Low-Dimensional Data (Chen et al., 2023a) appeared on arXiv on Feb.
14. They consider generalization errors of diffusion modeling in a somewhat similar setting to our Section 6. They assume

that g is Lipshitz and sub-Gaussian, and V log | [ ¢(y) ﬁ exp (—%) dy] is also Lipschitz over all t € [T, T],
& t

od(2m)
1—o(n)

and derived the estimation error rate of n~ 2(¢’+5) in W;.

We would like to note several distinction between Chen et al. (2023a) and ours. First, that directly assumed the smoothness
of the score over all ¢, while our assumptions on the data are made only about the true data distribution. In other words, they
make an assumption on the intermediate distribution along the way of the diffusion process. Therefore, their assumptions
are cannot be verified solely on the true data distribution, which makes it unclear what functions are included in their
setting. Under their assumptions, they divided RY x [T,T) into a mesh, and, on each of the small hypercube, they locally
approximate the score by its value on the center. On the other hand, we treated = and ¢ differently and established a tailored
basis decomposition to efficiently approximate the score function based solely on the structure of the initial distribution py,
which is crucial to obtain the nearly minimax optimal estimation rates in our analysis.

1—0(n)

Also, while they derived the rate of n 2(¢+5 in W7, that is sub-optimal in their setting. Indeed, this is weaker than
De Bortoli (2022) ! of n= /4", which was derived without considering generalization of deep neural networks. Instead, the
rate of n~1/% was derived by perfectly fitting the score network to the diffusion process from the empirical distribution
and then just considering the convergence of the empirical distirbution to the true data distribution Weed & Bach (2019).

Furthermore, in this paper, Section 6 derived the rate of n=~ ¢’+2s  under the s-th order of smoothness (in a rough expression),
by considering generalization of deep neural networks. This rate gets faster as s increases.

Reemark on

A. Several high-probability bounds on the backward paths

One of the difficulties in the analysis is the unboundedness of the space and the value of the score. This subsection aims
to provide several treatments for such issues. These inequalities allow us to focus on the score approximation within the
bounded region. We note that, however, some of the following bounds still depend on the time ¢, and therefore the level of
difficulty for approximation and estimation of the score differs with respect to ¢.

In the following, we define several constants C, ;. Other than in this section, we simply denote them as C', for simplicity.

A.1. Bounds on ||Y;| and [|AY;|| with high probability

We first provide several high-probability bounds, which guarantee that most of the paths travel within some bounded region.

Lemma A.1 (Bounds on ||Y;|| and ||AY;|| with high probability). There exists a constant Cy 1 such that

P [HY}HOO <mg_, + Ca,laf_t\/log(sflzflf)for allt € [0,T — T]} >1—e.

Moreover, for an arbitrarily fixed 0 < 7 < 1,

P [HYt —Yiirlloo € Cany/Tlog(e 17T forall t € [0, T — T]] >1—c.

Proof. Remind that Y; = X7_,. Thus we discuss bounding X; in the following.
We begin with the first assertion. Let ¢1,9,--- ,tx be time steps satisfying T = t; < t < -+ < tg = T with

! Although the original version of De Bortoli (2022) requires the bounded support in contrast to the sub-Gaussian assumption in Chen
et al. (2023a), we can easily approximate a sub-Gaussian distribution with a distribution with bounded support.

13
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t; — t;—1 = At that is some scaler value specified later. We first show the following for some constant Cf :
P [HXtHOO < my+ Crop/loge— forall t =1, (i = 1,2, -- ,K)} >1-¢K. )
Remind that X;| X follows N (m; X, 07) and || Xo||c < 1. Lemma F.12 yields that
P {HXHOO < my+ C’lat\/log? for some fixed t = tl} >1-—c¢,

which immediately yields (9).
Then we consider how far each particle X; moves from ¢t = ¢;_; to ¢;. Equivalently, we consider X; and decompose it into
ti
X; =exp —/ Bsds | Xz, +B1_exp(_2fti B.ds)’ (10)
s=t;_1 s=t;_1 7%

where B denotes a d-dimensional Brownian motion. This is obtained by considering the Ornstein-Uhlenbeck process
starting from ¢ = ¢;_;. By Lemma F.13, with probability at least ¢, the following holds uniformly over ¢ € [t;_1, t;]:

ti t; —
| Xtlloo < exp (—/ Bsds> 1 Xt oo + \/1 - exp(—?/ Bsds) - 24/ [2log de—1

=ti—1 =t;—1
ti —

< exp f/ Bsds | | Xt,_, lloo + 1/2BAL - 24/ B2log de~1.
s=t;—1

If | Xt o lloo < my,_, + Choy,_,\/loge™1, this is further bounded by

| Xtlloo < mye,_, + Croy,_,\/loge=! + VAL - 4,/BBlogde—1.

Because we can check that oy ~ VE A1 > /T holds, if we take A < T, then we have that

Cioy,_,\/loge=! + VAL - 4,/BBlogde=1 < Caoy,_,\/loge™! (11)

forall ¢t € [t;_1,t;], with some constant Cs.

Therefore, with probability 1 — 2K e we have (9), and (11) for all i. We need to take K = O(T/T) to satisfy A < T. We
reset = as a new ¢ and adjust Cy accordingly. Now the first assertion is proved.

Next, we consider the second assertion. Let us consider a different time discretizationty = 0,t1 = 7,te = 27, -+ |tx = KT

with K = min{i € N|K7 > T'}. Then, from the first argument, we have that || X;||oc < my; + Ca0y4/log(e~17—1T) holds
with probability at least 1 — ¢, for all t = ¢g, 11, - ,tx. We condition the event conditioned by this. By (10), we have that,
for ¢ Z ti—l’

t;
s Js=ti_q1 78

=ti—1

ti
exp f/ Bsds | — 1
s=t;—1
< TB(mti—l + Ca0¢,_, V IOg(EilTilT)) + HBlexp(2 S Bsds)
s=tj_1 73

We bound the last term over ¢ € [t;_1, ¢;]. With probability at least 1 — -, that is bounded by /257 - 2y/52log dKe~!
according to Lemma F.13. To summarize, with probability at least 1 — 2¢,

sup || X — Xt oo < 7B(my, , + Cooy, y/log(e=1771T)) + \/ 287 - 21/ B2log dKe~!

te[ti—1,t4)

which yields that

HXt - Xti—l ”OO <

1Kol + HB

.
1—exp(—2 fs;f’i—l Bsds)
LS

o0
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holds forall i = 0,1,--- , K — 1. RHS is bounded by C5+/7 log e~17—1T with some sufficiently large constant Cs.

Then, for any ¢, there exists i such that ¢t < ¢; < t + 7. Thus, with probability 1 — 2¢, || X — Xiqr|loo < | Xt — Xt |loo +
1Xe, — Xt: 1 lloo + | Xi4r — Xt, |l is bounded by 3C3+/7loge17—1T for all ¢. Setting 2¢ to ¢ yields the second

assertion. O

A.2. Bounds on p; ()

We then give upper and lower bounds on p;(z).

Lemma A.2 (Upper and lower bounds on the density p;(x)). The following upper and lower bounds on p:(x) holds for a
constant C, 5 depending on C'y and d:

d o — 2 - — 2
0;21 exp (—W) < pi(r) < Cyhz2exp (—W) . (forallt.)

Proof. We first consider the case when = € [—my, m;|%. The upper bound is relatively easy. f(y) < Cyl[y € [-1,1]9]
means

1 |z — myy|)? / Cylly € [—1,1])9] |z — myy|? 2dCf
= —_— _ < - P
pi(x) / ot %f(y) exp ( 552 dy < exp 207 dy

2m) i od(2m)% ocl(2m)e
(12)
At the same time, we have that
Cy |z —mey? Cy
< | —— ——— | dy = —. 13
pi(z) < / Jf(QW)% P < 207 Y mg (1)
Thus, according to (12) and (13), p¢(x) is bounded by min { j(dcl; =, C—’; } This is further bounded by a constant that
of(2m)2 m
depends only on C'y and d, because m? + o7 = 1 holds for all ¢.
The lower bound can be understood as follows. We have
crt lz — mayl?
! il >
r)= | —— exp| ———— | dy
wie) = [t iwen (10
1 [meyl? :
> @ )é flx/my — owy) exp EC dy (by letting (z — muy)/or — myy). (14)
T)2

Since © € [—my, my]?, we have x/m; € [-1,1]¢ Thus, [{y € [-1,1]¢| z/m; — oy € [-1,1]}| > 1. Moreover,
exp (—%) > exp(—d?/2) iny € [—1,1]¢. Therefore, the integral (14) is lower bounded by exp(—d?/2).

We then consider the case when = ¢ [—my, my]¢. For such z, let r = (||| o — m¢)/0+ and choose i* from {1,2,--- , d}
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such that |z;«

= ||z||coc = my + r/0 holds. Then, we have the upper bound of p;(x) as

pe(z) :/at(;r);’f(y) exp (—W) dy

—-1< z<1 i — i)?
<CfH/ yi < ]eXp(_(x 277;151!) >dyi
g

ot ( 27T t
1 (xz* mty, )2
SC / exp ( dy (15)
" Jyeetry on2m)® 207
1-1<y <1, :
(because/ l=p= @ y — ( mty ) dy; for i # i* is bounded by O(1), as p;(x) for x € [-my, mt]d.>
O't ’/T
< Cf / exp ( ) (by a = x5 — mtyi*/\/iat)
me Ja= /2 \/>
Cy 2 Cy (lzlloc —me)?
< — — 2 = — _—_
- exp ( r*/ ) - exp 207

where we used f ®e=a’dg < e~ (see, e.g. Chang et al. (2011)) for the last inequality. Also, (15) is alternatively

bounded by — = ) - exp (—W) Because m? + 07 = 1 means that min{my, o;} > 1, it holds that p;(z) <
o¢(2m 2 t
Cfexp (_ (ERE.S ) :
On the other hand,
1 [l — muyl”
= d
n@ = [ o o 1) exp( ) ay
Ti — mtyz‘)2
ol (LY
f H IG[ 1, 1 Ut ’]T % 2O_t2 y

(a)
1 v — muyyi-)* o .
= f_l / ————exp ( W) dy (because (a) is minimized when i = i,.)
v €l-1,1) 0¢(2m)* 201

C'f_l r/V2+V2my foy 1 ) d f
> —— —=exp (—a”)dy (by (@4« — myuy;-)/ V20
[ e st

o1 T/V2HV2me g ) d
> exp (—a*) dy
mf /a'r/\/i ﬁ ( )

_1 d

(by lower bounding exp(—a?) in the integral interval and just multiplying the width of the interval)

—_d <\/3;nt exp (—T2 — 4) da)

= s
> pET ey exp (fdr2) ,

—1od/2
Cfg/

which gives the lower bound on p;(z). O
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A.3. Bounds on the derivatives of p;(x) and the score

This subsection evaluates the derivatives of p;(x) and the score. On the one hand, straightforward argument yields
that the derivatives of p;(x) is bounded by 9*p;(z) = O(1/0F) = O(t~%/2). On the other hand, as for the score,

sup,cpa ||V 1og p:(x)|| = oo holds in general, which prevents us to construct an approximation of the score with neural
networks. This is because V log p;(z) = vp;: E:(S) and p¢(x) can be arbitrarily small as ||z|| — oo. Nevertheless, using

Lemma A.2, we can show the bounds on the score dependent on x and ¢, in the next Lemma A.3. In Lemma A.4, Lemma A.3
is used to show that the decay of p, is so fast that the approximation error in the region with small p;(z) (that can be > 1
in some ) does not much affects the L?(p,) approximation error bound; We can show that ||V log p; (z)|| = O(1/0,) =
O(1 V 1/+/t) with high probability (when x ~ p;).

Lemma A.3 (Boundedness of derivatives). For k € Z_, there exists a constant C, 3 depending only on k, d, and C'y such
that

Ca,3

|8Ei1 a{L’i2 e al‘lkpt(x)| S k (16)
gy
Moreover, we have that
Ca co
Ot Ot
and that fori € {1,2,--- ,d},
Ca. 2| oo — )2
18,V log py(z)|| < <(| | § 2ERY 1) : (18)
o} g%
and that
T oo — m4)? 2
0.5z < 5 0+ ) (Ll 1) (19)
¢ i
Proof. First, we consider (16). Let g1 () = pi(z) = [ d(2 7 (y) exp ( W) dy. For s € Z4, we abbreviate the
notation as g§ (z) = 051052 - 934g1(x). For s € Z4, we deﬁne B, ={s €Z|s; <s; (i=1,--,d)} and a constant
cs such that 931 0;2 - - - 9zde™ l=ll*/2 — Y wen. cs/azll P ~zd e~ 1*/2 holds. Then, because of Oy, = 102, we can
write ¢\*) (z) as
9 (x) = 2 EB /H < - myz) : f(y)exp <—|x_mty2) dy. (20)
! S s o (2m) 207

()

Note that max,. y~,,<k{>_secp, Cs'} is bounded by a constant that only depends on &. Thus we focus on the evaluation of
(a). When t < 1, (a) in (20) can be bounded by O(1/m¢) ~ O(1) (we hide dependency on Zi:l s; < k and Cy). This is
because m; ~ 1 and f(y) < Cy. On the other hand, when ¢ > 1, o4 2 1 holds, we can bound (a) by O(1) by noting that
f(y) # 0 only for y € [—1,1]%. Now, the first statement (16) has been proven.

We then consider V log p;(x) and its derivatives. We can focus on [V log p;(x)]1, and all the other coordinates of the score

are bounded in the same way. Let g2(z) = o¢[Vp(z)]1 = — ?ﬂgty)i f(y)exp ( W) dy, and define gg 9§
(s)

the same way as that for g;

We can see that

_ 1 go(x) oo (o), = L. Onig2(®) 1 ga2(2)(0,91())
[v logpt(z)]l - ot g1 (.’L‘)’ [ax1VI gpt( )}1 oy 91(11) oy g%(m) . (21)
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Moreover,
o) S (o N
gi(@) d(2 1 )exp( [ESE )dy ’
bunle) 1 R e (- )y -
g(x) o fa?(; )%f(y) exp( llz ;ttuw)dy ’
Ogo(z) 1 fl[l 1]_ﬁ%?t%f(y)exp (*%) dy s
FIOEES [ d(2 7 (y )exp( B2 2:111/H2) dy ' 24

In order to bound them, we consider the following quantity with Ele s; < 2. Also, let € be a scaler value specified later,
with which we assume p;(x) > ¢ holds for the moment.

le ) (acl ;:ltyz) g %f( )exp( |E3 27;:;?4“ )dy
I . 1 exp( llz—myll® mzyl\ )dy

a't'(QT")E

(25)

According to Lemma F.9, we have that

/ ﬁ (xi_mtyi)sri 1 f( )e ( x_myHQ)d
x I e |
A= oy O’d(Qﬂ')% yrexp 207 y

*i=1 t

d

i —may 1 ||37—m1/2)
- exp [~ 1EZ I 4
LI i (gt )a

where A® = Hf paf withaf = [72- — %\/log 2e71, 2L+ %th\/log 2e~1]. Note that Ct only depends on Zle Sis
d, and CY.

Therefore, when p;(x) = g1(x) > ¢,

d Ti—myYs i T—my
2fni=1< ot = ) % ( )eXp( H 20t2yH )dy

f
[ Xp( le—mal?) gy

(25) <

d i — M Yi i z—myy|>
2wa i, (zl o': . ) od(2 )2 7 f(y) exp (_ : zagy” ) dy 2%
¢ (2m +
x a J\Y)exp T2 ) ay
I3 . L f(y) ( l|lz— ;nfyl\ )d €

old(2m)2

(note that the denominator is larger than ¢)

d Sq
Ty — MiY;
<9 Li — Y 1
<2y [H (=) |+
d )
< 2(C2loget) =102 g, (26)

Applying this bound to (22), (23), and (24), g 2 (ig , dg; i;()x) ,and 8’;”19(1(;”) are bounded by

1/2 _—
/2 o~1 1

log1/2 el log and loge™ 7

Ot Ot

18
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up to constant factors, respectively. Finally, we apply this to (21) and obtain that

log'/? 1 loge™!
S and, |0, Vlog po(a)]| S 25—

t

[V Iogpe(x)]| <

Now we replace ¢ with a specific value. Remember that £ should satisfy ¢ < p;(x). According to Lemma A.2, we have
—m¢ 2 . .
C;zl €xp (-M) < p¢(z), which yields that

Ca o — Cl,: o — 2
oy ot Ot O

with C, 3 depending on k, d and Cy. Thus, we obtain (17) and (18).
Finally, we consider 0,V log p;(x).

oem(z) = o, [ L. 92%) 1\ g(x) 1 (Ggi(x) g2(x) 1 Oiga(x)
avtesnie) = (5 -5203) = (05, ) 20— o e G+
(—0¢ot)

= TVlogpt(x)

—d(0¢o¢ 0;1 z—mqy||? (8o O';S— Oymy T myy—x 0;2 T—1m41 2
. f (Oeoi)oy ylI*(Oeoe) ( )y (mey—=) fly) exp (_ Il 2u\| )dy

8

of(QTr)% 20}
T . le—meyl? Vo p()
¢ f a2 )% (y) exp <—T> dy
crt iy t
X [ (atmt>y1+<x1—m,,yl)<<d+1>(af,m,)a:1—dﬂalc(—m;guz(vtat>a;3+(atmt>yT(mw—x)aﬁ)f(y) exp (_ ||x—27;§y||2) dy
o 27m) 2 t
+—- ! 5
z [yt (BT ay

By carefully decomposing this into the sum of (25), and then applying (26) and Lemma A.2, we have the final bound
(19). O

Now, based on Lemma A.3 we show that we only need to approximate V log p;(2) on some bounded region and on 2 where
p¢() is not too small.

Lemma A.4 (Error bounds due to clipping operations). Let t > 1. There exists a constant C, 4 depending on d and C, we
have

pe(2) ||V 1og pi(z)||da < e, 27)

Aw|w>mt+ca,4gtm ! ¢

/ pe(r)dr <e (28)
”-'EHoozmt"FCaAUt\/W

forallt > T.
Moreover, there exists a constant C, 5 depending on d and C and, for x such that |z]loe < my+ Caa0oir/loge™1, we have

C
|V 10g pi(o)] < 2 Viog e,
t

Therefore,
/ pe(2)Lpe(x) < ]|V log pe ()| *da < Case log & (e71T71) (29)
t t(T) < t < : 4 ),
|#]lco <M +Ca a0 /loge=tT 1 0152
d
pe(2)1[ps(x) < g]dax < Cyse-log? (e 1T7H). (30)
/lxloo§77lt+ca,4o't\/10g51T1 ' '

19
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Proof. According to Lemma A.2 and Lemma A.3,

— 2 C? _ 2
PV ool < Cugenp (- I 2 ) Cop il Sy
t

0% 0%
2
Ca,2ca,3 ’)"2 2
S—5—exp|——5 |,
0%

where we let r := (||2]|cc — m¢)+/0¢. Then,

pe(z) ||V log py(z) | *dz
/lrloczmt"l‘caA”t\/lOgT

s C, »C? §
< / 22273 e <_T2) r?(d = 1)(o¢r +my) '~ dr

Ca,a4/loge~1 O

1
< —Elogd/Q gL,
Ot

We can make sure the final inequality by integration by parts. Because o; = /T, if we take ¢’ = /T - €2 then we have that
0%5’ log¥?((¢')~1) < e. Therefore, replacing £ with " and adjusting Cla,4 yield the bound (27).
In the same way,

0o 2

pe(z)dr < / Ca,20¢ €xp (-g) (d—1)(oer +m)*tdr

Ca,aq/loge=1

/”z|oozm+ca,4at\/logj
< oe log(d_Q)/2 e,
which yields (28).

We then consider the second part of the lemma. Eq. (28) is a direct corollary of Lemma A.3: for x with ||z]e <

my + Ca50¢4/loge™!

Ca Ca .
IV log pi(z)|| < 3 Caav/loge=1 < U—f\/log e~!.  (by taking C, 5 larger than Cp 3C, 4.)

Ot

Using this, we have

2

Ca
/ pe(@)L[pe() < ]|V log po()|*de S - —5*loge™" - (my + Casory/log e )™,
||95Hoo§mt+ca,40t\/log? or:

Adjusting C, 4, C, 5 and resetting € yields (29). Eq. (30) follows in the same way. O

B. Approximation of the score function

In this section, we analyze approximation error for the (ideal) score matching loss minimization. We construct a neural
network that approximates V log p:(x) and bound the approximation error at each time ¢. Throughout this section, we take a
sufficiently large N as a parameter that determines the size of the neural network, and T = poly(N 1) and T = O(log N).

B.1. Approximation of m, and o}

We begin with construction of sub-networks that approximate m; and o;. In addition to the true data distribution po(x), the
score V log p:(x) also depends on m; and ;. Indeed, in our construction, each diffused B-spline basis is approximated as
a rational function of x, m; and ;. Here, m; and o; are as important as x, because we use exponentiation of m; and oy,
as well as that of x, while exact values of m; and o, are unavailable. In other words, because approximation errors of m;
and o, are amplified via such exponentiation, approximating m; and oy with high accuracy is necessary for obtaining tight
bounds. Therefore, in this subsection, we construct sub-networks for efficient approximation of m; and ;. The following is
the formal version of Lemma 3.3.
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LemmaB.1. Let 0 < £ < L. Then, there exists a neural network ¢.,, (t) € ®(L, W, B, S) that approximates m, for all t > 0,
within the additive error of €, where L = O(log® e =1), [|[W||oo = O(log?e™1), S = O(log® ¢ 1), and B = O(loge™1).

Also, there exists a neural network ¢, (t) € ®(L, W, B, S) that approximates o for all t > e, within the additive error of ¢,
where L < O(log® 1), [|[W||o = O(log?e™1), S = C’)(log3 e71), and B = O(loge™1).

Proof. First we consider m; = exp(— fot Bsds). Since § > f, fot Bsds > logde™! forall t > A := logde™!/B.
We limit ourselves within [0, A]. Then, from Assumption 2.5, at each s = 0,1,--- ,[A] — 1, we can expand f3; as
Br=0 B (¢ — s)F + B(;k) (0(t — 5))* with |3)] < 1and 0 < # < 1. Therefore, we obtain that

‘/ Bsds—/ Bsds—/

for s <t < s+2. We take k = max{5, [log 417} so that we have (k+1), < ((Hl)/z)kﬂ < £. The constant term fos Beds

is at most O(A) = O(loge™1), and each ft 5(S’i) (u—s)idu = 5(:1)' (t — )+ can be realized as ¢ (-4 + 1) with an
1y bY the neural network with L = O(log?e™1), |[W oo = O(loge™), S = O(log’c 1), B =
O(1), using Lemma F.6. We sum up this approximation over all i = 0, 1, - - , k to obtain the network that approximates

fg Bsds within s < ¢t < s + 2, with the additive error of at most %. The structure of the network is evaluated as
L=0(og?c™),|[W|s = Olog”e™"), S = O(log*e~1), B = O(loge~!), by Lemma E.3.

th-1 18] ok+1

(k+ D)12k+1 = (B 4+ 1)V

,@(s i)

(u — s)'du| <

additive error up to

We then approximate e ¢ within (0 <)s < ¢ < s+2. Wehavee ™t = e~ (t=5)75 = e’S(Zf;O (_Z.})i (t—s)i—i—%(e(t—

5))¥'*+1 with 0 < @ < 1. Therefore, in the same way as above, we approximate each monomial %(t — 5)" and sum
up to obtain the approximation of e . We take k' = O(loge~1). By following the above argument we obtain a network
that approximates e ! for s < ¢ < 2s with an additive error of £, where L = O(log?c™1), ||| = O(log”e™1), S =
O(log® 1), B = O(loge™).

We concatenate these approximations of fot Bsds and e~ ¢ by Lemma F.1 to obtain a network ¢,, that is valid for s < ¢t < s+2.
Finally, we obtain the following approximation of m:

[A]—-1
¢mult(¢5w1t(ta 17 2) ¢0 Z ¢mult ¢sw1t(t s+ 1 s+ 2) ¢let(t; 5,8 + 1)7 ¢S(t))

s=1

We set ¢ = O(e/A),C = 1 in Lemma F.6 to bound the multiplication error by . This requires that each ¢ has
L=0(0oge™ 1), [[Wl|e = 0O(1),8 = O(loge™?),and B = O(1).

Finally, we clip the input with [0, A] of the above network, because from the definition of A we can easily check that e =4 < g
holds. Then we obtain the neural network ¢,,, of the desired size, which approximates m; = exp(— f Ot Bsds) with an additive
errorof §+5+5 = 37‘5 (, where the errors are from approximation of fot Bsds, approximation of e~*, and multiplication at the
last step, respectively) for z € [0, A]. This implies |¢, (%) — ™| < | () — G (A)]| + P (A) —e 4| +|e™4 —e™7| <
0+ 3 4 £ = e forz > A. The size of the network is bounded by L = O(log”e™}), [W||s = O(log®e™1), S =

O(log*e~1), B = O(loge™).

Similarly, we can approximate 07 = 1 — exp(—2 fot Bsds) with an additive error of O(g?) using a neural network
with L = (’)(log2 e, [[Wlleo = O(log?e™1),S = O(log®c™1),B = O(loge™1'). Since t > ¢, we have 07 =
1 —exp(—2 fo Bsds) > ce for some constant ¢ depending on /3. The only difference that needs to be mentioned is that
we also need to consider /Z to obtain o from o?. However, this can be made in a similar way as we approximated e~
for each s < t < s + 2 above. We approximate /z for each O't2u+2 < x < o7, where t,, is defined so that 27% = o7
and ¢y = co. We need at most O(log e 1) of different ¢,, to cover all € < ¢. Note that ofu” / afn =~ 1 holds for all u and
therefore we can approximate /2 within each interval similarly to the case of e~!. By switching the approximations, we
finally obtain the approximation of 1/ for all z > o2, with the same orders of L, |||, S, and B as those for e, within
the additive error of ¢. Concatenating the networks corresponding to o2 and /7, we obtain the desired network. The error is

bounded by O(¢), because we can approximate o2 with an accuracy of O(¢?) and the approximation of /x has an error at
most O(g). O
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B.2. Approximation via the diffused B-spline basis

This subsection introduces the approximation via the diffused B-spline basis and the tensor-product diffused B-spline basis,
which enable us to approximate the score V log p; () in the space of R? x [T, T]. Although we consider the function
approximation in a (d + 1)-dimensional space, the obtained rate (Theorem 3.1) is the typical one for a d-dimensional space.
This is because our basis decomposition can reflect the structure of py for ¢ > 0. Before beginning the formal proof, we
provide extended proof outline about the approximation via the diffusion B-spline basis and tensor-product diffused B-spline
basis, which is more detailed than that in Section 3.

Remind that the cardinal B-spline basis of order [ can be written as

l
Nin(z) = %1[0 Sz <i+1] Z(_l)jl-HCz'(x — ll)l—i—

I'=0

(see Eq. (4.28) of Mhaskar & Micchelli (1992) for example) and the function in the Besov space can be approximated by a
sum of M,‘ij (x)

Ml?](x) = HNm(2kiiEi — Ji)

where k € Z‘_f_ and j € Z%.
Therefore, the denominator and numerator of the score

_a—muy _M)
V() 1 / d+1(2 )gf( )eXp( 207 dy

Viogpi(z) = =——.
8P:() pe() o[ (y) exp (_ ||r*2?;1§y\|2> dy

d(z )%

are decomposed into the sum of

1 o — muy?
59 t::/i]l o < Cyq|ME _Em eyl ) g 3]
y (@, 1) i) ylloo < CualM ;(y) exp 207 y (31)
and
(2) L T — ey d _ | — my|?
EO @0 = [ it < Gty e (-1 ay (2

respectively. This corresponds to what we called the tensor-product diffused B-spline basis in Section 3. Here E( ])(x t)is
the same as E}, j(x,t) in Section 3, except for the term of 1[||y||c < C,1]. Note that Cy, 1 be a scaler value adJusted later.
We then approximate each of the denominator and numerator of V log p; () combining sub-networks that approximates

1 2
each E,(”) (z,t) or E,(”) (z,1).
Here we briefly remark why 1[||ly|lcc < Ch,1] appears. Let us assume Cp; = 1 and approximate p;(x) based on

basis decomposition of py(z), although later we need to consider other situations. If we use basis decomposition as
po(z) ~ fn(z) = > MY ;(@), existing results such as Lemma F.11 only assure that the approximation is valid within

[—1,1]% and do not guarantee anything outside the region. This might harm the approximation accuracy when we integrate
the approximation of p; () over all R%. Therefore, we need to force fx (x) = 0if |||/ > 1 by the indicator function.

From now, we realize the (modified) tensor-product diffused B-spline basis with neural networks. We take E,Slj) as an

example, and the procedures for E,(CQJ) is essentially the same. Remind that in Section 3 we decomposed E}, ; into the product

of the diffused B-spline basis:
_ - )2
ij :ij, /N €Ty Z exp < (zz 277;ty1) )d«:l:q
(on

t
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Although the way we proceed is essentially the same as that in Section 3, here, more formally, we first truncate the integral
intervals. We clip the integral interval as

1 |z — mqyl®
E(l) z,t ~_./ 1 <Cy M2 exp< ——]d
kd( ) et g(2 )% [Ylloo < Cp 1] k,j(y) B t2 Y

d +1 4
1) Cp 1 -
Zw/ [yl < Cual1[0 < 2Fys — i < 1+ 1]
meafat(

i=1 \I'=0 i 277)%
: (zi — mayi)?
x (25y; — U = i)'y exp (—QU; dy; |,

t
(33)

where A% = H?:l a?t with ot = [%—”;—L?\/log e l, +";an v/loge1],Cy = O(1),and 0 < ¢ < 1. This clipping
causes the error at most O(e) according to Lemma F.9 and the observation 1[||y||cc < Cb,l]Mg,j(y) < ((t+ 1)l+12l+1)d.

In summary, owing to the fact that M ;(x) is a product of univariate functions of z; (i = 1,2,--- , d), the integral over RY
is now decomposed into the integral with respect to only one variable over the bounded region, which is a truncated version
of the diffused B-spline basis D, ; introduced in Section 3.

We now begin the formal proof with the following lemma. We approximate

1 . , ) T; — myy;)?
/ —— 1y < Cpa]1[0 < 2%y, — 5; <1+ 1](2%y; — ' — 5i), exp <—( ;y ) ) dy; (34)
yica®" Ut(27T)2 20

t

(remind (33)). Note that 1[|y;| < Cp, 1]1[0 < 2Fy; — j; <1+ 1] = 0or = 1[a < 2Fy; < b] holds with a, b satisfying

—C2F —l<minj; <ji<a<b<ji+l+1<maxj, +1+1<C2% +1+1, (35)
if we assume supp(py) = [~C,C]? (see Lemma F.11). Based on (35), (34) (if 1[|y;| < Cp1]1[0 < 2Fy; — j; <
I +1](2%y; — ' — j;)'y # 0) can alternatively written as

1 - . (zi — mayi)?
——1[j < 2%y < j](2%y; — ') exp ( dy;, (36)

/ylea it Ut(27T) - 20?2

In the following lemma, we consider the approximation of (36). We omit the subscript ¢ for the coordinates, for simple

presentation. Also, j/ in (36) is denoted by 7, because j € R? will not be used in the following lemma.

Lemma B.2 (Approximation of the diffused B-spline basis). Let j, k,l € Z, j, jERsatisfy j —1—1< 5 < J
—C2F -1 <, J.J < C2F 4141, and k,1 > 0. Assume that |0’ — o], |m’ — my| < Eerror, and take € from 0 < € <

NI \/\

and C > 0 arbitrarily. Then, there exists a neural network d)fhjf’]l " e O(L, W, S, B) with

O(log* ! +1og® C + k),
IIWlloo—O(log e™h),
= O(log® et +1log” C + k),
(C

=0 2’“) + logo(logsil) e L.
such that
320535k atff loge™i 45 1 (x—mty)z
=z, 0’ ,m') — < 2ky < F1(2%y — j) exp (—)d
Pair1 ( )= [ e e \/ﬂo} 1[j < 2%y < j](2% — j) 207 y

< @(E) + Eerr0r04l2k(4l+l) log (loge_l) 6_1.

holds for all x in —C' < x < C and for all t > ¢.
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Ik .
Also, with the same conditions, there exists a neural network (bfhjf; € ®(L,W,S, B) with the same bounds on

L, W ||, S, B as above such that

otCt / —14 @
Sias oty = [Nl i oy <Gty e (- B2 ) gy
dif,2 T - U’Cf loge =142 \/ﬂg? = o 20—?

< (5(8) + Eerror0412k(4l+1) log Olloge™ 1) 5_1'

holds for all x in —C' < xz < C and forallt > e.

Furthermore, we can take these networks so that ||¢]dljf%k Iloos ||¢Jdljf%k loo = O(1) hold.

7sdk ok
Proof. Here we only consider (;5 dlf 1 , because the assertion for d) i f5 essentially follows the argument for qﬁéljf]l .

First, we approximate the exponential function within the closed interval, using polynomials of degree at most O(loge™1).
Note that 1[j < 2Fy < j](2%y — 4)! is bounded by (I + 1), from the assumption of j — [ — 1 < j < J < j. Therefore,
according to Lemma F.10, there exists S = O(loge~!) and we have that

(ac —my)? — (z — mty) 2
eXPp ( 20?2 ; sops =°
forally € [f";n—(ff loge=! + x, Uggf loge~! + z]. Then, we have that

oy Cy — =
‘ e

1[j < 2Fy < j)(2%y — j)' exp ( dy
70:'5f /10g5—1+ T \/27ro't - 20'752

otC

loge=1+4 2 1

=1
e -y < 7] (x —myy)*
- ———1[j < 2"y < j|( S | dy
_afo Nlog e~ Ty 2moy ;} ! 28 t2
< max{ oiCr \/logsl,(l—i-l)} :
my

(I+1)-e< 6log% el

1
V2mo?

Here, 2‘”0‘ V/loge~! comes from the length of the integral interval and [ 4+ 1 comes from the interval where 1| Jj< Qky <
j=1 holds

Now all we need is to approximate the integral of polynomials over the closed interval:

atcf«/logs e

(—1)° (= — myy)*

— 1
—— 1[5 < 2ky <7)(2%y — 5)t- d
z;)/“fcf e Vo Gy <i@y -9 ey
S—1 1 s+l Cry/loge =t Tz —m,2 k7 x—m27Fj
! . 7’ - ] !
Ty eI A ] e VR PR
mrd 2mmy " 512 —Cey/loge—1 ot Ot

<by resetting y <— :E—mty>
Ot

s-1 1 1 s+llcl,2kz Y (jmy — 2F) 2 — m2—" U+2s+1
- Z I+1 min § Cty/loge~!, max § ————=, —C¢y/loge~!
s=01'=0 V2mmgtls12e (1 + 25 + 1) ot

T —m.o—k7 U'+2s+1
— (min {Cf loge—!, max {tj, —Cf\/loga_l}}> 1 . (37

gt
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We decompose (37) into the following sub-modules for convenience. We let

5 (0, ,m) = (min{Crlogh (e, mae{ T2 _ Gy log? (=) 2,
72 (2,0, m) = (min{Crlog (=), max{ =2 _Crlogh (=) p)!+2 T,
£ (x,00m) = f1 (2, 0,m) — f3* (2, 0,m)

4 (w,m) = (jm — 2F2)' 7,
fl(o)=0d",
fo(m) =m~(+D),
V@ o,m) = f3 (2, 0,m) £ (2,m) £ (0) fo(m).

They also depends on j, j, 7, k, and [, but we omit the dependency on these variables for simple presentation. We take some
€1 > 0, which is adjusted at the final part of the proof.

We first consider approximation of f{ *(x,0,m). We realize this as

v, Ll
175 (x,0om) = ¢y 7% (2, 0,m)

= it (51 + 25 + 1) 0 datip (s —=Crlog (™), —Cr log? (e ™1)) © (Suute (1 — M2, drec(0)))-

by setting ¢ = min{o.,e;} in Corollary F.8 for ¢rec, € = €1,C = max{2C + 1 + 1,0.'} > max{|z| + m27%j, 071}
in Lemma F.6 for the first ¢,u1t, a = —Cf log%(a_l)7 b= C; log%(e_l) in Lemma F.4 for ¢.p, and € = &1,C =

Ct log% (25_1) in Lemma F.6 for the second ¢14. Note that o ~ /. Then, using Lemmas F.1, F4, F.6 and F.7 the size
of the network is at most

L = O(log? er! + log? ! +log® ©),
[Wlleo = O(log”e7 " +log®e™1),

S = O(log* et + log* e~1 4 log® C),
B =0(e7% + C?) + logPlos= ) o1,

(38)

Approximation error between fi **(x, 0y, m;) and ¢ **(, o', m’) is bounded by

g1+ O(loge™1)(Ct log? 5_1)0(1%'671) (61 +max{C + 142,012 (61 + error (672 +£72)))
= (e1 + Eerror) (logo(k’gg*l) et + Cz) :

é *(x, o, my) is also approximated in the same way, and therefore aggregating ff *(x, 04, my4) and fé #(x, 0, my4) (by
using Lemma F.3) yields that fé **(x, o, my) is approximated by q5l3 *(x, o', m’) with the error up to an additive error of

(€1 + €error) (logo(logs_l) el 4 02) using a neural network with the same size as that of (38).

Next, we consider f1 (z,m;). Since 28z = O(C2¥) and [jm; — jm!| < O(C2%cerror), We approximate fL (x,my)
with a neural network ¢!, (x,m’) € ®(L, W, S, B), where L, |W||«, S, B are evaluated by Lemmas F.1 and F.6 (setting
e =¢1,C =0O(0C2F)) as

L=0(oge;* +klogC), W =0(1), S=0(oge;*+klogC), B=0(C"2").

Approximation error between fL (z,m;) and ¢}, (2, m’) is bounded as £1 + O(C'2*)eror, using Lemma F.6.

The arguments for fé/ (o) and fg(m) are just setting appropriate parameters in Lemma F.6 and Corollary F.8, respectively.
For fL (o), there exists a neural network ¢! (o/) with L = O(log e ), ||W/|oe = 481, S = O(logeT!), B = 1 and the
approximation error between fél (o) and ¢l5/ (¢') is bounded by €1 +l€crror, by setting d = I'(< 1), e = €1 in Lemma F.6. For
fe(my), there exists a neural network ¢ () with L = O(log? &7 ' +log® m-1), || W||ee = O(log® e +log® m- 1), S =
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O(log* e7! +1og* m-1), B = O(e7' ™' +m~'~1) and the approximation error between f(m;) and ¢ (m’) is bounded by
e1+ (I+ 1)517172&”Or + (I + 1)mZ""2eerror, by setting d = [ + 1, = min{e;, m.} in Corollary F.8. Note that m. > 1.

~

Therefore, Lemma F.6 with ¢ = ¢; yields that there exists a neural network ¢l7 (2, m, o) such that

O(log? e +1log?e™t +10g? C + k),
IIWHoo = O(log’ e ' +log’e ™),

O(log* ey +log*e™t +1og” C + k),

O(er? + C2) 4 logOlees™ D=1y olokl,

. . 4 4 .
where approximation error between f; **(x, m¢, o¢) and ¢ "*(z,m’, ") is bounded as

s

15 (2, 0,m) — ¢l7/,8(x7m/70/) < (61 + Sorror (6772 + CUI21H1Y) logQUese™) o1,

—() ot
V275128 (1 +25+2)
coefficient is bounded by 2(*+1)! and the total number of possible combinations (I’, s) is bounded by O(1.S) = O(loge™1).
Then, approximation error for (37) is bounded as

Finally, we sum up (;57 *(x,m’, o’) multiplied over (I', s), according to (37) and using Lemma F.3. Here, the

okt DU(e) o eg o (672 + C4z24kl))log0(logs’l) 1

In order to bound the terms related to £, by O(¢), we take e; = O(2~(k+11 logfo(logg_l) e~1). Then, the total ap-
proximation error is bounded by @(5) + Eqprop CH2R(AH1) logo(logail) e~ ! and this is achieved by a neural network

with

(1og e 14 log;2 C+k),
o = O(log € 1),
S =0O(log®e™! +1og? C + k),
B O( O(logafl)sfl.

IIWII

192k +log

Finally, because

o C. —
N S
1[j < 2%y <j](2"% — j) exp ( ——5" | dy
—‘”f%\/logj+%\/%”t7 2

1 . - (x—mty)Q
< 1[5 < 2k < 711 + 1) ex (— dy < Cy,
_/\/ﬂot [J <2y <jl(l+1) exp 507 y S Cy

we can clip qﬁéljfj]k so that it is bounded by O(1). O

We now approximate the (modified) tensor product diffused B-spline basis. The following is the formal version of Lemma 3.4.
Without the term of 1{||y||cc < Cb 1], the statement matches that of Lemma 3.4. This network ¢qr 3 corresponds to ¢rpp
in Lemma 3.4.

Lemma B.3 (Approximation of the tensor-product diffused B-spline bases). Letk € Z,j € 74,1 € Z, with —C2F —1 <
§i <C2F (i =1,2,--- ,d), e (0 < e < 3)and C > 0. There exists a neural network ¢ass 3(x,t) € ®(L, W, S, B) with
L=0(log*c™! +10g? C + k?),
[W]|s = O(log® e +log® C + &%),
S =0O(log® et +1og* C + k),
B =exp ((9 (loga_1 logloge ™! +log C + k)) ,
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such that

1 |z — myy|)?
k,j d t
alx,t) — ——— 1|yl < C Mlyexp< dy| <e
de( ) /]Rd g(2 )% [H ” byl] k,]( ) 2 t2

holds for all x € [-C, C]<.

Also, with the same conditions, there exists a neural network ¢aira € ®(L,W,S,B) with the same bounds on
L, |W||, S, B as above such that

holds for all x € [-C, C]<.

<e.

k,j T —my
¢dif,4 (z,0',m") — /

o — muyl?
[ i vl < Coalid ) e (- ay

2
207}

653 4lloc = O(1) hold.

y
Furthermore, we can choose these networks so that || 5

Proof. Here we only prove the first part, because the second part follows in the same way. We assume |0 — o[, [m/ —my| <

Eerror .

From the discussion (33), we approximate

d /l41 %
-1 Cr 1
H(Z()ﬁ”/ LIyl < CoaJ1[0 < 2y — i <1+ 1]
. yi€a; 2

_ )2
x (2 1 )exp( @2;’5‘1’))@) (39)

which is equal to Dg’j (z) within an additive error of O(e), so we approximate (39). Here a? = [Zi — 9t | /loge—1, i 4

me my ’my
"*cf V1oge1].

We let fi(yi; ji, k, ') == Lf|yi| < Cua]l[0 < 2%y —ji < 1+ 125 — U — ji)' exp (_%> dy;. First,
i l [EVIVE) k
§,+10 Mﬁ (yi; ji, k, 1) is approximated by Zl+1 Mdﬂdlf 1 Jd, (yi,o’,m’) (see Lemma F.3 for ag-

gregation of the networks). Here, j,, and j,, are defined so that 1[j,, < 2ky < 5] = 1Jyil < Cpa]1[0 < 2Fy; —j; < 1+1]
holds.

. , Jisdisd, ok . . . .
Now we multiply Z;,HO Mqﬁdif ll = (yi, 0’ ym!) overi = 1,2, -+, d using ¢puls to obtain the desired network

irsJ 1!, /7k7
dlf 3- According to Lemma B.2 with ¢ = € and Lemma F.6 with € = € and C = O(1) (because ||¢fhfjl1 4 loo = O(1)),
there exists a neural network ¢; (z, m/, o "y e ®(L,W, S, B) with

log e+ 1log? C + k),

and we can bound the approximation error between ¢1(x, m’, ') and (39) with

Oe) + Cerror C12FWHD 10gOlor ™) o—1, (40)

Now, we consider ¢git 3 = ¢1(x, ¢ (t), o (t)). We apply Lemma B.1 with ¢ = C—42-k(#+1) log=@08=™) c=1 §o that
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Eerror g€ts small enough and (40) is bounded by (5(5) Then, the size of ¢gi,3 is bounded by

L=0(log*c™! +1og” C + k?),
[W]leo = O(log® ¢! +log® C + &?),
S = 0O®log® et +1log* C + k),
B =exp ((9 (logaf1 logloge™ +log C' + k)) .

Now, adjusting ¢ to replace @(6) by ¢ yields the first assertion.

J z—myy|?
We can make ||¢§;f’3||oo hold, because [5, mﬂ[\\yﬂm < Cpa )M (y) exp (_%) dy = O(1).
op (2w t

B.3. Approximation error bound: based on pg

Now we put it all together and derive Theorem 3.1. Throughout this and the next subsections, we take N > 1,7y =T =
poly(N~1) and Ts = T = O(log N). Moreover, we let T, = N~(2-9)/d Ty = 2T, T, = 3T,. This subsection considers
the approximation for ¢ € [17, T4].

We begin with the following lemma, which gives the basis decompositon of the Besov functions.

Lemma B.4 (Basis decomposition). Under N >> 1, Assumptions 2.4, 2.5, 2.6 with ag = N~1=9/4 there exists fn that
satisfies

Ipo — Fnllze(ergey S N7/,

Ipo = fnll 2=t )0\ 14N - -9/a 1N --8)/aj) S N~ @s+2)/d

)

and fn(x) = 0 for all x with ||x||c > 1, and has the following form:

N 3N
Iv(@) = ailllelle < UMY (@) + ) aillllzfeo <1 - NTOVIME, (), (41)
i=1 i=N+1

where —2F)m —| < (5),, <20 (1 =1,2,--- N, m=1,2,---,d), |[k| < K* = (O(1)+log N)v=' +0O(d~ ' log N)
for§ =d(1/p—1/r)4 and v = (25 — 6)/(28). Moreover, |a;| < N +d " )(d/p=s)+

Proof. Because py € C**+2([~1,1]?\ [-1 + N~(=9)/d 1 . N=(1=9)/d]d) ‘according to Lemma F.11, we have f; such
that

Ipo = Full p2 (o 1,1j\ o1 N-=0y/d 1 - y—a-sy/ajay S N~ G5F2)/d,

and has the following form:
N
fi(@) = M (x),
i=1

where —2(F)m —1 < (), <20)m (5 =1,2,--- N, m=1,2,---,d), |k| < K* = (O(1) +log N)v~'+0O(d~ " log N)
for§ = d(1/p — 1/r)4 and v = (2s — ) /(26). Moreover, |ay ;| < N +d " )(d/p=25)¢

Next let us approximate f in [—1, 1]%. Because ||po|

B, < 1, we have f5 such that

Ipo — follpz(o1,10) S N7/<.

and has the following form:

2N
B@)= Y aMi; (@),

i=N+1
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where —2(F)i — 1 < (4;); <2W0i (i =1,2,--- N, j =1,2,---,d), |k| < K* = (O(1) +log N)v~! + O(d~ ' log N)
ford = d(1/p —1/r)4 and v = (s — 6)/(20). Moreover, |y ;| < N +d7)(d/p=s)

Therefore,

Ll < 1fi(x) = Ullzfloc < 1= N"U=V 9 fr(2) + 1J2]loe < 1= N~E=0/) fo(a)

N N 2N
=D @i (@) = 3 iz < 1= NTOTVME (@) + Y0 aillaflee <1 = NTUTOME S ()
i= i= i=N+1
holds and reindexing the bases gives the result. O

The following lemma gives neural network that approximates V log p,(x) in [T%, Ty].

Lemma B.5 (Approximation of score function for Ty < ¢t < T}). There exists a neural network ¢score1 € (L, W, S, B)

that satisfies

N—2s/d]og N
2

t

/ 20(@) [ Sscoren (2, 1) — Vlog pr(@)|*de < 42)

Here, L, ||W ||s0, S, B is evaluated as

L=0(og"N), [[Wl]e =O0O(NIlog®N), S=0O(Nlog®N), andB = exp(O(logN -loglog N)).

Proof. Before we proceed to the main part of the proof, we limit the discussion into the bounded region. According to
Lemma A.4, we have that

T
pu@)s(z.1)  Vlogp (@) *de S < (14 (1)) 3
/lmloo>mt+o(1)0't\/m ‘ ¢ N(28+1)/d ( OC)

in ||zl > m: +

1
with a sifficiently large hidden constant in O(1). Because ||V logp:(x)]|| is bounded with w

1
O(1)o/log N due to Lemma A.3, s can be taken so that ||s(, )] cc < mg%N and therefore (43) is bounded by % .

# = N~(@st1)/d]og N which is smaller than the upper bound of (42). Thus, we can focus on the approximation

of the score V log py(z) within [|z]|ee < my + O(1)oyy/Iog N = O(1). Moreover, we can also exclude the case where
pi(2z) < N~s+1D/d ‘because Lemma A.4 can bound the error

3 d+2 _
/ pe(2)pi(x) < €]||s(x,t) — Vg pi(z)||dz S =5 log = (e7'T7Y) +&|s(x, 1)
|| oo <mi+O(1) ot v/Tog N 0?2
€ a2 -1 €
S —slog 2 (L) + —log N, (44)
0% o;

and setting ¢ = N~ (2371)/d makes (44) smaller than the bound (42).

Thus, in the following, we consider x such that ||| < my + O(1)o/Tog N = O(1) and py(z) > N~ (2s+1D/d holds. In

|< 10g2N

Ot

this case, we have ||V log p:(z)]

The construction is straightforward. Based on (41) of Lemma B.4, we let

1 — My 2 . 1 _ 2
)= [ i sgmtes (R Y ar= [ oo (R ) ay

*ZO@E(D» (z,t) = fi(a,1),

Bt o= ) N
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and

T—m x — mey||? T —m 2 — meull2
oivinte) = [ gemess (SR ) ars [ Semewen (B o

Uthrl(QW) 207 Uf+1(27r)§ 207

N
=N B, (x,1) = foz,1),

=1
Pl t) || fola,t)|| _ log? N
f3(@,t) = Ok U fl(:mt)HS = ]

so that «;, E(i) (z,t) and E,iz)J (x,t) correspond to the basis decomposition in Lemma B.4. Thus, |a;| <

k 7ji
N+ d/p=5)+ and |k;| = O(log N). We remark that Cy, ; is set to be 1 or 1 — N~(1=9/d in (31) and (32). We

approximate E,ilj) and E,(fj) by (bfﬁfjg and (bﬁff’ﬁ in Lemma B.3, by setting e = 1 and C' = m; + O(1)os/log N = O(1)

(because 0y < op, < log_% N), where 1 = poly(N 1) is a scaler value adjusted below. Then we sum up these sub-
networks using Lemma F.3 and obtain neural networks ¢qir 5 (, t) and ¢air ¢ (x, t) that approximate f1(z,t) and fo(z,t),
respectively.

Because we can decompose the error as

2541

pe(@)Lpe() > N™77 ||[s(x,t) — Viog py(x)|*dz

/|x||oo§mt+0(1)om/log N

2
s t
< 1pi(2) > N~ ]pu (@) | dncoren 1) - 2E| 4o 45)
[|Z||co <mi+O(1)o¢/1log N Ot
2541 f3 (1‘, t) 2
+f 1pi(a) = N5 Ppy(a) | 22D _ logpy(a)|| da, (46)
||| oo <mi+O(1)o+/Tog N o
we consider the approximation of %ﬂit) for the moment, instead of V log p;(z) = szl: éft’;), and bound (45). From the
construction of the networks, we have the following bounds:
|f1(z,t) = baie5(z,t)| S N - max | - €1, @7
[ f2(z,t) — baiee(z,t)|| S N - max || - €1. (48)

for all z with [|z]|sc < my + O(1)o¢v/Iog N = O(1). Note that max || is bounded by N~ +d~)(d/p=5)+ Thus, we
9543 9s

take 6y < N—1. N=( ' +d7)(d/p=9)+ . N=*F2 50 that (47) and (48) are bounded by N~ >@" in Lemma F.6.

Then we define ¢qif,7 as

(it 7 (2, )i := Petip (Bmute(Drec(Petip (Bair, 5 (2, £); N~ T/ O(1))), [pair, 6 (2, 1)]:); —(’)(log% N), O(log% N)).

to approximate o4V log p; (2). Here we used the boundedness of p;(z) with [N~(2571/4 O(1)] to clip ¢qir 5 (2, ) and the

boundedness of o;V log p; () with [—O(log% N), (’)(log% N)] to clip the whole output. For ¢, we let e = N~ (3s+1)/d
in Lemma F.7 and for ¢y we lete = N~%/4 and C = N(25+1)/d_Then,

1
fa(z, 1) ’ fo(z,t) H log2 N
wr(x,t) — fa(z, b)] = ier(z,t) — 1 <
||¢df,7( ) f3( )H ‘ ¢df,7( ) fl(x,t) fl(x,t) oy
SN/ NCeAD/d L (N=@sr)/d g N2/ 8 () — G s (@, )] + || f2(2,8) — air (1))
SN/ NOEA| ) (3 8) — paie 5 (2, 8)| + N fo (2, 8) — dair 6(x, 1)) (49)

9543 9543

Applying (47)< N~"a and (48)< N~ yields that (49)< N~4.

Finally, we let

¢score,1 (l‘, t) = ¢mult (¢dif,7(mv t)7 (ba (t>)

30



Diffusion Models are Minimax Optimal Distribution Estimators 31

By setting e = N~*/? and C' ~ max{log? N, or} < poly(N) in Lemma F.6 for ¢y and ¢ = N=%/4/poly(N) in
Lemma B.1 for ¢,. Then,

z,t s . .
’ ¢score,1(m,t) — f?’(o-t)H 5 N /d + poly(N) . N /d/poly(N) 5 N /d’
which yields
2
> x,t s
45) = / 1ipt(z) > N2 jl]pt(z) Gscore (T, 1) — f?’()H de < N=25/4,
zlloc <m:+O(1)ovTog N oy

The structure of @qir,7 and @gcore,1 are evaluated as
L=0(og"*N), |[W|le = O(Nlog® N), S = O(Nlog® N), and B = exp (log N -loglog N).
Here we used |k;| = O(log N) and C' = O(1).
We move to the error analysis between %‘it) and Vlogp;(x) to bound (46). Remind that we consider x such that

2]loo < ms + O(1)oi/Tog N = O(1) and py(z) > N~(2s+1)/d holds. In this case, we have ||V log p;(z)|| < log? N

First, we consider the case z € [—my, m]%. Since p;(z) is lower bounded by C; ! according to Lemma A.2, as long as
|f1(x,t) — pi(z)] < C;1/2, we can say that the approximation error is bounded by < |f1(z,t) — pi(z)| + || f2(z,t) —
0:Vpi(z)]|. On the other hand, if | f1 (z, t) — p:(z )| > C;1/2, we no longer have such bound, but this time we can use the

fact that £ QE"L t; and oy Utpv? . g"L) is bounded by log? N. Therefore, when z € [—my¢, my]?¢, we can bound the approximation
V() fo(z, 1) Vpi(z)

erTor as
¢
< — 0,
pe(z) ’ N ’ Ji(z,t) ! pe(x)
Next, we consider the case when x € [—m; — O(1)o:\/Tog N, m; + O(1)o4/Tog N|¢ \ [~m, mt]d. Then, we have that
‘ Vp:(2) ‘ fo(z,t) Vp:(2) ‘ < f2(z,t) — oV (2)| 1
o < — 0y
pe(x) fi(z,t) pe(x) fi(w,t) fl(x ) pu(2)

The first term is bounded by NstV/4|| f, (., t)(x,t) — 0V ( )|| because we focus on the case p;(z) > N~ (2s+1)/d,

th (I)
Pt(z)

Slog? N(|fi(z,1) — pi(@)] + | folx, t) = 1 Vp(@)])).

fa(x,t) — oy

+ lloe V()|

fa(x,t) — . (50)

For the second term, because ||V log p;(z) S IOgQ , we have ||o:Vp(2)| < pe(x) log? N. By using this,

we can bound the second term as
1 1
fi(z,t)  pi()
Ipt(z) — fi(z,1)|
fl (:Ca t)
2541 1
S N7 log? Npy(2) — fi(z,t)],

’ S log% Np(x)

oVl £~ oo

< log% N

where we used fi (z,t) > N~(2s+t1/d Thus, for 2 € [—m; — O(1)o4/Tog N, m; + O(1)ap/Tog N|%\ [~my, m;]? and
pi(z) >

Therefore, we have that

fo(z,t)  Vpi(x)
otfi(x,t)  pi(x)
10g2%+1 (Ifl(x,t) —pe(@)| + || fo(2, ) — o Vpe(@) ) Jor (|2]|oe < M)
S NFF log? N(|fiux,t) — pe(@)| + || fa(z,t) — 0 Vpe(2)]) /o
(z € [=my — O(1)oyy/Tog N, my + O(1)ory/log N|* \ [=my, my]?).
(51

ot Vpe(x)
pe(z)

Gai,7(x, t) —

(|paie,5(z, ) — pe(z)| + l|@ait,6(x, 1) — a: Ve (2)]]).
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We consider the L?(p;) loss of (51). First, we consider the case of ||z s < my.

folz,t) V()|
oifi(z,t)  pi(@)

/ pi()
Hxl‘océfnt

S / (| f1(2,t) — pe(2) > + || fo(z,t) — 04 Vpe(2)]|?) log N/o2dx (we used(51) and p;(z) = O(1) by Lemma A.2.)
[zl oo <me

2
L x—mtyIQ) / 1 ( ||$—mty||2>
: (2 e I Y ay - [ vy exp (-2 )
/'x'wfmt ‘/ of(2m)? o) ( 207 o (2m)s () 2

t 20}

2
/ S po(y) exp (—Hx ~ mty2> dy — / S po(y) exp (—Hm - mty||2> dy
Jf+1(27r)d 207 B ;

ol (2m)2 20}

1 l|lz — thUH2 9
<logN/o} / /7dexp (— po(y) — f(y)|2dyda
' lallsw<me J od(2m)2 207

t

|z — myyl |z — my|? ,
+log N 02./ " exp | ——— ) Ipo(y) — fn(v)|?dydx
o Izl oo <mre CTf—H(QTr)% 207 [po(y) (v)]

1 & — mayl® ,
=log N, 02.// —————exp ( po(y) — () Pdzdy
/ ' ZH()O<’H'Lt U;l 27T>i 20’2 | 0( ) N( )‘

t

r—m r—m 2
erogngat [ [ S (L ) — gy
2]l co < at 27r) 20

t

510gN/‘7t2'/|p0(y)_fN(y)|2dy+1OgN/ot2~/|po(y)—fN(y)\QdyﬁlogN/af-N_Qs/d.

dx

+

log N/o?dx

For the third inequality, we used Jensen’s inequality. For the second last inequality, we used the construction of fy and
Lemma B .4.

We then consider the case of z € [—m; — O(1)ot/log N, m; + O(1 Tog N]¢ \ [=my, m¢]?. Most of the part is the
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same as previously.

fa(z,t)  Vpi(@)||®

pe(2)1[pe(z) > ocfi(z,t)  pelx)

]

dx
‘/"LtS”l'”ooSmt"’O(l)at\/log N

4s+42
S / (If1(2, 1) = pe(@)* + | fa(, ) = 0:Vpe(@)[|*)N "2 log N/o da
mi<[|z|loo <mi+O(1)oVIog N

2
1 x — muyl]? 1 x —muyl?
5/ /ﬁpo(y)exp (—”27;") dy—/ﬁﬁv(y)exp (—u dy
mi<||z||co <mi+O(1)o¢/Tog N oy (27r) 2 o o ( 4

t d 27r) 2‘7152
= — ey |z — may)® z - mey Iz = megl?\ |
+ /7100(?!) exp (*7) dy — / 7170(9) exp (*7> dy N d IOgN/U dx
od1(27)$ 207 d+1() g 207 '

1 x —muyl?
' / /ﬁ eXp (‘Mjf“) Ipo(y) — fn(y)|°dydz
mi<||zlloc Sme+O0(N)orvVIog N J 0 (27)2 o7

4542 _ 2 _
+ N d logN/oj - / |z = mayl” mty|d exp < llz = meyl” mey”
mi<||z|oo <mi+O(1)or\/log N

[po(y y)|dyde
o2 (2m)2 207

S

]m

2
r—m r—m _72
¢ o =y eXp(n tmw|m Dy N~ da
mi<|zfloo Sme+0(1)or VIE N |/ |52 —ylloc <O(1)o¢VIog N 0 (27r)

s+2
- N

1 Ml = mey” mty|
— o d &XP Ipo(y
mi<||z||co <mi+O(1)os\/Tog N ,,Lt —Yllec<O(1)ot\Iog N O} (271’)2

log N/at (we used Lemma F.9.)

me

1 x — meyl]?
/ / e (< ) - sy as
mi<||zlloo <me+O (1ot vIoE N |/ 52 —ylloo <O(1)orvIog N 0f(27) 2 ot

log N z — myy||? _ 6542
+ / %GXP <—H272ty|‘> lpo(y) — fn(y)*dy| dz + N~ 4
me<lzllco <me+0M)orVIog N |17 —ylleo <OM)orViog N 0 (2) 2 Ti
5 N4s+2 log N

3
0%

2
T — mey
g &P <—H272t”) [po(y) — v (y)*dady
mi <|zlloo <mi+O(1)oyvIog N || 2 <OWorVIoe N of(2m)?2 9t
—|—N7%logN/U,52 (52)

For the third inequality, we used Jensen’s inequality. Here, we note that if (z,y) satisfies m; < ||2]o0 < my +
o(

Dotylog N = O(1) and [|;7= — ylloo < O(1)ory/1og N, then we have that 1 — O(l)at\/logl\? < ||y||0:§ 1+
O(1) 2t \/log N and that 1 — O(1)v/t < [|y[lec <1+ O(1)+/. Because we are considering the time ¢ < Ty = 3N~ "7

(OVtSN —*2* holds for sufficiently large N. Therefore, (52) is further bounded by
(52)

1 z —myy||?
2// 1-s s Tqovd &XP <_|2t”> po(y) — fn(y)[Pdedy
e JI-N""T <|yllw<i+N~ T od(27)2

207
+NF logN/Jt2

r—m 2
/ /76@ <_|22ty||> lpo(y) — fn(y)*dydz
1-N" T <lylw<t4N T Jo o (2 g

t

—|-N_27510gN/Ut2

6a+4

<

+ N~ 4 logN/o? < N~ log N/o2,

where we used the construction of fy and Lemma B.4 for the second last inequality. Now we successfully bounded (46)
and the conclusion follows.

O
33



Diffusion Models are Minimax Optimal Distribution Estimators 34

B.4. Approximation error bound: using the induced smoothness

We then consider the approximation for ¢ > T, = N~ (2-9)/4_This can be proved by considering diffusion process starting
att = t, > 0. We begin with the following lemma.

_a
Lemma B.6 (Basis decomposition of p; at t = t,). If N,N' > 1and N' > t, > N, there exists fn: such that
Ipe. — [l oqgay S N-Gs+9/d,

Iy (x) = 0 for x with ||z]| e = O(V1og N), and has the following form:

~

N
fn(z) = Z Lzl S O(Vlog N)IM, (),

where —/Tog N2F)m — 1 < (5;); < Tog N2 (4 =1,2,--- N, m = 1,2,--- ,d), |[ki]|ec < K = O(d"'logN)

(3546)(2-6)
and lo;| SN™ & .

Proof. Leta = M + 1. According to Lemma A.3, for any z, we have

C
”afﬂzl afﬁg e arikaz (.’E)H < O_Ta‘
tx

Because all derivatives up to order « is bounded by o, * < t, 2 V1, p’T(T) belongs to W and its norm in W is bounded

t. 2Va
by a constant depending on «, and hence to B, . Therefore, according to Lemma F.11, there exists a basis decomposition
with the order of the B-spline basis [ = o + 2:

o3
2

Nl
fur@) = (v D) S i (@),
=1

such that

a —a/d,—%
Ipe. = Il - oioEm), oiEmy S (Vieg N)* N~/
_ (\/@)aNaﬁ/Qd _ (@)QN—(35+6)/d < ]\[—(?,5.4_5)/d7

where —/Tog N2(Fi)m — 1 < (), < Vlog N2 (i = 1,2,--- N, m =1,2,--- ,d), ||killee <K = O(d " logN),
_ 6s+10

and |a;| < 1. Also, Lemma A4 withe = N~ @ and ms, + O(1)os,Iog N < y/log N guarantees that ||pr, —
INllL2raci—o(/og™),0(Viog M4y S N—(s+5)/d Therefore, by resetting ov; < (£, 2 V 1)a, the assertion holds. («; is

o

then bounded by T, 2.) O

Lemma B.6 gives a concrete construction of the neural network for 75 < ¢ < T5.

Lemma B.7 (Approximation of score function for 753 < ¢t < T5; Lemma 3.6). Let N > 1and N' > t, 42 /2, Suppose
te > N—2=9)/d Then there exists a neural network Pscore,2 € ®(L, W, S, B) that satisfies

_ 2(s+1)
2 N~

pt(z)||¢score,2(xvt) - 5(I7t)” dz 5 - 92

T

O

fort € [2t.,T). Specifically, L = O(log*(N)), [W|lec = O(N),S = O(N’), and B = exp(O(log N - loglog N)).
Moreover, we can take Gscore,2 SAtiSfIng || Pscore, 2|l oo = 0(0;1 log% N).

Proof. The proof is essentially the same as that of Lemma B.5. Here, the slight differences are that (i) p;, ¢aif,g, and f; are
2(s+1) _2s

lower bounded by N~ (2¢+3)/4 not by N~ (2+1)/4 that (ii) L?(p;) error should be bounded by ¥—"—, not by ¥,

3
Ty
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-5

and that (iii) p;, is supported on R?, not on [—1,1]¢. Bounding the difference between Observe that t, > T} = N -3
holds, which is necessary to apply the argument of Lemma B.5.

Let us reset the time ¢ <— ¢ — ¢, in the following proof and consider the diffusion process from pg (in the new definition), for
simplicity. We have ¢ > t, 2 poly(N~!) in the new definition. According to Lemma A.4, we have that

[
pe(@)lls(z,t) = Viogpy(2)[I*dz S —mzr7g (1 + s 0)1%) (53)
/|x|wzmt+0(1)a“/m ' ¢ N(@s+2)/d ( )

with a sifficiently large hidden constant in O(1). We limit the domain of z into ||| < m:+O(1)ot/log N (\/ N).

In this region, Lemma A.3 yields ||V log p:(2)]| < ¥ log , and therefore we can take s such that ||s(-, )||oo < YieN <
V1og N holds. Then, (53) is bounded by N ~2(s+1)/d, Moreover,

VAl
—(2s € d42
/n| O Nm(m)ﬂ[pt(x)éN @ +‘°’>/”l}\\s(ac,1f)fVlogzm(vc)H"’dacS;tzlog T (N) +ells(z, bl
Tlloo SMt otV 1og
N—(2s+3)/d N—(2s+3)/d
S (Uglogd;z(N) + UIOgN) log? N < N~2+D/d,
t t

This means that we only need to consider = with p;(z) > N~ (2s+3)/d,

Using the basis decomposition in the previous lemma, we let

1 e mal? g, [ (-l o)
wo) = [ sgmwen (5 = [ en (<5 ay

and

2 2
T =y T —mgy . T —mgy x —mgy
o1 Vpi(2) :/mpo(y)exp (—H;H) dy:/itdfzv(y)eXp (—M) dy

¢ (2m) 20} d+1(27r)2 20t2
N/
= > B, (@,1) = fala,t)
=1
_ fal,t) fa(w,t) ‘ log? N
k@ﬂ—ﬁ@ﬁﬂUm%JS - 1

(exactly the same definitions as that in Lemma B.5, except for fi (x,t) := fi(z,t)V N~ (2s+3)/d) Then we approximate each
alE,(Cl)J (x,t) and ozlE,(f)J (z,t) using LemmaB.3 withe < N'~'. N EEGE=D -2 ahd O = mi+O(1)ot/log N =
O(v1og N) and aggregate them by Lemma F.3 to obtain ¢q;¢,s(, t) and ¢air o (x, t), that approximate f; and f, respectively,

and satisfy

9s5+10
d .

[f1(@,t) = baies(@, )] S N7, | fola,t) — Gairo(@, )| S N~

for all x with ||z]|.c = O(v/1og N). Now, we define ¢qir,7 as

[(bdif,lo(x?tﬂi = d)clip(¢mult(¢rcc(¢clip(¢dif,8(xv t); N7(25+3)/da 0(1))))a [d)dif,Q(xv t)]i); _O(log% N)’ O(IOg% N))’

where we let e = N~ 3574/ in Lemma E.7 for ¢yec and we lete = N~ (+1/d and ¢ = N25+3)/d for 11 in Lemma F.6.
Finally, we let

¢score,2 (.’E, t) = qsmult (qbdif,l() ({E7 t)a d)o (t))
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where ¢ = N~(+1)/d and C' ~ max{log? N, or} < poly(N) in Lemma F.6 for ¢y and e = N~=6+1D/ /poly(N) in
Lemma B.1 for ¢,. In summary, we can check that

Gscore,2(T,1) — f?’(x’t)H < N—(s+1)/d

o
holds for all z with ||z||o < v/Iog N and therefore
2
t
/ pt(lﬂ) ¢Scorc72(x,t) — f3(x7)H 5 N*(SJFl)/d. (54)
[zlloc Sviog N oy

Moreover, the size of @gcore,2 15 bounded by

L=0(og*N), |[W|s = O(N'logb N) S O(N), S = O(N'log® N), and B = exp O (log N -loglog N). (55)

Now, we consider the difference between f3(z,t)/o; and V log p;(z). Its L? error in ||z s < my + O(1)oyy/log N is
bounded as previously, and we finally get

2

fola,t) _ Vo@)|?

t
O pe()

(1fr(@, 1) = pe(@)* + || fo(w, 1) — 01V () |*) log N/odw

/ Ud(;r) exp (—”;Z“””) (pol) — Fr(w)dy

/ SFam i P (—”;Ty”) (o(y) — f(1)dy

1 T — mey
J [ g e (L5 i) — P
[|Z]|co <mi4+O(1)or/log N Jy Oy (27T)2 Ut

/ |z — myy| ( |z — myyl?
12 = M e (- 12— el
\mnm<mt+0(1)m\/ﬁ y of(2m)2 20

_ 2
[ e () ) - fatw) Pasay

_ _ 2
1ogN/ot//|x mty' (—MQ(TJ‘U) po(y) — f(y)Pdady

a( 27T

Llpy(z) > N~°7 |py(x)

/|x||oo<mt+(9(1)om/logN

< N4b+5 /
|Z||co <m¢+O(1) ¢ /Tog N

4s+6

SNa

log N/o? / e
||| oo <mi+O(1)o4/Tog N

2

+N4%610g]\7/0t2/ dz

Z]| oo <Mt +0O(1)0+/log N

+

) po(y) — fiv(y)Pdyda

2(a+1)

2 / Po(y) — In()Pdy < N F° log N/o? Jo?. (56)
Yy

Here we used the result of the previous lemma for the last inequality. Egs. (54) and (55), (56) yield the conclusion.

Combining Lemmas B.5 and B.7, where we use Lemma B.5 for 77 < ¢t < Ty and Lemma B.7 for T35 < t < Tj, we
immediately obtain Theorem 3.1.

Proof of Theorem 3.1. Note that we can set N/ = N and t, = N~(79/4 in Lemma B.7. According to Lemmas B.5
and B.7, we have two neural networks ¢score,1(,t) and Pscore,2(z, t), that approximate the score function in [T7, 7]
and [T3,Ts]. Therefore, letting ; = Ty and t, = T3 in Lemma F.5, ¢score(7,t) = &L i (4 Lo, E1)Pscore 1 (T, 1) +

- . N . . ~2s/d .

B2 (6 toy T1) Pscore,2(, t) approximates the approximation error in L?(p;) with an additive error of w. Realiza-
t

tion of the multiplications (4. Pscore,1 and @25 Dscore,2 and aggregation ¢l .. dscore,1 + Pyit Pscore,2 1s trivial. Finally,

according to Lemmas B.5 and B.7, the size of the network is bounded by

L =0(og*(N)), |[W|s = O(Nlog® N),S = O(Nlog® N), and B = exp(O(log N - loglog N)),
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which concludes the proof. O

We also prepare an integral form of the approximation theorems.

Theorem B.8 (Approximation theorem). Suppose Assumptions 2.4, 2.5, 2.6 with a9 = N —0=9/d N > 1, T =
poly(N~1Y), and T ~ log N. Then there exists a neural network ¢score € ®(L, W, S, B) that satisfies

T
/ / () | Bscone (@, ) — ¥ log pr()|2dadt < N~2/log N(log(T/T) + (T — T)).
t=TJx

Here, L, ||W|| o, S, B is evaluated as
L=0(og"N), [[Wl]e =O0O(NIlog?N), S=0O(Nlog®N), andB = exp(O(logN -loglog N)).

Moreover, suppose N' > t_d/QN‘S/Z, te > N’(Qf‘s)/d, and T > 2t,, then there exists a neural network Pgcore €
®(L, W, S, B) that satisfies

S (log(T/T) + (T — T)).

T
| [ 2@l t) = Vo pu(o)] e <
t=T Jx
Specifically, L = O(log*(N)), [|[W|lec = O(N), S = O(N"), and B = exp(O(log N - loglog N)).

Proof. We only show the first part; the second part comes from Lemma B.7 in the same way. According to Theorem 3.1,
there exists a network ¢score With the desired size that satisfies

N~=% log(N
/pt(:wllcbscore(a:,t) — sz, O|Pde < Y 108N)

0%

Note that oy 2 ¢ A 1. Therefore,
N~ 1og _2s
dt < N log(N)(l V1/t)dt < N© k) log(N)(log(T/T) + (T —T)),
which gives the first part of the theorem. O

C. Generalization of the score network

Now we consider the generalization error. As in Section 4, we first consider the sup-norm of ¢ and evaluate the covering
number.

C.1. Bounding sup-norm

Lemma C.1. Suppose that ||s(-,t)||cc = O(o; " log2 n), T = poly(n=') and T ~ logn. Then, we have that

T
/ 50, £) — V 1og pe(ze|20)||2pe (e 7o) dzedlt < log® .
t

=T Jx,

Proof. The evaluation is mostly straightforward.

T
[ [ stent) = F10gnankao) PouGoddeo)dnar
t=T Jx;
T T
< 2/ Hs(mt,t)||2pt(xt\xo)dxdt—1—2/ 1 Tog pi (2 |0) [ 2pe (|0 ) dzedlt
Tt t=T Jax,

T T
1 1
5/ Ogndt+/ —dt
T Ut t=T 0%

T

1 _

< / 98T gt < (logn) - (logT™' +T) <log’n
t=T A1l
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For the evaluation of IZt Il log pi(z¢|70) ||?pe (z¢|0)das, We used the fact that p;(z¢|xo) is the density function of
N (myxg,0?). Also, we used that T = poly(n~1) and T ~ log n for the last inequality. O
C.2. Covering number evaluation
Lemma C.2 (Covering number of £). For a neural network s - R x R — R%, we define { - R* — R as
T
ls(x) = / |s(xe,t) — Viog py(x|z)||*pe (24| 2)dadt.
t

=T Jx¢

For the hypothesis network class S € ®(L, W, S, B), we define a function class L = {{s| s € S}. If the corresponding s is
obvious for some s, we sometimes abbreviate { as (.

Assume that s(x,t) is bounded by |||s(-,t)||2||z~ = O(o; " log% n) uniformly over all s € S and C > 1. Then the
covering number of S is evaluated by

log N (S, Il ll2ll L (- c,cpa41), €) S 28 Llog(e ™ LW lo(B V 1)C), (57)
and based on this, the covering number of L is evaluated by
log N (L, ||+ | oo (-1,11),€) S SLlog(e™ L[ W||oo (B V 1)n) (58)

when e~*, T~ T, N = poly(n).

Proof. The first bound (57) is directly obtained from Suzuki (2018), with a slight modification of the input region. By
following their proof, we can see that their e-net for the L>°([0, 1]¢)-norm serves as the C'e-net for the L°°([—C, C]¢)-norm.
Therefore, we simply set € «— C !¢ in their bound to obtain (57).

We next consider (58). First we clip the integral interval in the definition of /.

T
tulz) / / ls(a1,) — ¥ log pe(wr]) |2ps (wrl) daedt
t=T J|l2:]| 00 <O(v/Tog )

T
g/ / 52, 1) — V log pe(we]2) | 2ps (242 daedtdt
1= iz oo >0(v/ToET)

T T
< st a2 / / pr(e|z)daedt + / / IV log pi () |2pe (e ).
t=T J |21l o0 >O(v/ToET) 1=T J |24l >O(v/Tog ™)
(59)

Because p;(x¢|z) is the density function of A(mz|o?), we can show that Jize| o> 0(viogm) Pe(@e|z)dz, and

2 i —1 =1 /7 —
fl\xt\loozo(\/W) IV log ps (x¢|x)||*pe (2¢|2)dz; are bounded by 3T(HHS(-,-)€H2H"£WV1) ife 1 T, T,N = poly(n) and
the hidden constant in O(+/log n) is sufficiently large (see Lemma F.12). Therefore, (59) is bounded by

_ 2
c H(T-T)- = <

R T —€. (60)
3TMs( )2l pee 37~ 3

s, l2llze (T = T)

We then take C' = poly(n) 2 v/logn and construct £-net for a set of

T
V() := / / (e, t) — Vog pe(xs|x)||*ps (4] 2)da,dt (61)
t=T J||z¢]|0<C

over all s € S. For this, we take —5ry-net of S with the L*>°([-C, C]4*+1)-norm. According to (57), the covering number is
evaluated as

3 —
Log N (S, [+ llall =100y 577 ) S 2L 1og(e™ LW lloa (B V L)),
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For different s and s, because ||V log ps(z:]2)| < U% for ||2¢]|co < C, we have that

lIs(ae,t) = Vlogpy(we|2)[|* — |8’ (e, t) — Vlog py(we|2)|?| (62)
< (Is(@e, t) = Viog pe(e|2)|| + [Is' (e, t) — Viog pe(we|2)[|*)
lIs(we,t) = Viogpi(we|x)|| — [|s' (e, t) — Viog pr(we|a)|l|

€

< (s lizllzse + 18" lallze +2C/07) - —575- (63)
By taking the hidden constant in —5; sufficiently large, this is further bounded by m when C, T, T = poly(n).
Integrating (62) and (63) over ft T /i 2elloo ¢ dz¢dt yields that this —5qy-net of S actually gives the $-net for the set of
(61); finally, we have obtained the e-net for L together with (60). ]

C.3. Generalization error bound on the score matching loss

This subsection gives the complete proof of Theorem 4.3. First, the following relationship is useful. This shows the
equivalence of explicit score matching and denoising score matching, and can be used to show that the minimizer of the
empirical denoising score matching also approximately minimizes the explicit score matching loss.

Lemma C.3 (Equivalence of explicit score matching and denoising score matching (Vincent (2011))). The following
equality holds for all s(x¢,t) andt > 0:

/ |s(2¢,t) — V1og pe(xe) || *pe(¢)day = / / ls(2¢,t) — V1og pe(xi|xo)||*pe (2|20 )po (o) dzodzy + C,
where C' = [, [[Vlog pi(z)|*pe(zi)dze — [, [,, IV 1og pe(aelzo)|*pe(we|z0)po(ao)daidao.
Proof. The proof follows Vincent (2011).
/ [(z0.1) — 1og py(a0)||?p1 ()
/ e t)Vlogpi(rde + [ e O1Fme)dre + [ 1V 10gp(r) (e
2/ s(xe,t) T Vg (xy) dxt+/ (e, t)||*ps (2¢) dxt—i—/ |V log pe () ||*pe (¢ )da
2/ s(xe,t (/ pt($t$0)p0($0)d$0) dxﬁr/ ||8($t7t)||2pt($t)dxt+/ IV log pe () || pe (¢ )
20 @ 2
=2 [ st (] ol Vadooidzo ) o+ [ st puGeda + | 19 1ogp o) o)
%0 @ @4
2/ pe(ze|y)po(xo)s(we, t) (/ Vlogpt(xtxo)dx0> dxy
2o
+ [ st nEptegar + [ 19 logmw0lprd
2/ / pe(e|zo)po(zo)s(we, t) Vlogpt(dft\zo)dxtdmo+/ / pe(@e|0)po (o) || s(ze, )| *daydag
+ [ 19108 w0
/ / Pe(w¢|wo)po (o) ||z, )—Vlogpt($t|$o)||2d$td$0+/z |V log pe (z¢) || *pe (1) dy

—/ /pt(xtlfﬂo)po(xo)HV10gpt($t|$0)|\2d$tdxo7
o J Tt

where we used Vlogp:(z:) = (Vpi(as))/pe(z:) for the second, pi(z:) = 20 pe(x¢|x0)po(zo)dao for the third,
Viogpi(xi|zo) = (Vpi(zi|zo))/pe(e|z0) for the fifth equalities.
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O
Now, we evaluate the generalization error and the following theorem is a formal version of Theorem 4.3.
Theorem C.4 (Generalization error bound based on the covering number). Let § be the minimizer of
1<~ [T .
-3 (1) — ¥ log py(als) el ), (64)
i=1 /=L /=
taking values in S C L?*(R? x [T, T)). For each s € S, let {(x ft Tf |ls(z,t) — Vlog pi(y|z)|13pe (y|z)dydt and

L be a set of { corresponding to each s € S. Suppose every element ¢ € L satisfies ||£|| oo ([—1,1)4) < Cy for some fixed
0 < Cy. For an arbitrary ¢ > 0, if N := N (L, || - | oo ((=1,1]¢),€) = 3, then we have that

VT /t — Viogpi( )||2pt($)dtdx]

2C
<2 lIelg// |s(x,t) — V log ps () ||3p¢ (z)dedt + 7[ (1 N+32) + 3e.
s zJT

Proof. In the following proof, x ; is denoted as z; for simplicity. (64) is written as - Z 1 U(x;). Also, with s°(z,t) =
V log pi(z), we write

/x/t — Vlog py(x)|*pe(x)dtd

// (o, 1) - Viogpu(w) Pou(e >dtdx—// I5° (@, ) — V log py (2)|2pe ()t

=0

= [ [ ste.) = V10mpi(als) P als)pola)ayatda + (T - 7)

T
_//t:T/Hso(ﬂf,t)_V10gpt(.r|y)||2pt(aj|y)p0(x)dydtd$—C(T_I)

1 n .
=B, [n (6(?) —”(xé))] (65)

i=1
with {x}}7 ;, that is an i.i.d. sample from p, and independent of {z; }?_,. For the second equality, we used Lemma C.3.

First, we evaluate the value of

D = E(y,n [ > (i) = () | = R(E,0°)].
i=1
Using (65), we obtain
1 " ~ ° ~ o 1 ” n o 0 o
D=y | D ((Uwi) = (:)) = (Ua7) — £ (iﬂé)))] < ~Eaa || D ((0wi) = £(2:)) — (%) — € (fé)))H :
i=1 i=1
Let L4 = {f1,02,-++ ,fn} be a e-covering of £ with the minimum cardinality in the L>°([—1,1]¢) metric. From the
assumption of N(L, || - ||, €) > 3, we have log NV > 1. We define g;(z,z’") = (¢;(x) — £°(x)) — (¢;(z’) — £°(2’)) and a
random variable J taking values in {1,2,--- , N} such that ||/ — fs]|c < €, so that we have
1 R
D < —Eaya ZQJ wiyaf)| | + 110G (2) = £r(@) = (G (2") = 5@l < ~Eoyar ZgJ zi,@)|| +e. (66)
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Then we define r; := max{A, \/E, [(;(z') — £°(z)]} (j = 1,2,--- ,N) and a random variable

i gj(mia CC;)
- i

where A > 0 is a constant adjusted later. Then we further evaluate (66) as

G := max

1<GEN ’

1 1 1 1
D < ~Ey, o[rsGl+e < ﬁ\/IEmW; [r2]Eq, o [G?] 4 € < 3B, [r3] + 53 Ee [G?] +e, (67)
by the Cauthy-Schwarz inequality and the AM-GM inequality. The definition of J yields that
Eq, 0 [r3] < A + Eo[05(2') = £°(2))] < A% + By [0(a') — £°(2')] + e = R({,0°) + A® + <. (68)

Because of the independence of x; and :E; we have that

i)\ | & gz, )\ 2
o | (S22 | <3k | (222D
=1 =1

<2Cm (69)

holds, where we used the fact that g; (x;, z}) is centered and |¢;(z) — ¢°(x)]| is bounded by C;. Also, %ﬁ;) is bounded
with Cy/A. Then, using Bernstein’s inequality, we have that

t
P[G? >#]=P[G > V] <2Nexp | ~—————— |,
20,(2n + Y4

for any ¢ > 0. This gives evaluation of E,,, ./ [G?]. For any t; > 0, we have that

Bw[6Y = [ PGP = i
0

> 3AVE
)dt+2N . exp < 1, )dt.

These two integrals are computed as

> t t > to
— dt = |- — = —
/to exp ( San> [ 8Cyn exp < San)] . 8Cyn exp < 80@71)

/t:o exp (_ 3;481?%) dt = /t:o exp (—a\/f) dt (a == 34/4Cy)

= {—2(“{’;“) exp(_aﬂ)}:

_ 80@\/% 314\/% 32C, 3AVto
Y eXp( ac, ) Pz P\ )

We take A = /to6n so that

128Cn? t
ET“T/L [G2] <to+2N (80@’& + 16Cyn + thl) exp < 0 >
0

780[[1
3A to tO
< 34y _
<to+ 16N exp ( 10, ) n(3 + 16n/ty) exp ( SCon
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holds. Furthermore, we take ty = 8Cyn log N, and then it holds that

E,. /G < 18Cim <logN 6+ (10)

CglOgN) '

Now, we combine (67), (68), (70), and A% = 20’91& to obtain
1
D§(2 (M")+ A2 ) (1ogN+6+ +e

1 5 Cy
5 (ff)-f—(

2
Cylog N

°log N + 32
9g+>+2

where we have used that log N > 1. Therefore, we obtain

R(0,6°) < 2By yn | [; Z(E(mi) —0°(x:)) | + 2—@ <9 log N + 32) + 3e. (71)

i=1

For any fixed £ € L,

n

EmwlﬁEJ%m—w@m

=1

— E.[t(z) — £ (a)].

<Eggyn [ Z ) — £°(z;))

RHS is minimized as infye 2 E,[¢(x) — £°(x)]. Finally, combining this with (71), we obtain

. 2
R4, ¢°) <2inf E,[l(x) — £°(x)] + G, (1 N + 32) + 3e.
Yo n
According to Lemma C.3, we have

2
R(,1°) <21nf/ /|| s(x,t) — Vogpi () ||3p: (z )dxdt—%—ﬂ <?glogN+32> + 3e.

seS

C.4. Sampling ¢ and z; instead of taking expectation

This section provides justification of two approaches presented in Section 4.1. We assume e ', 7', T, N = poly(n). We
first begin with the following lemma. This shows that |[s(z;, ;) — Vpy, (2]20,:, )|| is sub-Gaussian.

Lemma C.5. Let us sample (ij, t;,2;) from i; ~ Unif({1,2,--- ,n}), t; ~ Unif(T, T), and x; ~ py, (x;|x0,,). Then,
we have that, for all t > 0,

Vadt
s(xj,t5) = Vg, (x5]w0,4;)|| > sup |[s(z, t)”+7 < 2exp (—t%/2).

(w,t)
Proof. First note that
sz, £5) = Vi, (@jlwo.,)Il < s, )l + Ve, (5120l < sup lls(z, O + VP, (25120,5,)
-'I;,

Because Vpy, (x;]xo,) = % and z; ~ py,(zj|zo,,) = N (muzo,,0f), we have that [Vpy, (z;|zo,,)]; is

sub-Gaussian with o; . Thus, ||Vpy, (2|0, )| is sub-Gaussian with v/do; '. Now, applying o; > o7, we have the
assertion. O

Now, we give the following theorem for the first approach.
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Theorem C.6. Let us sample (i;,t;,x;) fromi; ~ Unif({1,2,--- ,n}), t; ~ Unif(T,T), and x; ~ pt; (24]w0,4). Let 51
be the minimizer of

M
Z wj,t;) — Vi, (2510, |12

=l

and sy be the minimizer of

n

1
3t = =S [ st t) = Ipelanleo o) |pi (koo dedt,
t=T

i=1 i=1

over S C ®(L, W, S, B), where s € S satisfies ||||s(-,t)||2||p~ = O(o;* log? n) < 0ot log? n) =: Cs. Then, we have
that B

3
S

S|

2 -2

1< 1 ¢ T -1
5241@0*5;@(%) < 2SLlog(e ' L||W s (B V 1)(Cy)) + .

E{(ijijwj)}?zl i ~ M

Proof. We denote (ij,t;,x;) = y; for simplicity and Y = {(i;,t;,2;)})., = {y;}}L,. Let Y’ = {(&),t},2/)}}, =
{yJ}M , be a copy of Y, which is independent of Y. We write x(y;) = ||s (x], i) — Vp,:J (2;]0,i,)||*. Then, we have that
1 M 1 M 1 n 1 n
Ey MZ“l(yj)—Mzﬁz(yj)—Ezfl(%)—ngz(wi) (72)
7j=1 =1 =1 =1
| M | M
=By |57 > (ka(y;) — ka(y;) — Ey- i > (ka(y)) — ray)))
j=1 j=1
| M
<Evy |47 D (kalyy) = ra(y))) — (k1(y)) — k2 (y))] - (73)
j=1

-, we define &;
s(@},t;) — Vg (2f]@o,)||} <

Cs + fz holds. For i = 0, we e define &o as an event where sup ¢ g max; max{||s(x;,t;) — Vpy, (z;]70,4,)ll, [s(2}, ;) —
th;( f |a:072j)H} < Cs holds. We let a; = P [&;] and E; be the expectation conditioned by the event &;. Then, (73) is

bounded by

Next, we let C, be the minimum integer that satisfies Cs > supgcc sup, , [|s(z,1)],

as an event where C + f(l b < sup,ee max; max{|[s(z;,t;) — Vpy, (zj]zo,,) |,

M M
Eo % Z;((Kl(yj) — ra(y;)) — (k1Y) — K2(yj))| + Zaz i |7 2_:1 (k1(y) — waly;)) — (k1(y;) — wa(y)))| -
(74)

We remark that 3, ZM ((r1(yj) — k2(y;)) — (k1(y)) — wa(y}))) is bounded by 8C7 + 8d’ for each E;. Here, x4
is the minimizer of - Z] 1 k(y;) and ko is the minimizer of E [k(y)]. Moreover, because (z; — xo4,)/0u]l =
IV, (@5120,i, )| < [ls(25,t5) = Vo, (@120,4,)I| + | 8(25, 1), we have that [[s(2;,t;) — Vi, (]z0,)|| < Cs + L&
implies ||z;]| < 2C, + V/di. We apply the same argument as that in Theorem C.4 to obtain that

M
E; %Zfﬁ(yj) MZKQ Yj) Zfl T —*252 x;)

02 + o5
< TT log N(8, L>([—(2C, + Vdi), 2C, + Vdi] ™), e/ (Cs +iog")) +e.
02+ T -
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We remark that y; and y; are not independent when conditioned by &£;. However, the similar argument still holds in (69),
where we used the independentness of x; and 7 in the original proof, because the symmetry of y; and y; is not collapsed by

taking the conditional expectation. Based on this, and a; < 2exp(—(i — 1)2/2) (i > 1) due to Lemma C.5, we evaluate
(74) as

(74)
C’S2 —&—0:;2 L e 02 —|—O’T .
S — 7 SLlog(e ' L|Wl|w(B vV 1)(C +€+Zaz 7SLlog( LW ||so(BV 1)(Cs 4 1)) + ¢
C? +0;2 L
S TSLIOg(E_ LW lloo(BV1)(Cs)) + €
s i —1)2 C? + 0722
+ Zexp (— (@ 5 ) > MZ 2SLlog(e ' L||W||oo (B V 1)(Cs +1)) + ¢
i=1
C: + o7’ .
S ——7 SLlog(e™ LWl (B V 1)(Cy)) + .

This bounds (72). Thus, we finally obtain that

1 M M C?+o
< By, Mznl(yj) = ra(yy)| + TSUOg( T Wleo(BV 1)(Cs)) + &
j=1 j=1
C?+o T .
% SLlog(e "L W]l (B V 1)(Cy)) + ¢,
because r; is the minimizer of - Z] 1 k(y;). Now, we obtain the assertion. O
Remark C.7. When |s(z,t)| = +/logN /o holds, by taking T = poly(N71),T = O(logN), we have

sup(, ) lIs(z, )| = Cs < VI “llog N. we set N = n7, ¢ = n~ 717 and use the network class in Theorem 3.1 to
obtain that

(z],t],ac]) [ Zgl xz

1 C:+op” .
[ Y ey s R asLlog(e LW (B V 1)(C) + 2
e —

711 71 — 554 Jopl7?
T Ogj\Z'i‘f n_ﬁlogmnﬁn I]\;g n

A

Next, we show the proof for the second approach.

Theorem C.8. We sample t; from u(t) M and modify \(t) as A(t) = “%gi{ , while i;,x; are sampled as
iy ~ Unif({1,2,--- ,n}) and x; ~ py,(x|w0 ;). Then, the minimizer s over S C ®(L, W, S, B) of

M

1

T2 DA s, 1) — T, (10,)|
j=1

satisfies

1 < C2+T -1
(17,t]7m7) Zgl - ‘s 7265(1"‘) ~ M SLIOg(E L”W”OO(B\/]‘)(CS)) +E7

Here, Cs = sup, , VA®)|s(z, t)]]
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Proof. We justreplace ||s(z;,t;) —Vpy, (]w0.:)[| by /A(tj)|ls(z5,t5) = Vpe, (2]w0,4)|| in the previous lemma. Similarly
to Lemma C.5, we have that, for allt > 0,

A (8l t) = Vi, (sl = sup AR (1 <>||s<x,t>u+M

x,t t;

< 2exp (—t%/2).

1
Then, we replace sup, ) [|s(x,?)[| by sup, , %( t)||s(x, t)||, and f -+ by sup, ﬁ’;j () respectively, to obtain that

Eij by, i 0 00 [N I51(25,t5) = Ve, (25]20,4,) 1] = Inf By, 1, 0, [AE)lls(25,85) = Vit (w5170, ?]
,
_ O34T

~

SLlog(=" LIIW [lo(BV 1)(C4)) + 2, 75)
where (i, ¢/, «.) are the independent copy of (i;,t;,z;). Note that

J’J’J

Eij )., [)‘(tj)H s(zj,tj) — Vi, (%|x01 )i ] izg(%) (76)

for all (fixed) s. (75) and (76) yield that

1 & C? + _
B, t;,2;) [nE él(xi)l —/é f§ Oy(x;) < Cs SLl g(e ' L|W|so(B V 1)(Cy)) + &,
i=1 st

which concludes the proof. O

Remark C.9. When ||s(x,t)|| = v/Iog N /o; holds, T = poly(N 1), T = O(log N), we have sup(, o) VA@)[s(, 1)[| =
Cs < Vlog N. weset N = nﬁw, = n_dzﬁ and use the network class in Theorem 3.1 to obtain that

1 n
E¢, t;.2)) [n Zgl(xi)] —/ 726 z;) < n~ 7 log' T n.
i=1

q:sesnZ 1

D. Estimation error analysis

The following Girsanov theorem is useful when converting the error of the score matching to the estimation error.

Proposition D.1 (Girsanov’s Theorem (Karatzas et al., 1991)). Let py be any probability distribution, and let Z =
(Zi)iejo, ), Z" = (Z{)ieio, 1) be two different processes satisfying

dZt = b(Zt, t)dt + O'(t)dBt, Zo ~ Po,
dZ; = (Z],t)dt + o(t)dB;, Z} ~ po.

We define the distributions of Zy and Z; as p; and p}, and the path measures of Z and Z' as P and ', respectively.

Suppose the following Novikov’s condition:

T
Ep lexp </0 %/0'72@)”(1) — b’)(w,t)”zdxdt)] < 0. (77)

Then, the Radon-Nikodym derivative of P with respect to P’ is

T T
Sg,(Z)exp{;/o a(t)’2||(bfb’)(Zt,t)||2dtf/O o(t)l(bb’)(Zt,t)dBt},

and therefore we have that

KL(pr|py) < KL(P|P') = / /pt £)72(b = b')(x, t)||*dadt.
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Moreover, Chen et al. (2023b) showed that if [ p,(x)o~2(t)||(b — V') (z,t)||*da < C holds for some consant C over all t,
we have that

Lprlpy) < / / pe(@)o (1) (b— ) (z, )| dadt,

even if the Novikov’s condition (77) is not satisfied.

D.1. Estimation bounds in the TV distance
We show the upper and lower estimation rates in the total variation distance in this subsection. Let Y be Y with replacing
Yy ~ N(0, I4) by Yy ~ p;. First notice that
E[TV(Xo, Yo_p)] S EITV(Ya, Yr_p)] + E[TV (Yg_p, Vo p)] + E[TV (Y7_p, Yo_g)]
S TV(Xo, Xr) + E[TV (X7, Yo)] + E[TV (Y7 _g, Y5 _1)]
= TV(Xo, X1) + E[TV(X7,N (0, 12))] + E[TV(Y7_1, Y7 _1)] (78)

Here, E[TV (Y7, YT—I)] = TV(Xo, X1) follows from the correspondence between the forward and backward processes,

and E[TV (Yg_,, Yo_ )] < E[TV(X7, Yo)] follows from the definitions of ¥ and Y (the only difference is the initial
distribution.). We then bound the three terms in (78) in a row. We begin with the first term.

Theorem D.2. We have that
V(Xo, Xt) < /TnW

for T < n=9W). Therefore, by taking T < n=°W), we have that TV (X, X) < n=8/(d4+25),

Proof. We need to evaluate ||po — pr|/,. When py is Lipschitz continous, an intuitive proof strategy is as follows: For
small ¢, p;(z) is an average of po(y) nearby x. Because of the Lipshitzness, po(x) and po(y) with |z — y| < 1 are close,
and therefore po () and p;(x) are close. However, our setting also includes the not continous functions. To consider these
cases in a uniform manner, we approximate py with the B-spline basis decomposition because each B-spline basis is a
Lipschitz function.

Remember that pg is decomposed as
N
(@) =) ailllelle < 1M ; (2)
i=1

in Lemma F.11, where ||k||occ < K* = (O(1) +log N)v=! + O(d~'log N) for § = d(1/p — 1)4 and v = (25 — §)/(29),
and [|po — fn g1 (1,100 S N7%/¢ =2 n=s/(25+4) hold. Because we take N = n®/(2s+d) = nO1)we can say that each
M (x) is n®-Lipschitz. Moreover, |a;| < N +d™)(d/p=s) — nO() Therefore, fy is n®M)-Lipschitz.

We decompose pg as po = fn + (po — fn) using the above fx. Then we have that

ooy~ [ YW (_Ix —mTy||2> ”

UT(QW)% 20%

_ 2
’/ Po(y gy))e p<_|$ 2mfy|| )dy
UT )2 or
o [lW =t o (Lo,
% % 20% '
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_ 2
o [ [BO=00) o () o
UT QUZ
|z — mryl?
/|P0 — fn(y |/ 27r ( 202 xdy

< / 1o () — Fx ()| dy = 1o — v llos (1119,

Integrating this over all x yields that

[ oo - ) o ( o~ mTy||2>

05(277)

Thus, ||po — pr ||z, is upper bounded by

. 2
futo) - [ L3Oy <_|x -y ) "

lpo — N llzr(=1,19) +/ dz +|[lpo — fnllLr-14)-  (80)

o.(27) T
— 79)
if fn is replaced by po, this is equal to [|[po — ptlL,
Because |[po — fn || £1(j-1,1]¢) is bounded by n—%/(25+d) e focus on the second term.
Note that at each z,
2 2
— -m
fN(y)d exp Nl mQZyH dy — fN(y)d exp Nl 213/” dy| < n—s/(a+25), 81
od(2m)z 207 A= od(27)2 207
T L T T

where A* = Hle a¥ with a? = [Tfl—lz — %\/log N, e azfz(l)\/logn, according to Lemma F.9. Because
or = O(VTI) and my = O(1) for sufficiently small T, the value of pr(x) is almost determined by the value from points
that is only O(/T logn) away from z. Because of the Lipschitzness of py, for each = € [—-mqp — O(/Tlogn), mp +

O(v/Tlogn)]?,

i) (el et (e mnl?)
Az 0’%(271’)% 2021 A= O’%(?]T)% 20%

where we used the Lipshitzness of fx. By taking T" polynomially small w.r.t. 7, we have that (82) < n—5/(d4+25) Moreover,

1) (_ o - mTy2> dy— F(@)

A= U%(Qﬂ') 2022

In(x) |z — mryl? In () |z — mryll®
s exp |- |dy— [ e | - | dy
A= of(2m)2 207 of(2m)? 207

again with Lemma F.9.

Therefore, combining (80), (81), (82), and (83), we obtain that
Ipo — prlle, S VInCW < n=s/(dH29),

for T =n—°@), O

<n°W . /Tlogn. (82)

5 n—s/(d-‘,—2s)7 (83)

We next consider the second term.
Lemma D.3. We can bound TV (X7, N (0,14)) as follows.

TV (X7, N(0,14)) S exp(féT).

Proof. Exponential convergence of the Ornstein—Ulhenbeck process (Bakry et al., 2014) yields that

TV(X7, N(0,14)) 5 \/KL(PTHN(O, 14)) < exp(=BT)V/KL(po[N(0, 1a)) < exp(—5T).

This is because C < po < C holds, and because the density of (0, I;) is lower bounded by > 1insupp(pg) = [—1, 1]¢,
which means that KL(po|IN(0,14)) = O(1). O
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The third term E[TV (Y7 _ 1+ Y5 _p)] in (78) is bounded by Girsanov’s theorem Proposition D.1 and (4) from Section 4:

T
Etaoiyr , TVY7_0 Y1) S Biao iy, /t_T pe(@)B; 2 ||3(2, 1) — Vlog py(x)||2dadt

T
Elar | mi@)8 3000 - Vlog o) Pt

__2s
\/n~ @ logt®n

—_Ss
n~ 7% log® n.

N

S
S

Therefore, all three terms in (78) are bounded as above and Theorem 5.1 follows. We also show the lower bound as follows.

Proposition D.4. Assume that 0 < p,q < 0o, s > 0, and
1
{a(-3) G0}
p 2 P

inf sup E[TV(f1,p)] = n~s/(d+2s)
i peBg ,(-1,1]9)

holds. Then, we have that

where the expectation is with respect to the sample, and the infimum is taken over all estimators based on n observations.

Proof. Theorem 10 of Triebel (2011) showed that, for a bounded domain 2 C R4,
log N(U(B;, (), || - |lr,e) = =2, (84)

for0 < p,qg < 00,1 <7 < o0,and s > 0 that satisfy

ool ) (21 )

Although they considered all Besov functions that does not satisfy [ fdu = 1, we can check by following their proof
that bounding the functions does not harm the order of the entropy number. Now we use Theorem 4 of Yang & Barron
(1999). Note that the equivalence of the covering number and the entropy holds because || - |- is a distance, and therefore
(84) is transferred to the entropy. The condition 2 of the theorem is checked directly from (84). Moreover, the condition 3

holds if we take f.(z) = 1/2¢ (z € [~1,1]%),0 (otherwise) for all a € (0,1). Finally, if s > {d(f - %),d(% - 1),0},
log N(U(B, ,(0), || - |2, ) = log N(U(B,, ,(£2)), |l - [[1, ) holds. Therefore, Theorem 4 (i) of Yang & Barron (1999) is
applied, and we get

min max E[[|4 — pll1] = en,
’l Pq

where &, is chosen as log N (U(Bg ,(Q)), || - Il €n) = ne? holds. Together with (84), we obtain the assertion. O
D.2. Estimation rate in the /| distance
Similarly to (78), we have the following decomposition:

E[W:(Xo, Yg_p)] < EW1(Yg, Ya_p)] + EWi (Yo_gp, Yo_g)] + EIWA (Yo_p, Yo )]

< E[W: (X0, Xp)] + EWA (Vg V)] + EIVA (Vo Y p)] (85)

First, we bound the first term of (85).
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Lemma D.5 (Section 4.3 of De Bortoli (2022)). We can bound W1(Xo, X1) as follows.
Wi (Xo, Xr) S /T

Proof. Let X ~ pg and Z ~ N(0, I;). Then,

W1(Xo, X7) <E[|X —mp, X +or, Z|] < (1 = mp)E[| X ||| + ozE[[| Z]]
< (1 =mp)Vd+opVd ST,

which concludes the proof. O

Next, we bound the second term of (85).
Lemma D.6. We can bound E[W; (17771 , )7772)] as follows.

EW1(Yr_q, Yr_0)] S TV(X7, Vo) S exp(—5T).

Proof. Exponential convergence of the Ornstein—Ulhenbeck process (Bakry et al., 2014) yields that

because C’f_1 < po < Cy holds and the density of (0, 1) is lower bounded by O(1) in supp(po) = [—1, 1]¢, which

means KL(po||A(0,1;)) = O(1). In addition because H}A/T(k_)THoo; ||YT—I||OO < 2 = O(1), and because the only difference
between ¥'(¥) and ¥ is the initial distribution, we have Wy (Yo" V3 ;) < TV(Xq, ¥o) = TV (pg, N(0, Iy)). Putting it
all together, we obtain that B

Wi (Va2 Yo p) € TV(X7, Yo) = TV (pr N (0, 1)) S exp(—5T),
which yields the assertion. O

Finally, we bound the third term of (85). As we saw in Section 5.2,

K,
_ )
EW(Vr_p, Yo )] € D EWA (VD) v ). (86)
i=1
Remember the definition of a sequence of stochastic processes {(ﬁ(i))z_oz}fi*o. First, V(0 = (Yt(O))te[o,T] =Y =

(Y1) ;(0,7 is defined as a process such that

AY; = Bz_, (Y + 2V 1og py(Vy, T — £))dt + /287 _,dB; (t € [0,T)), Y ¥ ~ pp.

Then, Y _, ~ p; holds for all ¢ € [0, 7. Next, fori = 1,2, , K., welet Y (V) = (Y/t(i))te[o,?fz] to satisfy

Vo ~pg AV = 8r (71 + 2Vilog po (V)T — £))dt + | /287_,dB; (t € [0,T — 1)),

AV = B, (V" + 25(V) T —))dt + | /2B7_,dB, (t € [T —t;, T - T)).

2—96

Note thatty =T1,t1 = N~ @ = nf%, 1< t’t—“ =const. <2,andtg, = T — T. Then, Y 5+) = Y holds. Here
YT(Z ~ p; holds for all ¢ € [0, T — t;], but after t = T — t;, the true score function is replaced by the estimated one. If

HYT(i—)THOO > 2 in the original definition, we reset Y%?T as ?T(i—)T =0.
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Also, we introduce another stochastic process Y(®'. We define d + 1-dimensional set A C R+ a5

A={(@.t) eRT X R| [lallow < my + Copor/log(n), T<t<T}.

According to Lemma A.1, with probability at least 1 — n=9M a path of the backward process (Yt)tio satisfies (Y;, T —t) €
AforallT <t <T.Basedon this, fori =0,1,--- , K, — 1, Y (" is defined as

Y ~or
AV = g, (V" + 2V log pt(W)’,T —t))dt + /287 ,dB; (t € [0,T — t;]),
dl_/t(i = fr_, ( +21[(YD', T — ) ¢ A for some s < t]Vlogpt(Y( 2l )

+21[(V T — s) € Aforall s < )5V, T — t)) dt + /267 _,dB; (t € [T — tip1, T — t;]),

AV = g (VO + 25V T —t))dt + 1 /2B7_,dB, (t € [T — t;,T — TJ).

Lemma D.7. Suppose that ||5(-,)||cc < 1§2 2 holds. Then, the following holds forall i = 1,2, -+ , K,:

ti

Wi (VLoD Y ) S Vilogny | Epay [/ E, [|I5(z, )~V log pi()|2d1]

=t;i—1

4 e, (87)

Therefore, we have that

ti

o (i . _ L

Efeo. o, W1 (Va2 V20 ) S ViEilogn, | ey iy, [ /t B[ t)-V logpi(e) Paf]| 4 FE 88)
=t;_1

Proof. We construct the transportation map between YT(i—_;) and YTU—) - Our approach focuses on each path.

Because the Novikov’s condition is not satisfied for YT(Z_Tl ) and YT(Z) . Proposition D.1 cannot be used to consider the total

variation distance between the two paths; Proposition D.1 only gives KL(Y,, (Fl) Y(i) 1) not KL(Y (=1 Y(® and this

bound is insufficient for our discussion. Therefore, we first bound E[W/; (YT(Z T1)7 Y(Z 1) )]. According to Lemma A.1, with

probability at least 1 — n~=°(), a path of the processes (¥, )7 and (Y, ~ T =0 satlsfy @D T—p), (7Y T -
t) € Aforall0 <t <T —t;_y. Thus, E[TV (Y (Z 1) Y(Z 1) )] is bounded by n~©() (with a sufficiently large constant in

O(1).). This implies E[Wl(YT(z__;),YT(z__Il) )] < n’o(l), because YT(i__Il),YT(i__Il)/ =0(1) (as.).

We now discuss E[W; (Y= (1 L’ ,Yj(f) )]- Let us write the path measures of Y"1’ and ¥ (*) be P and P, and take some

path p thatisy att =T — I andis z att = T — t;. If dP[p] > dP’[p], then we move the mass of YT(i__;)/ = y that amounts

to dP[p] — dP’[p], to z, along the path p by reversing the time until ¢ = T — t;. Applying this to all paths p, then the total

(i

mass of Y T) that is moved is at most

ti
STV((V 6, (7)) < ;\/ [ [ @50 - ¥ togp o) 2ot (59)
t=t;,_1 Jx

according to Proposition D.1. Here we remark that the Novikov’s condition certainly holds for this case.

Until now, a part of the mass of )A%(l__;) is moved along each corresponding path, but at this time no coupling measure has

been constructed. To realize the coupling measure, we consider the same process for YT(Z_) T That is, for each path p with
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Y(z) =y and Y( ) = z, if dP[p] < dP’[p], then we move the mass of YTM—)T =y, as much as dP’[p] — dPP[p], to z along

the path p. The total mass of ¥.\" - affected is bounded by 3TV ((V(=1"), (Y())), which is bounded by (89).

Now, we can see that, the same amount of mass is transported from both Yli_l)/ and Yii) tot =T — t;. Thus, at each z,
we can arbitrarily associate the mass from Y(i_Tl)/ to that from Y( ) - Using this, as much as STV((Y(- DY, (YD) of

the mass is transported from YTO—_Tl ) to Y( ! by reversing the path tot =T —t;.
Now our interest is how far each transport is requlred to move on average. First we consider when ¢; < 1.

First we bound ”YT(:)I - Y%i_)ti |. According to Lemma A.l, we have || fT t* 207 ,dB:|| < Vi logn for all t €
[T —t;,T — T, and YT(I_)# < mz_, +op_, Vlogn < /logn with probability 1 — n=°(), We consider the event
conditioned on them. Note that ||s(z, )| < 7vl§g" < 7”\0;” holds. Then we have that, forall T —¢; <t < T — T,

D e B T
I = v | H/t B (T 4 2V log po (VDT _s))dt+/it_ \/26-__dB

T—T
_ T /logn
<B /| v )|\ds+25 %8 s+ \/t; logn,

T—t; T—t; \[
_Ter
SB[ IVOlas + iTogn + Viogn.
T—t,;
T-T o )
S [ ¥, s+ ViTogn + 47,

T-T
Ty @ _y® . .
5/ ’. Y, T_tlHder\/tllognthz\/logn
Now we apply the Gronwall’s inequality to obtain

||Yt(i) - YT(Z,- I < ePti Vtilogn < \/ti logn.

forall T —t; < t < T — T. Thus, with probability 1 — n=®)_ ||} — H is bounded by +/%; logn up to a constant
factor, overall T — ¢, <t <T — T.

i—1)

Next we bound ||Y( YT(:%)/ ||I. This is decomposed into

o (i—1)" (z 1) o(i-1)
vz, —Y,” 1|| +HIvE ) =Yz

The first term is bounded by < +/t; log n with probability at least 1 — n~9W) . This is because 57,5("71)/ € A holds with

probability 1 — n~°™) due to the first part of Lemma A.1, and for such paths the evolution of Yt(i*l)/ is the same as that of
Y;, where we apply the second part of Lemma A.1. The second term is bounded by +/#;_; log n with probability 1 —n~ (1),
) _ yli-1) [

following the discussion on ||V, — YT(i—)t- ||. In summary, with probability 1 — n~°() we can bound HY%Z:TI v

by \/ti—1log n(< v/t;log n) up to a constant factor.
In summary, when ¢; < 1, the transportation map moves at most O(+/t; logn) with probability 1 — n~ M) Because the
supports of YT(Z:TI) and YT@_) - are both bounded, for the mass moved more than +/t; log n affects the Wasserstein distance

at most n_o(l).jfherefore, we obtain the desired bound (87) fort; < 1.

For t; > 1, because the supports of _%2:; ) and YT(Z) - are both bounded,
= (i—1) (i = (i—1) (i 1 i —2/A
W ) STV Y ) £ 2\/ |- [nesien - Vieep(w)2asa
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holds. Therefore we obtain (87) as well.

From (87), (88) is easily obtained by jensen’s inequality.

Also, we bound the generalization error of each network s;.
LemmaD.8. For1 <i < K, — 1, let s; be a network that is selected from ®(L, W, S, B) with

L=0(®og*n), [W|s = O(nﬁ), S = O(t;d/znz(;sid) ), and B = exp(O(logn - loglogn)),

1
and ||s;(,t) ||~ < logo%. Then, we have that

~

2(s41)
E, [[13i(z, )=V logp,(2)[*dt] | < n~ = logn + =
=t; n

— 5d
B bita o ¢ 2 2t log®n
{"EU,J‘}?:J' . N

Moreover, for i = 0, let sg be a network that is selected from ®(L, W, S, B) with
L=0(og"n), |[W|e = (Q(ncHL2 log®n), S = O(nﬁ log®n), and B = exp(O(logn - loglogn),

1
and ||so (-, t) || < logo%. Then, we have that

tit1 2s
E{xo,j}?:j |:/ Ea: [H§0(x, t)_v logpt(x)Hth} 5 n o a2 10g16 n.

t=t;

Proof. First we consider the first part. We take N = n?d + 2s and t, = t;/2 in Lemma 3.6. Note that N and ¢, (> n%)
satisfies t, > N*(z";)/d(, which is assumed in Theorem B.8). Then, there exists a neural network ¢ € ®(L, W, S, B) that
satisfies

tit1 2(s+1) _ 2(s+1)

/pt(m)ngS(x,t) —s(z,t)||Pdedt SN~ logn = N~ a2 logn.

t=t;

Specifically, L = O(log*(n)), |[W |« = O(n i ), S = O(t_d/Qn’L’(jf?-‘) ), and B = exp(O(log n-loglogn)). Therefore,

i

we apply (64) by replacing 7" and T by t; and ¢ 1, respectively, and with § = n~ = to obtain the first assertion as

bt 2(s+1) C
Efzo )1, [/ E, [||3i(z, 1)~V logp(2)|?dt] | S N~" 7 logn + ;elog/\/+5
t=t;
2 5 s
< n_% logn + log'n (ti_d/Zn @) log® n) +n" g
n

_ 2 5d
_2(s+1) t, 42 st log®n
<n” 4t logn + .

n

For the second part, we simply follow the discussion that derived (4), by replacing T by t1(T'), which does not increase the
generalization error. O

Proof of Theorem 5.4. We use the sequence of networks presented in Lemma D.8. Specifically, we consider the following
process.

VO~ N, 1), avi? = Br (VD 25V T — )t + /287, dBy (t € [T —t;,T — ti1],i = 0,1, , K.),
e vr(4) e v(d)
and we modify YT—T to 0 if ”YT—T”‘X’ > 2.

52



Diffusion Models are Minimax Optimal Distribution Estimators 53

Finally, we sum up the errors for the above process. Eq. (86) is further bounded by

i=1
K ti s41
S Viti—ilogng [Erg, yn [/ E, [|8(z, 1) -V logpt(x)||2dt]} +n~dtes (by Lemma D.7)
i=1 =14
U ¢y A log* n (s+1)
Vitilogn [ n™ Een logn + b 4 nT
=2 \/ﬁ
+ V/tilogn [n” ™% log® n +n~ =] (by Lemma D.8)
< [Vt 4 min T ]
tin~ 4tz th—— | -O(1
N mn + Vi Jn (1)

(because K, = O(logn) and t; < ---tg, = O(log N) with 1 < ¢;11/t; = const. < 2 (i > 1).)

[ = s - /4, Titesy .
- (n‘ffi)%n‘d;zs+(n—d2féss)%(” d”s)\/ﬁ n 3 ] (1)

< p i (90)

Therefore, by taking ' < n™ 5 and T = %, we obtain that

W1(Xo,Y_r) < E[Wi(Xo, X1)] + EWi (Yo_p, Yo_p)] + EWi (Yr_ g, Yo 1))
< VT + exp( —BT) +n~ R (by Lemmas D.5 and D.6 and (90))

< _ (s41-9) _ (s+1-6) _ (s+1-9) < _ (s+1-6)
N n d+2s _|_ n d+2s _|_ n d+2s S n d+2s s

which concludes the proof for Theorem 5.4. O

D.3. Discussion on the discretization error

As in Section 5.3, tg = T < t; < --- < tg. = T be the time steps with ¢, — t, = 1 < 1. Consider the following
process (Y;)15 = (Ytd) —oF with Y& ~ N(0, I):

AV = BV +25(Y5_, , T —t:))dt + /267 _,dBy  (t € [T —t;, T —ti1)).

Here s is the score network obtained by the score matching:
1 n K
5 € argmin — Z Z NE[||s(24,, tr) — V1og pr, (w4, |70.:)]|?]. 1)
[y
Here, each expectation is taken with respect to z7_, ~ pz_, (T7_, [T0,:)-
Theorem D.9. Let T = n= O, T = 218" 4 ) — poly(n=1). Then,

2s+d”’

E[TV(Xo, Y5 1) S n”dte log'®n + n*T 3 1og® n 4+ nT ' log® n + nlog* n.

Proof. We first show that the minimizer § over @’ (given in Section 4) of

. 1y
§ € argmin — Z Z’I]E[”S(l‘tk,tk) — Vlog ps, (w4, |70.4)]|?]-
i=1 k=
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satisfies

K

> 0By, cpy, [13(1,0 1) = Viogpy, (z,)|7]| S 072/ CoT D 10g o n, (92)
k=1

E{ﬂfo,i}?zl

We take N = naiz According to Theorem 3.1, for N > 1, there exists a neural network ¢gcore With L =
O(log* N), [Wleo = O(Nlog® N), S = O(Nlog® N), and B = exp(O(log N - loglog N)) that satisfies

N~ log(N
/Pt($)||¢score(x,t) — s(z,1)|2dz < #. -
’ t
for all t € [T, T|. By summing up this for all ¢ = ¢, we have that
S - — log(N)
Z nEwtkNPtk [‘|¢score($tk 3 tk) v logpnk th || Z n 1A tk (94)
k=1 ~

2s

IN
Sy

K
N~ log(N) <nK +ny ;) < N~ log(N)(T +log(T/T)) S N~ log?(N).
k=1

In order to convert this into the generalization bound, we need to evaluate the following two things. First, § can be taken so
that

1
log? (V
Sllp ||¢Score(m,t)||d$ S #7

and therefore we clip s as in Section 4. Because such s satisfies

log(IN
/pt(x)||¢score(x,t) — Vlogpt(x)HQdm S %7

t

we have that

=

Y 1By e, ([ score (@, s 1) = Vlog pyy (4, )||P] < Cr = O(log”(n))
k=1

(follow the argument for Lemma C.1 and how we derived (94) from (93)). Second, the covering number of the network
class of £(z) = ZkK:l nE[||s(xs,, tk) — V1og py, (24, |7)]|?] over all s with § = n~ 7% is bounded by n@iz log'o n, by
following Appendix C.2. Thus, Theorem C.4 can be modified to this setting and we obtain that

K

]E{wo.'i}?:l [Z mEmtk ~Pty [Hs(xtmtk) -V logptk (Ifk)||2]‘| /S nis/(28+d) 10g2 n.
k=1

holds. Therefore, following the discussion in Section 4, we have that

K
Efwoiti, [Z By, ~py, 5(Te,, tk) — Vogpry (wtk)llg]]
k=1

K

C
§ My, ~pr, [l bscore (Ters tr) — V 1og pyi (X, )II*] + flOgNJF(S
k=1

2
d log“n d __2s __2s
Snd+25 10g2 n + og n . pd+2s 1Og16 n-+4+n_ dtz 5 n~ d+2s 1Og16 n,
n

which proves (92).
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From now, we bound TV (Y, YTd_ I). We introduce the following processes. Y4 = (ﬁd)ti_oz is defined in the same way
as Y4, except for the initial distribution of Yod ~ pr. Att = T — T, if the f -norm is more than 2, then we reset it to 0.
Y = (V;);_i" is defined as Y ~ p=, and

YO ~ P,
dYy = Bz, (Vi + 21[(Y,, T — s) ¢ A for some s < ]V log p;(Y;)

+ 21[(Y,, T — 5) € Aforall s < t)8(Yg_, ,T —tx)) dt + \/287_,dB; (t € [T —t;, T — t;_1]).
Att =T — T, if the co-norm is more than 2, then we reset it to 0. Here, A C R is defined as
A= {(a:,t) € R X R| [|2]|os < 72t + Cacyn/log(n), T < t < T} .

Then, we have that

TV(Yp Y ) < TV Yy ) + TV(Yo, Vp_p) + TV (Vg Vi ) + TV(VE ., ¥

< TV(Xo, X1) + TV(Yo, Yr_p) + TV(Y_p, Y;_Z) + TV(X7, N (0, 14)).

The first term is bounded by n_%, by setting T = n~ () in Theorem D.2. The second term is bounded by n_%, by
taking C, sufficient large, according to Lemma A.1. The forth term is bounded by exp(—/ST") by Lemma D.3, and thus

setting T = O(log n) yields exp(—T) < n” T

Now, we bound the third term. Proposition D.1 yields that

K T—tg_1 o _ _ _
< Z/ By [1((V., T — 5) € Aforall s < ]| 3(Vy_, T — ti) — Vlog py (V)|
t .

k=17 t=T—tx
K T—tr_1 o ) ) B )
<SOSR T — 1) € A Yy, 1) € Alls(Vp_,, T — ) — Viog pu(V)|2)dt
k=1 t=T—1k
K
S Z IEX[]I[(Xht) S A7 (th7tk:) S A]Hé(th’tk) — Vlogpt(Xt)H2]dt
k=17 t=tk-1
K .
s Z/t : ]Emtkwptk[”‘g(xtkatk‘) - Vlogptk(xtk)H?]dt ©3)
k=1"v"=tk-1
K .y
+ Z/ Ex[1[(X:,t) € A, (X, tr) € A]||V1ogp:(X:) — Viog s, (X¢)||]dt 96)
k=1"7t=tk—1
K tr
#3 [ B0 € A, (X, 1) € AT logpr, (X:) - Vo, (eI 1)
k=1"t=tr—1

First, we consider (96). Because (X, t) € A, (|| X¢tlloo — mi)+ S ory/log(n). Overall t < s < ty, |0s05] S %,
|0sms| < 1, and

05V logps(z)| <

)

3 3
|asas| + |asms‘ <(||x|00 - ms)i V 1) 2 ,S ‘8tgtk| + ‘atmtk| ((‘THOO - mtk)i V. 1) 2

3 2 3 2
Us Us 0% k gy k

according to Lemma A.3. Therefore, (96) is bounded by S+, n(n(tx2 Vv 1) log? n)? = n?(t;* v 1)log® n.
Next, for (97), we first note that || X¢|lco — 1., | X1, [loo — me, < 0v,4/log(n) = O(1). Therefore, according to

—m 2 — . .1
Lemma A.3, ||0;,V log py, (x)|| is bounded by U% (W";”‘)* Y 1> < t;, 'logn. With probability at least 1 —
tk

Utk
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n=OPW | X; — Xi, |loo < v/nlogn, according to Lemma F.13. Therefore,

K K
97 < Zn nlogmn - ( tkl\/l)logn)Z—Fn* an 2v1)log® n.
k=1 k=1
Finally, for (97), we apply (92). Now, all three terms of (95), (96), and (97) are bounded and we obtain that

K
E{z0.}n [TV( T T’YTdfz)} < n~ @ logh n—l—z (t* V1) log®n +n?(t;2 v 1)log® n)
k=1

< N~ T log16 n 4+ W2I_3 log3 n 4+ nI_l log3 n—+ nTlOgS n
< n~ 7% log'® n + n?T > log® n + 1T~ ' log® n + nlog* n.

Therefore, by setting n = T 15 @ yields the assersion.

E. Error analysis with intrinsic dimensionality
E.1. Brief proof overview

The generalization error analysis of the score network and how much the score estimation error affects in the final estimation
rate in Theorem 6.4 are derived by just replacing d by d’ in the previous analysis. Therefore we focus on the approximation
error bounds. In order to obtain the counterparts of Theorem 3.1 and Lemma 3.6, we aim to decompose the score function
into two parts: each of them is determined by the intrinsic structure components (in V) and other components (in V+). We
use z as a d’-dimensional vector corresponding to the canonical system of V. The first observation to this goal is

pe(z) = /a?(;)gpo(y) exp (W) dy
_ /V (Tt(l)dq( 2)exp <_ ATz —mez|? +2||(Id - AT)$||2> ds

2 20%

(2 is a d’-dimensional vector corresponding to the canonical system of V.)

L) (AT mef? ! = ATy
- d’ p 2 2 z: d—d’ d—d’ exp 2 2 °
v ol (2m) % g o ¢ (2m) 2 O

pi" (2) p? (2)

Here p,gl)( ) and p( )( ) can be seen as the density function with respect to the intrinsic components and remaining space.
Note that

Vlogpi(z) = Vieg(py" ()pi” () = Vg pi" () + V log pi” (x).

Due to this, we only need to construct the neural networks approximating each term and concatenate them. In addition,
pgl) () can be seen as the density at A" x, about the diffusion process on the d’-dimensional space, where the initial density

is defined by q. Thus we let
r_ 2
)= [ A o (el
v ol (2m)F 207}

for 2/ € RY . Here pgl)(x) = q:(A " z) holds.

E.2. Proof of Theorem 6.4
We first consider the approximation of pgl) (). We have the following counterpart of Theorem 3.1 and Lemma 3.6, where
the only difference is that here d is replaced by d’.
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Lemma E.1. Let N > 1, T = poly(N~!) and T = O(logN). Then there exists a neural network Oscore,3 €

®(L, W, S, B) that satisfies, for all t € [T, T),

2s
N~ log(N)
— Q= (98)

[ pl)9 1025 (0) = Gronea(A T ) <
rz€eR

Here, L,W,S and B are evaluated as L. = O(log* N),|[W|s = O(Nlog® N),S = O(Nlog®N), and B =
exp(O(log* N)). We can take ¢score 3 satisfying ||dscore,3(1)]|oo = O(o; log? N).

Moreover, let N > t;d//zN‘s/2 and t, > N=2=9/2" Then there exists a neural network Gscore,a € O(L, W, S, B) that
satisfies
_ 2(571)

N a
/ pi(@)[|V 1og pi") (2) — Adscorea(AT 2, 1)|2dz < — (99)
z€R4 t

fort € [2t,,T). Specifically, L = O(log*(N)), |[W|lee = O(N),S = O(N'), and B = exp(O(log* N)). We can take
1
¢sc0re,4 satisfying ||¢sc0re,4('; t)”oo = O(Ut_l 10g§ N)

Proof. Let ¢score: R x R, — R that approximates ¢;(z). Note that
Vlog pgl) () = AV log qt(ATm)

and therefore

/ (@) V1og p" () — Adscore (AT, 1)|*dz = / 1 @p (@) AV log i) (AT 2) — Aducore(AT 2, 1) [Pdz
z€R rz€eR

— [ (A7) AV logp (A7) — Aducns (AT D)l
z€R

- / 0(2)|V 108 01(2) — dscore(, )2,
2CR4

where we used the fact that pgl) and p§2’ depend on ATz and (I — A")x, respectively, and ATz and (I — AT )x are

orthogonal. Moreover, we used det(A T A) = 1 and orthogonality of the columns of A. Thus, we can translate Theorem 3.1
and Lemma 3.6. 0

We next consider the approximation of p£2) (z). As we did in Appendix A, we first show that it suffice to consider the
approximation within the bounded region.

Lemma E.2. Fore > 0, we define B; . as

By = {r e R (1s - AT)a] < Ceory/ioge .}

We sometimes abbreviate this as B.. Then, we have that

[ ) L9 ogG2 @)1 a5 =
©€ B,

Proof. The the columns of A are orthogonal. pgl) and p§2) depend on ATz and (I — AT)z, respectively, and A"z and

(I — A7)z are orthogonal. Thus, we have that

[ w0V v sl de = [ @ @) [1V 7 og(pi ()] de (100)
2€By ¢ TEBy ¢

- / P (@) [1V |V log(p(x)) 2] da
€D

1 \/ 2 2 2
L/ (20

— 7
d—d 202

/wGRdd/  Jw]|>Ceoir/loge—1 Ufid,(2ﬂ'>T
Applying Corollary F.8, (100) is bounded by ¢ with a sufficiently large constant C. O
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Now we only need consider the approximation of V log p,EQ) (x) within By .
Lemma E3. Let N > 1, T,¢ = poly(N~1) and T ~ log N. There exists a neural network ¢scores € ®(L, W, S, B)

such that
N2
sup /pt(x)HVlogpgz)(x) — Pscore 4 (T, )[]2de < —_—— (101)
te[r,T) /= 0y
Specifically, score.a € ©(L, W, S, B) holds, where
L=0(og? N)),||[W|s = O(log® N), S = O(log* N), and B = exp(O(log® N)). (102)

Proof. First note that V log p,(f) (x) = =% (Ia — A)(Is — AT )z. We approximate this via the following four steps.

1. o is approximated by ¢, from Lemma 3.3. Here we set € (14 Aet)et.

2. Based on the approximation of oy, o; 2 is approximated by ¢yec(+; 2) from Corollary F.8. Here we set € < (T A ¢)e.
3. (Ig— A)(Ig — A7) is realized by ReLU((Iy — A) (I — A") - 2+ 0) — ReLU(—(I4 — A)(I; — AT) - 2 +0).

4. According to Lemma F.6 with ¢ < ¢ and C' <~ T~ vV \/loge—1, multiplication of o; 2 and (I, — A)(I; — AT) is

constructed.

By concatenating these networks (using Lemma F.1), the obtained network size is bounded as

L=0(log?c™" +1og?T™")), ||[W|le = Olog’ e " +10g” T7"),5 = O(log" e ™" +log" T71),
and B = exp(O(log? e ™! 4 log> T™1)).

Then, for x € B; . witht > T', we have that

||V ].nggQ) (LL') - ¢score,4“ S &

This yields that
/B p(2) [V 10g ) () — ucorea |z S 2.
t,e

Together with Lemma E.2, by taking € = poly(N 1), we have the assertion. O

Proof of Theorem 6.4. Note that while the error bound (101) in Lemma E.3 is tighter than the bounds (98) and (99) in
Lemma E.1, the required network size (102) in Lemma E.3 is smaller than the size bounds in Lemma E.1. Also note
that the bounds in Lemma E.1 are the same as those in Theorem 3.1 and Lemma 3.6, except for that d is replaced by d'.
Therefore, by simply aggregating ¢score,3 and Pscore,4, We obtain the counterpart of the approximation theorems Theorem 3.1
and Lemma 3.6, and the rest of the analysis are the same as that of the d-dimensional case. Therefore, we obtain the
statement. O

F. Auxiliary lemmas

This final section summarizes existing results and prepares basic tools for the main parts of the proofs. A large part of this
section (Appendices F.1 to F.4) is devoted to introduction of basic tools for the function approximation with neural networks,
and thus those familiar with such topics (Yarotsky, 2017; Petersen & Voigtlaender, 2018; Schmidt-Hieber, 2019) can skip
these subsections (although they contain some refinement and extension). Lemma F.12 is for elementary bounds on the
Gaussian distribution and hitting time of the Brownian motion.

In the following we will define constants Ct ; and Ct 2. Other than in this section, they are denoted by Ct, and sometimes
other constants that comes from this section can be also denoted by Cf.
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F.1. Construction of a larger neural network

Through construction of the desired neural network, we often need to combine sub-networks that approximates simpler
functions to realize more complicated functions. We prepare the following lemmas, whose direct source is Nakada &
Imaizumi (2020) but similar ideas date back to earlier literature such as Yarotsky (2017); Petersen & Voigtlaender (2018).

First we consider construction of composite functions. Although the bound on the sparsity S was not given in the original
version, we can verify it by carefully checking their proof.

Lemma F.1 (Concatenation of neural networks (Remark 13 of Nakada & Imaizumi (2020))). For any neural networks
ol RT — R%= ¢2: R%= — R ... ¢F: R¥ — R+ with ¢ € W(L), W* S* B*) (i = 1,2,---,d), there exists a
neural network ¢ € ®(L, W, S, B) satisfying ¢(x) = ¢* o ¢*~1 ... 0 ¢! (x) for all x € R%, with

k k k k—1 k
L= L\, W<2) W, S<> 8+ (|ALllo+ b5l + 147 o) <2 S, and B < max B'.
i=1

: : ; ‘ 1<i<k
=1 =1 =1 =1

Here A;- is the parameter matrix and b;- is the bias vector at the jth layer of the ith neural network ¢°.

Next we introduce the identity function.

Lemma F.2 (Identity function (p.19 of Nakada & Imaizumi (2020))). For L > 2 and d € N, there exists a neural network
ol € ®(L,W, S, B) with parameters (Ay,b1) = ((Ig, —I4)T,0), (Ai,0;) = (Iq,0)(i = 1,2,--- , L — 2),(AL) =
((Ig, —14),0), that realize d-dimensional identity map. Here,

IWlleo =2d, S=2dL, B=1.
For L = 1, a neural network qi)fél € ®(1,(d),d, 1) with parameters (A1,b1) = (14,0) realizes d-dimensional identity map.

We then consider parallelization of neural networks. The following lemmas are Remarks 14 and 15 of Nakada & Imaizumi
(2020) with a modification to allow sub-networks to have different depths.

Lemma F.3 (Parallelization of neural networks). For any neural networks ¢*,¢2,--- , ¢* with ¢*: R% — R% and
¢ € W(LL, W' S BY) (i = 1,2,---,d), there exists a neural network ¢ € ®(L,W,S,B) satisfying ¢(x) =
[¢1(£C1)T ¢2($2)T ¢I~c(xk)T]T: Rd1+d2+---+dk — Rd1+d2+"'+dk fOV all r = (xr :L‘; . .’L';—)T c Rd1+d2+--~+dk
(here x; can be shared), with

k k
L=L, |Ws< le W, S< ;Si, and B < Jax. B'  (when L = L; holds for all i),
k k
— < i i < i ise).
L= max, L'y [We < 22 W oo, Z (S"+ LW}), and B < maX{112?ngB .1} (otherwise)

1<i< ,
i=1

Moreover, there exists a network ¢gum, (z) € ®(L, W, S, B) that realizes = Zle @' (), with

k k
L= max L'+l [Wie 4> [Wile, S<4) (S'+LWL)+2Wp, andB<max{maxB 1}.

1<:i< . . 1<:i<
i=1 =1

Proof of Lemma F.3. Let us consider the first part. For the case when L = L; holds for all 7, the assertions are exactly the
same as Remarks 14 and 15 Nakada & Imaizumi (2020). Otherwise, we first prepare a network ¢* realizing qﬁﬁ;L —Lig @
for all ¢, so that every network have the same depth without changing outputs of the networks. From Lemmas F.1 and F.2,
@' € ®(L,W", 8" B'") holds, with L = maxi<;< L, |[W'||sc = max{|[W||ec,2Wr} < 2||W?,S" < 25" +
2(L—L; )W} <2(S*+ LW} ), and B" = max{B’,1}. We then apply the results for the case of L = L; (i = 1,2,--- , k).

For the second part, since summation of the outputs of k£ neural networks can be realized by a 1 layer neural network with
the width of k, Lemma F.3 together with Lemma F.1 gives the bound to realize Zle o' (). O

In the analysis of the score-based diffusion model, we often face unbounded functions. To resolve difficulty coming from
the unboundedness, the clippling operation is often be adopted.
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Lemma F.4 (Clipping function). For any a,b € R with a; < b; (i = 1,2,---,d), there exists a clipping function
Petip(T;a,b) € ®(2,(d, 2d,d) T, 7d, max; <;<qmax{|a;|, b; }) such that

Gaip(x;a,b); = min{b;, max{z;,a;}} (i=1,2,---,d)

holds. When a; = c and b; = C for all i, we sometimes denote ¢.1ip(x; a,b) as ¢cip(z; ¢, C') using scaler values ¢ and C.

Proof. Because, for each coordinate ¢, min{b;, max{x;, a;}} is realized as
min{b;, max{z;,a;}} = ReLU(z; — a;) — ReLU(x; — b;) + a; € ®(2,(1,2,1),7, max{|a;|,b;}),

parallelizing this for all 7 with Lemma F.3 yields the assertion. O

With the above clipping function, we prepare switching functions, which gives the way to construct approximation in the
combined region when there are two different approximations valid for different regions.

Lemma F.5 (Switching function). Lett; < ty < t1 < to, and f(xz,t) be some scaler-valued function (for a vector-valued

function, we just apply this coordinate-wise). Assume that ¢*(x,t) and ¢*(x,t) approximate f(x,t) up to an additive

error of € but approximation with ¢*(z,t) and ¢*(x,t) are valid for [t,,t1] and [t,, 2], respectively. Then, there exist

neural networks ¢ . (t;ta, 1), 92,5 (tita, 1) € ®(3,(1,2,1,1) 7,8, max{t1, (}1 —t5)"1}), and ¢, i (t;ts, t1) P (x,t) +
2 (it 1)@ (x,t) approximates f(x,t) up to an additive error of € in [t;, t2].

swit

Proof. We define

_ 1 _ _ 1 _ _

Ohanltita, 1) = - ReLU(Gatp (i o, 1) — ), and @5 (1515, 71) = ——ReLU(Tx = beip(t; 15, T1)).
1 — Lo 17— L2

Here ], (t; Ly, t1), Swit (i dg, T1) € [0, 1], e (180, T1) + OFiq (i tg, T1) = Lforall ¢, ¢y (1o, 1) = Oforall ¢ > 7y,

and ¢2 ., (t;t5,11) for t < t,. From this construction, the assertion follows. O

F.2. Basic neural network structure that approximates rational functions

When approximating a function in the Besov space with a neural network, the most basic structure of the network is that
of approximating polynomials (Suzuki, 2018). In our construction of the diffused B-spline basis, we need to approximate
rational functions.

We begin with monomials. Although the traditional fact that we can approximate monomials with neural networks with an
arbitrary additive error of € using only O(loge~!) non-zero parameters has been very famous (Yarotsky, 2017; Petersen &
Voigtlaender, 2018; Schmidt-Hieber, 2020), we could not find the result that explicitly states the dependency on parameters
including the degree and the range of the input. Therefore, just to be sure, we revisit Lemma A.3 of Schmidt-Hieber (2020)
and here gives the extended version of that lemma.

Lemma F.6 (Approximation of monomials). Let d > 2, C' >
neural network ¢mut(x1, T2, - ,24) € V(L, W, S, B) with L
O(dloge™! +dlog C)), B = C? such that

< Eerror < 1. For any € > 0, there exists a

1,0
= O(logd(loge™ + dlog C)), ||W|le = 48d,5 =

d
Gmure (27, 29, -+, xy) — H zg| <e+dC¥ egor, forallz € [—C,C)% and z' € R with ||z — 2'||s < Eerrors
d'=1
|t ()] < C? for all z € RY, and ¢yt (2}, 25, -+, x) = 0 if at least one of ', is 0.
We note that some of z;,z; (i # j) can be shared. For Hle xt withoy € Zy (1 =1,2,--- ,I) and Zle o; = d, there

exists a neural network satisfying the same bounds as above, and the network is denoted by ¢t (5 o).

Proof. First of all, it is known from Schmidt-Hieber (2020) that there exists a neural network ¢/, . (z,y) € ¥(L, W, S, B)
with L =i+ 5, ||W|le = 6, B = 1 such that

|Gttt (2,y) — 2yl <277, forall (z,y) € [0,1]?,
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and |¢! . (7,y)| < 1 forall (z,y) € R?, and ¢/, (z,y) = 0 if either = or y is 0. With this network, we can see

mult

that [sign(zy) @), (12|, [y]) — zy| < 277 holds for all (z,y) € [—1,1]?, |¢] . (x,y)| < 1 for all (z,y) € R?, and

mult
dmult (z,y) = 0 if either x or y is 0. Because

sign () Sue (|2, [y]) = ReLU(ppe (ReLU(2), ReLU(y)) + Gpe (ReLU(—2), ReLU(~y))

- (Zsinult (ReLU(_m)7 ReLU(y)) - (Zsinult (RGLU(J?), ReLU(_y)))

— ReLU(= ¢ (ReLU(2), ReLU(y)) — Gpye (ReLU(—2), ReLU(—y))
+ Gt (ReLU (=), ReLU(y)) + ¢y (ReLU(2), ReLU(—)))
=: Gmult (z,9)
holds, we can realize the function zy for [—1,1]¢, by a neural network ¢mui(z,y) € ¥(L, W, S,B) with L = i +
T Wlloo = 48,8 < L||W|loo (|W]|oo + 1) = 48(i + 7), B = 1 with an approximation error up to 27°.

Then, following Schmidt-Hieber (2020), we recursively construct g1 (71, T2, - - - , T9i+1) using

&mult(mlax% e 7$2j+1) = d;mult(qgmult(mlyx% T ,372]‘), &mult(x2j+17x2j+27 o ,(L‘gj+1)).
By filling extra dimensions of (z1,x2,---,Z9;) with 1, we obtain the neural network ¢puit(z1,22, - ,24) €
U(L,W,S,B) foralld > 2 and L = O(logd(loge™! + logd)), |W| s~ = 48d,S = O(d(loge™! +logd)),B = 1

such that
d

G (1,22, xq) — [[ 2| <, forallw e [-1,1]%
=1

We then construct ¢,1¢ as follows:
¢mult (.’L‘) = C'd(gmult ((bclip (.Z', _C7 C)/C)

Here the approximation error over [—C, C]? is bounded by C'~%¢. We reset ¢ +— C'~“¢ so that the approximation error
is smaller than &, and then we have ¢y € ®(L, W, S, B) with L = O(logd(logd + loge™ + dlog C)), |[W|leo =
48d, S = O(d(logd +loge™! + dlog C)), B = 1. Therefore, the bounds on L, ||W ||, B, S in the assertion follows from
Lemmas F.1 and F4.

When the input fluctuates, we have

d

Cd(lgmult((bclip(x/; -C, C)/C) - H Ly

i=1

d d d
< |C¥mutt (Gerip (2 —C, C) /C) — Hmin{C, max{xz;, —C}}| + l_lmin{C'7 max{x,, —C}} — Ha:l
i=1 i=1 i=1

d
< C’d . C’*dg —+ Od71 Z ‘,131' — min{C’, max{:ﬁ;, —O}}‘ =+ dcdilgerrON

i=1
which yields the first part of the assertion.

Finally, we note that some of z;, z; (i # j) can be shared because all we need is to identify columns in the first layer of
Gmult (z1, - -+, z4) that correspond to the same coordinate. O
We next provide how to approximate the reciprocal function y = % Approximation of rational functions has already
investigated in (Telgarsky, 2017; Boullé et al., 2020). However, we found that their bounds (in Lemma 3.5 of Telgarsky
(2017))of L = (9(10g7 e~1) and O(log* e~!) nodes can be improved with careful use of local Taylor expansion up to the

order of O(loge~1), so we provide our own proof.
Lemma F.7 (Approximating the reciprocal function). For any 0 < ¢ < 1, there exists ¢prec € V(L, W, S, B) with
L<O(log? ™), [W]leo = Olog® 1), S = O(log* 1), and B = O(¢~2) such that

1 |z — z|
Grec(z) — ’ <e+ = forall x € [e,e ] and 2’ € R.
x
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Proof. We appr0x1mate the inverse function y = 1 with a piece-wise polynomlal function. We take z; = 1.5° - ¢ (i =
0,1,--+,i* := [2log; 57 1]) so that 7« > e~ ! and approximate y = - in the following way:

1« 1
o= > filerip(@s wim1, ) + -

i=1
where f;(x) is a function that satisfies f;(x) = 0 forz < z;_1, fi(z) = _xil N % for 2, < 2. and
|fi(x) —1/z+1/ | < <&
Tz—l;rlgaiiéfrq g X xz 1 2
Now we show construction of such functions. First, by % = x%l% = xi,l,l Z?’Oﬂ(*x%l + 1)l/ ( 5), let
- 1<
fila) = (—z/ziq +1)F — .
Ti-1 ;7 P

The difference between f;(z) and 1L is((zi—1—=)/m;—1)"T /2, which is bounded by 2-'~! /z. Moreover, by adding

(£ —fi(zs)(@—zi—1) i1—m3) /T z+1 L ’
LA e Vo (@ wx){;iz)l 1)(1 iz1) ¢ fi(x), we have f;(z), with f;(z;_1) = 0, fi(z;) = _%_1 + I%_’ and

max |fi(x) = 1/x +1/zi1] <27 /e <27h

zi—1<z<T;

Thus, we take [ = [log, 2¢ 1] so that RHS is smaller than . Therefore, we finally have the explicit approximation of
1
Y=z

<.

1

Ti—1

l
, 1
> (= etip (@351, 23)) [z + 1) =D (103)

=1 i=1
(2)

=1

~.

n 72: (@iz1 — 23) /2i—1) T (Petip (@3 -1, 1)) — Ti—1) 1'

LL',L(CEZ — .Ti,l) g

(b)

From Lemma E.6, (—¢eiip (5 751, %)) /zi_1 + 1) is realized by L = O((logloge™" +loge ") logloge™), [|[W||e =
O(loge™1),5 = O(loge~'(logloge~t + loge™1)),B = 1.5Me22""1 = (1) so that approximation error for
each is bounded by O(¢?/1i*). Because there are O(li*) terms in (a) of (103), from Lemmas F.1 and F.3, the final
approximation error of f(x) using a neural network ¢, is £, where ¢rec € ®(L,W,S,B) with L < O((logloge™! +
loge ) logloge™), [W]e = O(log®e~1), S = O(log® e~ (loglog€ +loge™1)), and B = O(¢72). (Here B =

O(e72) is calculated because in (b) we need to bound the coefficient {Zi=1 (xxzéx I;WI by e72.)

1, O

max{x’,e}‘ + |max{x’,s} Tz

The sensitivity analysis follows from |¢rec(z') — 1| < |prec(2’) —

Combining Lemmas F.6 and F.7, we have the following corollary.

Corollary F.8. For any 0 < & < 1, there exists ¢roc € U(L, W, S, B) with L < O(log? + log®¢)), |[W|s = O +
log®e™1),8 = O(llogl + lloge™" +log*e™"), and B = O(e~ 2\”)) such that

2" — x|
€

+1

brec(’51) = | < e +1 forallz € [e,e ] and 2’ € R.

Proof. Consider ¢t (+;1) © ¢rec. The result directly follows from Lemma F.6 and Lemma F.7. O
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F.3. How to deal with exponential functions

We sometimes need to approximate certain types of integrals where the integrand contains a density function of some
Gaussian distribution and the integral interval is R?. for example, the diffused B-spline basis is a typical example of them.
To deal with them, we adopt the following two-step argument: first we clip the integral interval, and next we approximate
the integrand with rational functions. We need rational functions because the density function depends on the inverse of (the
squared-root of) the variance, which depends on ¢ and should be approximated. The first lemma corresponds to the first step,
and the second and third correspond to the second step, respectively.

Lemma F.9 (Clipping of integrals). Letz € R%, 0 < m; <1, a € Z‘j_ with Z?Zl a; < k, and f be an any function on R?
whose absolute value is bounded by Cy. For any 0 < & < % there exists a constant Cy ;1 that only depends on k and d, such

that
d meys — 2 \ 1 |mey — z||?
tYi — T tY —
[] (2= — exp (YA g
/Rdi_1< p > f(y)ag(%)g p( 207 > Y
d a;
mey; — 1 ( IImty—w||2>
— TP — exp (YA g
‘/14.7: - < g¢ > f(y) 0'1‘51(271')% b 20't2 y

i=1

where A = [[_, a? with a? = [t — %\/logs Lo+ Utc‘ Ly/loge1].

<e

~ Y

Proof.

1
Jf(?ﬂ)%

d a; 2
meYy; — X; myy — I
Rd i Ot 0%
Ty — a0\ [mey — |
—/ H( = ) f(y)exp(— g )dy
Az Ot 20t

Lvl

Imyy; — le) ( IImty—xHQ)
<5 o <1lexp (-T2 20 ) gy (b <C
Sherr 27T 7 /Rdw | | < 1|yl ] exp 552 y  (by |f(y)l < Cy)

t
27r Z/Rx xRx(R\a)

([ Imay; — a1\ ey — )
11 Uly;| < 1exp | - 5 dy
1 Ot (9

i— lllmes d—1 times

| /\

xR x x R -
—_——— =

d

_ . Imtyj—$j|>aj Ulys| <1] (_(mtyj—%‘)Q) ,
~0;Y] l(n[wm/R( . = e (=2

=1 j=
- [may; — $j>aj 1ly;| < 1] ( (may; — %‘)2)
+1[i = / ( —exp | — dy; | . (104
[i = j] B\az o) oy (27)5 P 207 Yj (104)

‘We now bound each term. First,

mey; — x5\ 1|y <1 mey; — x;)>
[ () Ml S o (=i,
R Ot o (2m)2 207

; y'?
b (F) ag (25 )
i b f th f1]y;] <1
—1—1 (because of the term of 1[|y;| < 1].)
o (277)2

<

~

Thus, LHS can be bounded by < max { m%7 (iﬂ} <1.
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Next,
e N 1] < 1 )2

/ (Imtyg $J|) lyst <] (_(mtyJng)) dy; (105)
R\a® Ot o¢(2m)2 207

2 [ 2 o
< — ly;|*7 exp *yfj dy; <by letting My — % yj>

my Ct, 1w/loge—1 Ot

(a-—l NI 9 _qy  Ce . .

o Zz -0 G (Cpyloge™)'e™2 (if o is odd)

1N _ Cr1 y2 . .
mt Zz L ((‘;; 1),, (CZ loge™h)le ™" + m%fgfl flog =1 XD (—73) dy; (if o iseven).

Therefore, by setting Ct 1 sufficiently large, in a way that C¢ ; depends on ¢;(< k) and d, this can be bounded by —
Moreover, if m; 2 1, then the integral interval does not overlap with —1 < y; < 1, and in this case (105) is alternatively
bounded by 0.

Therefore, (104) can further be bounded by

d d
104 <y [

i=1 j=1

which gives the assertion. O

Next we introduce the Taylor expansion of exponential functions with polynomials.

Lemma F.10 (Approximating an exponential function with polynomials). Let A > 0 and 0 < m; < 1. Fort >
max{4eA?, [log, e~ 1]}, we have that

(@ —my)?) (= my)

— My — My

exp( 952 > 25 <e
t s=0

forally € [7_‘”‘44’”, LA"'”].

me my

Proof. By standard Taylor expansion of e* up to degree ¢t — 1, we have

exp <_<xmy>> e ) o T Rl 1)
s=0 s

20?2 25028 t! 2tg2t

with some 6 € (0, 1). We bound the second term of the residual. When y € [%“i”, %ﬁ”] and ¢ is the minimum integer
satisfying ¢t > max{4eA?, [log, e~1]}, we have

. _ 2t 2t 2t t A2t
1 (0(z —mey) —;t(l 0)x) < (QUtAgt < (201 A) < 2 A2 < 1 <e
7l 252 12002t = (t/e)t 2002 = (AZ) = o
where we used the fact t! > (t/e)t. O

F.4. Existing results for approximation

Our diffused B-spline basis decomposition (Section 3 and Appendix B) is built on the B-spline basis decomposition of
the Besov space (DeVore & Popov, 1988; Suzuki, 2018). The following fact can be found in Lemma 2 of Suzuki (2018)
(although the original version adopts 2 = [0, 1]¢, we can easily adjust the difference by dividing the domain into cubes with
each side length 1). The magnitude of |ay, ;| is evaluated in p.17 of Suzuki (2018).

Lemma F.11 (Approximability of the Besov space (Suzuki (2018))). Let C > 0. Under s > d(1/p — 1/r)+ and
0 < s <min{l,l — 1+ 1/p} where | € N is the order of the cardinal B-spline bases, for any f € B, ([-C, C]4), there
exists fn that satisfies

SCNT f|

B; ,([=C,C1%)
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for N > 1, and has the following form:

N K*
Z > oMY ( Z Zak,Jle] with Z|J N+ > m=N
k=0jeJ(k) k=K+1 =1 k=K+1
where J(k) = {—C2F — 1, —C2F — 1 +1,-..C2F — 1,02}, (jl)”" C J(k), K = O(d '1log(N/C%)), K* = (O(1) +
log(N/C))v=! + K,n. = O((N/C%)2~ ”(k K))(k*K+1 JK*) foro =d(1/p—1/r)y and v = (s — 0)/(29).

Moreover, (vl +d™ ) (d/p=s)+

F.5. Elementary bounds for the Gaussian and hitting time
Lemma F.12. Let0 < e < 1,1 € Z%, and p(z) be the density funciton of N'(0,021,), i.e., p(z)

Then, the following bound holds:

d 1

/ MF(I)O& <e.
|zl co >0¢1/4 log dle—1 o2i i ~

We sometimes write \/4log dle=! = Cf 2+/loge™1.

Proof. Let us denote ' = [[_, 2% and |I| = 3%, I; for simple presentation. Let 7 = ||[| o0, and we get
I
ac p(z)dz

l
~/|3L'|0020M/410g5 1 Ul ‘

l
/ .
Hxﬂlzﬂt\/m O
o0 mooq 2
S/ - o a &XPp (T) (d*l)rdfldr
r=o.\/4loge=1 Ul L od(2n) o
= l|+d—1 52
- sl —— exp (== ) (d—1)ds (by letting s = 7/o
Lzm (27) ( >( ( /o)
4loge—1)lllHd—1)/2 4loge~t * I +d—1)slll+d=2 2
_ (4loge™) exp [~ 208 ()4 (U +d=Dslt=i= RN G
2 s=y/Tloge—1 (2m)% 2

(2m)3
71)(|l\+d7172i)/2(d _ 1)
52

ol

(|l[+d—1)! (4loge

R =
- 0<i<| = (2m*
n fsozo\/m % (271)% exp (7%) (d—1)ds (JI| + d: even)
0 (|I| 4 d: odd)
(by iterating integration by parts)
< g? log% e L. (106)
Replacing ¢ by ¢/dl, RHS of (106) is bounded by
dQ; log%(zs/dl)_1 <
which yields the conclusion. O
= fot BsdBs, with Bs < 5. Then, we have that

)[0.1] be the 1-dimensional Brownian motion and X;

P [ sup |X;| > 24/Bt log(QE_I)] <e.

Lemma F.13. Let (B

s€[0,t]
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Proof. We bound the case 3; = /3 because it maximize the hitting probability. According to Karatzas et al. (1991), for
x>0,

4 > 2 4 o0 2 5, =
IP l sup |Xt| 2 IE‘| = 7\/ eiy /2dy = 7/ 672 \/idZ S 2671? /4615.
s€[0,t] Vor - Vo =

For the second equality, we simply replaced y/+/2 with z. For the last inequality, we used \/% -v/2 < 2and f;o eV’ dy <

e=*" . Therefore, setting = = 24/ Bt log(2e~1) yields the assertion. O
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