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Abstract
While efficient distribution learning is no doubt
behind the groundbreaking success of diffusion
modeling, its theoretical guarantees are quite lim-
ited. In this paper, we provide the first rigorous
analysis on approximation and generalization abil-
ities of diffusion modeling for well-known func-
tion spaces. The highlight of this paper is that
when the true density function belongs to the
Besov space and the empirical score matching
loss is properly minimized, the generated data
distribution achieves the nearly minimax optimal
estimation rates in the total variation distance and
in the Wasserstein distance of order one. Further-
more, we extend our theory to demonstrate how
diffusion models adapt to low-dimensional data
distributions. We expect these results advance
theoretical understandings of diffusion modeling
and its ability to generate verisimilar outputs.

1. Introduction
Diffusion modeling, also called score-based generative mod-
eling (Sohl-Dickstein et al., 2015; Song & Ermon, 2019;
Song et al., 2020; Ho et al., 2020; Vahdat et al., 2021) has
achieved state-of-the-art performance in image (Song et al.,
2020; Dhariwal & Nichol, 2021), video (Ho et al., 2022),
and audio (Chen et al., 2020; Kong et al., 2020).

Borrowing explanation from the unifying framework of
Song et al. (2020), diffusion modeling first gradually adds
noise to the data distribution, and transforms the distribu-
tion to a predefined noise distribution. This time evolution,
called the forward process, can be formulated as a stochastic
differential equation (SDE) that is data independent. On
the other hand, we can consider the time-reversal of the
SDE, and by following this so-called backward process, one
can generate data from noise. Importantly, the drift term

1Department of Mathematical Informatics, the University of
Tokyo, Tokyo, Japan 2Center for Advanced Intelligence Project,
RIKEN, Tokyo, Japan. Correspondence to: Kazusato Oko <oko-
kazusato@g.ecc.u-tokyo.ac.jp>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

of the backward process is dependent on the data distribu-
tion, specifically on the gradient of the logarithmic density
(score) at each time of the forward process.

In practice, however, we have only access to the true distri-
bution through a finite number of sample. For this reason,
the score of the diffusion process from the empirical dis-
tribution is utilized instead (Vincent, 2011; Sohl-Dickstein
et al., 2015; Song & Ermon, 2019). Moreover, for compu-
tational efficiency, the empirical score is further replaced
by a neural network (score network) that is close to the
empirical score in terms of some loss function using score
matching techniques (Hyvärinen & Dayan, 2005; Vincent,
2011). In this way, diffusion modeling implicitly learns the
true distribution via learning of the empirical score.

Then the following natural question immediately arises:
Is diffusion modeling a good distribution estimator? In
other words, how can the estimation error of the generated
data distribution be explicitly bounded by the number of the
training data and in a data structure dependent way?

On the effect of score approximation errors Existing
literature has analyzed the estimation error with either of the
two assumptions on the accuracy of score approximation.
(i) One popular assumption is that the error of the loss func-
tion in score matching is sufficiently small, which was first
used by Song et al. (2020) to bound the Kullback–Leibler
(KL) divergence for continuous-time dynamics via Girsanov
theorem. Recently, the polynomial bound has appeared in
discrete-time, meaning that the polynomial order of the error
in score estimate at each step and number of steps suffice to
obtain the final estimation error in the total variation (TV)
distance (Lee et al., 2022b). Lee et al. (2022b) assumed
the smoothness and log-Sobolev inequality (LSI) for the
true density, and Chen et al. (2023b) and Lee et al. (2022a)
eliminated the LSI but still with the smoothness. Also, fol-
lowing Song et al. (2020), Pidstrigach (2022) considered the
true distribution on a manifold. (ii) Another assumption is
to bound the difference between the score and the network
at each time and point. De Bortoli et al. (2021) (also with
dissipativily) and De Bortoli (2022) (under the manifold
hypothesis) derived non-polynomial bounds in TV and in
the Wasserstein distance of order one (W1), respectively.

Generalization error analyses However, most of the liter-
ature assumes availability of the true score, and thus whether
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the score is appropriately approximated with a finite number
of sample has been unaddressed, and therefore a doubt in
reality of the above assumptions undermines the value of
the resulting estimation error bounds. As the only exception,
De Bortoli (2022) derived the n−1/d bound in W1 for n
data and a d-dimensional distribution. However, in their
analysis, the neural network is assumed to almost perfectly
fit the empirical score and the estimation bound depends
on the convergence rate of the empirical distribution to the
true one (Weed & Bach, 2019). Because of the same lower
bound for the convergence of empirical measures (Dudley,
1969), their n−1/d bound is essentially unimprovable with
any structural assumption on the data distribution. There-
fore, it is impossible to extend their result to formal density
estimation problems, where the faster convergence rates de-
pending on the smoothness of the true density are expected.
We also mention generalization error analysis mainly on
each one discretized step by Block et al. (2020), but they
do not explicitly state the final estimation error and their
intermediate bounds depend on the unknown Rademacher
complexity which should be sufficiently large so that the
hypothesis class well approximates the true score.

Thus, the fundamental question on the performance of diffu-
sion models as a distribution learner largely remains open.

1.1. Our contributions

In this paper, we establish a statistical learning theory for
diffusion modeling. The convergence rate of the estimation
error is derived assuming that the true density belongs to
well-known function spaces and deep neural network is em-
ployed as an estimator. Surprisingly, we find that diffusion
modeling can achieve the nearly minimax estimation rates.
The contributions of this paper are detailed as follows:

(i) We give the explicit form of approximation of the score
with a neural network and derive the error bound in
L2(pt) at each t, where the initial density is supported
in [−1, 1]d, in the Besov space Bs

p,q([−1, 1]d), and
smooth in the boundary.

(ii) We convert the approximation error analysis into the es-
timation error bounds. We derive the bound of n− s

d+2s

in TV. Moreover, the rate of n− s+1−δ
d+2s in W1 is derived

for an arbitrary fixed δ > 0 under the modified score
matching, via careful discussion of stochastic calculus.
As a result, the obtained estimation rates are nearly
minimax optimal, theoretically proving the success of
diffusion models.

(iii) By extending our theory, we also demonstrate that
the diffusion models avoid the curse of dimensionality
under the manifold hypothesis, considering when the
true data is distributed over the low-dimensional plane.
This is a special case of De Bortoli (2022) but our
bound is by far tight in this case.

1.2. Other related works
Recently, minimax estimation rates in the Wasserstein dis-
tance have been investigated by several works (empirical
distribution (Weed & Bach, 2019; Singh & Póczos, 2018;
Lei, 2020); smooth density (Liang, 2017; Singh et al.,
2018; Schreuder et al., 2021)); Besov space (Niles-Weed &
Berthet, 2022)). Niles-Weed & Berthet (2022) utilized the
wavelet basis for the Besov space, while Liang (2017) used
neural networks as an estimator motivated by Generative
Adversarial Networks (GAN) (Goodfellow et al., 2020).

We would like to emphasize that our work is not replacement
of wavelet expansion of Niles-Weed & Berthet (2022) with
neural networks. In diffusion modeling, we first minimize
the squared-error-like score matching loss, and then consider
the estimation error. This makes existing sharp bounds in
W1 unavailable. Contrary to the analysis of GAN, where
the minimax problem of the final goal directly relates to
W1, analysis of diffusion models requires conversion of the
score approximation error to the estimation error.

What we are built on is rather the theory of function estima-
tion with deep neural networks in Lp norms (Barron, 1993;
Yarotsky, 2017; Petersen & Voigtlaender, 2018; Suzuki,
2018; Schmidt-Hieber, 2020; Hayakawa & Suzuki, 2020).
Our approximation result can be seen as an extension of
the B-spline basis expansion used in Suzuki (2018). On
the other hand, our generalization bound relies on Schmidt-
Hieber (2020); Hayakawa & Suzuki (2020).

2. Preliminaries
Diffusion modeling We basically follow the notation of
De Bortoli (2022). (Bt)[0,T ] and βt : [0, T ] → R+ denote
d-dimensional Brownian motion and a weighting function.
We use pt for the distribution of Xt, and therefore p0 is the
data distribution. As a forward process (Xt)[0,T ] in Rd, we
consider the following Ornstein–Ulhenbeck (OU) process:

dXt = −βtXtdt+
√

2βtdBt, X0 ∼ p0.

Then we have that Xt|X0 ∼ N (mtX0, σt), where mt =

exp(−
∫ t

0
βsds), σ

2
t = 1 − exp(−2

∫ t

0
βsds). Note that

1−mt ≃ t ∧ 1 and σt ≃
√
t ∧ 1. Under mild assumptions

on p0 (Haussmann & Pardoux, 1986), valid for our setting,
the backward process (Yt)[0,T ] with Yt = XT−t satisfies

dYt=βT−t(Yt+2∇ log pT−t(Yt))dt+
√
2βT−tdBt,

Y0 ∼ pT .

∇ log pt(x) is called the score, which is replaced by the
score network ŝ(x, t) trained with finite sample. Also, be-
cause pt approaches N (0, Id), we take T = Õ(1) and re-
place the initial noise distribution of Y0 by N (0, Id). Then
the modified backward process (Ŷt)[0,T ] is defined as
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dŶt=βT−t(Ŷt+2ŝ(Ŷt, T − t))dt+
√
2βT−tdBt,

Ŷ0 ∼N (0, Id).

Score matching The score network is ideally selected
from the hypothesis S to minimize the denoising score
matching loss

Et

[
λ(t)

[
Ex0

[
Ext|x0

[∥s(xt, t)−∇ log pt(xt|x0)∥2]
]]]
, (1)

where t ∼ Unif[0, T ], x0 ∼ p0, xt|x0 ∼ pt(xt|x0)
and λ is a weighting function. Training with finite data
{x0,i}ni=1 (x0,i

i.i.d.∼ p0) selects ŝ to minimize the following
loss, which replaces Ex0

by the sample mean:

1

n

n∑
i=1

E
t∼Unif[T ,T ]

xt∼pt(xt|x0,i)

[λ(t)∥s(xt, t)−∇ log pt(xt|x0,i)∥2]. (2)

Here pt(xt|x0,i) corresponds to N (mtX0,i, σt), and this
empirical loss can be evaluated with an arbitrary accuracy.
We clip the integral interval by T > 0 because generally
the score blows up as t→ 0 and (1) gets∞ for any neural
network. We let λ(t) ≡ 1 when there is no other remark.

We remark that the expectations with respect to t and xt

can be replaced with finite sample of t and xt, as will be
detailed in Section 4.1. However, we then inevitably need
polynomial number of sample (t, xt) for each x0,i, or an
artifactual modification on the distribution of t, mainly due
to the unboundedness of the score.

Class of neural networks As usual in approximation with
neural networks (Yarotsky, 2017; Liang, 2017), the hypothe-
sis S set in score matching is a class of deep neural network
with the ReLU activation ReLU(x) = max{0, x} (operated
element-wise for a vector) (Nair & Hinton, 2010; Glorot
et al., 2011) with a sparsity constraint (on the number of
non-zero parameters). The score network is a function from
(x, t) ∈ Rd × R+ to y ∈ Rd.
Definition 2.1. A class of neural networks Φ(L,W, S,B)
with height L, width W , sparsity constraint S, and norm con-
straint B is defined as Φ(L,W, S,B) := {(A(L)ReLU(·)+
b(L)) ◦ · · · ◦ (A(1)x + b(1))| A(i) ∈ RWi×Wi+1 , b(i) ∈
RWi+1 ,

∑l
i=1(∥A(i)∥0 + ∥b(i)∥0) ≤ S,maxi ∥A(i)∥∞∨

∥b(i)∥∞ ≤ B}.

We remark that our results for Fully-connected Neural Net-
work (FNN) is easily translated into other architectures. For
example, variants of U-Net (Ronneberger et al., 2015) used
in practice (Song & Ermon, 2019; Ho et al., 2020; Ramesh
et al., 2022) are a kind of Convolutional Neural Network
(CNN) and we can utilize rich literature on converting the
approximation results for FNN into those for CNN (Oono &
Suzuki, 2019; Zhou, 2020; Petersen & Voigtlaender, 2020).

Density estimation in the Besov space As a class of the
true density, the Besov space is introduced via the modulus
of smoothness. We assume that Ω be a cube in Rd.
Definition 2.2. For a function f ∈ Lp(Ω) for some p ∈
(0,∞], the r-th modulus of smoothness of f is defined by

wr,p(f, t) = sup
∥h∥2≤t

∥∆r
h(f)∥p, where ∆r

h(f)(x)

=

{∑r
j=0

(
r
j

)
(−1)r−jf(x+ jh) (if x+ jh ∈ Ω for all j)

0 (otherwise).

Definition 2.3 (Besov space Bs
p,q(Ω)). For 0 < p, q ≤

∞, s > 0, r := ⌊s⌋+ 1, let the seminorm | · |Bs
p,q

be

|f |Bs
p,q

=

{(∫∞
0

(t−swr,p(f, t))
q dt

t

) 1
q (q <∞),

supt>0 t
−swr,p(f, t) (q =∞).

The norm of the Besov space Bs
p,q is defined by

∥f∥Bs
p,q

= ∥f∥p + |f |Bs
p,q

, and we have Bs
p,q = {f ∈

Lp(Ω)| ∥f∥Bs
p,q

<∞}.

Considering the Besov space, many well-known function
classes can be discussed in a unified manner. Let us take
several examples. For α ∈ Zd

+, let ∂α = ∂|α|f

∂
α1
x1

···∂αd
xd

(x). The

Hölder space for s ∈ R>0 \ Z+ is a set of
⌊s⌋ times differentiable functions Cs(Ω) =
{f : Ω → R| ∥f∥Cs := max|α|≤s ∥∂αf∥∞ +

max|α|=⌊s⌋ supx,y∈Ω
∥∂αf(x)−∂αf(y)∥

∥x−y∥s−⌊s⌋ < ∞} for
s ∈ R>0 \ Z+. The Sobolev space for s ∈ N, 1 ≤ p ≤ ∞
is a set of s times differentiable functions W s

p (Ω) :=

{f : Ω → R| ∥f∥W s
p
:= (

∑
|α|≤s ∥∂αf∥pp)

1
p < ∞}. Then

the following relationships are due to Amann et al. (1983):

• For s ∈ N, Bs
p,1(Ω) ↪→W s

p (Ω) ↪→ Bs
p,∞(Ω).

• Bs
2,2(Ω) = W s

2 (Ω).

• For s ∈ R>0 \ Z+, Cs(Ω) = Bs
∞,∞(Ω).

If s > d/p, Bs
p,q(Ω) is continuously embedded in the set

of the continuous functions. Otherwise, the elements in
the space is no longer continuous. Our result is valid for
Bs

p,q(Ω) with s > d(1/p − 1/2)+, and thus can include
discontinuous functions, unlike existing bounds assuming
Lipschitzness (Lee et al., 2022b;a; Chen et al., 2023b).

In this problem settings, we evaluate how close the distri-
bution of ŶT−T can be to the true distribution p0. As a per-
formance measure of the distribution estimator, we employ
both the total variation distance (TV) and the Wasserstein
distance of order one (W1). In Section 6, where the data is
assumed to lie in a low dimensional manifold, we focus on
the Wasserstein distance. This is because the generated dis-
tribution is never absolutely continuous with respect to the
true distribution, and thus the robustness of the Wasserstein
distance to small parallel shift of the distribution is essential
to yield a non-trivial bound not∞.
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2.1. Assumptions

Here we formally state our minimal assumptions. Let d be
a dimenision of the space, n be a number of sample, and
0 < p, q ≤ ∞, s > 0 with s > (1/p−1/2)+ be parameters
of the Besov space. Our main assumption is as follows.
Assumption 2.4. The true density p0 is supported on
[−1, 1]d, upper and lower bounded by Cf and C−1

f on the
support, respectively. Also, p0, when limited to [−1, 1]d,
belongs to U(Bs

p,q([−1, 1]d);C) for some constant C.

U(·;C) denotes the ball of radius C, sometimes written as
U(·) by omitting a constant C. We additionally make two
technical assumptions. One is the smoothness of βt.
Assumption 2.5. β· : [0, T ]→ R+ (t 7→ βt) satisfies 0 <
β ≤ β· ≤ β and β· ∈ U(C∞([0, T ]); 1) as a function of
t ∈ [0, T̄ ].

The other is the smoothness of the true density p0 on the
boundary region. Let a0 be a sufficiently small value defined
later, for example, a0 ≈ n− 1

d+2s in Theorem 4.3.
Assumption 2.6. p0, when limited to [−1, 1]d\[−1+a0, 1−
a0]

d, belongs to U(C∞([−1, 1]d \ [−1 + a0, 1− a0]
d)).

This is to construct the score network in the region where pt
is not lower bounded. This is necessarily because in density
estimation lower boundedness is typically assumed (Tsy-
bakov, 2009) and without lower boundedness the minimax
optimal rates sometimes get worse than otherwise (Niles-
Weed & Berthet, 2022). This assumption can be replaced
by sufficiently slow decay of the density, such as LSI used
in Lee et al. (2022b). We also note that this modification
does not harm the minimax rate.

3. Approximation of the true score
In this section, we consider approximating the true score
∇ log pt via a deep neural network and derive the approxi-
mation error bound. Throughout this section, we fix δ > 0
arbitrarily and take N ≫ 1 as a parameter that determines
the size of the network. We assume Assumption 2.6 with
a0 = N− 1−δ

d and take T = poly(N−1), and T ≃ logN .
The main contribution of this section is the following.
Theorem 3.1. There exists a neural network ϕscore ∈
Φ(L,W, S,B) that satisfies, for all t ∈ [T , T ],∫

x

pt(x)∥ϕscore(x, t)− s(x, t)∥2dx ≲
N− 2s

d log(N)

σ2
t

.

Here, L,W, S and B are evaluated as L =
O(log4 N), ∥W∥∞ = O(N log6 N), S = O(N log8 N),
and B = exp(O(logN · log logN)). Moreover, we can
take ϕscore satisfying ∥ϕscore(·, t)∥∞ = O(σ−1

t log
1
2 N).

The formal proof can be found in Appendix B.

3.1. Proof overview

In order to obtain this result, the approximation should be
constructed in the following ways. (i) It should reflect the
structure of p0(x), especially the fact of p0(x) ∈ U(Bs

p,q).
(ii) It should give a good approximation of the score over
all t ∈ [T , T ]. To address these issues, we construct a novel
basis decomposition in the space of Rd× [T , T ], specifically
designed for the score approximation. Moreover, as usual
in approximation theory (Yarotsky, 2017; Schmidt-Hieber,
2020), each basis can be realized by a neural network very
efficiently, meaning that a polylogarithmic-sized network
suffices with respect to the permissible error.

Approximation via the diffused B-spline Basis We
consider the approximation for t ≪ 1. First remind
the B-spline basis decomposition of the Besov functions
(DeVore & Popov, 1988; Suzuki, 2018). Let N (x) =
1 (x ∈ [0, 1]), 0 (otherwise). The cardinal B-spline of or-
der l is defined by Nl(x) = N ∗N ∗ · · · ∗ N︸ ︷︷ ︸

l+1 times convolution

(x), where

(f ∗ g)(x) =
∫
f(x − t)g(t)dt. Then, the tensor product

B-spline basis in Rd is defined for k ∈ Nd and j ∈ Zd as
Md

k,j(x) =
∏d

i=1N (2kix− ji). It is known that a function
f in the Besov space is approximated by a super-position of
Md

k,j(x) as fN =
∑

(k,j) α(k,j)M
d
k,j(x).

Lemma 3.2 (Informal version of Lemma F.11; Suzuki
(2018)). For any p0 ∈ U(Bs

p,q), there exists a super-
position fN of N tensor-product B-spline bases satisfying

∥p0 − fN∥L2 ≲ N−s/d∥f∥Bs
p,q

.

Inspired by this, we introduce our basis decomposition. Be-
cause of Xt|X0 ∼ N (mtX0, σt), we can write pt as

pt(x) =

∫
p0(y)

1

σd(2π)
d
2

exp

(
−∥x−mty∥2

2σ2
t

)
︸ ︷︷ ︸

=:Kt(x|y)

dy.

Because the transition kernel Kt(x|y) linearly applies to p0
and p0 is approximated by fN =

∑
(k,j) α(k,j)M

d
k,j(x), we

come up with the following approximation of pt:

pt(x) ≈
∑
(k,j)

α(k,j)

∫
Md

k,j(y)K(x|y)dy︸ ︷︷ ︸
=:Ek,j(x,t)

.

Moreover, Ek,j is further decomposed as

Ek,j(x, t)

=

d∏
i=1

∫
N (2kixi − ji)

σt

√
2π

exp(− (xi −mtyi)
2

2σ2
t

)dxi︸ ︷︷ ︸
=:Dk,j(xi,t)

.
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We name Dk,j as the diffused B-spline basis and Ek,j as
the tensor product diffused B-spline basis. We show that
there exists a neural network that approximates Dk,j and
Ek,j very efficiently. Our construction then goes as follows.
We construct networks approximating mt and σt.
Lemma 3.3 (See also Lemma B.1). Under Assumption 2.6,
there exists neural networks ϕm(t), ϕσ(t) ∈ Φ(L,W,B, S)
that approximates mt and σt up to ε for all t ≥ 0,
where L = O(log2(ε−1)), ∥W∥∞ = O(log2(ε−1)), S =
O(log3(ε−1)), and B = O(log(ε−1)).

Next we clip the integral interval of Dk,j and approximate
the integrand by a rational function of (x,mt, σt). Then the
following is obtained as an informal version of Lemma B.3.
Lemma 3.4. For ε > 0, there exists a neural network
ϕTDB : Rd × R+ → Rd that satisfies ∥ϕTDB(x, t) −
Ek,j(x, t)∥∞ ≤ ε. Here, ϕTDB ∈ Φ(L,W, S,B) with
L = O(log4(ε−1)), ∥W∥∞ = O(log6(ε−1)), S =
O(log8(ε−1)), B = exp(O(log(ε−1) log log(ε−1))).

Here ϕTDB approximates Ek,j(x, t) given (x,mt, σt).
Then we use ϕTDB(x, ϕm(t), ϕσ(t)) as the approximation
of Ek,j(x, t), and pt(x) is finally approximated. Similar
approximation can also be made for∇pt(x), and the score
is finally approximated together with∇ log pt(x) =

∇pt(x)
pt(x)

and we obtain the bound as in Theorem 3.1.

We remark that the bounds on the network class param-
eters given above are slightly larger than that for the B-
spline basis (Suzuki (2018)) because approximating in-
tegrals and exponential functions (Appendix F.3) and ra-
tional functions (Appendix F.2) is more difficult than re-
alizing the B-spline basis via polynomials. Especially,
B = exp(O(log ε−1 log log ε−1)) is from approximation
of exponential functions. Because B affects the general-
ization error only in a logB term (see Lemma 4.2), this
super-polynomial scaling does not much affects the the final
estimation errors.

We also remark that, in this construction, the approximation
error for∇pt(x) is amplified in the area where pt(x)≪ 1.
This is why we need the higher-order smoothness of p0 in
the area with distance less than Õ(

√
t) from the edge of the

support (Assumption 2.6). This approach is used during
t ∈ [T , 3N− 2−δ

d ], and it suffices to set a0 to a0 = N− 1−δ
d .

Utilizing the smoothness induced by the noise The
above approach enables approximation of the score in t≪ 1,
when the score is highly non-smooth, by using the structure
of p0. On the other hand, after a certain period of time,
the shape of pt gets almost like a Gaussian, very smooth
and easy to be approximated. This paragraph extends the
previous approach and gives an alternative approximation
based on the smoothness induced by the noise, yielding a
tighter bound.

We begin with evaluating the derivatives of pt w.r.t. t.
Lemma 3.5. For any k ∈ Z+, there exists a constant Ca

depending only on k, d, and Cf such that∣∣∣∂xi1
∂xi2
· · · ∂xik

pt(x)
∣∣∣ ≤ Ca

σk
t

.

We have that ∥pt∗∥Wk
p
= O(t∗−

k
2 ) for t∗ > 0 from this,

and that W k
p ↪→ Bk

p,∞. For t > t∗, consider pt as the
diffused distribution from pt∗ , instead of p0. We can show
that ∇ log pt can be approximated with a neural network
with the size N ′, with an L2 error of O

(
N ′−2k/d

σ2
t
· t−k

∗

)
.

If N ′ and k are sufficiently large, this is tighter than the

previous bound of N− 2s
d

σ2
t

. This argument is formalized as
follows. In Appendix B, this is presented as Lemma B.7.

Lemma 3.6. Let N ≫ 1 and N ′ ≥ t
−d/2
∗ Nδ/2. Sup-

pose t∗ ≥ N−(2−δ)/d. Then there exists a neural network
ϕ′
score ∈ Φ(L,W, S,B) that satisfies∫

x

pt(x)∥ϕ′
score(x, t)− s(x, t)∥2dx ≲

N− 2(s+1)
d

σ2
t

for t ∈ [2t∗, T ]. Specifically, L = O(log4(N)), ∥W∥∞ =
O(N), S = O(N ′), and B = exp(O(logN log logN)).

Setting t∗ = N− 2−δ
d and N ′ = N in this lemma, we obtain

the bound in Theorem 3.1 after t ≳ t∗, without Assump-
tion 2.6. Moreover, further exploiting this lemma later plays
an important role for achieving the minimax optimal estima-
tion rate in the W1 distance.

4. Generalization of the score network
This section converts Theorem 3.1 into the generalization
bound of the score network. We assume n ≫ 1 and As-
sumption 2.6 with a0 = n− 1−δ

d+2s , and take N = n−d/(d+2s),
T = poly(N−1) = poly(n−1), and T ≃ logN ≃ log n.
The formal proofs are found in Appendix C. We begin with
the following fact (Lemma C.3; Vincent (2011)).
Lemma 4.1. The following holds for all s(x, t) and t > 0:∫

x

∫
y

∥s(x, t)−∇ log pt(x|y)∥2pt(x|y)p0(y)dydx

=

∫
x

∥s(x, t)−∇ log pt(x)∥2pt(x)dx+ Ct.

Here Ct is a constant depending on pt. According to this,
minimizing (1) is equivalent to minimizing the difference
between the network and the score in L2(pt).

Let us define

ℓs(x)=

∫ T

t=T

∫
∥s(xt, t)−∇ log pt(xt|x)∥2pt(xt|x)dxtdt,

5
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so that the expected loss (1) and the empirical loss are
written as Ex∼p0 [ℓ(x)] and 1

n

∑n
i=1 ℓ̂(xi), respectively.

For the hypothesis S which we specify later, we define
L = {ℓs| s ∈ S}. Define the empirical loss minimizer
ŝ ∈ argmins∈S

1
n

∑
i ℓs(x0,i). This section evaluates the

difference between the empirical loss and (1) for ŝ. To eval-
uate the difference, we need to bound (i) ∥ℓ∥∞ uniformly
over L and (ii) the covering number of L.

(i) Bounding sup-norm According to Theorem 3.1,

ŝ(x, t) can be taken so that ∥ŝ(·, t)∥∞ ≲ log
1
2 N
σt

. Thus
we limit Φ(L,W,S,B) of Theorem 3.1 into

S := {ϕ ∈ Φ(L,W, S,B)| ∥ϕ(·, t)∥∞ ≲
log

1
2 n

σt
}.

Then Appendix C.1 shows that,

sup
s∈S

sup
x0∈[−1,1]d

ℓs(x0) ≲ log2 n.

(ii) Covering number evaluation By Lemma 3 of Suzuki
(2018) and the fact that ∥ℓs∥∞ is bounded by ∥s∥∞ up to
poly(n), we obtain the following.

Lemma 4.2. The covering number of L is evaluated by

logN (L, ∥ · ∥L∞([−1,1]d), ε) ≲ SL log(ε−1L∥W∥∞Bn).

The proof is found in Appendix C.2. Applying this to The-
orem 3.1, the covering number is bounded by logN ≲
N(log16 N + log12 N log ε−1).

According to the above discussion, we finally obtain the
generalization bound. The next bound is an extension of
Schmidt-Hieber (2020); Hayakawa & Suzuki (2020). While
they considered the minimizer of the mean squared-loss, we
consider the minimizer of the mean of ℓ(xi).

Theorem 4.3. The minimizer of the empirical score selected
from S satisfies that

E{xi}n
i=1

[∫
x

∫ T

t=T

∥ŝ(x, t)−∇ log pt(x)∥2pt(x)dtdx

]
(3)

≲ inf
s∈S

∫
x

∫ T

T

∥s(x, t)−∇ log pt(x)∥22pt(x)dxdt

+
sups∈S ∥ℓs∥∞ logN

n
+ δ.

The first term is bounded by N
−2s/d

log N(log(T/T ) + (T −
T )), according to Theorem B.8. Applying supℓ∈Φ′ ∥ℓ∥∞ ≲
log2 n and logN ≲ N(log14 N + log12 N log ε−1) for the
second term and setting N = ε = n−d/(2s+d) yield that

(3) ≲ n− 2s
d+2s log16 n. (4)

4.1. Sampling t and xt instead of taking expectation

Since our main interest lies in the sample complexity, and
for simple presentation, we have considered the situation
where ℓ(x) can be exactly evaluated. However, in usual
implementation (Sohl-Dickstein et al., 2015; Song & Ermon,
2019), two expectations in (2) with respect to t and xt

are also replaced by sampling for computational efficiency.
Here we also introduce two ways to replace the expectation
by a finite sample of t and xt.

Approximation via polynomial-size sample Let us sam-
ple (ij , tj , xj) from ij ∼ Unif({1, 2, · · · , n}), tj ∼
Unif(T , T ), and xj ∼ ptj (xj |x0,i). Then we let ŝ as

argmin
s∈S

1

M

M∑
j=1

∥s(xj , tj)−∇ log ptj (xj |x0,ij )∥2

and evaluate the difference between

1

n

n∑
i=1

ℓŝ(xi)− argmin
s∈S

1

n

n∑
i=1

ℓs(xi). (5)

The complete proof and formal statement can be
found in Theorem C.6 of Appendix C.4, and here
we provide the proof sketch. We first show that
∥s(xj , tj) − ∇ log ptj (xj |x0,ij )∥ is sub-Gaussian
(Lemma C.5). Here, we simply interpret this as
∥s(xj , tj) − ∇ log ptj (xj |x0,ij )∥ = Õ(t−

1
2

j ) ≲ Õ(T− 1
2 )

with high probability to proceed. Then, by a sim-
ilar argument that derived Theorem 4.3, we can
bound (5) by Õ(T

−1·logN
M ). Here, N satisfies

logN ≲ n
d

2s+d log8 n. In order to make (5) as small as
(4), we need to take M ≳ n · T−1. Thus, for each x0,i,
O(T−1) = poly(n−1) sample of (tj , xj |x0,i) should be
considered. We remark that the reason why we need
polynomial-size sample is mainly due to the scale of
∥s(xj , tj)−∇ log ptj (xj |x0,ij )∥2.

Modifying the distribution of t One may think whether
it is possible to consider only one path for each sample x0,i.
Here, the main problem is that the variance of ∥s(xj , tj)−
∇ log ptj (xj |x0,ij )∥2 can grow to infinity as tj approaches
to 0. To address this issue, we sample tj from µ(t) ∝
1[T≤t≤T ]

t and modify λ(t) as λ(t) = t log T/T

T−T
, while ij , xj

are sampled as previously. Then, we have that

Eij ,tj ,xj

[
λ(tj)∥s(xj , tj)−∇ log ptj (xj |x0,i)∥2

]
=
1

n

n∑
i=1

ℓ(xi),

and that λ(tj)∥s(xtj , tj) − ∇ log pti(xtj |x0,i)∥2 =

Õ(1) holds with high probability (because ∥s(xj , tj) −

6
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∇ log ptj (xj |x0,ij )∥3 = Õ(t−1
j ) and that λ(tj) ≲ 1/tj).

In this way of sampling, we let ŝ as

argmin
s∈S

1

M

M∑
j=1

λ(tj)∥s(xj , tj)−∇ log ptj (xj |x0,ij )∥2

and evaluate the difference (5). Finally, using a similar argu-
ment for Theorem 4.3, we again obtain that (5) is bounded

by Õ( logN
M ) ≲ Õ(n

d
2s+d

M ). Taking M = n suffices to make
this difference as small as (4).

5. Estimation error analysis
This section finally evaluates the goodness of diffusion mod-
eling as a density estimator. As a small modification, if
∥ŶT−T ∥∞ ≥ 2, then we reset it to ŶT−T = 0. This does
not increase the estimation error because ∥X0∥∞ ≤ 1 a.s..

We introduce (Ȳt)
T−T
t=0 , that replaces Ŷ0 ∼ N (0, Id) in the

definition of (Ŷt)
T−T
t=0 by Ȳ0 ∼ pt.

5.1. Estimation rates in TV

First, we consider the bound in the total variation distance
in the same manner as Song & Ermon (2019); Chen et al.
(2023b). Formal proofs are found in Appendix D.2. The
estimation error in TV is decomposed as

E[TV(X0, ŶT−T)] ≲ E[TV(X0,XT)]

+ E[TV(XT ,N (0, Id))] + E[TV(ȲT−T , YT−T )].

The first term comes from truncation of the backward pro-
cess and is bounded by

√
TnO(1) according to Theorem D.2.

The second term corresponds to truncation of the forward
process or the difference between ŶT−T and ȲT−T , and
is bounded by exp(−T ) due to Lemma D.3. For the final
term, Girsanov’s theorem with some modification (Proposi-
tion D.1) bounds the third term by

E{x0,i}n
i=1

√√√√∫ T

t=T

Ex∼pt [∥ŝ(x, t)−∇ log pt(x)∥2dt]. (6)

The convexity of √ and the generalization bound of the
score network (4) yields (6) ≲ n− s

d+2s log9 n. Now, we
formalize our estimation error bound.

Theorem 5.1. Let T = n−O(1) and T = s logn
β(d+2s) . Then,

E[TV(X0, ŶT−T )] ≲ n−s/(2s+d) log8 n.

On the other hand, we can show that the estimation problem
in the Besov space has the following lower bound. The
proof is found in Proposition D.4.

Proposition 5.2. For 0 < p, q ≤ ∞, s > 0, and s >
max{d( 1p −

1
2 ), 0}, we have that

inf
µ̂

sup
p∈Bs

p,q

E[TV(µ̂, p)] ≳ n−s/(2s+d),

where µ̂ runs over all estimators based on n observations.

Therefore, we have proved that diffusion modeling achieves
the minimax estimation rate for the Besov space Bs

p,q in the
total variation distance up to the logarithmic factor.

5.2. Estimation rates in W1

We also consider the estimation rate in W1. Because both
X0 and ŶT−T have bounded supports, Theorem 5.1 directly
yields the convergence rate of n−s/(2s+d) log9 n. However,
it is known from Niles-Weed & Berthet (2022) that the
minimax estimation rate in W1 is faster than this.
Proposition 5.3 (Niles-Weed & Berthet (2022)). Let p, q ≥
1, s > 0 and d ≥ 2.

inf
µ̂

sup
p∈Bs

p,q

E[W1(µ̂, p)] ≳ n−(s+1)/(2s+d),

where µ̂ runs over all estimators based on n observations.
Moreover, if 1 ≤ p < ∞, 1 ≤ q ≤ ∞, s > 0, and d ≥ 3,
there exists an estimator µ̂∗ that achieves this minimax rate.

Then are diffusion models sub-optimal in this case? In
the following, we show the surprising fact that diffusion
modeling also achieves the nearly minimax optimal rate, if
some modification applied.

Theorem 5.4. For any fixed δ > 0, we can train the score
network with n(≫ 1) sample and with that we have

E[W1(X0, ŶT−T )] ≲ n− (s+1−δ)
d+2s .

Appendix D.2 proves this theorem. The n
δ

d+2s term, an
arbitrarily small difference from the optimal rate of n− s+1

d+2s ,
appears because in Lemma 3.6 score approximation at time t
requires the network size N ′ to be slightly larger than t−d/2.
This slight difference should be nO(δ), yielding the n

δ
d+2s

term. While µ̂∗ in Proposition 5.3 is the wavelet estimator
that explicitly approximates p0, diffusion models estimate
the score at different time to implicitly learn p0, making
the analysis more difficult and requiring us to use this term.
Removing this term is future work.

Switching score networks We now sketch our strategy.
First, let us carefully consider where we lose the estima-
tion rate, going back to the approximation error analy-
sis Section 3. Although we used Theorem 3.1 for all
T ≤ t ≤ T , Lemma 3.6 tells us that if t ≳ N− 2−δ

d ≃
n− 2−δ

2s+d , we can make the approximation error smaller

than N− 2(s+1)
d

σ−2
t

= n
− 2(s+1)

d+2s

σ−2
t

with a smaller network of size

7
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N ′ ≤ N . This means that we have used a sub-optimal net-
work for t ≳ n− 2−δ

d+2s in terms of both approximation and
generalization errors.

Based on this discussion, we divide the time into t0 = T <

t1 = 2n− 2−δ
d+2s < · · · < tK∗ = T − T with ti+1/ti =

const. ≤ 2 (i ≥ 1). The number of intervals amounts to
K∗ = O(log n). We consider to train a tailored network for
each time interval [ti, ti+1] and to switch them for different
intervals. Lemma 3.6 yields that for i ≥ 1 these exists a
network si ∈ Φ(Li,Wi, Si,Wi) such that

Ex∼pt
[∥si(x, t)−∇ log pt(x)∥2]≲

n− 2(s+1)
d+2s

σ2
t

(t ∈ [ti, ti+1]),

with L = O(log4(N)), ∥W∥∞ = O(N), S =

O(t−d/2
i Nδ/2), and B = exp(O(log4 N)). Therefore, we

choose a sequence of score networks ŝi so that ŝi minimizes
the score matching loss restricted to [ti, ti+1]:

1

n

n∑
j=1

E
t∼Unif[ti,tj+1]
xt∼pt(xt|x0,j)

[∥s(xt, t)−∇ log pt(xt|x0,j)∥2].

Similarly to Theorem 4.3, Theorem C.4 yields that the fol-
lowing generalization error bound for i ≥ 1:

E{x0,j}n
i=j

[∫ ti+1

t=ti

Ex

[
∥ŝi(x, t)−∇ log pt(x)∥2dt

]]
(7)

≤

(
n− 2(s+1)

d+2s +
t
−d/2
i n

δd
(d+2s) log10 n

n

)
· Õ(ti/σ2

ti)︸ ︷︷ ︸
=Õ(1)

.

For t ≲ n− 2−δ
d+2s , we use a network trained via the score

matching loss restricted to [ti, ti+1]. Thus, (7) for i = 0 is
bounded by Õ(n− 2s

d+2s ) similarly to (4).

One may think that the above improvement would be useless
because the error caused at t ≤ n− 2−δ

d+2s has the n−2s/(d+2s)

rate and dominates the estimation error. However, another
important observation is that the Wasserstain distance is a
transportation distance. The score estimation error at time
closer to t = 0 less contributes to the estimation error, be-
cause the distance how much each path evolves is small
from that time. As we will see, the idea of improving accu-
racy for large t indeed yields the minimax optimal rate in
W1.

To utilize this observation, let us consider a sequence of
stochastic processes. Let (Yt)[0,T ] = (Ȳ

(0)
t )[0,T ], and for

i ≥ 1, let (Ȳ (i))[0,T ] be a stochastic process which uses the
true score during [0, T −ti] and the estimated score ŝ during
[T − ti, T − T ], and Ȳ

(i)
0 ∼ pT . Then, we have that

E[W1(X0, ŶT−T )] ≤ E[W1(X0, XT )] (8)

+ E[W1(ŶT−T , ȲT−T ))] + E[W1(ȲT−T , YT−T )].

The first term is bounded by
√
T due to (91) and the sec-

ond term is bounded by exp(−T ) due to Lemma D.6.
The last term E[W1(ȲT−T , YT−T )] is upper bounded by∑K∗

i=1 E[W1(Ȳ
(i−1)

T−T
, Ȳ

(i)

T−T
)]. Then, we use the following

lemma, an informal version of Lemma D.7.
Lemma 5.5. For i = 1, 2, · · · ,K∗, we have that

W1(Ŷ
(i−1)

T−T
, Ŷ

(i)

T−T
) ≤ Õ(1)·√√√√ti−1E{x0,i}n

i=1

[∫ ti

t=ti−1

Ex [∥ŝ(x, t)−∇ log pt(x)∥2dt]

]
.

RHS is decomposed to the two factors: the score matching
loss during [ti−1, ti] and

√
ti. The latter corresponds to how

much Yt moves from t = T − ti to T − T . This bound
represents that, as ti → 0, while score matching gets more
difficult, its contribution to the W1 error is reduced. The
formal proof requires construction of a path-wise transporta-
tion map; see the proof for Lemma D.7.

Putting it all together, we finally yields Theorem 5.4, the
nearly minimax optimal rate in W1. Specifically, if we
ignore logarithmic factors, (8) is bounded by√

T + exp(−T ) +
√
t0n

− 2s
d+2s

+

K∗∑
i=2

√
ti

√
n− 2(s+1)

d+2s +
t
−d/2
i n

δd
2(d+2s)

n
≲ n− s+1−δ

d+2s ,

where we set T = n− 2(s+1)
d+2s and T = (s+1) logn

β(d+2s) .

Remark 5.6. Although we used differently optimized mul-
tiple networks, it is also possible that such modification
is implicitly made in reality. The first evidence is implicit
reguralization, where sparsify of the solution is induced by
learning procedures (Gunasekar et al., 2017; Arora et al.,
2019; Soudry et al., 2018). When the sub-networks for
differnt time intervals are learned in parallel via the score
matching at once (1), these theory suggests the good score
network is obtained without explicit regularization like our
switching procedure. Another evidence is that in practice
the weight function λ(t) sometimes increases as t gets large
(Song & Ermon, 2019; Song et al., 2020), suggesting that the
quality of the score network at larger t is more emphasized.

5.3. Discussion on the discretization error
Although the continuous time SDE is mainly focused on for
simple presentation, we can also take the discretization error
into consideration. We here only provide the summary, and
the details are presented in Appendix D.3. Let t0 = T <
t1 < · · · < tK∗ = T be the time steps with η ≡ tk+1 − tk.
We train the score network as the minimizer of

n∑
i=1

K−1∑
k=0

ηE[∥s(xtk , tk)−∇ log pT−tk
(xtk |x0,i)∥2].

8
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Here the expectation is taken with respect to xT−tk
∼

pT−tk
(xT−tk

|x0,i). Then consider the following process
(Y d

t )ηKt=0 with Y d
0 ∼ N (0, Id): for t ∈ [T − ti, T − ti+1],

dY d
t = βt(Y

d
t + 2ŝ(Y d

T−ti
, T − ti))dt+βT−tdBt

This is just replacement of the drift term at t by that at
the last discretized step, and we can obtain Ȳη(k+1) from
Ȳηk as easy as the classical Euler-Maruyama discretization
because Ȳη(k+1) conditioned on Ȳηk is a Gaussian. This
is also adopted in De Bortoli (2022); Chen et al. (2023b).
However, De Bortoli (2022) requires ηi ≤ exp(−nO(1))
and Chen et al. (2023b) assumes Lipschitzness of the score,
which does not necessarily hold in our setting.

We can show the following discretization error bound:
Theorem 5.7. Let T = n−O(1) and T = s logn

2s+d . Then,

E[TV(X0, Y
d
T−T

)] ≲ Õ
(
η2T−3 + n− s

d+2s
)
.

Thus, taking η = T−1.5n−s/(2s+d) = poly(n−1) suffices
to ignore the discretization error.

6. Error analysis with intrinsic dimensionality
Although the obtained rates in Section 5 are minimax opti-
mal, they still suffer from the curse of dimensionality: the
exponent of the convergence rates depend on d. In statis-
tics, one approach to avoid this curse of dimensionality
is to assume mixed or anisotropic smoothness (Ibragimov
& Khas’minskii, 1984; Meier et al., 2009; Suzuki, 2018;
Suzuki & Nitanda, 2021), and our theory directly applies
to them. On the other hand, the manifold hypothesis, that
the distributions of real-world data lie in low dimensional
manifolds, has been proposed (Tenenbaum et al., 2000; Fef-
ferman et al., 2016), and this is another assumption that
can avoid the curse of dimensionality: convergence rates
dependent not on the dimension d of the space itself but on
the manifold’s dimension d′ can be derived Schmidt-Hieber
(2019); Nakada & Imaizumi (2020).

As for the diffusion models, despite its statistical impor-
tance, none of the literature has shown that diffusion models
can ease the curse of dimensionality; in the first place, the
density estimation problem itself has never been considered.

We introduce several recent works that investigated the con-
vergence of diffusion modeling under the manifold hypoth-
esis. Pidstrigach (2022) discussed the effects of the score
approximation, but their bounds are not quantitative and
does not consider the estimation rate. De Bortoli (2022)
considered the estimation rates, but the approximation error
should be exponentially small with respect to the desired es-
timation rate. Batzolis et al. (2022) experimentally showed
that diffusion modeling learns the dimension of the under-
lying manifold and the dimension of the manifold can be
estimated from the trained diffusion models.

From now, we define the specific class of density function
with intrinsic dimensionality and show the estimation rate.

Let d′ ≤ d be an integer and A ∈ Rd×d′
be a matrix made

of orthogonal column vectors with the norm one. We con-
sider the d′-dimensional subspace V := {y ∈ Rd | ∃x ∈
Rd′

s.t. y = Ax} where the true density has its support, i.e.,
d′ represents the intrinsic dimensionality. Together with
Assumption 2.5, we assume the followings.
Assumption 6.1. The true density p0 is a probability
measure that is absolutely continuous with respect to the
Lebesgue measure on the sub-space V . Its probability den-
sity function as a function on the canonical coordinate sys-
tem of the subspace V is denoted by q.
Assumption 6.2. q is upper and lower bounded by
Cf and C−1

f , respectively. Moreover, q belongs to
U(Bs

p,q; [−1, 1]d
′
).

Assumption 6.3. q belongs to U(C∞([−1, 1]d′ \ [−1 +

a0, 1− a0]
d′
)) with a0 = n− 1−δ

d′ .

We now state our result as follows:
Theorem 6.4. For any fixed δ > 0, we can train the score
network with n(≫ 1) sample so that

E[W1(X0, ŶT−T )] ≲ n− (s+1−δ)

d′+2s .

Appendix E provides the complete proof. Contrary to The-
orem 5.1, the upper bound here depends on d′ (not on d).
Thus, we can conclude that the diffusion models can avoid
the curse of dimensionality.

7. Conclusion
This paper analyzed diffusion modeling as a distribution
learner from the viewpoint of statistical learning theory and
derived several estimation rates. When the true density
belongs to the Besov space and deep neural networks are
appropriately minimized, diffusion modeling can achieve
nearly minimax optimal estimation rates in TV and W1.

To approximate the score, the novel basis is introduced,
which we call the diffused B-spline basis. The bound in
W1 is derived by carefully balancing the difficulty in score
matching and how much the error in score matching at
each time affects the W1 distance. We also demonstrated
that diffusion models can avoid the curse of dimensionality
under the manifold hypothesis.

This paper did not discuss any optimization aspect of diffu-
sion modeling. We leave this problem as future work.
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Additional remarks

Remark on the concurrent work of Chen et al. (2023a) After the submission of this paper to ICML 2023 (deadline: Jan.
26, 2023) and Me-FoMo (ICLR 2023 workshop, deadline: Feb. 3, 2023), the preprint named as Approximation, Estimation
and Distribution Recovery of Diffusion Models on Low-Dimensional Data (Chen et al., 2023a) appeared on arXiv on Feb.
14. They consider generalization errors of diffusion modeling in a somewhat similar setting to our Section 6. They assume

that q is Lipshitz and sub-Gaussian, and ∇ log

[∫
q(y) 1

σd
t (2π)

d′
2

exp
(
−∥x−mty∥

2σ2
t

)
dy

]
is also Lipschitz over all t ∈ [T , T ],

and derived the estimation error rate of n− 1−o(n)

2(d′+5) in W1.

We would like to note several distinction between Chen et al. (2023a) and ours. First, that directly assumed the smoothness
of the score over all t, while our assumptions on the data are made only about the true data distribution. In other words, they
make an assumption on the intermediate distribution along the way of the diffusion process. Therefore, their assumptions
are cannot be verified solely on the true data distribution, which makes it unclear what functions are included in their
setting. Under their assumptions, they divided Rd′ × [T , T ] into a mesh, and, on each of the small hypercube, they locally
approximate the score by its value on the center. On the other hand, we treated x and t differently and established a tailored
basis decomposition to efficiently approximate the score function based solely on the structure of the initial distribution p0,
which is crucial to obtain the nearly minimax optimal estimation rates in our analysis.

Also, while they derived the rate of n− 1−o(n)

2(d′+5) in W1, that is sub-optimal in their setting. Indeed, this is weaker than
De Bortoli (2022) 1 of n−1/d′

, which was derived without considering generalization of deep neural networks. Instead, the
rate of n−1/d′

was derived by perfectly fitting the score network to the diffusion process from the empirical distribution
and then just considering the convergence of the empirical distirbution to the true data distribution Weed & Bach (2019).

Furthermore, in this paper, Section 6 derived the rate of n− (s+1−δ)

d′+2s under the s-th order of smoothness (in a rough expression),
by considering generalization of deep neural networks. This rate gets faster as s increases.

Reemark on

A. Several high-probability bounds on the backward paths
One of the difficulties in the analysis is the unboundedness of the space and the value of the score. This subsection aims
to provide several treatments for such issues. These inequalities allow us to focus on the score approximation within the
bounded region. We note that, however, some of the following bounds still depend on the time t, and therefore the level of
difficulty for approximation and estimation of the score differs with respect to t.

In the following, we define several constants Ca,i. Other than in this section, we simply denote them as Ca for simplicity.

A.1. Bounds on ∥Yt∥ and ∥∆Yt∥ with high probability

We first provide several high-probability bounds, which guarantee that most of the paths travel within some bounded region.

Lemma A.1 (Bounds on ∥Yt∥ and ∥∆Yt∥ with high probability). There exists a constant Ca,1 such that

P
[
∥Yt∥∞ ≤ mT−t + Ca,1σT−t

√
log(ε−1T−1T ) for all t ∈ [0, T − T ]

]
≥ 1− ε.

Moreover, for an arbitrarily fixed 0 < τ ≤ 1,

P
[
∥Yt − Yt+τ∥∞ ≤ Ca,1

√
τ log(ε−1τ−1T ) for all t ∈ [0, T − τ ]

]
≥ 1− ε.

Proof. Remind that Yt = XT−t. Thus we discuss bounding Xt in the following.

We begin with the first assertion. Let t1, t2, · · · , tK be time steps satisfying T = t1 < t2 < · · · < tK = T with

1Although the original version of De Bortoli (2022) requires the bounded support in contrast to the sub-Gaussian assumption in Chen
et al. (2023a), we can easily approximate a sub-Gaussian distribution with a distribution with bounded support.
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ti − ti−1 = ∆t that is some scaler value specified later. We first show the following for some constant C1:

P
[
∥Xt∥∞ ≤ mt + C1σt

√
log ε−1 for all t = ti (i = 1, 2, · · · ,K)

]
≥ 1− εK. (9)

Remind that Xt|X0 follows N (mtX0, σ
2
t ) and ∥X0∥∞ ≤ 1. Lemma F.12 yields that

P
[
∥X∥∞ ≤ mt + C1σt

√
log ε−1 for some fixed t = ti

]
≥ 1− ε,

which immediately yields (9).

Then we consider how far each particle Xt moves from t = ti−1 to ti. Equivalently, we consider Xt and decompose it into

Xt = exp

(
−
∫ ti

s=ti−1

βsds

)
Xti−1 +B

1−exp(−2
∫ ti
s=ti−1

βsds)
, (10)

where Bs denotes a d-dimensional Brownian motion. This is obtained by considering the Ornstein-Uhlenbeck process
starting from t = ti−1. By Lemma F.13, with probability at least ε, the following holds uniformly over t ∈ [ti−1, ti]:

∥Xt∥∞ ≤ exp

(
−
∫ ti

s=ti−1

βsds

)
∥Xti−1

∥∞ +

√
1− exp(−2

∫ ti

s=ti−1

βsds) · 2
√
β2 log dε−1

≤ exp

(
−
∫ ti

s=ti−1

βsds

)
∥Xti−1

∥∞ +
√
2β∆t · 2

√
β2 log dε−1.

If ∥Xti−1
∥∞ ≤ mti−1

+ C1σti−1

√
log ε−1, this is further bounded by

∥Xt∥∞ ≤ mti−1
+ C1σti−1

√
log ε−1 +

√
∆t · 4

√
ββ log dε−1.

Because we can check that σt ≃
√
t ∧ 1 ≥

√
T holds, if we take ∆ ≤ T , then we have that

C1σti−1

√
log ε−1 +

√
∆t · 4

√
ββ log dε−1 ≲ C2σti−1

√
log ε−1 (11)

for all t ∈ [ti−1, ti], with some constant C2.

Therefore, with probability 1− 2Kε we have (9), and (11) for all i. We need to take K = O(T/T ) to satisfy ∆ ≤ T . We
reset ε

K as a new ε and adjust C2 accordingly. Now the first assertion is proved.

Next, we consider the second assertion. Let us consider a different time discretization t0 = 0, t1 = τ, t2 = 2τ, · · · , tK = Kτ

with K = min{i ∈ N|Kτ ≥ T}. Then, from the first argument, we have that ∥Xt∥∞ ≤ mt +C2σt

√
log(ε−1τ−1T ) holds

with probability at least 1− ε, for all t = t0, t1, · · · , tK . We condition the event conditioned by this. By (10), we have that,
for t ≥ ti−1,

Xt −Xti−1 =

[
exp

(
−
∫ ti

s=ti−1

βsds

)
− 1

]
Xti−1 +B

1−exp(−2
∫ ti
s=ti−1

βsds)
,

which yields that

∥Xt −Xti−1
∥∞ ≤

∣∣∣∣∣exp
(
−
∫ ti

s=ti−1

βsds

)
− 1

∣∣∣∣∣ ∥Xti−1
∥∞ +

∥∥∥∥B1−exp(−2
∫ ti
s=ti−1

βsds)

∥∥∥∥
∞

≤ τβ(mti−1
+ C2σti−1

√
log(ε−1τ−1T )) +

∥∥∥∥B1−exp(−2
∫ ti
s=ti−1

βsds)

∥∥∥∥
∞

We bound the last term over t ∈ [ti−1, ti]. With probability at least 1− ε
K , that is bounded by

√
2βτ · 2

√
β2 log dKε−1

according to Lemma F.13. To summarize, with probability at least 1− 2ε,

sup
t∈[ti−1,ti]

∥Xt −Xti−1
∥∞ ≤ τβ(mti−1

+ C2σti−1

√
log(ε−1τ−1T )) +

√
2βτ · 2

√
β2 log dKε−1
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holds for all i = 0, 1, · · · ,K − 1. RHS is bounded by C3

√
τ log ε−1τ−1T with some sufficiently large constant C3.

Then, for any t, there exists i such that t ≤ ti ≤ t+ τ . Thus, with probability 1− 2ε, ∥Xt−Xt+τ∥∞ ≤ ∥Xt−Xti−1
∥∞ +

∥Xti − Xti−1
∥∞ + ∥Xt+τ − Xti∥∞ is bounded by 3C3

√
τ log ε−1τ−1T for all t. Setting 2ε to ε yields the second

assertion.

A.2. Bounds on pt(x)

We then give upper and lower bounds on pt(x).

Lemma A.2 (Upper and lower bounds on the density pt(x)). The following upper and lower bounds on pt(x) holds for a
constant Ca,2 depending on Cf and d:

C−1
a,2 exp

(
−
d(∥x∥∞ −mt)

2
+

σ2
t

)
≤ pt(x) ≤ Ca,2 exp

(
−
(∥x∥∞ −mt)

2
+

2σ2
t

)
. (for all t.)

Proof. We first consider the case when x ∈ [−mt,mt]
d. The upper bound is relatively easy. f(y) ≤ Cf1[y ∈ [−1, 1]d]

means

pt(x) =

∫
1

σd
t (2π)

d
2

f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy ≤

∫
Cf1[y ∈ [−1, 1]d]

σd
t (2π)

d
2

exp

(
−∥x−mty∥2

2σ2
t

)
dy =

2dCf

σd
t (2π)

d
2

.

(12)

At the same time, we have that

pt(x) ≤
∫

Cf

σd
t (2π)

d
2

exp

(
−∥x−mty∥2

2σ2
t

)
dy =

Cf

md
t

. (13)

Thus, according to (12) and (13), pt(x) is bounded by min

{
2dCf

σd
t (2π)

d
2
,
Cf

md
t

}
. This is further bounded by a constant that

depends only on Cf and d, because m2
t + σ2

t = 1 holds for all t.

The lower bound can be understood as follows. We have

pt(x) =

∫
C−1

f

σd
t (2π)

d
2

f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

≥ 1

(2π)
d
2

∫
f(x/mt − σty) exp

(
−∥mty∥2

2

)
dy (by letting (x−mty)/σt 7→ mty). (14)

Since x ∈ [−mt,mt]
d, we have x/mt ∈ [−1, 1]d. Thus, |{y ∈ [−1, 1]d| x/mt − σty ∈ [−1, 1]}| ≥ 1. Moreover,

exp
(
−∥mty∥2

2

)
≥ exp(−d2/2) in y ∈ [−1, 1]d. Therefore, the integral (14) is lower bounded by exp(−d2/2).

We then consider the case when x /∈ [−mt,mt]
d. For such x, let r = (∥x∥∞ −mt)/σt and choose i∗ from {1, 2, · · · , d}
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such that |xi∗ | = ∥x∥∞ = mt + r/σt holds. Then, we have the upper bound of pt(x) as

pt(x) =

∫
1

σd
t (2π)

d
2

f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

≤ Cf

d∏
i=1

∫
1[−1 ≤ yi ≤ 1]

σt(2π)
1
2

exp

(
− (xi −mtyi)

2

2σ2
t

)
dyi

≲ Cf

∫
yi∗∈[−1,1]

1

σt(2π)
1
2

exp

(
− (xi∗ −mtyi∗)

2

2σ2
t

)
dy (15)(

because
∫

1[−1 ≤ yi ≤ 1]

σt(2π)
1
2

exp

(
− (xi −mtyi)

2

2σ2
t

)
dyi for i ̸= i∗ is bounded by O(1), as pt(x) for x ∈ [−mt,mt]

d.
)

≤ Cf

mt

∫ ∞

a=r/
√
2

1√
π
exp

(
−a2

)
da (by a = xi∗ −mtyi∗/

√
2σt)

≤ Cf

mt
exp

(
−r2/2

)
=

Cf

mt
exp

(
− (∥x∥∞ −mt)

2

2σ2
t

)

where we used
∫∞
z

e−a2

da ≤ e−z2

(see, e.g. Chang et al. (2011)) for the last inequality. Also, (15) is alternatively

bounded by 2Cf

σt(2π)
1
2
exp

(
− (∥x∥∞−mt)

2

2σ2
t

)
. Because m2

t + σ2
t = 1 means that min{mt, σt} ≳ 1, it holds that pt(x) ≲

Cf exp
(
− (∥x∥∞−mt)

2

2σ2
t

)
.

On the other hand,

pt(x) =

∫
1

σd
t (2π)

d
2

f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

≥ C−1
f

d∏
i=1

∫
yi∈[−1,1]

1

σt(2π)
1
2

exp

(
− (xi −mtyi)

2

2σ2
t

)
dy︸ ︷︷ ︸

(a)

= C−1
f

(∫
yi∗∈[−1,1]

1

σt(2π)
1
2

exp

(
− (xi∗ −mtyi∗)

2

2σ2
t

)
dy

)d

(because (a) is minimized when i = i∗)

≥
C−1

f

md
t

(∫ r/
√
2+

√
2mt/σt

a=r/
√
2

1√
π
exp

(
−a2

)
dy

)d

(by (xi∗ −mtyi∗)/
√
2σt)

≥
C−1

f

md
t

(∫ r/
√
2+

√
2mt

a=r/
√
2

1√
π
exp

(
−a2

)
dy

)d

≥
C−1

f

md
t

(√
2mt√
π

exp
(
−(r/

√
2 +
√
2mt)

2
))d

(by lower bounding exp(−a2) in the integral interval and just multiplying the width of the interval)

≥
C−1

f

md
t

(√
2mt√
π

exp
(
−r2 − 4

)
da

)d

≥
C−1

f 2d/2

e4dπd/2
exp

(
−dr2

)
,

which gives the lower bound on pt(x).
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A.3. Bounds on the derivatives of pt(x) and the score

This subsection evaluates the derivatives of pt(x) and the score. On the one hand, straightforward argument yields
that the derivatives of pt(x) is bounded by ∂kpt(x) = O(1/σk

t ) = O(t−k/2). On the other hand, as for the score,
supx∈Rd ∥∇ log pt(x)∥ = ∞ holds in general, which prevents us to construct an approximation of the score with neural
networks. This is because ∇ log pt(x) = ∇pt(x)

pt(x)
and pt(x) can be arbitrarily small as ∥x∥ → ∞. Nevertheless, using

Lemma A.2, we can show the bounds on the score dependent on x and t, in the next Lemma A.3. In Lemma A.4, Lemma A.3
is used to show that the decay of pt is so fast that the approximation error in the region with small pt(x) (that can be≫ 1
in some x) does not much affects the L2(pt) approximation error bound; We can show that ∥∇ log pt(x)∥ = Õ(1/σt) =
Õ(1 ∨ 1/

√
t) with high probability (when x ∼ pt).

Lemma A.3 (Boundedness of derivatives). For k ∈ Z+, there exists a constant Ca,3 depending only on k, d, and Cf such
that

|∂xi1
∂xi2
· · · ∂xik

pt(x)| ≤
Ca,3

σk
t

. (16)

Moreover, we have that

∥∇ log pt(x)∥ ≤
Ca,3

σt
·
(
(∥x∥∞ −mt)+

σt
∨ 1

)
, (17)

and that for i ∈ {1, 2, · · · , d},

∥∂xi∇ log pt(x)∥ ≤
Ca,3

σ2
t

(
(∥x∥∞ −mt)

2
+

σ2
t

∨ 1

)
. (18)

and that

∥∂t∇ log pt(x)∥ ≤
Ca,3

σ3
t

[|∂tσt|+ |∂tmt|]
(
(∥x∥∞ −mt)

2
+

σ2
t

∨ 1

) 3
2

. (19)

Proof. First, we consider (16). Let g1(x) = pt(x) =
∫

1

σd
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy. For s ∈ Zd

+, we abbreviate the

notation as g(s)1 (x) = ∂s1
x1
∂s2
x2
· · · ∂sd

xd
g1(x). For s ∈ Zd

+, we define Bs = {s′ ∈ Zd
+|s′i ≤ si (i = 1, · · · , d)} and a constant

cs such that ∂s1
x1
∂s2
x2
· · · ∂sd

xd
e−∥x∥2/2 =

∑
s′∈Bs

cs′x
s′1
1 x

s′2
2 · · ·x

s′d
d e−∥x∥2/2 holds. Then, because of ∂xi

= 1
σ∂ xi

σ
, we can

write g
(s)
1 (x) as

g
(s)
1 (x) =

∑
s′∈Bs

cs′

σ
∑d

i=1 si
t

∫ d∏
i=1

(
xi −myi

σt

)s′i 1

σd
t (2π)

d
2

f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy︸ ︷︷ ︸

(a)

. (20)

Note that maxs :
∑

si≤k{
∑

s′∈Bs
cs′} is bounded by a constant that only depends on k. Thus we focus on the evaluation of

(a). When t ≤ 1, (a) in (20) can be bounded by O(1/md
t ) ≃ O(1) (we hide dependency on

∑d
i=1 s

′
i ≤ k and Cf ). This is

because mt ≃ 1 and f(y) ≤ Cf . On the other hand, when t ≥ 1, σt ≳ 1 holds, we can bound (a) by O(1) by noting that
f(y) ̸= 0 only for y ∈ [−1, 1]d. Now, the first statement (16) has been proven.

We then consider ∇ log pt(x) and its derivatives. We can focus on [∇ log pt(x)]1, and all the other coordinates of the score
are bounded in the same way. Let g2(x) = σt[∇pt(x)]1 = −

∫
x1−mty1

σd+1
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy, and define g

(s)
2 in

the same way as that for g(s)1 .

We can see that

[∇ log pt(x)]1 =
1

σt
· g2(x)
g1(x)

, [∂xi
∇ log pt(x)]1 =

1

σt
· ∂xi

g2(x)

g1(x)
− 1

σt
· g2(x)(∂xi

g1(x))

g21(x)
. (21)

17
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Moreover,

g2(x)

g1(x)
=

−
∫

x1−mty1

σd+1
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy∫

1

σd
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

, (22)

∂xig1(x)

g1(x)
=

1

σt
·
−
∫

xi−mtyi

σd+1
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy∫

1

σd
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

, (23)

∂xig2(x)

g1(x)
= − 1

σt
·

∫ 1[i=1]− x1−mty1
σt

xi−mtyi
σt

σd
t (2π)

d
2

f(y) exp
(
−∥x−mty∥2

2σ2
t

)
dy∫

1

σd
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

. (24)

In order to bound them, we consider the following quantity with
∑d

i=1 si ≤ 2. Also, let ε be a scaler value specified later,
with which we assume pt(x) ≥ ε holds for the moment.∫ ∏d

i=1

(
xi−mtyi

σt

)si
1

σd
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy∫

1

σd
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

σ2
t

)
dy

(25)

According to Lemma F.9, we have that∣∣∣∣∣
∫
Ax

d∏
i=1

(
xi −mtyi

σt

)si 1

σd
t (2π)

d
2

f(y) exp

(
−∥x−my∥2

2σ2
t

)
dy

−
∫
Rd

d∏
i=1

(
xi −mtyi

σt

)si 1

σd
t (2π)

d
2

f(y) exp

(
−∥x−my∥2

2σ2
t

)
dy

∣∣∣∣∣ ≤ ε

2
.

where Ax =
∏d

i=1 a
x
i with axi = [ x1

mt
− σtCf

mt

√
log 2ε−1, x1

mt
+ σtCf

mt

√
log 2ε−1]. Note that Cf only depends on

∑d
i=1 si,

d, and Cf .

Therefore, when pt(x) = g1(x) ≥ ε,

(25) ≤
2
∫ ∏d

i=1

(
xi−mtyi

σt

)si
1

σd
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy∫

Ax
1

σd
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

σ2
t

)
dy

≤
2
∫
Ax

∏d
i=1

(
xi−mtyi

σt

)si
1

σd
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy∫

Ax
1

σd
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

σ2
t

)
dy

+
2 · ε2
ε

(note that the denominator is larger than ε)

≤ 2 max
y∈Ax

[
d∏

i=1

(
xi −mtyi

σt

)si
]
+ 1

≤ 2
(
C2

f log ε
−1
)(∑d

i=1 si)/2
+ 1. (26)

Applying this bound to (22), (23), and (24), g2(x)
g1(x)

,
∂xi

g1(x)

g1(x)
, and ∂xi

g2(x)

g1(x)
are bounded by

log1/2 ε−1,
log1/2 ε−1

σt
, and

log ε−1

σt
,
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up to constant factors, respectively. Finally, we apply this to (21) and obtain that

∥∇ log pt(x)∥ ≲
log1/2 ε−1

σt
and, ∥∂xi

∇ log pt(x)∥ ≲
log ε−1

σ2
t

.

Now we replace ε with a specific value. Remember that ε should satisfy ε ≤ pt(x). According to Lemma A.2, we have

C−1
a,2 exp

(
−d(∥x∥∞−mt)

2
+

σ2
t

)
≤ pt(x), which yields that

∥∇ log pt(x)∥ ≤
Ca,3

σt
· (∥x∥∞ −mt)+

σt
∨ 1, and ∥∂xi

∇ log pt(x)∥ ≤
Ca,3

σ2
t

(
(∥x∥∞ −mt)

2
+

σ2
t

∨ 1

)
,

with Ca,3 depending on k, d and Cf . Thus, we obtain (17) and (18).

Finally, we consider ∂t∇ log pt(x).

∂t∇ log pt(x) = ∂t

(
1

σt
· g2(x)
g1(x)

)
=

(
∂t

1

σt

)
g2(x)

g1(x)
− 1

σt
· (∂tg1(x))

g1(x)
· g2(x)
g1(x)

+
1

σt
· ∂tg2(x)

g1(x)

=
(−∂tσt)

σt
∇ log pt(x)

− 1

σt
·

∫ −d(∂tσt)σ
−1
t +∥x−mty∥2(∂tσt)σ

−3
t −(∂tmt)y

⊤(mty−x)σ−2
t

σd
t (2π)

d
2

f(y) exp
(
−∥x−mty∥2

2σ2
t

)
dy∫

1

σd
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

· ∇ log pt(x).

+
1

σt
·

∫ (∂tmt)y1+(x1−mty1)((d+1)(∂tσt)σ
−1
t −∥x−mty∥2(∇tσt)σ

−3
t +(∂tmt)y

⊤(mty−x)σ−2
t )

σd+1
t (2π)

d
2

f(y) exp
(
−∥x−mty∥2

2σ2
t

)
dy∫

1

σd
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

By carefully decomposing this into the sum of (25), and then applying (26) and Lemma A.2, we have the final bound
(19).

Now, based on Lemma A.3 we show that we only need to approximate∇ log pt(x) on some bounded region and on x where
pt(x) is not too small.

Lemma A.4 (Error bounds due to clipping operations). Let t ≥ T . There exists a constant Ca,4 depending on d and Cf , we
have ∫

∥x∥∞≥mt+Ca,4σt

√
log ε−1T−1

pt(x)∥∇ log pt(x)∥2dx ≤ ε, (27)∫
∥x∥∞≥mt+Ca,4σt

√
log ε−1T−1

pt(x)dx ≤ ε (28)

for all t ≥ T .

Moreover, there exists a constant Ca,5 depending on d and Cf and, for x such that ∥x∥∞ ≤ mt+Ca,4σt

√
log ε−1, we have

∥∇ log pt(x)∥ ≤
Ca,5

σt

√
log ε−1.

Therefore, ∫
∥x∥∞≤mt+Ca,4σt

√
log ε−1T−1

pt(x)1[pt(x) ≤ ε]∥∇ log pt(x)∥2dx ≤
Ca,5ε

σ2
t

· log
d+2
2 (ε−1T−1), (29)∫

∥x∥∞≤mt+Ca,4σt

√
log ε−1T−1

pt(x)1[pt(x) ≤ ε]dx ≤ Ca,5ε · log
d
2 (ε−1T−1). (30)

19
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Proof. According to Lemma A.2 and Lemma A.3,

pt(x)∥∇ log pt(x)∥2 ≤ Ca,2 exp

(
−
(∥x∥∞ −mt)

2
+

2σ2
t

)
·
C2

a,3

σ2
t

(∥x∥∞ −mt)
2
+

σ2
t

≤
Ca,2C

2
a,3

σ2
t

exp

(
−r2

2

)
r2,

where we let r := (∥x∥∞ −mt)+/σt. Then,∫
∥x∥∞≥mt+Ca,4σt

√
log ε−1

pt(x)∥∇ log pt(x)∥2dx

≤
∫ ∞

Ca,4

√
log ε−1

Ca,2C
2
a,3

σt
exp

(
−r2

2

)
r2(d− 1)(σtr +mt)

d−1dr

≲
1

σt
ε logd/2 ε−1.

We can make sure the final inequality by integration by parts. Because σt ≳
√
T , if we take ε′ =

√
T · ε2 then we have that

1
σt
ε′ logd/2((ε′)−1) ≲ ε. Therefore, replacing ε with ε′ and adjusting Ca,4 yield the bound (27).

In the same way,∫
∥x∥∞≥m+Ca,4σt

√
log ε−1

pt(x)dx ≤
∫ ∞

Ca,4

√
log ε−1

Ca,2σt exp

(
−r2

2

)
(d− 1)(σtr +m)d−1dr

≲ σtε log
(d−2)/2 ε−1,

which yields (28).

We then consider the second part of the lemma. Eq. (28) is a direct corollary of Lemma A.3: for x with ∥x∥∞ ≤
mt + Ca,5σt

√
log ε−1

∥∇ log pt(x)∥ ≤
Ca,3

σt
· Ca,4

√
log ε−1 ≤ Ca,5

σt

√
log ε−1. (by taking Ca,5 larger than Ca,3Ca,4.)

Using this, we have∫
∥x∥∞≤mt+Ca,4σt

√
log ε−1

pt(x)1[pt(x) ≤ ε]∥∇ log pt(x)∥2dx ≲ ε ·
C2

a,4

σ2
t

log ε−1 · (mt + Ca,5σt

√
log ε−1)d.

Adjusting Ca,4, Ca,5 and resetting ε yields (29). Eq. (30) follows in the same way.

B. Approximation of the score function
In this section, we analyze approximation error for the (ideal) score matching loss minimization. We construct a neural
network that approximates∇ log pt(x) and bound the approximation error at each time t. Throughout this section, we take a
sufficiently large N as a parameter that determines the size of the neural network, and T = poly(N−1) and T = O(logN).

B.1. Approximation of mt and σt

We begin with construction of sub-networks that approximate mt and σt. In addition to the true data distribution p0(x), the
score ∇ log pt(x) also depends on mt and σt. Indeed, in our construction, each diffused B-spline basis is approximated as
a rational function of x, mt and σt. Here, mt and σt are as important as x, because we use exponentiation of mt and σt,
as well as that of x, while exact values of mt and σt are unavailable. In other words, because approximation errors of mt

and σt are amplified via such exponentiation, approximating mt and σt with high accuracy is necessary for obtaining tight
bounds. Therefore, in this subsection, we construct sub-networks for efficient approximation of mt and σt. The following is
the formal version of Lemma 3.3.
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Lemma B.1. Let 0 < ε < 1
2 . Then, there exists a neural network ϕm(t) ∈ Φ(L,W,B, S) that approximates mt for all t ≥ 0,

within the additive error of ε, where L = O(log2 ε−1), ∥W∥∞ = O(log2 ε−1), S = O(log3 ε−1), and B = O(log ε−1).

Also, there exists a neural network ϕσ(t) ∈ Φ(L,W,B, S) that approximates σt for all t ≥ ε, within the additive error of ε,
where L ≤ O(log2 ε−1), ∥W∥∞ = O(log2 ε−1), S = O(log3 ε−1), and B = O(log ε−1).

Proof. First we consider mt = exp(−
∫ t

0
βsds). Since β ≥ β,

∫ t

0
βsds ≥ log 4ε−1 for all t ≥ A := log 4ε−1/β.

We limit ourselves within [0, A]. Then, from Assumption 2.5, at each s = 0, 1, · · · , ⌈A⌉ − 1, we can expand βt as
βt =

∑k−1
i=0

β(s,i)

i! (t− s)i + β(s,k)

k! (θ(t− s))k with |β(i)| ≤ 1 and 0 < θ < 1. Therefore, we obtain that∣∣∣∣∣
∫ t

0

βsds−
∫ s

0

βsds−
∫ t

s

k−1∑
i=1

β(s,i)

i!
(u− s)idu

∣∣∣∣∣ ≤ |β(s,k)|
(k + 1)!2k+1

≤ 2k+1

(k + 1)!
,

for s ≤ t ≤ s+2. We take k = max{5, ⌈log 4ε−1⌉} so that we have 2k+1

(k+1)! ≤
1

((k+1)/2)k+1 ≤ ε
4 . The constant term

∫ s

0
βsds

is at most O(A) = O(log ε−1), and each
∫ t

s
β(s,i)

i! (u− s)idu = β(s,i)

(i+1)! (t− s)i+1 can be realized as ϕmult(·; i+ 1) with an

additive error up to ε
4(k+1) by the neural network with L = O(log2 ε−1), ∥W∥∞ = O(log ε−1), S = O(log2 ε−1), B =

O(1), using Lemma F.6. We sum up this approximation over all i = 0, 1, · · · , k to obtain the network that approximates∫ t

0
βsds within s ≤ t ≤ s + 2, with the additive error of at most ε

4 . The structure of the network is evaluated as
L = O(log2 ε−1), ∥W∥∞ = O(log2 ε−1), S = O(log3 ε−1), B = O(log ε−1), by Lemma F.3.

We then approximate e−t within (0 ≤)s ≤ t ≤ s+2. We have e−t = e−(t−s)−s = e−s(
∑k′

i=0
(−1)i

i! (t−s)i+ (−1)k
′+1

(k′+1)! (θ(t−

s))k
′+1 with 0 ≤ θ ≤ 1. Therefore, in the same way as above, we approximate each monomial (−1)i

i! (t − s)i and sum
up to obtain the approximation of e−t. We take k′ = O(log ε−1). By following the above argument we obtain a network
that approximates e−t for s ≤ t ≤ 2s with an additive error of ε

4 , where L = O(log2 ε−1), ∥W∥∞ = O(log2 ε−1), S =

O(log3 ε−1), B = O(log ε−1).

We concatenate these approximations of
∫ t

0
βsds and e−t by Lemma F.1 to obtain a network ϕs, that is valid for s ≤ t ≤ s+2.

Finally, we obtain the following approximation of mt:

ϕmult(ϕ
2
swit(t; 1, 2), ϕ0(t)) +

⌈A⌉−1∑
s=1

ϕmult(ϕ
1
swit(t; s+ 1, s+ 2), ϕ2

swit(t; s, s+ 1), ϕs(t)).

We set ε = O(ε/A), C = 1 in Lemma F.6 to bound the multiplication error by ε
4 . This requires that each ϕmult has

L = O(log ε−1), ∥W∥∞ = O(1), S = O(log ε−1), and B = O(1).

Finally, we clip the input with [0, A] of the above network, because from the definition of A we can easily check that e−A ≤ ε
4

holds. Then we obtain the neural network ϕm of the desired size, which approximates mt = exp(−
∫ t

0
βsds) with an additive

error of ε
4+

ε
4+

ε
4 = 3ε

4 (, where the errors are from approximation of
∫ t

0
βsds, approximation of e−t, and multiplication at the

last step, respectively) for x ∈ [0, A]. This implies |ϕm(x)− e−x| ≤ |ϕm(x)−ϕm(A)|+ |ϕm(A)− e−A|+ |e−A− e−x| ≤
0 + 3ε

4 + ε
4 = ε for x ≥ A. The size of the network is bounded by L = O(log2 ε−1), ∥W∥∞ = O(log3 ε−1), S =

O(log4 ε−1), B = O(log ε−1).

Similarly, we can approximate σ2
t = 1 − exp(−2

∫ t

0
βsds) with an additive error of O(ε2) using a neural network

with L = O(log2 ε−1), ∥W∥∞ = O(log2 ε−1), S = O(log3 ε−1), B = O(log ε−1). Since t ≥ ε, we have σ2
t =

1 − exp(−2
∫ t

0
βsds) ≥ cε for some constant c depending on β. The only difference that needs to be mentioned is that

we also need to consider
√
x to obtain σt from σ2

t . However, this can be made in a similar way as we approximated e−t

for each s ≤ t ≤ s + 2 above. We approximate
√
x for each σ2

tu+2
≤ x ≤ σ2

tu , where tu is defined so that 2−u = σ2
tu

and t0 =∞. We need at most O(log ε−1) of different tu to cover all ε ≤ t. Note that σ2
tu+2

/σ2
tu ≃ 1 holds for all u and

therefore we can approximate
√
x within each interval similarly to the case of e−t. By switching the approximations, we

finally obtain the approximation of
√
x for all x ≥ σ2

ε , with the same orders of L, ∥W∥∞, S, and B as those for e−t, within
the additive error of ε. Concatenating the networks corresponding to σ2

t and
√
x, we obtain the desired network. The error is

bounded by O(ε), because we can approximate σ2
t with an accuracy of O(ε2) and the approximation of

√
x has an error at

most O(ε).
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B.2. Approximation via the diffused B-spline basis

This subsection introduces the approximation via the diffused B-spline basis and the tensor-product diffused B-spline basis,
which enable us to approximate the score ∇ log pt(x) in the space of Rd × [T , T ]. Although we consider the function
approximation in a (d+ 1)-dimensional space, the obtained rate (Theorem 3.1) is the typical one for a d-dimensional space.
This is because our basis decomposition can reflect the structure of p0 for t > 0. Before beginning the formal proof, we
provide extended proof outline about the approximation via the diffusion B-spline basis and tensor-product diffused B-spline
basis, which is more detailed than that in Section 3.

Remind that the cardinal B-spline basis of order l can be written as

Nm(x) =
1

l!
1[0 ≤ x ≤ l + 1]

l∑
l′=0

(−1)j l+1Cl′(x− l′)l+

(see Eq. (4.28) of Mhaskar & Micchelli (1992) for example) and the function in the Besov space can be approximated by a
sum of Md

k,j(x)

Md
k,j(x) =

d∏
i=1

Nm(2kixi − ji)

where k ∈ Zd
+ and j ∈ Zd.

Therefore, the denominator and numerator of the score

∇ log pt(x) =
∇pt(x)
pt(x)

= − 1

σt
·

∫
x−mty

σd+1
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy∫

1

σd
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

are decomposed into the sum of

E
(1)
k,j (x, t) :=

∫
1

σd
t (2π)

d
2

1[∥y∥∞ ≤ Cb,1]M
d
k,j(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy (31)

and

E
(2)
k,j (x, t) :=

∫
x−mty

σd+1(2π)
d
2

1[∥y∥∞ ≤ Cb,1]M
d
k,j(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy, (32)

respectively. This corresponds to what we called the tensor-product diffused B-spline basis in Section 3. Here E
(1)
k,j (x, t) is

the same as Ek,j(x, t) in Section 3, except for the term of 1[∥y∥∞ ≤ Cb,1]. Note that Cb,1 be a scaler value adjusted later.
We then approximate each of the denominator and numerator of∇ log pt(x) combining sub-networks that approximates
each E

(1)
k,j (x, t) or E(2)

k,j (x, t).

Here we briefly remark why 1[∥y∥∞ ≤ Cb,1] appears. Let us assume Cb,1 = 1 and approximate pt(x) based on
basis decomposition of p0(x), although later we need to consider other situations. If we use basis decomposition as
p0(x) ≈ fN (x) =

∑
Md

k,j(x), existing results such as Lemma F.11 only assure that the approximation is valid within
[−1, 1]d and do not guarantee anything outside the region. This might harm the approximation accuracy when we integrate
the approximation of pt(x) over all Rd. Therefore, we need to force fN (x) = 0 if ∥x∥∞ > 1 by the indicator function.

From now, we realize the (modified) tensor-product diffused B-spline basis with neural networks. We take E
(1)
k,j as an

example, and the procedures for E(2)
k,j is essentially the same. Remind that in Section 3 we decomposed Ek,j into the product

of the diffused B-spline basis:

Dk,j(xi, t) =

∫
N (2kxi − ji)

σt

√
2π

exp

(
− (xi −mtyi)

2

2σ2
t

)
dxi.
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Although the way we proceed is essentially the same as that in Section 3, here, more formally, we first truncate the integral
intervals. We clip the integral interval as

E
(1)
k,j (x, t) ≒

∫
y∈Ax,t

1

σd
t (2π)

d
2

1[∥y∥∞ ≤ Cb,1]M
d
k,j(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

=

d∏
i=1

(
l+1∑
l′=0

(−1)l′ l+1Cl′

l!

∫
yi∈ax

i

1

σt(2π)
1
2

1[|yi| ≤ Cb,1]1[0 ≤ 2kiyi − ji ≤ l + 1]

× (2kyi − l′ − ji)
l
+ exp

(
− (xi −mtyi)

2

2σ2
t

)
dyi

)
,

(33)

where Ax,t =
∏d

i=1 a
x,t
i with ax,ti = [ xi

mt
− σtCf

mt

√
log ε−1, xi

mt
+ σtCf

mt

√
log ε−1], Cf = O(1), and 0 < ε < 1. This clipping

causes the error at most O(ε) according to Lemma F.9 and the observation 1[∥y∥∞ ≤ Cb,1]M
d
k,j(y) ≤

(
(l + 1)l+12l+1

)d
.

In summary, owing to the fact that Md
k,j(x) is a product of univariate functions of xi (i = 1, 2, · · · , d), the integral over Rd

is now decomposed into the integral with respect to only one variable over the bounded region, which is a truncated version
of the diffused B-spline basis Dk,j introduced in Section 3.

We now begin the formal proof with the following lemma. We approximate∫
yi∈ax,t

i

1

σt(2π)
1
2

1[|yi| ≤ Cb,1]1[0 ≤ 2kyi − ji ≤ l + 1](2kiyi − l′ − ji)
l
+ exp

(
− (xi −mtyi)

2

2σ2
t

)
dyi (34)

(remind (33)). Note that 1[|yi| ≤ Cb,1]1[0 ≤ 2kyi − ji ≤ l + 1] ≡ 0 or = 1[a ≤ 2kyi ≤ b] holds with a, b satisfying

−C2k − l ≤ min
i

ji ≤ ji ≤ a < b ≤ ji + l + 1 ≤ max
i

ji + l + 1 ≤ C2k + l + 1, (35)

if we assume supp(p0) = [−C,C]d (see Lemma F.11). Based on (35), (34) (if 1[|yi| ≤ Cb,1]1[0 ≤ 2kyi − ji ≤
l + 1](2kyi − l′ − ji)

l
+ ̸≡ 0) can alternatively written as∫
yi∈ax,t

i

1

σt(2π)
1
2

1[j ≤ 2ky ≤ j](2kyi − j′)l exp

(
− (xi −mtyi)

2

2σ2
t

)
dyi, (36)

with j, j, j′ ∈ R, j − l − 1 ≤ j′ ≤ j ≤ j, −C2k − l ≤ j′, j, j ≤ C2k + l + 1.

In the following lemma, we consider the approximation of (36). We omit the subscript i for the coordinates, for simple
presentation. Also, j′ in (36) is denoted by j, because j ∈ Rd will not be used in the following lemma.

Lemma B.2 (Approximation of the diffused B-spline basis). Let j, k, l ∈ Z, j, j ∈ R satisfy j − l − 1 ≤ j ≤ j ≤
j, −C2k − l ≤ j, j, j ≤ C2k + l+ 1, and k, l ≥ 0. Assume that |σ′ − σt|, |m′ −mt| ≤ εerror, and take ε from 0 < ε < 1

2

and C > 0 arbitrarily. Then, there exists a neural network ϕ
j,j,j,k

dif,1 ∈ Φ(L,W,S,B) with

L = O(log4 ε−1 + log2 C + k),

∥W∥∞ = O(log6 ε−1),

S = O(log8 ε−1 + log2 C + k),

B = O(Cl2kl) + logO(log ε−1) ε−1.

such that ∣∣∣∣∣ϕj,j,j,k

dif,1 (x, σ′,m′)−
∫ σtCf

mt

√
log ε−1+ x

mt

−σtCf
mt

√
log ε−1+ x

mt

1√
2πσt

1[j ≤ 2ky ≤ j](2ky − j)l exp

(
− (x−mty)

2

2σ2
t

)
dy

∣∣∣∣∣
≤ Õ(ε) + εerrorC

4l2k(4l+1) logO(log ε−1) ε−1.

holds for all x in −C ≤ x ≤ C and for all t ≥ ε.
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Also, with the same conditions, there exists a neural network ϕ
j,j,j,k

dif,2 ∈ Φ(L,W, S,B) with the same bounds on
L, ∥W∥∞, S,B as above such that∣∣∣∣∣ϕj,j,j,k

dif,2 (x, σ′,m′)−
∫ σtCf

mt

√
log ε−1+ x

mt

−σtCf
mt

√
log ε−1+ x

mt

[x−mty]i√
2πσ2

t

1[j ≤ 2ky ≤ j](2ky − j)l exp

(
− (x−mty)

2

2σ2
t

)
dy

∣∣∣∣∣
≤ Õ(ε) + εerrorC

4l2k(4l+1) logO(log ε−1) ε−1.

holds for all x in −C ≤ x ≤ C and for all t ≥ ε.

Furthermore, we can take these networks so that ∥ϕj,j,j,k

dif,1 ∥∞, ∥ϕj,j,j,k

dif,2 ∥∞ = O(1) hold.

Proof. Here we only consider ϕ
j,j,j,k

dif,1 , because the assertion for ϕ
j,j,j,k

dif,2 essentially follows the argument for ϕ
j,j,j,k

dif,1 .

First, we approximate the exponential function within the closed interval, using polynomials of degree at most O(log ε−1).
Note that 1[j ≤ 2ky ≤ j](2ky − j)l is bounded by (l + 1)l, from the assumption of j − l − 1 ≤ j ≤ j ≤ j. Therefore,
according to Lemma F.10, there exists S = O(log ε−1) and we have that∣∣∣∣∣exp

(
− (x−mty)

2

2σ2
t

)
−

S−1∑
s=0

(−1)s

s!

(x−mty)
2s

2sσ2s
t

∣∣∣∣∣ ≤ ε2

for all y ∈ [−σtCf

mt

√
log ε−1 + x, σtCf

mt

√
log ε−1 + x]. Then, we have that

∣∣∣∣∣
∫ σtCf

mt

√
log ε−1+ x

mt

−σtCf
mt

√
log ε−1+ x

mt

1√
2πσt

1[j ≤ 2ky ≤ j](2ky − j)l exp

(
− (x−mty)

2

2σ2
t

)
dy

−
∫ σtCf

mt

√
log ε−1+ x

mt

−σtCf
mt

√
log ε−1+ x

mt

1√
2πσt

1[j ≤ 2ky ≤ j](2ky − j)l

(
S−1∑
s=0

(−1)s

s!

(x−mty)
2s

2sσ2s
t

)
dy

∣∣∣∣∣
≤ max

{
2σtCf

mt

√
log ε−1, (l + 1)

}
· 1√

2πσ2
t

(l + 1)l · ε ≲ ε log
1
2 ε−1.

Here, 2σtCf

mt

√
log ε−1 comes from the length of the integral interval and l + 1 comes from the interval where 1[j ≤ 2ky ≤

j] = 1 holds.

Now all we need is to approximate the integral of polynomials over the closed interval:

S−1∑
s=0

∫ σtCf
mt

√
log ε−1+ x

mt

−σtCf
mt

√
log ε−1+ x

mt

1√
2πσt

1[j ≤ 2ky ≤ j](2ky − j)l · (−1)
s

s!

(x−mty)
2s

2sσ2s
t

dy

=

S−1∑
s=0

l∑
l′=0

−(−1)s+l

√
2πml+1

t s!2s

[
lCl′(2

kσt)
l′(jmt − 2kx)l−l′

∫ Cf

√
log ε−1

−Cf

√
log ε−1

1

[
x−mt2

−kj

σt
≤ y ≤

x−mt2
−kj

σt

]
yl

′+2sdy

]
(

by resetting y ← x−mty

σt

)

=

S−1∑
s=0

l∑
l′=0

−(−1)s+l
lCl′2

kl′σl′(jmt − 2kx)l−l′

√
2πml+1

t s!2s(l′ + 2s+ 1)

[(
min

{
Cf

√
log ε−1,max

{
x−mt2

−kj

σt
,−Cf

√
log ε−1

}})l′+2s+1

−
(
min

{
Cf

√
log ε−1,max

{
x−mt2

−kj

σt
,−Cf

√
log ε−1

}})l′+2s+1
]
. (37)
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We decompose (37) into the following sub-modules for convenience. We let

f l′,s
1 (x, σ,m) = (min{Cf log

1
2 (ε−1),max{

x−m2−kj

σ
,−Cf log

1
2 (ε−1)}})l

′+2s+1,

f l′,s
2 (x, σ,m) = (min{Cf log

1
2 (ε−1),max{x−m2−kj

σ
,−Cf log

1
2 (ε−1)}})l

′+2s+1,

f l′,s
3 (x, σ,m) = f l′,s

1 (x, σ,m)− f l′,s
2 (x, σ,m)

f l′

4 (x,m) = (jm− 2kx)l−l′ ,

f l′

5 (σ) = σl′ ,

f6(m) = m−(l+1),

f l′,s
7 (x, σ,m) = f l′,s

3 (x, σ,m)f l′

4 (x,m)f l′

5 (σ)f6(m).

They also depends on j, j, j, k, and l, but we omit the dependency on these variables for simple presentation. We take some
ε1 > 0, which is adjusted at the final part of the proof.

We first consider approximation of f l′,s
1 (x, σ,m). We realize this as

f l′,s
1 (x, σ,m) ≒ ϕl′,s

1 (x, σ,m)

:= ϕmult(·; l′ + 2s+ 1) ◦ ϕclip(·;−Cf log
1
2 (ε−1),−Cf log

1
2 (ε−1)) ◦ (ϕmult(x−m2−kj, ϕrec(σ))).

by setting ε = min{σε, ε1} in Corollary F.8 for ϕrec, ε = ε1, C = max{2C + l + 1, σ−1
ε } ≥ max{|x| +m2−kj, σ−1

ε }
in Lemma F.6 for the first ϕmult, a = −Cf log

1
2 (ε−1), b = Cf log

1
2 (ε−1) in Lemma F.4 for ϕclip, and ε = ε1, C =

Cf log
1
2 (2ε−1) in Lemma F.6 for the second ϕmult. Note that σε ≃

√
ε. Then, using Lemmas F.1, F.4, F.6 and F.7 the size

of the network is at most

L = O(log2 ε−1
1 + log2 ε−1 + log2 C),

∥W∥∞ = O(log3 ε−1
1 + log3 ε−1),

S = O(log4 ε−1
1 + log4 ε−1 + log2 C),

B = O(ε−2
1 + C2) + logO(log ε−1) ε−1.

(38)

Approximation error between f l′,s
1 (x, σt,mt) and ϕl′,s

1 (x, σ′,m′) is bounded by

ε1 +O(log ε−1)(Cf log
1
2 ε−1)O(log ε−1) · (ε1 +max{C + l + 2, σ−1

ε }2 · (ε1 + εerror(ε
−2
1 + ε−2)))

= (ε1 + εerror)
(
logO(log ε−1) ε−1 + C2

)
.

f l′,s
2 (x, σt,mt) is also approximated in the same way, and therefore aggregating f l′,s

1 (x, σt,mt) and f l′,s
2 (x, σt,mt) (by

using Lemma F.3) yields that f l′,s
3 (x, σt,mt) is approximated by ϕl′,s

3 (x, σ′,m′) with the error up to an additive error of

(ε1 + εerror)
(
logO(log ε−1) ε−1 + C2

)
using a neural network with the same size as that of (38).

Next, we consider f l′

4 (x,mt). Since 2kx = O(C2k) and |jmt − jm′| ≤ O(C2kεerror), we approximate f l′

4 (x,mt)
with a neural network ϕl′

4 (x,m
′) ∈ Φ(L,W, S,B), where L, ∥W∥∞, S,B are evaluated by Lemmas F.1 and F.6 (setting

ε = ε1, C = O(C2k)) as

L = O(log ε−1
1 + k logC), W = O(1), S = O(log ε−1

1 + k logC), B = O(Cl2kl).

Approximation error between f l′

4 (x,mt) and ϕl′

4 (x,m
′) is bounded as ε1 +O(Cl2kl)εerror, using Lemma F.6.

The arguments for f l′

5 (σ) and f6(m) are just setting appropriate parameters in Lemma F.6 and Corollary F.8, respectively.
For f l′

5 (σt), there exists a neural network ϕl′

5 (σ
′) with L = O(log ε−1

1 ), ∥W∥∞ = 48l, S = O(log ε−1
1 ), B = 1 and the

approximation error between f l′

5 (σ) and ϕl′

5 (σ
′) is bounded by ε1+ lεerror, by setting d = l′(≤ l), ε = ε1 in Lemma F.6. For

f6(mt), there exists a neural network ϕ6(m
′) with L = O(log2 ε−1

1 +log2 m−1
ε ), ∥W∥∞ = O(log3 ε−1

1 +log3 m−1
ε ), S =
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O(log4 ε−1
1 +log4 m−1

ε ), B = O(ε−l−1
1 +m−l−1) and the approximation error between f6(mt) and ϕ6(m

′) is bounded by
ε1 + (l + 1)ε−l−2

1 εerror + (l + 1)m−l−2
ε εerror, by setting d = l + 1, ε = min{ε1,mε} in Corollary F.8. Note that mε ≳ 1.

Therefore, Lemma F.6 with ε = ε1 yields that there exists a neural network ϕl′,s
7 (x,m, σ) such that

L = O(log2 ε−1
1 + log2 ε−1 + log2 C + k),

∥W∥∞ = O(log3 ε−1
1 + log3 ε−1),

S = O(log4 ε−1
1 + log4 ε−1 + log2 C + k),

B = O(ε−2
1 + C2) + logO(log ε−1) ε−1 + Cl2kl.

where approximation error between f l′,s
7 (x,mt, σt) and ϕl′,s

7 (x,m′, σ′) is bounded as∣∣∣f l′,s
7 (x, σ,m)− ϕl′,s

7 (x,m′, σ′)
∣∣∣ ≤ (ε1 + εerror(ε

−l−2
1 + C4l24kl)) logO(log ε−1) ε−1.

Finally, we sum up ϕl′,s
7 (x,m′, σ′) multiplied −(−1)s+l

lCl′2
kl′

√
2πs!2s(l′+2s+2)

over (l′, s), according to (37) and using Lemma F.3. Here, the

coefficient is bounded by 2(k+1)l and the total number of possible combinations (l′, s) is bounded by O(lS) = O(log ε−1).
Then, approximation error for (37) is bounded as

2(k+1)l(ε1 + εerror(ε
−l−2
1 + C4l24kl)) logO(log ε−1) ε−1.

In order to bound the terms related to ε1 by O(ε), we take ε1 = O(2−(k+1)l log−O(log ε−1) ε−1). Then, the total ap-
proximation error is bounded by Õ(ε) + εerrorC

4l2k(4l+1) logO(log ε−1) ε−1 and this is achieved by a neural network
with

L = O(log4 ε−1 + log2 C + k),

∥W∥∞ = O(log6 ε−1),

S = O(log8 ε−1 + log2 C + k),

B = O(Cl2kl) + logO(log ε−1) ε−1.

Finally, because ∣∣∣∣∣
∫ σtCf

mt

√
log ε−1+ x

mt

−
σtCf,1

mt

√
log ε−1+ x

m

1√
2πσt

1[j ≤ 2ky ≤ j](2ky − j)l exp

(
− (x−mty)

2

2σ2
t

)
dy

∣∣∣∣∣
≤
∫

1√
2πσt

1[j ≤ 2ky ≤ j](l + 1)l exp

(
− (x−mty)

2

2σ2
t

)
dy ≲ Cf ,

we can clip ϕ
j,j,j,k

dif,1 so that it is bounded by O(1).

We now approximate the (modified) tensor product diffused B-spline basis. The following is the formal version of Lemma 3.4.
Without the term of 1[∥y∥∞ ≤ Cb,1], the statement matches that of Lemma 3.4. This network ϕdif,3 corresponds to ϕTDB

in Lemma 3.4.

Lemma B.3 (Approximation of the tensor-product diffused B-spline bases). Let k ∈ Z+, j ∈ Zd, l ∈ Z+ with −C2k − l ≤
ji ≤ C2k (i = 1, 2, · · · , d), ε (0 < ε < 1

2 ) and C > 0. There exists a neural network ϕdif,3(x, t) ∈ Φ(L,W,S,B) with

L = O(log4 ε−1 + log2 C + k2),

∥W∥∞ = O(log6 ε−1 + log3 C + k3),

S = O(log8 ε−1 + log4 C + k4),

B = exp
(
O
(
log ε−1 log log ε−1 + logC + k

))
,
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such that ∣∣∣∣∣ϕk,j
dif,3(x, t)−

∫
Rd

1

σd
t (2π)

d
2

1[∥y∥∞ ≤ Cb,1]M
d
k,j(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

∣∣∣∣∣ ≤ ε

holds for all x ∈ [−C,C]d.

Also, with the same conditions, there exists a neural network ϕdif,4 ∈ Φ(L,W, S,B) with the same bounds on
L, ∥W∥∞, S,B as above such that∥∥∥∥∥ϕk,j

dif,4(x, σ
′,m′)−

∫
Rd

x−mty

σd+1
t (2π)

d
2

1[∥y∥∞ ≤ Cb,1]M
d
k,j(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

∥∥∥∥∥ ≤ ε.

holds for all x ∈ [−C,C]d.

Furthermore, we can choose these networks so that ∥ϕk,j
dif,3∥∞, ∥ϕk,j

dif,4∥∞ = O(1) hold.

Proof. Here we only prove the first part, because the second part follows in the same way. We assume |σ′−σt|, |m′−mt| ≤
εerror.

From the discussion (33), we approximate

d∏
i=1

(
l+1∑
l′=0

(−1)l′ l+1Cl′

l!

∫
yi∈ax

i

1

σ(2π)
1
2

1[|yi| ≤ Cb,1]1[0 ≤ 2kyi − ji ≤ l + 1]

× (2kiyi − l′ − ji)
l
+ exp

(
− (xi −myi)

2

2σ2

)
dyi

)
, (39)

which is equal to Dd
k,j(x) within an additive error ofO(ε), so we approximate (39). Here axi = [ xi

mt
− σtCf

mt

√
log ε−1, xi

mt
+

σtCf

mt

√
log ε−1].

We let fi(yi; ji, k, l′) := 1[|yi| ≤ Cb,1]1[0 ≤ 2kyi − ji ≤ l + 1](2kyi − l′ − ji)
l
+ exp

(
− (xi−mtyi)

2

2σ2
t

)
dyi. First,∑l+1

l′=0
(−1)l

′
l+1Cl′
l! fi(yi; ji, k, l

′) is approximated by
∑l+1

l′=0
(−1)l

′
l+1Cl′
l! ϕ

ji−l′,jl′ ,jl′
,k

dif,1 (yi, σ
′,m′) (see Lemma F.3 for ag-

gregation of the networks). Here, jl′ and j
l′

are defined so that 1[j
l′
≤ 2ky ≤ jl′ ] = 1[|yi| ≤ Cb,1]1[0 ≤ 2kyi−ji ≤ l+1]

holds.

Now we multiply
∑l+1

l′=0
(−1)l

′
l+1Cl′
l! ϕ

ji,jl′ ,jl′
,k

dif,1 (yi, σ
′,m′) over i = 1, 2, · · · , d using ϕmult to obtain the desired network

ϕk,j
dif,3. According to Lemma B.2 with ε = ε and Lemma F.6 with ε = ε and C = O(1) (because ∥ϕ

ji,jl′ ,jl′
,k

dif,1 ∥∞ = O(1)),
there exists a neural network ϕ1(x,m

′, σ′) ∈ Φ(L,W,S,B) with

L = O(log4 ε−1 + log2 C + k),

∥W∥∞ = O(log6 ε−1),

S = O(log8 ε−1 + log2 C + k),

B = O(Cl2kl) + logO(log ε−1) ε−1

and we can bound the approximation error between ϕ1(x,m
′, σ′) and (39) with

Õ(ε) + εerrorC
4l2k(4l+1) logO(log ε−1) ε−1. (40)

Now, we consider ϕdif,3 = ϕ1(x, ϕm(t), ϕσ(t)). We apply Lemma B.1 with ε = C−4l2−k(4l+1) log−O(log ε−1) ε−1, so that
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εerror gets small enough and (40) is bounded by Õ(ε). Then, the size of ϕdif,3 is bounded by

L = O(log4 ε−1 + log2 C + k2),

∥W∥∞ = O(log6 ε−1 + log3 C + k3),

S = O(log8 ε−1 + log4 C + k4),

B = exp
(
O
(
log ε−1 log log ε−1 + logC + k

))
.

Now, adjusting ε to replace Õ(ε) by ε yields the first assertion.

We can make ∥ϕk,j
dif,3∥∞ hold, because

∫
Rd

1

σd
t (2π)

d
2
1[∥y∥∞ ≤ Cb,1]M

d
k,j(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy = O(1).

B.3. Approximation error bound: based on p0

Now we put it all together and derive Theorem 3.1. Throughout this and the next subsections, we take N ≫ 1, T1 = T =
poly(N−1) and T5 = T = O(logN). Moreover, we let T2 = N−(2−δ)/d, T3 = 2T2, T4 = 3T2. This subsection considers
the approximation for t ∈ [T1, T4].

We begin with the following lemma, which gives the basis decompositon of the Besov functions.

Lemma B.4 (Basis decomposition). Under N ≫ 1, Assumptions 2.4, 2.5, 2.6 with a0 = N−(1−δ)/d, there exists fN that
satisfies

∥p0 − fN∥L2([−1,1]d) ≲ N−s/d,

∥p0 − fN∥L2([−1,1]d\[−1+N−(1−δ)/d,1−N−(1−δ)/d]d) ≲ N−(3s+2)/d,

and fN (x) = 0 for all x with ∥x∥∞ ≥ 1, and has the following form:

fN (x) =

N∑
i=1

αi1[∥x∥∞ ≤ 1]Md
k,ji(x) +

3N∑
i=N+1

αi1[∥x∥∞ ≤ 1−N−(1−δ)/d]Md
k,ji(x), (41)

where−2(k)m− l ≤ (ji)m ≤ 2(k)m (i = 1, 2, · · · , N, m = 1, 2, · · · , d), |k| ≤ K∗ = (O(1)+logN)ν−1+O(d−1 logN)

for δ = d(1/p− 1/r)+ and ν = (2s− δ)/(2δ). Moreover, |αi| ≲ N (ν−1+d−1)(d/p−s)+ .

Proof. Because p0 ∈ C3s+2([−1, 1]d \ [−1 +N−(1−δ)/d, 1−N−(1−δ)/d]d), according to Lemma F.11, we have f1 such
that

∥p0 − f1∥L2([−1,1]d\[−1+N−(1−δ)/d,1−N−(1−δ)/d]d) ≲ N−(3s+2)/d.

and has the following form:

f1(x) =

N∑
i=1

αiM
d
k,ji(x),

where−2(k)m− l ≤ (ji)m ≤ 2(k)m (i = 1, 2, · · · , N, m = 1, 2, · · · , d), |k| ≤ K∗ = (O(1)+logN)ν−1+O(d−1 logN)

for δ = d(1/p− 1/r)+ and ν = (2s− δ)/(2δ). Moreover, |α1,i| ≲ N (ν−1+d−1)(d/p−2s)+ .

Next let us approximate f in [−1, 1]d. Because ∥p0∥Bs
p,q

≲ 1, we have f2 such that

∥p0 − f2∥L2([−1,1]d) ≲ N−s/d.

and has the following form:

f2(x) =

2N∑
i=N+1

αiM
d
k,ji(x),
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where −2(k)j − l ≤ (ji)j ≤ 2(k)j (i = 1, 2, · · · , N, j = 1, 2, · · · , d), |k| ≤ K∗ = (O(1) + logN)ν−1 +O(d−1 logN)

for δ = d(1/p− 1/r)+ and ν = (s− δ)/(2δ). Moreover, |α2,i| ≲ N (ν−1+d−1)(d/p−s).

Therefore,

1[∥x∥∞ ≤ 1]f1(x)− 1[∥x∥∞ ≤ 1−N−(1−δ)/d]f1(x) + 1[∥x∥∞ ≤ 1−N−(1−δ)/d]f2(x)

=

N∑
i=1

αiM
d
ki,ji(x)−

N∑
i=1

αi1[∥x∥∞ ≤ 1−N−(1−δ)/d]Md
ki,ji(x) +

2N∑
i=N+1

αi1[∥x∥∞ ≤ 1−N−(1−δ)/d]Md
ki,ji(x)

holds and reindexing the bases gives the result.

The following lemma gives neural network that approximates∇ log pt(x) in [T1, T4].

Lemma B.5 (Approximation of score function for T1 ≤ t ≤ T4). There exists a neural network ϕscore,1 ∈ Φ(L,W, S,B)
that satisfies ∫

pt(x)∥ϕscore,1(x, t)−∇ log pt(x)∥2dx ≲
N−2s/d logN

σ2
t

(42)

Here, L, ∥W∥∞, S,B is evaluated as

L = O(log4 N), ∥W∥∞ = O(N log6 N), S = O(N log8 N), and B = exp(O(logN · log logN)).

Proof. Before we proceed to the main part of the proof, we limit the discussion into the bounded region. According to
Lemma A.4, we have that∫

∥x∥∞≥mt+O(1)σt

√
logN

pt(x)∥s(x, t)−∇ log pt(x)∥2dx ≲
T

N (2s+1)/d

(
1 + ∥s(·, t)∥2∞

)
, (43)

with a sifficiently large hidden constant in O(1). Because ∥∇ log pt(x)∥ is bounded with log
1
2 N
σt

in ∥x∥∞ ≥ mt +

O(1)σt

√
logN due to Lemma A.3, s can be taken so that ∥s(·, t)∥∞ ≲ log

1
2 N
σt

and therefore (43) is bounded by T
N(2s+1) ·

logN
T = N−(2s+1)/d logN , which is smaller than the upper bound of (42). Thus, we can focus on the approximation

of the score ∇ log pt(x) within ∥x∥∞ ≤ mt + O(1)σt

√
logN = O(1). Moreover, we can also exclude the case where

pt(x) ≤ N−(2s+1)/d, because Lemma A.4 can bound the error∫
∥x∥∞≤mt+O(1)σt

√
logN

pt(x)1[pt(x) ≤ ε]∥s(x, t)−∇ log pt(x)∥2dx ≲
ε

σ2
t

log
d+2
2 (ε−1T−1) + ε∥s(x, t)∥

≲
ε

σ2
t

log
d+2
2 (ε−1T−1) +

ε

σ2
t

logN, (44)

and setting ε = N−(2s+1)/d makes (44) smaller than the bound (42).

Thus, in the following, we consider x such that ∥x∥∞ ≤ mt +O(1)σt

√
logN = O(1) and pt(x) ≥ N−(2s+1)/d holds. In

this case, we have ∥∇ log pt(x)∥ ≲ log
1
2 N
σt

.

The construction is straightforward. Based on (41) of Lemma B.4, we let

pt(x) =

∫
1

σd
t (2π)

d
2

p0(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy ≒

∫
1

σd
t (2π)

d
2

fN (y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

=

N∑
i=1

αiE
(1)
ki,ji

(x, t) =: f̃1(x, t),

f1(x, t) := f̃1(x, t) ∨N−(2s+1)/d,
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and

σt∇pt(x) =
∫

x−mty

σd+1
t (2π)

d
2

p0(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy ≒

∫
x−mty

σd+1
t (2π)

d
2

fN (y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

=

N∑
i=1

αiE
(2)
ki,ji

(x, t) =: f2(x, t),

f3(x, t) :=
f2(x, t)

f1(x, t)
1

[∥∥∥∥f2(x, t)f1(x, t)

∥∥∥∥ ≲
log

1
2 N

σt

]

so that αi, E
(1)
ki,ji

(x, t) and E
(2)
ki,ji

(x, t) correspond to the basis decomposition in Lemma B.4. Thus, |αi| ≲

N (ν−1+d−1)(d/p−s)+ and |ki| = O(logN). We remark that Cb,1 is set to be 1 or 1 − N−(1−δ)/d in (31) and (32). We
approximate E

(1)
k,ji

and E
(2)
k,ji

by ϕki,ji
dif,3 and ϕki,ji

dif,4 in Lemma B.3, by setting ε = ε1 and C = mt +O(1)σt

√
logN = O(1)

(because σt ≤ σT2 ≲ log−
1
2 N ), where ε1 = poly(N−1) is a scaler value adjusted below. Then we sum up these sub-

networks using Lemma F.3 and obtain neural networks ϕdif,5(x, t) and ϕdif,6(x, t) that approximate f1(x, t) and f2(x, t),
respectively.

Because we can decompose the error as∫
∥x∥∞≤mt+O(1)σt

√
logN

pt(x)1[pt(x) ≥ N− 2s+1
d ]∥s(x, t)−∇ log pt(x)∥2dx

≲
∫
∥x∥∞≤mt+O(1)σt

√
logN

1[pt(x) ≥ N− 2s+1
d ]pt(x)

∥∥∥∥ϕscore,1(x, t)−
f3(x, t)

σt

∥∥∥∥2 dx (45)

+

∫
∥x∥∞≤mt+O(1)σt

√
logN

1[pt(x) ≥ N− 2s+1
d ]pt(x)

∥∥∥∥f3(x, t)σt
−∇ log pt(x)

∥∥∥∥2 dx, (46)

we consider the approximation of f3(x,t)
σt

for the moment, instead of ∇ log pt(x) =
∇pt(x,t)
f1(x,t)

, and bound (45). From the
construction of the networks, we have the following bounds:

|f1(x, t)− ϕdif,5(x, t)| ≲ N ·max |αi| · ε1, (47)
∥f2(x, t)− ϕdif,6(x, t)∥ ≲ N ·max |αi| · ε1. (48)

for all x with ∥x∥∞ ≤ mt +O(1)σt

√
logN = O(1). Note that max |αi| is bounded by N (ν−1+d−1)(d/p−s)+ . Thus, we

take ε1 ≲ N−1 ·N−(ν−1+d−1)(d/p−s)+ ·N− 9s+3
d so that (47) and (48) are bounded by N− 9s+3

d in Lemma F.6.

Then we define ϕdif,7 as

[ϕdif,7(x, t)]i := ϕclip(ϕmult(ϕrec(ϕclip(ϕdif,5(x, t);N
−(2s+1)/d,O(1)))), [ϕdif,6(x, t)]i);−O(log

1
2 N),O(log

1
2 N)).

to approximate σt∇ log pt(x). Here we used the boundedness of pt(x) with [N−(2s+1)/d,O(1)] to clip ϕdif,5(x, t) and the
boundedness of σt∇ log pt(x) with [−O(log

1
2 N),O(log

1
2 N)] to clip the whole output. For ϕrec we let ε = N−(3s+1)/d

in Lemma F.7 and for ϕmult we let ε = N−s/d and C = N (2s+1)/d. Then,

∥ϕdif,7(x, t)− f3(x, t)∥ =

∥∥∥∥∥ϕdif,7(x, t)−
f2(x, t)

f1(x, t)
1

[∥∥∥∥f2(x, t)f1(x, t)

∥∥∥∥ ≲
log

1
2 N

σt

]∥∥∥∥∥
≲ N−s/d +N (2s+1)/d · (N−(3s+1)/d +N2(3s+1)/d|f1(x, t)− ϕdif,5(x, t)|+ ∥f2(x, t)− ϕdif,6(x, t)∥)
≲ N−s/d +N (8s+3)/d|f1(x, t)− ϕdif,5(x, t)|+N (2s+1)/d∥f2(x, t)− ϕdif,6(x, t)∥. (49)

Applying (47)≤ N− 9s+3
d and (48)≤ N− 9s+3

d yields that (49)≤ N− s
d .

Finally, we let

ϕscore,1(x, t) := ϕmult(ϕdif,7(x, t), ϕσ(t)).
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By setting ε = N−s/d and C ≃ max{log
1
2 N, σT } ≲ poly(N) in Lemma F.6 for ϕmult and ε = N−s/d/poly(N) in

Lemma B.1 for ϕσ . Then,∥∥∥∥ϕscore,1(x, t)−
f3(x, t)

σt

∥∥∥∥ ≲ N−s/d + poly(N) ·N−s/d/poly(N) ≲ N−s/d,

which yields

(45) =
∫
∥x∥∞≤mt+O(1)σt

√
logN

1[pt(x) ≥ N− 2s+1
d ]pt(x)

∥∥∥∥ϕscore,1(x, t)−
f3(x, t)

σt

∥∥∥∥2 dx ≲ N−2s/d.

The structure of ϕdif,7 and ϕscore,1 are evaluated as

L = O(log4 N), ∥W∥∞ = O(N log6 N), S = O(N log8 N), and B = exp (logN · log logN) .

Here we used |ki| = O(logN) and C = O(1).

We move to the error analysis between f3(x,t)
σt

and ∇ log pt(x) to bound (46). Remind that we consider x such that

∥x∥∞ ≤ mt + O(1)σt

√
logN = O(1) and pt(x) ≥ N−(2s+1)/d holds. In this case, we have ∥∇ log pt(x)∥ ≲ log

1
2 N
σt

.
First, we consider the case x ∈ [−mt,mt]

d. Since pt(x) is lower bounded by C−1
a according to Lemma A.2, as long as

|f1(x, t) − pt(x)| ≤ C−1
a /2, we can say that the approximation error is bounded by ≲ |f1(x, t) − pt(x)| + ∥f2(x, t) −

σt∇pt(x)∥. On the other hand, if |f1(x, t)− pt(x)| ≥ C−1
a /2, we no longer have such bound, but this time we can use the

fact that f2(x,t)
f1(x,t)

and σt
σt∇pt(x)

pt(x)
is bounded by log

1
2 N . Therefore, when x ∈ [−mt,mt]

d, we can bound the approximation
error as∥∥∥∥f3(x, t)− σt

∇pt(x)
pt(x)

∥∥∥∥ ≤ ∥∥∥∥f2(x, t)f1(x, t)
− σt

∇pt(x)
pt(x)

∥∥∥∥ ≲ log
1
2 N(|f1(x, t)− pt(x)|+ ∥f2(x, t)− σt∇pt(x)∥).

Next, we consider the case when x ∈ [−mt −O(1)σt

√
logN,mt +O(1)σt

√
logN ]d \ [−mt,mt]

d. Then, we have that∥∥∥∥f3(x, t)− σt
∇pt(x)
pt(x)

∥∥∥∥ ≤ ∥∥∥∥f2(x, t)f1(x, t)
− σt

∇pt(x)
pt(x)

∥∥∥∥ ≲
∥f2(x, t)− σt∇pt(x)∥

f1(x, t)
+ ∥σt∇pt(x)∥

∣∣∣∣ 1

f1(x, t)
− 1

pt(x)

∣∣∣∣ . (50)

The first term is bounded by N (2s+1)/d∥f2(x, t)(x, t) − σt∇pt(x)∥ because we focus on the case pt(x) ≥ N−(2s+1)/d.

For the second term, because ∥∇ log pt(x)∥ =
∥∥∥σt

∇pt(x)
pt(x)

∥∥∥ ≲ log
1
2

σt
, we have ∥σt∇pt(x)∥ ≲ pt(x) log

1
2 N . By using this,

we can bound the second term as

∥σt∇pt(x)∥
∣∣∣∣ 1

f1(x, t)
− 1

pt(x)

∣∣∣∣ ≲ log
1
2 Npt(x)

∣∣∣∣ 1

f1(x, t)
− 1

pt(x)

∣∣∣∣
≲ log

1
2 N
|pt(x)− f1(x, t)|

f1(x, t)

≲ N
2s+1

d log
1
2 N |pt(x)− f1(x, t)| ,

where we used f1(x, t) ≥ N−(2s+1)/d. Thus, for x ∈ [−mt −O(1)σt

√
logN,mt +O(1)σt

√
logN ]d \ [−mt,mt]

d and
pt(x) ≥ N− 2s+1

d , (50) is bounded by∥∥∥∥ϕdif,7(x, t)−
σt∇pt(x)
pt(x)

∥∥∥∥ ≲ N
2s+1

d log
1
2 N(|ϕdif,5(x, t)− pt(x)|+ ∥ϕdif,6(x, t)− σt∇pt(x)∥).

Therefore, we have that∥∥∥∥ f2(x, t)

σtf1(x, t)
− ∇pt(x)

pt(x)

∥∥∥∥
≲


log

1
2 N(|f1(x, t)− pt(x)|+ ∥f2(x, t)− σt∇pt(x)∥)/σt (∥x∥∞ ≤ mt)

N
2s+1

d log
1
2 N(|f1(x, t)− pt(x)|+ ∥f2(x, t)− σt∇pt(x)∥)/σt

(x ∈ [−mt −O(1)σt

√
logN,mt +O(1)σt

√
logN ]d \ [−mt,mt]

d).

(51)
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We consider the L2(pt) loss of (51). First, we consider the case of ∥x∥∞ ≤ mt.

∫
∥x∥∞≤mt

pt(x)

∥∥∥∥ f2(x, t)

σtf1(x, t)
− ∇pt(x)

pt(x)

∥∥∥∥2 dx
≲
∫
∥x∥∞≤mt

(|f1(x, t)− pt(x)|2 + ∥f2(x, t)− σt∇pt(x)∥2) logN/σ2
t dx (we used(51) and pt(x) = O(1) by Lemma A.2.)

≲
∫
∥x∥∞≤mt

∣∣∣∣∣
∫

1

σd
t (2π)

d
2

p0(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy −

∫
1

σd
t (2π)

d
2

fN (y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

∣∣∣∣∣
2

+

∥∥∥∥∥
∫

x−mty

σd+1
t (2π)

d
2

p0(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy −

∫
x−mty

σd+1
t (2π)

d
2

p0(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

∥∥∥∥∥
2
 logN/σ2

t dx

≲ logN/σ2
t ·
∫
∥x∥∞≤mt

∫
1

σd
t (2π)

d
2

exp

(
−∥x−mty∥2

2σ2
t

)
|p0(y)− fN (y)|2dydx

+ logN/σ2
t ·
∫
∥x∥∞≤mt

∫
|x−mty|
σd+1
t (2π)

d
2

exp

(
−∥x−mty∥2

2σ2
t

)
|p0(y)− fN (y)|2dydx

= logN/σ2
t ·
∫ ∫

∥x∥∞≤mt

1

σd
t (2π)

d
2

exp

(
−∥x−mty∥2

2σ2
t

)
|p0(y)− fN (y)|2dxdy

+ logN/σ2
t ·
∫ ∫

∥x∥∞≤mt

|x−mty|
σd+1
t (2π)

d
2

exp

(
−∥x−mty∥2

2σ2
t

)
|p0(y)− fN (y)|2dxdy

≲ logN/σ2
t ·
∫
|p0(y)− fN (y)|2dy + logN/σ2

t ·
∫
|p0(y)− fN (y)|2dy ≲ logN/σ2

t ·N−2s/d.

For the third inequality, we used Jensen’s inequality. For the second last inequality, we used the construction of fN and
Lemma B.4.

We then consider the case of x ∈ [−mt −O(1)σt

√
logN,mt +O(1)σt

√
logN ]d \ [−mt,mt]

d. Most of the part is the
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same as previously.

∫
mt≤∥x∥∞≤mt+O(1)σt

√
logN

pt(x)1[pt(x) ≥ N− 2s+1
d ]

∥∥∥∥ f2(x, t)

σtf1(x, t)
− ∇pt(x)

pt(x)

∥∥∥∥2 dx
≲
∫
mt≤∥x∥∞≤mt+O(1)σt

√
logN

(|f1(x, t)− pt(x)|2 + ∥f2(x, t)− σt∇pt(x)∥2)N
4s+2

d logN/σ2
t dx

≲
∫
mt≤∥x∥∞≤mt+O(1)σt

√
logN

(∣∣∣∣∣
∫

1

σd
t (2π)

d
2

p0(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy −

∫
1

σd
t (2π)

d
2

fN (y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

∣∣∣∣∣
2

+

∥∥∥∥∥
∫

x−mty

σd+1
t (2π)

d
2

p0(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy −

∫
x−mty

σd+1
t (2π)

d
2

p0(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

∥∥∥∥∥
2)

N
4s+2

d logN/σ2
t dx

≲ N
4s+2

d logN/σ2
t ·
∫
mt≤∥x∥∞≤mt+O(1)σt

√
logN

∫
1

σd
t (2π)

d
2

exp

(
−∥x−mty∥2

2σ2
t

)
|p0(y)− fN (y)|2dydx

+N
4s+2

d logN/σ2
t ·
∫
mt≤∥x∥∞≤mt+O(1)σt

√
logN

∫
|x−mty|2

σd+2
t (2π)

d
2
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(
−∥x−mty∥2

2σ2
t

)
|p0(y)− fN (y)|2dydx

≲

[∫
mt≤∥x∥∞≤mt+O(1)σt

√
logN

[∫
∥ x

mt
−y∥∞≤O(1)σt

√
logN

1

σd
t (2π)

d
2

exp

(
−∥x−mty∥2

2σ2
t

)
|p0(y)−fN (y)|2dy+N− 6s+2

d

]
dx

+

∫
mt≤∥x∥∞≤mt+O(1)σt

√
logN

[∫
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mt
−y∥∞≤O(1)σt

√
logN

|x−mty|2
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t (2π)
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(
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d
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dx

]

·N
4s+2

d logN/σ2
t (we used Lemma F.9.)

≲ N
4s+2

d logN/σ2
t ·[∫

mt≤∥x∥∞≤mt+O(1)σt
√
logN

[∫
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−y∥∞≤O(1)σt
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dx

+

∫
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log2 N
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∫
mt≤∥x∥∞≤mt+O(1)σt
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logN

∫
∥ x

mt
−y∥∞≤O(1)σt
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σd
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(
−∥x−mty∥2
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|p0(y)− fN (y)|2dxdy

+N− 2s
d logN/σ2

t (52)

For the third inequality, we used Jensen’s inequality. Here, we note that if (x, y) satisfies mt ≤ ∥x∥∞ ≤ mt +
O(1)σt

√
logN = O(1) and ∥ x

mt
− y∥∞ ≤ O(1)σt

√
logN , then we have that 1 − O(1)σt

√
logN ≤ ∥y∥∞ ≤ 1 +

O(1) σt

mt

√
logN and that 1−O(1)

√
t ≤ ∥y∥∞ ≤ 1 +O(1)

√
t. Because we are considering the time t ≤ T4 = 3N− 2−δ

d ,

O(1)
√
t ≲ N− 1−δ

d holds for sufficiently large N . Therefore, (52) is further bounded by

(52)

≲ N
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d log2 N/σ2
t

∫
x

∫
1−N− 1−δ

d ≤∥y∥∞≤1+N− 1−δ
d
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σd
t (2π)

d
2

exp
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+N− 2s
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∫
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d

∫
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1

σd
t (2π)

d
2

exp

(
−∥x−mty∥2

2σ2
t
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|p0(y)− fN (y)|2dydx

+N− 2s
d logN/σ2

t

≲ N
4s+2

d log2 N/σ2
t ·N− 6s+4

d +N− 2s
d logN/σ2

t ≲ N− 2s
d logN/σ2

t ,

where we used the construction of fN and Lemma B.4 for the second last inequality. Now we successfully bounded (46)
and the conclusion follows.
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B.4. Approximation error bound: using the induced smoothness

We then consider the approximation for t ≳ T2 = N−(2−δ)/d. This can be proved by considering diffusion process starting
at t = t∗ > 0. We begin with the following lemma.

Lemma B.6 (Basis decomposition of pt at t = t∗). If N,N ′ ≫ 1 and N ′ ≥ t
− d

2
∗ N

δ
2 , there exists fN ′ such that

∥pt∗ − fN ′∥L2(Rd) ≲ N−(3s+5)/d,

fN ′(x) = 0 for x with ∥x∥∞ ≳ O(
√
logN), and has the following form:

fN (x) =

N ′∑
i=1

1[∥x∥∞ ≲ O(
√
logN)]Md

ki,ji(x),

where −
√
logN2(ki)m − l ≲ (ji)l ≲

√
logN2(ki)l (i = 1, 2, · · · , N, m = 1, 2, · · · , d), ∥ki∥∞ ≤ K = O(d−1 logN)

and |αi| ≲ N
(3s+6)(2−δ)

δ .

Proof. Let α = 2(3s+6)
δ + 1. According to Lemma A.3, for any x, we have

∥∂xi1
∂xi2
· · · ∂xik

pT2
(x)∥ ≤ Ca

σk
t∗

.

Because all derivatives up to order α is bounded by σ−α
t∗ ≲ t

−α
2

∗ ∨ 1, pt∗ (x)

t
−α

2
∗ ∨a

belongs to Wα
∞ and its norm in Wα

∞ is bounded

by a constant depending on α, and hence to Bα
∞,∞. Therefore, according to Lemma F.11, there exists a basis decomposition

with the order of the B-spline basis l = α+ 2:

fN ′(x) = (t
−α

2
∗ ∨ 1)

N ′∑
i=1

αiM
d
ki,ji(x).

such that

∥pt∗ − fN ′∥L2([−O(
√
logN),O(

√
logN)]d) ≲ (

√
logN)αN ′−α/d

t
−α

2
∗

= (
√
logN)αNαδ/2d = (

√
logN)αN−(3s+6)/d ≲ N−(3s+5)/d,

where −
√
logN2(ki)m − l ≲ (ji)l ≲

√
logN2(ki)l (i = 1, 2, · · · , N, m = 1, 2, · · · , d), ∥ki∥∞ ≤ K = O(d−1 logN),

and |αi| ≲ 1. Also, Lemma A.4 with ε = N− 6s+10
d and mt∗ + O(1)σt∗

√
logN ≲

√
logN guarantees that ∥pT2

−
fN∥L2(Rd⊆[−O(

√
logN),O(

√
logN)]d) ≲ N−(3s+5)/d. Therefore, by resetting αi ← (t

−α
2

∗ ∨ 1)αi, the assertion holds. (αi is

then bounded by T
−α

2
2 .)

Lemma B.6 gives a concrete construction of the neural network for T3 ≤ t ≤ T5.

Lemma B.7 (Approximation of score function for T3 ≤ t ≤ T5; Lemma 3.6). Let N ≫ 1 and N ′ ≥ t
−d/2
∗ Nδ/2. Suppose

t∗ ≥ N−(2−δ)/d. Then there exists a neural network ϕscore,2 ∈ Φ(L,W, S,B) that satisfies∫
x

pt(x)∥ϕscore,2(x, t)− s(x, t)∥2dx ≲
N− 2(s+1)

d

σ2
t

for t ∈ [2t∗, T ]. Specifically, L = O(log4(N)), ∥W∥∞ = O(N), S = O(N ′), and B = exp(O(logN · log logN)).
Moreover, we can take ϕscore,2 satisfying ∥ϕscore,2∥∞ = O(σ−1

t log
1
2 N).

Proof. The proof is essentially the same as that of Lemma B.5. Here, the slight differences are that (i) pt, ϕdif,8, and f1 are

lower bounded by N−(2s+3)/d, not by N−(2s+1)/d, that (ii) L2(pt) error should be bounded by N− 2(s+1)
d

σ2
t

, not by N− 2s
d

σ2
t

,
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and that (iii) pt∗ is supported on Rd, not on [−1, 1]d. Bounding the difference between Observe that t∗ ≥ T1 = N− 2−δ
d

holds, which is necessary to apply the argument of Lemma B.5.

Let us reset the time t← t− t∗ in the following proof and consider the diffusion process from p0 (in the new definition), for
simplicity. We have t ≥ t∗ ≳ poly(N−1) in the new definition. According to Lemma A.4, we have that∫

∥x∥∞≥mt+O(1)σt

√
logN

pt(x)∥s(x, t)−∇ log pt(x)∥2dx ≲
t∗

N (2s+2)/d

(
1 + ∥s(·, t)∥2∞

)
, (53)

with a sifficiently large hidden constant inO(1). We limit the domain of x into ∥x∥∞ ≤ mt+O(1)σt

√
logN = O(

√
logN).

In this region, Lemma A.3 yields ∥∇ log pt(x)∥ ≲
√
logN
σt

, and therefore we can take s such that ∥s(·, t)∥∞ ≤
√
logN
σt

≲
√
logN√
t∗∧1

holds. Then, (53) is bounded by N−2(s+1)/d. Moreover,∫
∥x∥∞≤mt+O(1)σt

√
logN

pt(x)1[pt(x) ≤ N−(2s+3)/d]∥s(x, t)−∇ log pt(x)∥2dx ≲
ε

σ2
t

log
d+2
2 (N) + ε∥s(x, t)∥

≲

(
N−(2s+3)/d

σ2
t

log
d+2
2 (N) +

N−(2s+3)/d

σ2
t

logN

)
log

d
2 N ≲ N−2(s+1)/d.

This means that we only need to consider x with pt(x) ≥ N−(2s+3)/d.

Using the basis decomposition in the previous lemma, we let

pt(x) =

∫
1

σd
t (2π)

d
2

p0(y) exp

(
−∥x−mty∥2

2σ2
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)
dy ≒
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fN (y) exp
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=
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αiE
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(x, t) =: f̃1(x, t),

f1(x, t) := f̃1(x, t) ∨N−(2s+3)/d,

and

σt∇pt(x) =
∫
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2σ2
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)
dy ≒
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fN (y) exp
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−∥x−mty∥2

2σ2
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)
dy

=

N ′∑
i=1

αiE
(2)
ki,ji

(x, t) =: f2(x, t),

f3(x, t) :=
f2(x, t)

f1(x, t)
1

[∥∥∥∥f2(x, t)f1(x, t)

∥∥∥∥ ≲
log

1
2 N

σt

]

(exactly the same definitions as that in Lemma B.5, except for f1(x, t) := f̃1(x, t)∨N−(2s+3)/d). Then we approximate each
αiE

(1)
ki,ji

(x, t) and αiE
(2)
ki,ji

(x, t) using Lemma B.3 with ε ≲ N ′−1·N
(3s+6)(2−δ)

δ ·N− 9s+10
d and C = mt+O(1)σt

√
logN =

O(
√
logN) and aggregate them by Lemma F.3 to obtain ϕdif,8(x, t) and ϕdif,9(x, t), that approximate f1 and f2, respectively,

and satisfy

|f1(x, t)− ϕdif,8(x, t)| ≲ N− 9s+3
d , ∥f2(x, t)− ϕdif,9(x, t)∥ ≲ N− 9s+10

d .

for all x with ∥x∥∞ = O(
√
logN). Now, we define ϕdif,7 as

[ϕdif,10(x, t)]i := ϕclip(ϕmult(ϕrec(ϕclip(ϕdif,8(x, t);N
−(2s+3)/d,O(1)))), [ϕdif,9(x, t)]i);−O(log

1
2 N),O(log

1
2 N)),

where we let ε = N−(3s+4)/d in Lemma F.7 for ϕrec and we let ε = N−(s+1)/d and C = N (2s+3)/d for ϕmult in Lemma F.6.
Finally, we let

ϕscore,2(x, t) := ϕmult(ϕdif,10(x, t), ϕσ(t)).

35



Diffusion Models are Minimax Optimal Distribution Estimators 36

where ε = N−(s+1)/d and C ≃ max{log
1
2 N, σT } ≲ poly(N) in Lemma F.6 for ϕmult and ε = N−(s+1)/d/poly(N) in

Lemma B.1 for ϕσ . In summary, we can check that∥∥∥∥ϕscore,2(x, t)−
f3(x, t)

σt

∥∥∥∥ ≲ N−(s+1)/d

holds for all x with ∥x∥∞ ≲
√
logN and therefore∫

∥x∥∞≲
√
logN

pt(x)

∥∥∥∥ϕscore,2(x, t)−
f3(x, t)

σt

∥∥∥∥2 ≲ N−(s+1)/d. (54)

Moreover, the size of ϕscore,2 is bounded by

L = O(log4 N), ∥W∥∞ = O(N ′ log6 N) ≲ O(N), S = O(N ′ log8 N), and B = expO (logN · log logN) . (55)

Now, we consider the difference between f3(x, t)/σt and ∇ log pt(x). Its L2 error in ∥x∥∞ ≤ mt + O(1)σt

√
logN is

bounded as previously, and we finally get∫
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exp

(
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2σ2
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|p0(y)− fN (y)|2dxdy
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|p0(y)− fN (y)|2dy ≲ N
4s+6

d logN/σ2
t ·N− 6s+10

d ≲ N− 2(s+1)
d /σ2

t . (56)

Here we used the result of the previous lemma for the last inequality. Eqs. (54) and (55), (56) yield the conclusion.

Combining Lemmas B.5 and B.7, where we use Lemma B.5 for T1 ≤ t ≤ T4 and Lemma B.7 for T3 ≤ t ≤ T5, we
immediately obtain Theorem 3.1.

Proof of Theorem 3.1. Note that we can set N ′ = N and t∗ = N−(2−δ)/d in Lemma B.7. According to Lemmas B.5
and B.7, we have two neural networks ϕscore,1(x, t) and ϕscore,2(x, t), that approximate the score function in [T1, T4]
and [T3, T5]. Therefore, letting t1 = T4 and t2 = T3 in Lemma F.5, ϕscore(x, t) = ϕ1

swit(t; t2, t1)ϕscore,1(x, t) +

ϕ2
swit(t; t2, t1)ϕscore,2(x, t) approximates the approximation error in L2(pt) with an additive error of N−2s/d logN

σ2
t

. Realiza-
tion of the multiplications (ϕ1

switϕscore,1 and ϕ2
switϕscore,2 and aggregation ϕ1

switϕscore,1 + ϕ2
switϕscore,2 is trivial. Finally,

according to Lemmas B.5 and B.7, the size of the network is bounded by

L = O(log4(N)), ∥W∥∞ = O(N log6 N), S = O(N log8 N), and B = exp(O(logN · log logN)),
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which concludes the proof.

We also prepare an integral form of the approximation theorems.
Theorem B.8 (Approximation theorem). Suppose Assumptions 2.4, 2.5, 2.6 with a0 = N−(1−δ)/d, N ≫ 1, T =
poly(N−1), and T ≃ logN . Then there exists a neural network ϕscore ∈ Φ(L,W, S,B) that satisfies∫ T

t=T

∫
x

pt(x)∥ϕscore(x, t)−∇ log pt(x)∥2dxdt ≲ N−2s/d logN(log(T/T ) + (T − T )).

Here, L, ∥W∥∞, S,B is evaluated as

L = O(log4 N), ∥W∥∞ = O(N log6 N), S = O(N log8 N), and B = exp(O(logN · log logN)).

Moreover, suppose N ′ ≥ t
−d/2
∗ Nδ/2, t∗ ≥ N−(2−δ)/d, and T ≥ 2t∗, then there exists a neural network ϕscore ∈

Φ(L,W, S,B) that satisfies∫ T

t=T

∫
x

pt(x)∥ϕscore(x, t)−∇ log pt(x)∥2dxdt ≲ N− 2(s+1)
d (log(T/T ) + (T − T )).

Specifically, L = O(log4(N)), ∥W∥∞ = O(N), S = O(N ′), and B = exp(O(logN · log logN)).

Proof. We only show the first part; the second part comes from Lemma B.7 in the same way. According to Theorem 3.1,
there exists a network ϕscore with the desired size that satisfies∫

x

pt(x)∥ϕscore(x, t)− s(x, t)∥2dx ≲
N− 2s

d log(N)

σ2
t

.

Note that σt ≳ t ∧ 1. Therefore,∫ T

t=T

N− 2s
d log(N)

σ2
t

dt ≲
∫ T

t=T

N− 2s
d log(N)(1 ∨ 1/t)dt ≤ N− 2s

d log(N)(log(T/T ) + (T − T )),

which gives the first part of the theorem.

C. Generalization of the score network
Now we consider the generalization error. As in Section 4, we first consider the sup-norm of ℓ and evaluate the covering
number.

C.1. Bounding sup-norm

Lemma C.1. Suppose that ∥s(·, t)∥∞ = O(σ−1
t log

1
2 n), T = poly(n−1) and T ≃ log n. Then, we have that∫ T

t=T

∫
xt

∥s(xt, t)−∇ log pt(xt|x0)∥2pt(xt|x0)dxtdt ≲ log2 n.

Proof. The evaluation is mostly straightforward.∫ T

t=T

∫
xt

∥s(xt, t)−∇ log pt(xt|x0)∥2pt(xt|x0)dxtdt

≤ 2

∫ T

t=T

∫
xt

∥s(xt, t)∥2pt(xt|x0)dxdt+ 2

∫ T

t=T

∫
xt

∥ log pt(xt|x0)∥2pt(xt|x0)dxtdt

≲
∫ T

t=T

log n

σ2
t

dt+

∫ T

t=T

1

σ2
t

dt

≲
∫ T

t=T

log n

t ∧ 1
dt ≤ (log n) · (log T−1 + T ) ≲ log2 n
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For the evaluation of
∫
xt
∥ log pt(xt|x0)∥2pt(xt|x0)dxt, we used the fact that pt(xt|x0) is the density function of

N (mtx0, σ
2
t ). Also, we used that T = poly(n−1) and T ≃ log n for the last inequality.

C.2. Covering number evaluation

Lemma C.2 (Covering number of L). For a neural network s · Rd × R→ Rd, we define ℓ · Rd → R as

ℓs(x) =

∫ T

t=T

∫
xt

∥s(xt, t)−∇ log pt(xt|x)∥2pt(xt|x)dxdt.

For the hypothesis network class S ∈ Φ(L,W, S,B), we define a function class L = {ℓs| s ∈ S}. If the corresponding s is
obvious for some ℓs, we sometimes abbreviate ℓs as ℓ.

Assume that s(x, t) is bounded by ∥∥s(·, t)∥2∥L∞ = O(σ−1
t log

1
2 n) uniformly over all s ∈ S and C ≥ 1. Then the

covering number of S is evaluated by

logN (S, ∥∥ · ∥2∥L∞([−C,C]d+1), ε) ≲ 2SL log(ε−1L∥W∥∞(B ∨ 1)C), (57)

and based on this, the covering number of L is evaluated by

logN (L, ∥ · ∥L∞([−1,1]d), ε) ≲ SL log(ε−1L∥W∥∞(B ∨ 1)n) (58)

when ε−1, T−1, T ,N = poly(n).

Proof. The first bound (57) is directly obtained from Suzuki (2018), with a slight modification of the input region. By
following their proof, we can see that their ε-net for the L∞([0, 1]d)-norm serves as the Cε-net for the L∞([−C,C]d)-norm.
Therefore, we simply set ε← C−1ε in their bound to obtain (57).

We next consider (58). First we clip the integral interval in the definition of ℓ.∣∣∣∣∣ℓs(x)−
∫ T
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∫
∥xt∥∞≤O(

√
logn)
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≤
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√
logn)

∥s(xt, t)−∇ log pt(xt|x)∥2pt(xt|x)dxtdtdt

≤ ∥∥s(·, ·)∥2∥2L∞

∫ T

t=T

∫
∥xt∥∞≥O(

√
logn)

pt(xt|x)dxtdt+

∫ T

t=T

∫
∥xt∥∞≥O(

√
logn)

∥∇ log pt(xt|x)∥2pt(xt|x)dxtdt.

(59)

Because pt(xt|x) is the density function of N (mtx|σ2
t ), we can show that

∫
∥xt∥∞≥O(

√
logn)

pt(xt|x)dxt and∫
∥xt∥∞≥O(

√
logn)

∥∇ log pt(xt|x)∥2pt(xt|x)dxt are bounded by ε
3T (∥∥s(·,·)∥2∥2

L∞∨1)
if ε−1, T−1, T ,N = poly(n) and

the hidden constant in O(
√
log n) is sufficiently large (see Lemma F.12). Therefore, (59) is bounded by

∥∥s(·, ·)∥2∥L∞(T − T ) · ε

3T∥∥s(·, ·)∥2∥L∞
+ (T − T ) · ε

3T
≤ 2

3
ε. (60)

We then take C = poly(n) ≳
√
log n and construct ε

3 -net for a set of

ℓ′(x) :=

∫ T

t=T

∫
∥xt∥∞≤C

∥s(xt, t)−∇ log pt(xt|x)∥2pt(xt|x)dxtdt (61)

over all s ∈ S . For this, we take ε
nO(1) -net of S with the L∞([−C,C]d+1)-norm. According to (57), the covering number is

evaluated as

logN
(
S, ∥∥ · ∥2∥L∞([−C,C]d+1),

ε

nO(1)

)
≲ 2SL log(ε−1L∥W∥∞(B ∨ 1)n).
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For different s and s′, because ∥∇ log pt(xt|x)∥ ≲ C
σ2
t

for ∥xt∥∞ ≤ C, we have that

|∥s(xt, t)−∇ log pt(xt|x)∥2 − ∥s′(xt, t)−∇ log pt(xt|x)∥2| (62)

≤ (∥s(xt, t)−∇ log pt(xt|x)∥+ ∥s′(xt, t)−∇ log pt(xt|x)∥2)
|∥s(xt, t)−∇ log pt(xt|x)∥ − ∥s′(xt, t)−∇ log pt(xt|x)∥|

≤ (∥∥s(·, ·)∥2∥L∞ + ∥∥s′(·, ·)∥2∥L∞ + 2C/σ2
t ) ·

ε

nO(1)
. (63)

By taking the hidden constant in ε
nO(1) sufficiently large, this is further bounded by ε

3T (2C)d
when C, T−1, T = poly(n).

Integrating (62) and (63) over
∫ T

t=T

∫
∥xt∥∞≤C

dxtdt yields that this ε
nO(1) -net of S actually gives the ε

3 -net for the set of
(61); finally, we have obtained the ε-net for L together with (60).

C.3. Generalization error bound on the score matching loss

This subsection gives the complete proof of Theorem 4.3. First, the following relationship is useful. This shows the
equivalence of explicit score matching and denoising score matching, and can be used to show that the minimizer of the
empirical denoising score matching also approximately minimizes the explicit score matching loss.
Lemma C.3 (Equivalence of explicit score matching and denoising score matching (Vincent (2011))). The following
equality holds for all s(xt, t) and t > 0:∫

xt

∥s(xt, t)−∇ log pt(xt)∥2pt(xt)dxt =

∫
x0

∫
xt

∥s(xt, t)−∇ log pt(xt|x0)∥2pt(xt|x0)p0(x0)dx0dx0 + C,

where C =
∫
xt
∥∇ log pt(xt)∥2pt(xt)dxt −

∫
x0

∫
xt
∥∇ log pt(xt|x0)∥2pt(xt|x0)p0(x0)dxtdx0.

Proof. The proof follows Vincent (2011).∫
xt

∥s(xt, t)−∇ log pt(xt)∥2pt(xt)dxt

= −2
∫
xt

pt(xt)s(xt, t)
⊤∇ log pt(xt)dx+

∫
xt

∥s(xt, t)∥2pt(xt)dxt +

∫
xt

∥∇ log pt(xt)∥2pt(xt)dx

= −2
∫
xt

s(xt, t)
⊤∇pt(xt)dxt +

∫
xt

∥s(xt, t)∥2pt(xt)dxt +

∫
xt

∥∇ log pt(xt)∥2pt(xt)dx

= −2
∫
xt

s(xt, t)
⊤∇

(∫
x0

pt(xt|x0)p0(x0)dx0

)
dxt +

∫
xt

∥s(xt, t)∥2pt(xt)dxt +

∫
xt

∥∇ log pt(xt)∥2pt(xt)dxt

= −2
∫
xt

s(xt, t)
⊤
(∫

x0

p0(x0)∇pt(xt|x0)dx0

)
dxt +

∫
xt

∥s(xt, t)∥2pt(xt)dxt +

∫
xt

∥∇ log pt(xt)∥2pt(xt)dxt

= −2
∫
xt

pt(xt|y)p0(x0)s(xt, t)
⊤
(∫

x0

∇ log pt(xt|x0)dx0

)
dxt

+

∫
xt

∥s(xt, t)∥2pt(xt)dxt +

∫
xt

∥∇ log pt(xt)∥2pt(xt)dxt

= −2
∫
x0

∫
xt

pt(xt|x0)p0(x0)s(xt, t)
⊤∇ log pt(xt|x0)dxtdx0 +

∫
x0

∫
xt

pt(xt|x0)p0(x0)∥s(xt, t)∥2dxtdx0

+

∫
xt

∥∇ log pt(xt)∥2pt(xt)dxt

=

∫
x0

∫
xt

pt(xt|x0)p0(x0)∥s(xt, t)−∇ log pt(xt|x0)∥2dxtdx0 +

∫
xt

∥∇ log pt(xt)∥2pt(xt)dxt

−
∫
x0

∫
xt

pt(xt|x0)p0(x0)∥∇ log pt(xt|x0)∥2dxtdx0,

where we used ∇ log pt(xt) = (∇pt(xt))/pt(xt) for the second, pt(xt) =
∫
x0

pt(xt|x0)p0(x0)dx0 for the third,
∇ log pt(xt|x0) = (∇pt(xt|x0))/pt(xt|x0) for the fifth equalities.
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Now, we evaluate the generalization error and the following theorem is a formal version of Theorem 4.3.

Theorem C.4 (Generalization error bound based on the covering number). Let ŝ be the minimizer of

1

n

n∑
i=1

∫ T

t=T

∫
x

∥s(x, t)−∇ log pt(x|xi)∥22pt(x|x0,i)dxdt, (64)

taking values in S ⊂ L2(Rd × [T , T ]). For each s ∈ S, let ℓ(x) =
∫ T

t=T

∫
x
∥s(x, t) − ∇ log pt(y|x)∥22pt(y|x)dydt and

L be a set of ℓ corresponding to each s ∈ S. Suppose every element ℓ ∈ L satisfies ∥ℓ∥L∞([−1,1]d) ≤ Cℓ for some fixed
0 < Cℓ. For an arbitrary ε > 0, if N := N(L, ∥ · ∥L∞([−1,1]d), ε) ≥ 3, then we have that

E{xi}n
i=1

[∫
x

∫ T

t=T

∥ŝ(x, t)−∇ log pt(x)∥2pt(x)dtdx

]

≤ 2 inf
s∈S

∫
x

∫ T

T

∥s(x, t)−∇ log pt(x)∥22pt(x)dxdt+
2Cℓ

n

(
37

9
logN + 32

)
+ 3ε.

Proof. In the following proof, x0,i is denoted as xi for simplicity. (64) is written as 1
n

∑n
i=1 ℓ(xi). Also, with s◦(x, t) =

∇ log pt(x), we write

R(ℓ̂, ℓ◦) :=

∫
x

∫ T

t=T

∥ŝ(x, t)−∇ log pt(x)∥2pt(x)dtdx

=

∫
x

∫ T

t=T

∥ŝ(x, t)−∇ log pt(x)∥2pt(x)dtdx−
∫
x

∫ T

t=T

∥s◦(x, t)−∇ log pt(x)∥2pt(x)dtdx︸ ︷︷ ︸
=0

=

∫
y

∫ T

t=T

∫
x

∥s(x, t)−∇ log pt(x|y)∥2pt(x|y)p0(x)dydtdx+ C(T − T )

−
∫
y

∫ T

t=T

∫
x

∥s◦(x, t)−∇ log pt(x|y)∥2pt(x|y)p0(x)dydtdx− C(T − T )

= E{x′
i}n

i=1

[
1

n

n∑
i=1

(ℓ̂(x′
i)− ℓ◦(x′

i))

]
(65)

with {x′
i}ni=1, that is an i.i.d. sample from p0 and independent of {xi}ni=1. For the second equality, we used Lemma C.3.

First, we evaluate the value of

D :=

∣∣∣∣∣E{xi}n
i=1

[
1

n

n∑
i=1

(ℓ̂(xi)− ℓ◦(xi))

]
−R(ℓ̂, ℓ◦)

∣∣∣∣∣ .
Using (65), we obtain

D =

∣∣∣∣∣Exi,x′
i

[
1

n

n∑
i=1

((ℓ̂(xi)− ℓ◦(xi))− (ℓ̂(x′
i)− ℓ◦(x′

i)))

]∣∣∣∣∣ ≤ 1

n
Exi,x′

i

[∣∣∣∣∣
n∑

i=1

((ℓ̂(xi)− ℓ◦(xi))− (ℓ̂(x′
i)− ℓ◦(x′

i)))

∣∣∣∣∣
]
.

Let Ld = {ℓ1, ℓ2, · · · , ℓN} be a ε-covering of L with the minimum cardinality in the L∞([−1, 1]d) metric. From the
assumption of N(L, ∥ · ∥∞, ε) ≥ 3, we have logN ≥ 1. We define gj(x, x

′) = (ℓj(x)− ℓ◦(x))− (ℓj(x
′)− ℓ◦(x′)) and a

random variable J taking values in {1, 2, · · · , N} such that ∥ℓ̂− fJ∥∞ ≤ ε, so that we have

D ≤ 1

n
Exi,x′

i

[∣∣∣∣∣
n∑

i=1

gJ(xi, x
′
i)

∣∣∣∣∣
]
+ ∥(ℓ̂j(x)− ℓJ(x))− (ℓ̂j(x

′)− ℓJ(x
′)∥∞ ≤

1

n
Exi,x′

i

[∣∣∣∣∣
n∑

i=1

gJ(xi, x
′
i)

∣∣∣∣∣
]
+ ε. (66)

40



Diffusion Models are Minimax Optimal Distribution Estimators 41

Then we define rj := max{A,
√
Ex′ [ℓj(x′)− ℓ◦(x′)]} (j = 1, 2, · · · , N) and a random variable

G := max
1≤j≤N

∣∣∣∣∣
n∑

i=1

gj(xi, x
′
i)

rj

∣∣∣∣∣ ,
where A > 0 is a constant adjusted later. Then we further evaluate (66) as

D ≤ 1

n
Exi,x′

i
[rJG] + ε ≤ 1

n

√
Exi,x′

i
[r2J ]Exi,x′

i
[G2] + ε ≤ 1

2
Exi,x′

i
[r2J ] +

1

2n2
Exi,x′

i
[G2] + ε, (67)

by the Cauthy-Schwarz inequality and the AM-GM inequality. The definition of J yields that

Exi,x′
i
[r2J ] ≤ A2 + Ex′ [ℓJ(x

′)− ℓ◦(x′)] ≤ A2 + Ex′ [ℓ̂(x′)− ℓ◦(x′)] + ε = R(ℓ̂, ℓ◦) +A2 + ε. (68)

Because of the independence of xi and x′
i, we have that

Exi,x′
i

( n∑
i=1

gj(xi, x
′
i)

rj

)2
 ≤ n∑

i=1

Exi,x′
i

[(
gj(xi, x

′
i)

rj

)2
]

=

n∑
i=1

(
Exi,x′

i

[
(ℓj(xi)− ℓ◦(xi))

2

r2j

]
+ Exi,x′

i

[
(ℓj(x

′
i)− ℓ◦(x′

i))
2

r2j

])
≤ 2Cℓn (69)

holds, where we used the fact that gj(xi, x
′
i) is centered and |ℓj(x)− ℓ◦(x)| is bounded by Cℓ. Also, gj(xi,x

′
i)

rj
is bounded

with Cℓ/A. Then, using Bernstein’s inequality, we have that

P[G2 ≥ t] = P[G ≥
√
t] ≤ 2N exp

(
− t

2Cℓ(2n+
√
t

3A )

)
,

for any t ≥ 0. This gives evaluation of Exi,x′
i
[G2]. For any t0 > 0, we have that

Exi,x′
i
[G2] =

∫ ∞

0

P[G2 ≥ t]dt

≤ t0 +

∫ ∞

t0

P[G2 ≥ t]dt

≤ t0 + 2N

∫ ∞

t0

exp

(
− t

8Cℓn

)
dt+ 2N

∫ ∞

t0

exp

(
−3A

√
t

4Cℓ

)
dt.

These two integrals are computed as∫ ∞

t0

exp

(
− t

8Cℓn

)
dt =

[
−8Cℓn exp

(
− t

8Cℓn

)]∞
t0

= 8Cℓn exp

(
− t0
8Cℓn

)
∫ ∞

t0

exp

(
−3A

√
t

4Cℓ

)
dt =

∫ ∞

t0

exp
(
−a
√
t
)
dt (a := 3A/4Cℓ)

=

[
−2(a

√
t+ 1)

a2
exp(−a

√
t)

]∞
t0

=
8Cℓ

√
t0

3A
exp

(
−3A

√
t0

4Cℓ

)
+

32Cℓ

9A2
exp

(
−3A

√
t0

4Cℓ

)
.

We take A =
√
t06n so that

Exi,x′
i
[G2] ≤ t0 + 2N

(
8Cℓn+ 16Cℓn+

128Cℓn
2

t0

)
exp

(
− t0
8Cℓn

)
≤ t0 + 16N exp

(
−3A

√
t0

4Cℓ

)
n(3 + 16n/t0) exp

(
− t0
8Cℓn

)
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holds. Furthermore, we take t0 = 8Cℓn logN , and then it holds that

Exi,x′
i
[G2] ≤ 18Cℓn

(
logN + 6 +

2

Cℓ logN

)
. (70)

Now, we combine (67), (68), (70), and A2 = 2Cℓ logN
9n to obtain

D ≤
(
1

2
R(ℓ̂, ℓ◦) +

1

2
A2 +

1

2
ε

)
+

4Cℓ

n

(
logN + 6 +

2

Cℓ logN

)
+ ε

≤ 1

2
R(ℓ̂, ℓ◦) +

Cℓ

n

(
37

9
logN + 32

)
+

3

2
ε,

where we have used that logN ≥ 1. Therefore, we obtain

R(ℓ̂, ℓ◦) ≤ 2E{xi}n
i=1

[
1

n

n∑
i=1

(ℓ̂(xi)− ℓ◦(xi))

]
+

2Cℓ

n

(
37

9
logN + 32

)
+ 3ε. (71)

For any fixed ℓ ∈ L,

E{xi}n
i=1

[
1

n

n∑
i=1

(ℓ̂(xi)− ℓ◦(xi))

]
≤ E{xi}n

i=1

[
1

n

n∑
i=1

(ℓ(xi)− ℓ◦(xi))

]
= Ex[ℓ(x)− ℓ◦(x)].

RHS is minimized as infℓ∈L Ex[ℓ(x)− ℓ◦(x)]. Finally, combining this with (71), we obtain

R(ℓ̂, ℓ◦) ≤ 2 inf
ℓ∈L

Ex[ℓ(x)− ℓ◦(x)] +
2Cℓ

n

(
37

9
logN + 32

)
+ 3ε.

According to Lemma C.3, we have

R(ℓ̂, ℓ◦) ≤ 2 inf
s∈S

∫ T

T

∫
x

∥s(x, t)−∇ log pt(x)∥22pt(x)dxdt+
2Cℓ

n

(
37

9
logN + 32

)
+ 3ε.

C.4. Sampling t and xt instead of taking expectation

This section provides justification of two approaches presented in Section 4.1. We assume ε−1, T−1, T ,N = poly(n). We
first begin with the following lemma. This shows that ∥s(xj , tj)−∇ptj (xj |x0,ij )∥ is sub-Gaussian.

Lemma C.5. Let us sample (ij , tj , xj) from ij ∼ Unif({1, 2, · · · ,n}), tj ∼ Unif(T,T), and xj ∼ ptj (xj |x0,ij ). Then,
we have that, for all t > 0,

P

[
∥s(xj , tj)−∇ptj (xj |x0,ij )∥ ≥ sup

(x,t)

∥s(x, t)∥+
√
dt

σT

]
≤ 2 exp

(
−t2/2

)
.

Proof. First note that

∥s(xj , tj)−∇ptj (xj |x0,ij )∥ ≤ ∥s(xj , tj)∥+ ∥∇ptj (xj |x0,ij )∥ ≤ sup
x,t
∥s(x, t)∥+ ∥∇ptj (xj |x0,ij )∥.

Because ∇ptj (xj |x0,ij ) =
xj−mtx0,ij

σ2
t

and xj ∼ ptj (xj |x0,ij ) = N
(
mtx0,ij , σ

2
t

)
, we have that [∇ptj (xj |x0,ij )]i is

sub-Gaussian with σ−1
t . Thus, ∥∇ptj (xj |x0,ij )∥ is sub-Gaussian with

√
dσ−1

t . Now, applying σt ≥ σT , we have the
assertion.

Now, we give the following theorem for the first approach.
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Theorem C.6. Let us sample (ij , tj , xj) from ij ∼ Unif({1, 2, · · · ,n}), tj ∼ Unif(T,T), and xj ∼ ptj (xj |x0,i). Let s1
be the minimizer of

1

M

M∑
j=1

∥s(xj , tj)−∇ptj (xj |x0,i)∥2

and s2 be the minimizer of

1

n

n∑
i=1

ℓ(xi) =
1

n

n∑
i=1

∫ T

t=T

∥s(xt, t)−∇pt(xt|x0,i)∥2pt(xt|x0,i)dxtdt,

over S ⊆ Φ(L,W, S,B), where s ∈ S satisfies ∥∥s(·, t)∥2∥L∞ = O(σ−1
t log

1
2 n) ≲ O(σ−1

T log
1
2 n) =: Cs. Then, we have

that

E{(ij ,tj ,xj)}n
i=1

∣∣∣∣∣ 1n
n∑

i=1

ℓ1(xi)−
1

n

n∑
i=1

ℓ2(xi)

∣∣∣∣∣ ≲ C2
s + σ−2

T

M
2SL log(ε−1L∥W∥∞(B ∨ 1)(Cs)) + ε.

Proof. We denote (ij , tj , xj) = yj for simplicity and Y = {(ij , tj , xj)}Mj=1 = {yj}Mj=1. Let Y ′ = {(i′j , t′j , x′
j)}Mj=1 =

{y′j}Mj=1 be a copy of Y , which is independent of Y . We write κ(yj) = ∥s(xj , tj)−∇ptj (xj |x0,ij )∥2. Then, we have that

EY

∣∣∣∣∣∣ 1M
M∑
j=1

κ1(yj)−
1

M

M∑
j=1

κ2(yj)−
1

n

n∑
i=1

ℓ1(xi)−
1

n

n∑
i=1

ℓ2(xi)

∣∣∣∣∣∣ (72)

= EY

∣∣∣∣∣∣ 1M
M∑
j=1

(κ1(yj)− κ2(yj))− EY ′

 1

M

M∑
j=1

(κ1(y
′
j)− κ2(y

′
j))

∣∣∣∣∣∣
≤ EY,Y ′

∣∣∣∣∣∣ 1M
M∑
j=1

((κ1(yj)− κ2(yj))− (κ1(y
′
j)− κ2(y

′
j)))

∣∣∣∣∣∣ . (73)

Next, we let Cs be the minimum integer that satisfies Cs ≥ sups∈C supx,t ∥s(x, t)∥, and for i = 1, 2, · · · , we define Ei
as an event where Cs +

√
d(i−1)
σT

≤ sups∈C maxj max{∥s(xj , tj) − ∇ptj (xj |x0,ij )∥, ∥s(x′
j , t

′
j) − ∇pt′j (x

′
j |x0,i′j

)∥} <

Cs +
√
di

σT
holds. For i = 0, we define E0 as an event where sups∈S maxj max{∥s(xj , tj)−∇ptj (xj |x0,ij )∥, ∥s(x′

j , t
′
j)−

∇pt′j (x
′
j |x0,i′j

)∥} < Cs holds. We let ai = P [Ei] and Ei be the expectation conditioned by the event Ei. Then, (73) is
bounded by

E0

∣∣∣∣∣∣ 1M
M∑
j=1

((κ1(yj)− κ2(yj))− (κ1(y
′
j)− κ2(y

′
j)))

∣∣∣∣∣∣+
∞∑
i=1

aiEi

∣∣∣∣∣∣ 1M
M∑
j=1

((κ1(yj)− κ2(yj))− (κ1(y
′
j)− κ2(y

′
j)))

∣∣∣∣∣∣ .
(74)

We remark that 1
M

∑M
j=1((κ1(yj) − κ2(yj)) − (κ1(y

′
j) − κ2(y

′
j))) is bounded by 8C2

s + 8di2

σ2
t

for each Ei. Here, κ1

is the minimizer of 1
M

∑M
j=1 κ(yj) and κ2 is the minimizer of E [κ(y)]. Moreover, because ∥(xj − x0,ij )/σt∥ =

∥∇ptj (xj |x0,ij )∥ ≤ ∥s(xj , tj)−∇ptj (xj |x0,ij )∥+ ∥s(xj , tj)∥, we have that ∥s(xj , tj)−∇ptj (xj |x0,ij )∥ ≤ Cs +
√
di

σT

implies ∥xj∥ ≤ 2Cs +
√
di. We apply the same argument as that in Theorem C.4 to obtain that

Ei

∣∣∣∣∣∣ 1M
M∑
j=1

κ1(yj)−
1

M

M∑
j=1

κ2(yj)−
1

n

n∑
i=1

ℓ1(xi)−
1

n

n∑
i=1

ℓ2(xi)

∣∣∣∣∣∣
≲

C2
s + σ−2

T i2

M
logN (S, L∞([−(2Cs +

√
di), 2Cs +

√
di]d+1), ε/(Cs + iσ−1

T )) + ε.

≲
C2

s + σ−2
T i2

M
2SL log(ε−1L∥W∥∞(B ∨ 1)(Cs + i)) + ε.
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We remark that yj and y′j are not independent when conditioned by Ei. However, the similar argument still holds in (69),
where we used the independentness of xi and x′

i in the original proof, because the symmetry of yj and y′j is not collapsed by
taking the conditional expectation. Based on this, and ai ≤ 2 exp(−(i− 1)2/2) (i ≥ 1) due to Lemma C.5, we evaluate
(74) as

(74)

≲
C2

s + σ−2
T

M
SL log(ε−1L∥W∥∞(B ∨ 1)(Cs)) + ε+

∞∑
i=1

ai

[
C2

s + σ−2
T i2

M
SL log(ε−1L∥W∥∞(B ∨ 1)(Cs + i)) + ε

]

≲
C2

s + σ−2
T

M
SL log(ε−1L∥W∥∞(B ∨ 1)(Cs)) + ε

+

∞∑
i=1

exp

(
− (i− 1)2

2

)[
C2

s + σ−2
T i2

M
2SL log(ε−1L∥W∥∞(B ∨ 1)(Cs + i)) + ε

]

≲
C2

s + σ−2
T

M
SL log(ε−1L∥W∥∞(B ∨ 1)(Cs)) + ε.

This bounds (72). Thus, we finally obtain that

E{yi}n
i=1

[
1

n

n∑
i=1

ℓ1(xi)−
1

n

n∑
i=1

ℓ2(xi)

]

≤ E{yi}M
j=1

 1

M

M∑
j=1

κ1(yj)−
M∑
j=1

κ2(yj)

+
C2

s + σ−2
T

M
SL log(ε−1L∥W∥∞(B ∨ 1)(Cs)) + ε

≤
C2

s + σ−2
T

M
SL log(ε−1L∥W∥∞(B ∨ 1)(Cs)) + ε,

because κ1 is the minimizer of 1
M

∑M
j=1 κ(yj). Now, we obtain the assertion.

Remark C.7. When ∥s(x, t)∥ =
√
logN/σt holds, by taking T = poly(N−1), T = O(logN), we have

sup(x,t) ∥s(x, t)∥ = Cs ≲
√
T−1 logN . we set N = n

d
2s+d , ε = n− 2s

d+2s and use the network class in Theorem 3.1 to
obtain that

E(ij ,tj ,xj)

[
1

n

n∑
i=1

ℓ1(xi)

]
−
∫
ℓs : s∈S

1

n

n∑
i=1

ℓs(xi) ≲
C2

s + σ−2
T

M
2SL log(ε−1L∥W∥∞(B ∨ 1)(Cs)) + ε

≲
T−1 log n+ T−1

M
n− d

2s+d log16 n ≲
n− d

2s+d log17 n

TM
.

Next, we show the proof for the second approach.

Theorem C.8. We sample tj from µ(t) ∝ 1[T≤t≤T ]
t and modify λ(t) as λ(t) = t log T/T

T−T
, while ij , xj are sampled as

ij ∼ Unif({1, 2, · · · ,n}) and xj ∼ ptj (xj |x0,i). Then, the minimizer s1 over S ⊆ Φ(L,W, S,B) of

1

M

M∑
j=1

λ(tj)∥s(xj , tj)−∇ptj (xj |x0,i)∥2

satisfies

E(ij ,tj ,xj)

[
1

n

n∑
i=1

ℓ1(xi)

]
−
∫
ℓs : s∈S

1

n

n∑
i=1

ℓs(xi) ≲
C2

s + T

M
SL log(ε−1L∥W∥∞(B ∨ 1)(Cs)) + ε,

Here, Cs = supt,x
√

λ(t)∥s(x, t)∥.
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Proof. We just replace ∥s(xj , tj)−∇ptj (xj |x0,i)∥ by
√
λ(tj)∥s(xj , tj)−∇ptj (xj |x0,i)∥ in the previous lemma. Similarly

to Lemma C.5, we have that, for all t > 0,

P

[
λ

1
2 (tj)∥s(xj , tj)−∇ptj (xj |x0,ij )∥ ≥ sup

(x,t)

λ
1
2 (t)∥s(x, t)∥+

√
dλ

1
2 (tj)t

σtj

]
≤ 2 exp

(
−t2/2

)
.

Then, we replace sup(x,t) ∥s(x, t)∥ by sup(x,t) λ
1
2 (t)∥s(x, t)∥, and

√
d

σT
by supt

√
dλ

1
2 (t)

σt
, respectively, to obtain that

Eij ,tj ,xj
Ei′j ,t

′
j ,x

′
j

[
λ(tj)∥s1(xj , tj)−∇ptj (xj |x0,ij )∥2

]
− inf

s∈S
Eij ,tj ,xj

[
λ(tj)∥s(xj , tj)−∇ptj (xj |x0,ij )∥2

]
≲

C2
s + T

M
SL log(ε−1L∥W∥∞(B ∨ 1)(Cs)) + ε, (75)

where (i′j , t
′
j , x

′
j) are the independent copy of (ij , tj , xj). Note that

Eij ,tj ,xj

[
λ(tj)∥s(xj , tj)−∇ptj (xj |x0,ij )∥2

]
=

1

n

n∑
i=1

ℓ(xi) (76)

for all (fixed) s. (75) and (76) yield that

E(ij ,tj ,xj)

[
1

n

n∑
i=1

ℓ1(xi)

]
−
∫
ℓs : s∈S

1

n

n∑
i=1

ℓs(xi) ≤
C2

s + T

M
SL log(ε−1L∥W∥∞(B ∨ 1)(Cs)) + ε,

which concludes the proof.

Remark C.9. When ∥s(x, t)∥ =
√
logN/σt holds, T = poly(N−1), T = O(logN), we have sup(x,t)

√
λ(t)∥s(x, t)∥ =

Cs ≲
√
logN . we set N = n

d
2s+d , ε = n− 2s

d+2s and use the network class in Theorem 3.1 to obtain that

E(ij ,tj ,xj)

[
1

n

n∑
i=1

ℓ1(xi)

]
−
∫
ℓs : s∈S

1

n

n∑
i=1

ℓs(xi) ≲ n− 2s
d+2s log17 n.

D. Estimation error analysis
The following Girsanov theorem is useful when converting the error of the score matching to the estimation error.

Proposition D.1 (Girsanov’s Theorem (Karatzas et al., 1991)). Let p0 be any probability distribution, and let Z =
(Zt)t∈[0,T ], Z

′ = (Z ′
t)t∈[0,T ] be two different processes satisfying

dZt = b(Zt, t)dt+ σ(t)dBt, Z0 ∼ p0,

dZ ′
t = b′(Z ′

t, t)dt+ σ(t)dBt, Z ′
0 ∼ p0.

We define the distributions of Zt and Z ′
t as pt and p′t, and the path measures of Z and Z ′ as P and P′, respectively.

Suppose the following Novikov’s condition:

EP

[
exp

(∫ T

0

1

2

∫
x

σ−2(t)∥(b− b′)(x, t)∥2dxdt

)]
<∞. (77)

Then, the Radon-Nikodym derivative of P with respect to P′ is

dP
dP′ (Z) = exp

{
−1

2

∫ T

0

σ(t)−2∥(b− b′)(Zt, t)∥2dt−
∫ T

0

σ(t)−1(b− b′)(Zt, t)dBt

}
,

and therefore we have that

KL(pT |p′T ) ≤ KL(P|P′) =

∫ T

0

1

2

∫
x

pt(x)σ(t)
−2∥(b− b′)(x, t)∥2dxdt.
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Moreover, Chen et al. (2023b) showed that if
∫
x
pt(x)σ

−2(t)∥(b− b′)(x, t)∥2dx ≤ C holds for some consant C over all t,
we have that

KL(pT |p′T ) ≤
∫ T

0

1

2

∫
x

pt(x)σ(t)
2∥(b− b′)(x, t)∥2dxdt,

even if the Novikov’s condition (77) is not satisfied.

D.1. Estimation bounds in the TV distance

We show the upper and lower estimation rates in the total variation distance in this subsection. Let Ȳ be Ŷ with replacing
Ŷ0 ∼ N (0, Id) by Ȳ0 ∼ pt. First notice that

E[TV(X0, ŶT−T)] ≲ E[TV(YT,YT−T)] + E[TV(ȲT−T , ŶT−T )] + E[TV(ȲT−T , YT−T )]

≲ TV(X0,XT) + E[TV(XT , Ŷ0)] + E[TV(ȲT−T , YT−T )]

= TV(X0,XT) + E[TV(XT ,N (0, Id))] + E[TV(ȲT−T , YT−T )] (78)

Here, E[TV(YT,YT−T)] = TV(X0,XT) follows from the correspondence between the forward and backward processes,

and E[TV(ȲT−T , ŶT−T )] ≤ E[TV(XT , Ŷ0)] follows from the definitions of Ŷ and Ȳ (the only difference is the initial
distribution.). We then bound the three terms in (78) in a row. We begin with the first term.

Theorem D.2. We have that

TV(X0,XT) ≲
√

TnO(1)

for T ≲ n−O(1). Therefore, by taking T ≲ n−O(1), we have that TV(X0,XT) ≲ n−s/(d+2s).

Proof. We need to evaluate ∥p0 − pT ∥L1 . When p0 is Lipschitz continous, an intuitive proof strategy is as follows: For
small t, pt(x) is an average of p0(y) nearby x. Because of the Lipshitzness, p0(x) and p0(y) with |x− y| ≪ 1 are close,
and therefore p0(x) and pt(x) are close. However, our setting also includes the not continous functions. To consider these
cases in a uniform manner, we approximate p0 with the B-spline basis decomposition because each B-spline basis is a
Lipschitz function.

Remember that p0 is decomposed as

fN (x) =

N∑
i=1

αi1[∥x∥∞ ≤ 1]Md
ki,ji(x)

in Lemma F.11, where ∥k∥∞ ≤ K∗ = (O(1) + logN)ν−1 +O(d−1 logN) for δ = d(1/p− 1)+ and ν = (2s− δ)/(2δ),
and ∥p0 − fN∥L1([−1,1]d) ≲ N−s/d ≃ n−s/(2s+d) hold. Because we take N = nd/(2s+d) = nO(1), we can say that each
Md

ki,ji
(x) is nO(1)-Lipschitz. Moreover, |αi| ≲ N (ν−1+d−1)(d/p−s) = nO(1). Therefore, fN is nO(1)-Lipschitz.

We decompose p0 as p0 = fN + (p0 − fN ) using the above fN . Then we have that∣∣∣∣∣pT (x)−
∫

fN (y)

σd
T (2π)

d
2

exp

(
−
∥x−mT y∥2

2σ2
T

)
dy

∣∣∣∣∣ (79)

=

∣∣∣∣∣
∫

(p0(y)− fN (y))

σd
T (2π)

d
2

exp

(
−
∥x−mT y∥2

2σ2
T

)
dy

∣∣∣∣∣
≤
∫
|p0(y)− fN (y)|

σd
T (2π)

d
2

exp

(
−
∥x−mT y∥2

2σ2
T

)
dy.
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Integrating this over all x yields that∫ ∣∣∣∣∣pT (x)−
∫

fN (y)

σd
T (2π)

d
2

exp

(
−
∥x−mT y∥2

2σ2
T

)
dy

∣∣∣∣∣dx ≤
∫ ∫

|p0(y)− fN (y)|
σd
T (2π)

d
2

exp

(
−
∥x−mT y∥2

2σ2
T

)
dydx

=

∫
|p0(y)− fN (y)|

∫
1

σd
T (2π)

d
2

exp

(
−
∥x−mT y∥2

2σ2
T

)
dxdy

≤
∫
|p0(y)− fN (y)|dy = ∥p0 − fN∥L1([−1,1]d).

Thus, ∥p0 − pT ∥L1
is upper bounded by

∥p0 − fN∥L1([−1,1]d) +

∫ ∣∣∣∣∣fN (x)−
∫

fN (y)

σd
T (2π)

d
2

exp

(
−
∥x−mT y∥2

2σ2
T

)
dy

∣∣∣∣∣dx︸ ︷︷ ︸
if fN is replaced by p0, this is equal to ∥p0 − pt∥L1

+ ∥p0 − fN∥L1([−1,1]d)︸ ︷︷ ︸
(79)

. (80)

Because ∥p0 − fN∥L1([−1,1]d) is bounded by n−s/(2s+d), we focus on the second term.

Note that at each x,∣∣∣∣∣
∫

fN (y)

σd
T (2π)

d
2

exp

(
−
∥x−mT y∥2

2σ2
T

)
dy −

∫
Ax

fN (y)

σd
T (2π)

d
2

exp

(
−
∥x−mT y∥2

2σ2
T

)
dy

∣∣∣∣∣ ≲ n−s/(d+2s), (81)

where Ax =
∏d

i=1 a
x
i with axi = [ xi

mT
− σTO(1)

mT

√
log n, xi

mT
+

σTO(1)

mT

√
log n], according to Lemma F.9. Because

σT = O(
√
T ) and mT = O(1) for sufficiently small T , the value of pT (x) is almost determined by the value from points

that is only O(
√
T log n) away from x. Because of the Lipschitzness of p0, for each x ∈ [−mT − O(

√
T log n),mT +

O(
√
T log n)]d,∣∣∣∣∣
∫
Ax

fN (y)

σd
T (2π)

d
2

exp

(
−
∥x−mT y∥2

2σ2
T

)
dy −

∫
Ax

fN (x)

σd
T (2π)

d
2

exp

(
−
∥x−mT y∥2

2σ2
T

)
dy

∣∣∣∣∣ ≤ nO(1) ·
√
T log n. (82)

where we used the Lipshitzness of fN . By taking T polynomially small w.r.t. n, we have that (82) ≲ n−s/(d+2s). Moreover,∣∣∣∣∣
∫
Ax

fN (x)

σd
T (2π)

d
2

exp

(
−
∥x−mT y∥2

2σ2
T

)
dy − fN (x)

∣∣∣∣∣
=

∣∣∣∣∣
∫
Ax

fN (x)

σd
T (2π)

d
2

exp

(
−
∥x−mT y∥2

2σ2
T

)
dy −

∫
fN (x)

σd
T (2π)

d
2

exp

(
−
∥x−mT y∥2

2σ2
T

)
dy

∣∣∣∣∣ ≲ n−s/(d+2s), (83)

again with Lemma F.9.

Therefore, combining (80), (81), (82), and (83), we obtain that

∥p0 − pT ∥L1 ≲
√

TnO(1) ≲ n−s/(d+2s).

for T = n−O(1).

We next consider the second term.
Lemma D.3. We can bound TV(XT ,N (0, Id)) as follows.

TV(XT ,N (0, Id)) ≲ exp(−βT ).

Proof. Exponential convergence of the Ornstein–Ulhenbeck process (Bakry et al., 2014) yields that

TV(XT ,N (0, Id)) ≲
√
KL(pT ∥N (0, Id)) ≤ exp(−βT )

√
KL(p0∥N (0, Id)) ≲ exp(−βT ).

This is because C−1
f ≤ p0 ≤ Cf holds, and because the density ofN (0, Id) is lower bounded by ≳ 1 in supp(p0) = [−1, 1]d,

which means that KL(p0∥N (0, Id)) = O(1).
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The third term E[TV(ȲT−T , YT−T )] in (78) is bounded by Girsanov’s theorem Proposition D.1 and (4) from Section 4:

E{x0,i}n
i=1

TV(ȲT−T , YT−T ) ≲ E{x0,i}n
i=1

√√√√∫ T

t=T

pt(x)β
−2
t ∥ŝ(x, t)−∇ log pt(x)∥2dxdt

≲

√√√√E{x0,i}n
i=1

∫ T

t=T

pt(x)β
−2
t ∥ŝ(x, t)−∇ log pt(x)∥2dxdt

≲
√

n− 2s
d+2s log16 n

≲ n− s
d+2s log8 n.

Therefore, all three terms in (78) are bounded as above and Theorem 5.1 follows. We also show the lower bound as follows.

Proposition D.4. Assume that 0 < p, q ≤ ∞, s > 0, and

s >

{
d

(
1

p
− 1

2

)
, d

(
1

p
− 1

)
, 0

}
holds. Then, we have that

inf
µ̂

sup
p∈Bs

p,q([−1,1]d)

E[TV(µ̂, p)] ≳ n−s/(d+2s),

where the expectation is with respect to the sample, and the infimum is taken over all estimators based on n observations.

Proof. Theorem 10 of Triebel (2011) showed that, for a bounded domain Ω ⊂ Rd,

logN(U(Bs
p,q(Ω)), ∥ · ∥r, ε) ≃ ε−d/s, (84)

for 0 < p, q ≤ ∞, 1 ≤ r <∞, and s > 0 that satisfy

s > max

{
d

(
1

p
− 1

r

)
, d

(
1

p
− 1

)
, 0

}
.

Although they considered all Besov functions that does not satisfy
∫
fdµ = 1, we can check by following their proof

that bounding the functions does not harm the order of the entropy number. Now we use Theorem 4 of Yang & Barron
(1999). Note that the equivalence of the covering number and the entropy holds because ∥ · ∥r is a distance, and therefore
(84) is transferred to the entropy. The condition 2 of the theorem is checked directly from (84). Moreover, the condition 3
holds if we take f∗(x) = 1/2d (x ∈ [−1, 1]d), 0 (otherwise) for all α ∈ (0, 1). Finally, if s >

{
d( 1p −

1
2 ), d(

1
p − 1), 0

}
,

logN(U(Bs
p,q(Ω)), ∥ · ∥2, ε) ≃ logN(U(Bs

p,q(Ω)), ∥ · ∥1, ε) holds. Therefore, Theorem 4 (i) of Yang & Barron (1999) is
applied, and we get

min
µ̂

max
p∈Bs

p,q

E[∥µ̂− p∥1] ≃ εn,

where εn is chosen as logN(U(Bs
p,q(Ω)), ∥ · ∥r, εn) = nε2n holds. Together with (84), we obtain the assertion.

D.2. Estimation rate in the W1 distance

Similarly to (78), we have the following decomposition:

E[W1(X0, ŶT−T )] ≤ E[W1(YT , YT−T )] + E[W1(ȲT−T , ŶT−T )] + E[W1(ȲT−T , YT−T )]

≤ E[W1(X0, XT )] + E[W1(ȲT−T , ŶT−T )] + E[W1(ȲT−T , YT−T )]. (85)

First, we bound the first term of (85).
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Lemma D.5 (Section 4.3 of De Bortoli (2022)). We can bound W1(X0, XT ) as follows.

W1(X0, XT ) ≲
√

T

Proof. Let X ∼ p0 and Z ∼ N(0, Id). Then,

W1(X0, XT ) ≤ E[∥X −mT1
X + σT1

Z∥] ≤ (1−mT )E[∥X∥] + σTE[∥Z∥]

≤ (1−mT )
√
d+ σT

√
d ≲

√
T ,

which concludes the proof.

Next, we bound the second term of (85).

Lemma D.6. We can bound E[W1(ȲT−T , ŶT−T )] as follows.

E[W1(ȲT−T , ŶT−T )] ≲ TV(XT , Ŷ0) ≲ exp(−βT ).

Proof. Exponential convergence of the Ornstein–Ulhenbeck process (Bakry et al., 2014) yields that

TV(XT , Ŷ0) = TV(pT ,N (0, Id)) ≤
√
2KL(pT ∥N (0, Id)) ≤ 2 exp(−Tβ)

√
KL(p0∥N (0, Id)) ≲ exp(−βT ),

because C−1
f ≤ p0 ≤ Cf holds and the density of N (0, Id) is lower bounded by O(1) in supp(p0) = [−1, 1]d, which

means KL(p0∥N (0, Id)) = O(1). In addition because ∥Ŷ (k)

T−T
∥∞, ∥ŶT−T ∥∞ ≤ 2 = O(1), and because the only difference

between Ŷ (k) and Ŷ is the initial distribution, we have W1(Ŷ
(k)

T−T
, ŶT−T ) ≲ TV(XT , Ŷ0) = TV(pT ,N (0, Id)). Putting it

all together, we obtain that

W1(Ŷ
(k)

T−T
, ŶT−T ) ≲ TV(XT , Ŷ0) = TV(pT ,N (0, Id)) ≲ exp(−βT ),

which yields the assertion.

Finally, we bound the third term of (85). As we saw in Section 5.2,

E[W1(ȲT−T , YT−T )] ≤
K∗∑
i=1

E[W1(Ȳ
(i−1)

T−T
, Ȳ

(i)

T−T
)]. (86)

Remember the definition of a sequence of stochastic processes {(Ŷ (i)
t )

T−T
t=0 }

K∗
i=0. First, Ȳ (0) = (Ȳ

(0)
t )t∈[0,T ] = Y =

(Yt)t∈[0,T ] is defined as a process such that

dYt = βT−t(Yt + 2∇ log pt(Yt, T − t))dt+
√
2βT−tdBt (t ∈ [0, T ]), Y

(0)
0 ∼ pT .

Then, YT−t ∼ pt holds for all t ∈ [0, T ]. Next, for i = 1, 2, · · · ,K∗, we let Ȳ (i) = (Ȳ
(i)
t )t∈[0,T−T ] to satisfy

Ȳ
(i)
0 ∼ pT , dȲ

(i)
t = βT−t(Ȳ

(i)
t + 2∇ log pt(Ȳ

(i)
t , T − t))dt+

√
2βT−tdBt (t ∈ [0, T − ti]),

dȲ
(i)
t = βT−t(Ȳ

(i)
t + 2ŝ(Ȳ

(i)
t , T − t))dt+

√
2βT−tdBt (t ∈ [T − ti, T − T ]).

Note that t0 = T , t1 = N− 2−δ
d = n− 2−δ

d+2s , 1 < ti+1

ti
= const. ≤ 2, and tK∗ = T − T . Then, Ȳ (K∗) = Ȳ holds. Here

Ȳ
(i)

T−t
∼ pt holds for all t ∈ [0, T − ti], but after t = T − ti, the true score function is replaced by the estimated one. If

∥Ȳ (i)

T−T
∥∞ > 2 in the original definition, we reset Ȳ (i)

T−T
as Ȳ (i)

T−T
:= 0.
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Also, we introduce another stochastic process Ȳ (i)′ . We define d+ 1-dimensional set A ⊆ Rd+1 as

A =
{
(x, t) ∈ Rd × R

∣∣∣ ∥x∥∞ ≤ mt + Ca,1σt

√
log(n), T ≤ t ≤ T

}
.

According to Lemma A.1, with probability at least 1−n−O(1), a path of the backward process (Yt)
T
t=0 satisfies (Yt, T − t) ∈

A for all T ≤ t ≤ T . Based on this, for i = 0, 1, · · · ,K∗ − 1, Ȳ (i)′ is defined as

Ȳ
(i)′

0 ∼ pT ,

dȲ
(i)′

t = βT−t(Ȳ
(i)′

t + 2∇ log pt(Ȳ
(i)′

t , T − t))dt+
√
2βT−tdBt (t ∈ [0, T − ti]),

dȲ
(i)′

t = βT−t

(
Ȳ

(i)′

t + 21[(Ȳ (i)′

s , T − s) /∈ A for some s ≤ t]∇ log pt(Ȳ
(i)′

t )

+ 21[(Ȳ (i)′

s , T − s) ∈ A for all s ≤ t]ŝ(Ȳ
(i)′

t , T − t)
)
dt+

√
2βT−tdBt (t ∈ [T − ti+1, T − ti]),

dȲ
(i)′

t = βT−t(Ȳ
(i)′

t + 2ŝ(Ȳ
(i)′

t , T − t))dt+
√
2βT−tdBt (t ∈ [T − ti, T − T ]).

Lemma D.7. Suppose that ∥ŝ(·, t)∥∞ ≲ log
1
2 n√
t∧1

holds. Then, the following holds for all i = 1, 2, · · · ,K∗:

W1(Ȳ
(i−1)

T−T
, Ȳ

(i)

T−T
) ≲

√
ti log n

√√√√E{x0,i}n
i=1

[∫ ti

t=ti−1

Ex [∥ŝ(x, t)−∇ log pt(x)∥2dt]

]
+ n− s+1

d+2s . (87)

Therefore, we have that

E{x0,i}n
i=1

[W1(Ȳ
(i−1)

T−T
, Ȳ

(i)

T−T
)] ≲

√
ti log n

√√√√E{x0,i}n
i=1

[∫ ti

t=ti−1

Ex [∥ŝ(x, t)−∇ log pt(x)∥2dt]

]
+ n− s+1

d+2s . (88)

Proof. We construct the transportation map between Ȳ
(i−1)

T−T
and Ȳ

(i)

T−T
. Our approach focuses on each path.

Because the Novikov’s condition is not satisfied for Ȳ (i−1)

T−T
and Ȳ

(i)

T−T
, Proposition D.1 cannot be used to consider the total

variation distance between the two paths; Proposition D.1 only gives KL(Ȳ
(i−1)

T−T
, Ȳ

(i)

T−T
), not KL(Ȳ (i−1), Ȳ (i), and this

bound is insufficient for our discussion. Therefore, we first bound E[W1(Ȳ
(i−1)

T−T
, Ȳ

(i−1)′

T−T
)]. According to Lemma A.1, with

probability at least 1−n−O(1), a path of the processes (Ȳ (i−1)
t )Tt=0 and (Ȳ

(i−1)′

t )Tt=0 satisfy (Ȳ
(i−1)
t , T − t), (Ȳ

(i−1)′

t , T −
t) ∈ A for all 0 ≤ t ≤ T − ti−1. Thus, E[TV(Ȳ

(i−1)

T−T
, Ȳ

(i−1)′

T−T
)] is bounded by n−O(1) (with a sufficiently large constant in

O(1).). This implies E[W1(Ȳ
(i−1)

T−T
, Ȳ

(i−1)′

T−T
)] ≲ n−O(1), because Ȳ

(i−1)

T−T
, Ȳ

(i−1)′

T−T
= O(1) (a.s.).

We now discuss E[W1(Ȳ
(i−1)′

T−T
, Ȳ

(i)

T−T
)]. Let us write the path measures of Ȳ (i−1)′ and Ȳ (i) be P and P′, and take some

path p that is y at t = T − T and is z at t = T − ti. If dP[p] > dP′[p], then we move the mass of Ȳ (i−1)′

T−T
= y that amounts

to dP[p]− dP′[p], to z, along the path p by reversing the time until t = T − ti. Applying this to all paths p, then the total
mass of Ȳ (i−1)′

T−T
that is moved is at most

1

2
TV((Ȳ (i−1)′), (Ȳ (i))) ≤ 1

2

√∫ ti

t=ti−1

∫
x

pt(x)β
−2
t ∥ŝ(x, t)−∇ log pt(x)∥2dxdt. (89)

according to Proposition D.1. Here we remark that the Novikov’s condition certainly holds for this case.

Until now, a part of the mass of Ŷ (i−1)′

T−T
is moved along each corresponding path, but at this time no coupling measure has

been constructed. To realize the coupling measure, we consider the same process for Ȳ (i)

T−T
. That is, for each path p with
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Ȳ
(i)

T−T
= y and Ȳ

(i)

T−ti
= z, if dP[p] < dP′[p], then we move the mass of Ȳ (i)

T−T
= y, as much as dP′[p]− dP[p], to z along

the path p. The total mass of Ȳ (i)

T−T
affected is bounded by 1

2TV((Ȳ (i−1)′), (Ȳ (i)′)), which is bounded by (89).

Now, we can see that, the same amount of mass is transported from both Ȳ
(i−1)′

T−T
and Ȳ

(i)

T−T
to t = T − ti. Thus, at each z,

we can arbitrarily associate the mass from Ȳ
(i−1)′

T−T
to that from Ȳ

(i)

T−T
. Using this, as much as 1

2TV((Ȳ (i−1)′), (Ȳ (i)′)) of

the mass is transported from Ȳ
(i−1)′

T−T
to Ȳ

(i)

T−T
, by reversing the path to t = T − ti.

Now our interest is how far each transport is required to move on average. First we consider when ti ≲ 1.

First we bound ∥Ȳ (i)

T−T
− Ȳ

(i)

T−ti
∥. According to Lemma A.1, we have ∥

∫ T−T

T−ti
2βT−tdBt∥ ≲

√
ti log n for all t ∈

[T − ti, T − T ], and Ȳ
(i)

T−ti
≲ mT−ti

+ σT−ti

√
log n ≲

√
log n with probability 1 − n−O(1). We consider the event

conditioned on them. Note that ∥s(x, t)∥ ≲
√
logn
σt

≲
√
logn√
t

holds. Then we have that, for all T − ti ≤ t ≤ T − T ,

∥Ȳ (i)
t − Ȳ

(i)

T−ti
∥ =

∥∥∥∥∥
∫ T−T

T−ti

βT−s(Ȳ
(i)
s + 2∇ log pt(Ȳ

(i)
s , T − s))dt+

∫ T−T

T−ti

√
2βT−sdBs

∥∥∥∥∥
≲ β

∫ T−T

T−ti

∥Ȳ (i)
s ∥ds+ 2β

∫ T−T

T−ti

√
log n√
s

ds+
√
ti log n,

≲ β

∫ T−T

T−ti

∥Ȳ (i)
s ∥ds+

√
ti log n+

√
ti log n.

≲
∫ T−T

T−ti

∥Ȳ (i)
s − Ȳ

(i)

T−ti
∥ds+

√
ti log n+ ti∥Ȳ (i)

T−ti
∥

≲
∫ T−T

T−ti

∥Ȳ (i)
s − Ȳ

(i)

T−ti
∥ds+

√
ti log n+ ti

√
log n

Now we apply the Gronwall’s inequality to obtain

∥Ȳ (i)
t − Ȳ

(i)

T−ti
∥ ≲ eβti

√
ti log n ≲

√
ti log n.

for all T − ti ≤ t ≤ T − T . Thus, with probability 1− n−O(1), ∥Ȳ (i)
t − Ȳ

(i)

T−ti
∥ is bounded by

√
ti log n up to a constant

factor, over all T − ti ≤ t ≤ T − T .

Next we bound ∥Ȳ (i−1)′

T−T
− Ȳ

(i−1)′

T−ti
∥. This is decomposed into

∥Ȳ (i−1)′

T−ti
− Ȳ

(i−1)′

T−ti−1
∥+ ∥Ȳ (i−1)′

T−T
− Ȳ

(i−1)′

T−ti−1
∥.

The first term is bounded by ≲
√
ti log n with probability at least 1 − n−O(1). This is because Ȳ

(i−1)′

t ∈ A holds with
probability 1− n−O(1) due to the first part of Lemma A.1, and for such paths the evolution of Ȳ (i−1)′

t is the same as that of
Yt, where we apply the second part of Lemma A.1. The second term is bounded by

√
ti−1 log n with probability 1−n−O(1),

following the discussion on ∥Ȳ (i)
t − Ȳ

(i)

T−ti
∥. In summary, with probability 1− n−O(1) we can bound ∥Ȳ (i−1)′

T−T
− Ȳ

(i−1)′

T−ti
∥

by
√
ti−1 log n(≤

√
ti log n) up to a constant factor.

In summary, when ti ≲ 1, the transportation map moves at most O(
√
ti log n) with probability 1− n−O(1). Because the

supports of Ȳ (i−1)′

T−T
and Ȳ

(i)

T−T
are both bounded, for the mass moved more than

√
ti log n affects the Wasserstein distance

at most n−O(1). Therefore, we obtain the desired bound (87) for ti ≲ 1.

For ti ≳ 1, because the supports of Ȳ (i−1)

T−T
and Ȳ

(i)

T−T
are both bounded,

W1(Ȳ
(i−1)

T−T
, Ȳ

(i)

T−T
) ≲ TV(Ȳ

(i−1)

T−T
, Ȳ

(i)

T−T
) ≲

1

2

√∫ ti

t=ti−1

∫
x

pt(x)β
−2
t ∥ŝ(x, t)−∇ log pt(x)∥2dxdt
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holds. Therefore we obtain (87) as well.

From (87), (88) is easily obtained by jensen’s inequality.

Also, we bound the generalization error of each network si.

Lemma D.8. For 1 ≤ i ≤ K∗ − 1, let si be a network that is selected from Φ(L,W, S,B) with

L = O(log4 n), ∥W∥∞ = O(n
d

d+2s ), S = O(t−d/2
i n

δd
2(2s+d) ), and B = exp(O(log n · log log n)),

and ∥si(·, t)∥L∞ ≲ log
1
2 n

σt
. Then, we have that

E{x0,j}n
i=j

[∫ ti+1

t=ti

Ex

[
∥ŝi(x, t)−∇ log pt(x)∥2dt

]]
≲ n− 2(s+1)

d+2s log n+
t
−d/2
i n

δd
2(d+2s) log8 n

n
.

Moreover, for i = 0, let s0 be a network that is selected from Φ(L,W,S,B) with

L = O(log4 n), ∥W∥∞ = O(n
d

d+2s log6 n), S = O(n
d

2s+d log8 n), and B = exp(O(log n · log log n),

and ∥s0(·, t)∥L∞ ≲ log
1
2 n

σt
. Then, we have that

E{x0,j}n
i=j

[∫ ti+1

t=ti

Ex

[
∥ŝ0(x, t)−∇ log pt(x)∥2dt

]]
≲ n− 2s

d+2s log16 n.

Proof. First we consider the first part. We take N = ndd+ 2s and t∗ = ti/2 in Lemma 3.6. Note that N and t∗(≥ n
2−δ
d+2s )

satisfies t∗ ≥ N−(2−δ)/d(, which is assumed in Theorem B.8). Then, there exists a neural network ϕ ∈ Φ(L,W, S,B) that
satisfies ∫ ti+1

t=ti

∫
x

pt(x)∥ϕ(x, t)− s(x, t)∥2dxdt ≲ N− 2(s+1)
d log n = N− 2(s+1)

d+2s log n.

Specifically, L = O(log4(n)), ∥W∥∞ = O(n
d

d+2s ), S = O(t−d/2
i n

δd
2(d+2s) ), and B = exp(O(log n·log log n)). Therefore,

we apply (64) by replacing T and T by ti and ti+1, respectively, and with δ = n− 2(s+1)
d+2s to obtain the first assertion as

E{x0,j}n
i=j

[∫ ti+1

t=ti

Ex

[
∥ŝi(x, t)−∇ log pt(x)∥2dt

]]
≲ N− 2(s+1)

d log n+
Cℓ

n
logN + δ

≲ n− 2(s+1)
d+2s log n+

log2 n

n

(
t
−d/2
i n

δd
2(d+2s) log6 n

)
+ n− 2(s+1)

d+2s

≲ n− 2(s+1)
d+2s log n+

t
−d/2
i n

δd
2(d+2s) log8 n

n
.

For the second part, we simply follow the discussion that derived (4), by replacing T by t1(T ), which does not increase the
generalization error.

Proof of Theorem 5.4. We use the sequence of networks presented in Lemma D.8. Specifically, we consider the following
process.

Ŷ
(i)
0 ∼ N (0, I), dŶ

(i)
t = βT−t(Ŷ

(i)
t + 2ŝ(Ŷ

(i)
t , T − t))dt+

√
2βT−tdBt (t ∈ [T − ti, T − ti+1], i = 0, 1, · · · ,K∗),

and we modify Ŷ
(i)

T−T
to 0 if ∥Ŷ (i)

T−T
∥∞ > 2.
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Finally, we sum up the errors for the above process. Eq. (86) is further bounded by

E[W1(ȲT−T , YT−T )]

≤
K∗∑
i=1

E[W1(Ȳ
(i−1)

T−T
, Ȳ

(i)

T−T
)].

≲
K∗∑
i=1

[√
ti−1 log n

√
E{x0,i}n

i=1

[∫ ti

t=ti

Ex [∥ŝ(x, t)−∇ log pt(x)∥2dt]
]
+ n− s+1

d+2s

]
(by Lemma D.7)

≲
K∗∑
i=2

[√
ti log n

(
n− (s+1)

d+2s

√
log n+

t
−d/4
i n

δd
4(d+2s) log4 n√

n

)
+ n− (s+1)

d+2s

]
+
√

t1 log n
[
n− s

d+2s log8 n+ n− s
d+2s

]
(by Lemma D.8)

≲

[
√
t1n

− s
d+2s +

√
t1
t
−d/4
1 n

δd
4(d+2s)

√
n

]
· Õ(1)

(because K∗ = O(log n) and t1 ≤ · · · tK∗ = O(logN) with 1 < ti+1/ti = const. ≤ 2 (i ≥ 1).)

=

[
(n− 2−δ

d+2s )
1
2n− s

d+2s + (n− 2−δ
d+2s )

1
2
(n− 2−δ

d+2s )−d/4n
δd

4(d+2s)

√
n

]
· Õ(1)

≲ n− (s+1−δ)
d+2s . (90)

Therefore, by taking T ≲ n− 2(s+1)
d+2s and T = (s+1) logn

β(d+2s) , we obtain that

W1(X0, ŶT−T ) ≤ E[W1(X0, XT )] + E[W1(ȲT−T , ŶT−T )] + E[W1(ȲT−T , YT−T )]

≲
√
T + exp(−βT ) + n− (s+1−δ)

d+2s (by Lemmas D.5 and D.6 and (90))

≲ n− (s+1−δ)
d+2s + n− (s+1−δ)

d+2s + n− (s+1−δ)
d+2s ≲ n− (s+1−δ)

d+2s ,

which concludes the proof for Theorem 5.4.

D.3. Discussion on the discretization error

As in Section 5.3, t0 = T < t1 < · · · < tK∗ = T be the time steps with tk+1 − tk ≡ η ≪ 1. Consider the following

process (Y d
t )ηKt=0 = (Y d

t )
T−T
t=0 with Y d

0 ∼ N (0, Id):

dY d
t = βt(Y

d
t + 2ŝ(Y d

T−ti
, T − ti))dt+

√
2βT−tdBt (t ∈ [T − ti, T − ti−1]).

Here ŝ is the score network obtained by the score matching:

ŝ ∈ argmin
1

n

n∑
i=1

K∑
k=1

ηE[∥s(xtk , tk)−∇ log ptk(xtk |x0,i)∥2]. (91)

Here, each expectation is taken with respect to xT−tk
∼ pT−tk

(xT−tk
|x0,i).

Theorem D.9. Let T = n−O(1), T = s logn
2s+d , and η = poly(n−1). Then,

E[TV(X0, ȲT−T )] ≲ n− 2s
d+2s log16 n+ η2T−3 log3 n+ ηT−1 log3 n+ η log4 n.

Proof. We first show that the minimizer ŝ over Φ′ (given in Section 4) of

ŝ ∈ argmin
1

n

n∑
i=1

K∑
k=

ηE[∥s(xtk , tk)−∇ log ptk(xtk |x0,i)∥2].
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satisfies

E{x0,i}n
i=1

[
K∑

k=1

ηExtk
∼ptk

[∥ŝ(xtk , tk)−∇ log ptk(xtk)∥2]

]
≲ n−2s/(2s+d) log16 n. (92)

We take N = n
d

d+2s According to Theorem 3.1, for N ≫ 1, there exists a neural network ϕscore with L =
O(log4 N), ∥W∥∞ = O(N log6 N), S = O(N log8 N), and B = exp(O(logN · log logN)) that satisfies∫

x

pt(x)∥ϕscore(x, t)− s(x, t)∥2dx ≲
N− 2s

d log(N)

σ2
t

. (93)

for all t ∈ [T , T ]. By summing up this for all t = tk, we have that

K∑
k=1

ηExtk
∼ptk

[∥ϕscore(xtk , tk)−∇ log pηk(Xtk)∥2] ≲
K∑

k=1

η
N− 2s

d log(N)

1 ∧ tk
(94)

≤ N− 2s
d log(N)

(
ηK + η

K∑
k=1

1

tk

)
≲ N− 2s

d log(N)(T + log(T/T )) ≲ N− 2s
d log2(N).

In order to convert this into the generalization bound, we need to evaluate the following two things. First, ŝ can be taken so
that

sup
x
∥ϕscore(x, t)∥dx ≲

log
1
2 (N)

σt
,

and therefore we clip s as in Section 4. Because such s satisfies∫
x

pt(x)∥ϕscore(x, t)−∇ log pt(x)∥2dx ≲
log(N)

σ2
t

,

we have that

K∑
k=1

ηExtk
∼ptk

[∥ϕscore(xtk , tk)−∇ log ptk(xtk)∥2] ≤ Cℓ = O(log2(n))

(follow the argument for Lemma C.1 and how we derived (94) from (93)). Second, the covering number of the network
class of ℓ(x) =

∑K
k=1 ηE[∥s(xtk , tk)−∇ log ptk(xtk |x)∥2] over all s with δ = n− 2s

d+2s is bounded by n
d

d+2s log16 n, by
following Appendix C.2. Thus, Theorem C.4 can be modified to this setting and we obtain that

E{x0,i}n
i=1

[
K∑

k=1

ηExtk
∼ptk

[∥s(xtk , tk)−∇ log ptk(xtk)∥2]

]
≲ n−s/(2s+d) log2 n.

holds. Therefore, following the discussion in Section 4, we have that

E{x0,i}n
i=1

[
K∑

k=1

ηkExtk
∼ptk

[∥s(xtk , tk)−∇ log ptk(xtk)∥2]

]

≲
K∑

k=1

ηExtk
∼ptk

[∥ϕscore(xtk , tk)−∇ log pηk(Xtk)∥2] +
Cℓ

n
logN + δ

≲n
d

d+2s log2 n+
log2 n

n
· n

d
d+2s log16 n+ n− 2s

d+2s ≲ n− 2s
d+2s log16 n,

which proves (92).
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From now, we bound TV(Y0, Y
d
T−T

). We introduce the following processes. Ȳ d = (Ȳ d
t )

T−T
t=0 is defined in the same way

as Y d, except for the initial distribution of Ȳ d
0 ∼ pT . At t = T − T , if the

∫
-norm is more than 2, then we reset it to 0.

Ȳ = (Ȳt)
T−T
t=0 is defined as Ȳ0 ∼ pT , and

Ȳ0 ∼ pT ,

dȲt = βT−t

(
Yt + 21[(Ȳs, T − s) /∈ A for some s ≤ t]∇ log pt(Ȳt)

+ 21[(Ys, T − s) ∈ A for all s ≤ t]ŝ(ȲT−tk
, T − tk)

)
dt+

√
2βT−tdBt (t ∈ [T − ti, T − ti−1]).

At t = T − T , if the∞-norm is more than 2, then we reset it to 0. Here, A ⊆ Rd+1 is defined as

A =
{
(x, t) ∈ Rd × R

∣∣∣ ∥x∥∞ ≤ mt + Caσt

√
log(n), T ≤ t ≤ T

}
.

Then, we have that

TV(YT , Y
d
T−T

) ≤ TV(YT , YT−T ) + TV(Y0, ȲT−T ) + TV(ȲT−T , Ȳ
d
T−T

) + TV(Ȳ d
T−T

, Ȳ d)

≤ TV(X0, XT ) + TV(Y0, ȲT−T ) + TV(ȲT−T , Ȳ
d
T−T

) + TV(XT ,N (0, Id)).

The first term is bounded by n− 2s
d+2s , by setting T = n−O(1) in Theorem D.2. The second term is bounded by n− 2s

d+2s , by
taking Ca sufficient large, according to Lemma A.1. The forth term is bounded by exp(−βT ) by Lemma D.3, and thus

setting T = O(log n) yields exp(−βT ) ≲ n− 2s
d+2s .

Now, we bound the third term. Proposition D.1 yields that

TV(ȲT−T , Ȳ
d
T−T

)

≲
K∑

k=1

∫ T−tk−1

t=T−tk

EȲ [1[(Ȳs, T − s) ∈ A for all s ≤ t]∥ŝ(ȲT−tk
, T − tk)−∇ log pt(Ȳt)∥2]dt

≤
K∑

k=1

∫ T−tk−1

t=T−tk

EȲ [1[(Ȳt, T − t) ∈ A, (ȲT−tk
, tk) ∈ A]∥ŝ(ȲT−tk

, T − tk)−∇ log pt(Ȳt)∥2]dt

≤
K∑

k=1

∫ tk

t=tk−1

EX [1[(Xt, t) ∈ A, (Xtk , tk) ∈ A]∥ŝ(Xtk , tk)−∇ log pt(Xt)∥2]dt

≲
K∑

k=1

∫ tk

t=tk−1

Extk
∼ptk

[∥ŝ(xtk , tk)−∇ log ptk(xtk)∥2]dt (95)

+

K∑
k=1

∫ tk

t=tk−1

EX [1[(Xt, t) ∈ A, (Xtk , tk) ∈ A]∥∇ log pt(Xt)−∇ log ptk(Xt)∥2]dt (96)

+

K∑
k=1

∫ tk

t=tk−1

EX [1[(Xt, t) ∈ A, (Xtk , tk) ∈ A]∥∇ log ptk(Xt)−∇ log ptk(Xtk)∥2]dt (97)

First, we consider (96). Because (Xt, t) ∈ A, (∥Xt∥∞ − mt)+ ≲ σt

√
log(n). Over all t ≤ s ≤ tk, |∂sσs| ≲ 1√

t
,

|∂sms| ≲ 1, and

∥∂s∇ log ps(x)∥ ≲
|∂sσs|+ |∂sms|

σ3
s

(
(∥x∥∞ −ms)

2
+

σ2
s

∨ 1

) 3
2

≲
|∂tσtk |+ |∂tmtk |

σ3
tk

(
(∥x∥∞ −mtk)

2
+

σ2
tk

∨ 1

) 3
2

,

according to Lemma A.3. Therefore, (96) is bounded by
∑K

k=1 η(η(t
−2
k ∨ 1) log

3
2 n)2 = η2(t−4

k ∨ 1) log3 n.

Next, for (97), we first note that ∥Xt∥∞ − mtk , ∥Xtk∥∞ − mtk ≲ σtk

√
log(n) = Õ(1). Therefore, according to

Lemma A.3, ∥∂xi
∇ log ptk(x)∥ is bounded by 1

σ2
tk

(
(∥Xtk

∥∞−mtk
)2+

σ2
tk

∨ 1

)
≲ t−1

k log n. With probability at least 1 −

55



Diffusion Models are Minimax Optimal Distribution Estimators 56

n−O(1), ∥Xt −Xtk∥∞ ≲
√
η log n, according to Lemma F.13. Therefore,

(97) ≲
K∑

k=1

η(
√

η log n · (t−1
k ∨ 1) log n)2 + n−O(1) · Õ(1) ≲

K∑
k=1

η2(t−2
k ∨ 1) log3 n.

Finally, for (97), we apply (92). Now, all three terms of (95), (96), and (97) are bounded and we obtain that

E{x0,i}n
i=1

[
TV(ȲT−T , Ȳ

d
T−T

)
]
≲ n− 2s

d+2s log16 n+

K∑
k=1

(η3(t−4
k ∨ 1) log3 n+ η2(t−2

k ∨ 1) log3 n)

≲ n− 2s
d+2s log16 n+ η2T−3 log3 n+ ηT−1 log3 n+ ηT log3 n

≲ n− 2s
d+2s log16 n+ η2T−3 log3 n+ ηT−1 log3 n+ η log4 n.

Therefore, by setting η = T−1.5n− s
d+2s yields the assersion.

E. Error analysis with intrinsic dimensionality
E.1. Brief proof overview

The generalization error analysis of the score network and how much the score estimation error affects in the final estimation
rate in Theorem 6.4 are derived by just replacing d by d′ in the previous analysis. Therefore we focus on the approximation
error bounds. In order to obtain the counterparts of Theorem 3.1 and Lemma 3.6, we aim to decompose the score function
into two parts: each of them is determined by the intrinsic structure components (in V ) and other components (in V ⊥). We
use z as a d′-dimensional vector corresponding to the canonical system of V . The first observation to this goal is

pt(x) =

∫
1

σd
t (2π)

d
2

p0(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

=

∫
V

1

σd
t (2π)

d
2

q(z) exp

(
−∥A

⊤x−mtz∥2 + ∥(Id −A⊤)x∥2

2σ2
t

)
dz

(z is a d′-dimensional vector corresponding to the canonical system of V .)

=

∫
V

q(z)

σd′
t (2π)

d′
2

exp

(
−∥A

⊤x−mtz∥2

2σ2
t

)
dz︸ ︷︷ ︸

p
(1)
t (x)

· 1

σd−d′

t (2π)
d−d′

2

exp

(
−∥(Id −A⊤)x∥2

2σ2
t

)
︸ ︷︷ ︸

p
(2)
t (x)

.

Here p
(1)
t (x) and p

(2)
t (x) can be seen as the density function with respect to the intrinsic components and remaining space.

Note that

∇ log pt(x) = ∇ log(p
(1)
t (x)p

(2)
t (x)) = ∇ log p

(1)
t (x) +∇ log p

(2)
t (x).

Due to this, we only need to construct the neural networks approximating each term and concatenate them. In addition,
p
(1)
t (x) can be seen as the density at A⊤x, about the diffusion process on the d′-dimensional space, where the initial density

is defined by q. Thus we let

qt(z
′) =

∫
V

q(z)

σd′
t (2π)

d′
2

exp

(
−∥z

′ −mtz∥2

2σ2
t

)
dz

for z′ ∈ Rd′
. Here p

(1)
t (x) = qt(A

⊤x) holds.

E.2. Proof of Theorem 6.4

We first consider the approximation of p(1)t (x). We have the following counterpart of Theorem 3.1 and Lemma 3.6, where
the only difference is that here d is replaced by d′.
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Lemma E.1. Let N ≫ 1, T = poly(N−1) and T = O(logN). Then there exists a neural network ϕscore,3 ∈
Φ(L,W, S,B) that satisfies, for all t ∈ [T , T ],∫

x∈Rd

pt(x)∥∇ log p
(1)
t (x)− ϕscore,3(A

⊤x, t)∥2dx ≲
N− 2s

d′ log(N)

σ2
t

. (98)

Here, L,W, S and B are evaluated as L = O(log4 N), ∥W∥∞ = O(N log6 N), S = O(N log8 N), and B =

exp(O(log4 N)). We can take ϕscore,3 satisfying ∥ϕscore,3(·, t)∥∞ = O(σ−1
t log

1
2 N).

Moreover, let N ′ ≥ t
−d′/2
∗ Nδ/2 and t∗ ≥ N−(2−δ)/d′

. Then there exists a neural network ϕscore,4 ∈ Φ(L,W, S,B) that
satisfies ∫

x∈Rd

pt(x)∥∇ log p
(1)
t (x)−Aϕscore,4(A

⊤x, t)∥2dx ≲
N− 2(s+1)

d′

σ2
t

(99)

for t ∈ [2t∗, T ]. Specifically, L = O(log4(N)), ∥W∥∞ = O(N), S = O(N ′), and B = exp(O(log4 N)). We can take
ϕscore,4 satisfying ∥ϕscore,4(·, t)∥∞ = O(σ−1

t log
1
2 N).

Proof. Let ϕscore : Rd′ × R+ → Rd′
that approximates qt(z). Note that

∇ log p
(1)
t (x) = A∇ log qt(A

⊤x)

and therefore∫
x∈Rd

pt(x)∥∇ log p
(1)
t (x)−Aϕscore(A

⊤x, t)∥2dx =

∫
x∈Rd

p
(1)
t (x)p

(2)
t (x)∥A∇ log p

(1)
t (A⊤x)−Aϕscore(A

⊤x, t)∥2dx

=

∫
x∈Rd

qt(A
⊤x)∥A∇ log p

(1)
t (A⊤x)−Aϕscore(A

⊤x, t)∥2dx

=

∫
z∈Rd′

qt(z)∥∇ log qt(z)− ϕscore(z, t)∥2dz,

where we used the fact that p(1)t and p
(2)
t depend on A⊤x and (I − A⊤)x, respectively, and A⊤x and (I − A⊤)x are

orthogonal. Moreover, we used det(A⊤A) = 1 and orthogonality of the columns of A. Thus, we can translate Theorem 3.1
and Lemma 3.6.

We next consider the approximation of p(2)t (x). As we did in Appendix A, we first show that it suffice to consider the
approximation within the bounded region.
Lemma E.2. For ε > 0, we define Bt,ε as

Bt,ε =
{
x ∈ Rd

∣∣∣∥(Id −A⊤)x∥ ≤ Ceσt

√
log ε−1.

}
We sometimes abbreviate this as Bε. Then, we have that∫

x∈B̄ε

pt(x)
[
1 ∨ ∥∇ log(p

(2)
t (x))∥2

]
dx ≲ ε.

Proof. The the columns of A are orthogonal. p(1)t and p
(2)
t depend on A⊤x and (I − A⊤)x, respectively, and A⊤x and

(I −A⊤)x are orthogonal. Thus, we have that∫
x∈B̄t,ε

pt(x)
[
1 ∨ ∥∇ log(pt(x))∥2

]
dx =

∫
x∈B̄t,ε

p
(1)
t (x)p

(2)
t (x)

[
1 ∨ ∥∇ log(pt(x))∥2

]
dx (100)

=

∫
x∈B̄t,ε

p
(2)
t (x)

[
1 ∨ ∥∇ log(pt(x))∥2

]
dx

=

∫
w∈Rd−d′ : ∥w∥≥Ceσt

√
log ε−1

1 ∨ ∥w∥2/σ2
t

σd−d′

t (2π)
d−d′

2

exp

(
−∥w∥

2

2σ2
t

)
dw.

Applying Corollary F.8, (100) is bounded by ε with a sufficiently large constant Ce.
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Now we only need consider the approximation of ∇ log p
(2)
t (x) within Bt,ε.

Lemma E.3. Let N ≫ 1, T , ε = poly(N−1) and T ≃ logN . There exists a neural network ϕscore,4 ∈ Φ(L,W, S,B)
such that

sup
t∈[T ,T ]

∫
x

pt(x)∥∇ log p
(2)
t (x)− ϕscore,4(x, t)∥2dx ≲

N− 2(s+1)

d′

σ2
t

. (101)

Specifically, ϕscore,4 ∈ Φ(L,W, S,B) holds, where

L = O(log2 N)), ∥W∥∞ = O(log3 N), S = O(log4 N), and B = exp(O(log2 N)). (102)

Proof. First note that∇ log p
(2)
t (x) = − 1

σ2
t
(Id −A)(Id −A⊤)x. We approximate this via the following four steps.

1. σt is approximated by ϕσ from Lemma 3.3. Here we set ε← (T 4 ∧ ε4)ε4.

2. Based on the approximation of σt, σ−2
t is approximated by ϕrec(·; 2) from Corollary F.8. Here we set ε← (T ∧ ε)ε.

3. (Id −A)(Id −A⊤) is realized by ReLU((Id −A)(Id −A⊤) · x+ 0)− ReLU(−(Id −A)(Id −A⊤) · x+ 0).

4. According to Lemma F.6 with ε ← ε and C ← T−1 ∨
√
log ε−1, multiplication of σ−2

t and (Id − A)(Id − A⊤) is
constructed.

By concatenating these networks (using Lemma F.1), the obtained network size is bounded as

L = O(log2 ε−1 + log2 T−1)), ∥W∥∞ = O(log3 ε−1 + log3 T−1), S = O(log4 ε−1 + log4 T−1),

and B = exp(O(log2 ε−1 + log2 T−1)).

Then, for x ∈ Bt,ε with t ≥ T , we have that

∥∇ log p
(2)
t (x)− ϕscore,4∥ ≲ ε.

This yields that ∫
Bt,ε

pt(x)∥∇ log p
(2)
t (x)− ϕscore,4∥dx ≲ ε.

Together with Lemma E.2, by taking ε = poly(N−1), we have the assertion.

Proof of Theorem 6.4. Note that while the error bound (101) in Lemma E.3 is tighter than the bounds (98) and (99) in
Lemma E.1, the required network size (102) in Lemma E.3 is smaller than the size bounds in Lemma E.1. Also note
that the bounds in Lemma E.1 are the same as those in Theorem 3.1 and Lemma 3.6, except for that d is replaced by d′.
Therefore, by simply aggregating ϕscore,3 and ϕscore,4, we obtain the counterpart of the approximation theorems Theorem 3.1
and Lemma 3.6, and the rest of the analysis are the same as that of the d-dimensional case. Therefore, we obtain the
statement.

F. Auxiliary lemmas
This final section summarizes existing results and prepares basic tools for the main parts of the proofs. A large part of this
section (Appendices F.1 to F.4) is devoted to introduction of basic tools for the function approximation with neural networks,
and thus those familiar with such topics (Yarotsky, 2017; Petersen & Voigtlaender, 2018; Schmidt-Hieber, 2019) can skip
these subsections (although they contain some refinement and extension). Lemma F.12 is for elementary bounds on the
Gaussian distribution and hitting time of the Brownian motion.

In the following we will define constants Cf,1 and Cf,2. Other than in this section, they are denoted by Cf , and sometimes
other constants that comes from this section can be also denoted by Cf .
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F.1. Construction of a larger neural network

Through construction of the desired neural network, we often need to combine sub-networks that approximates simpler
functions to realize more complicated functions. We prepare the following lemmas, whose direct source is Nakada &
Imaizumi (2020) but similar ideas date back to earlier literature such as Yarotsky (2017); Petersen & Voigtlaender (2018).

First we consider construction of composite functions. Although the bound on the sparsity S was not given in the original
version, we can verify it by carefully checking their proof.

Lemma F.1 (Concatenation of neural networks (Remark 13 of Nakada & Imaizumi (2020))). For any neural networks
ϕ1 : Rd1 → Rd2 , ϕ2 : Rd2 → Rd3 , · · · , ϕk : Rdk → Rdk+1 with ϕi ∈ Ψ(Li,W i, Si, Bi) (i = 1, 2, · · · , d), there exists a
neural network ϕ ∈ Φ(L,W,S,B) satisfying ϕ(x) = ϕk ◦ ϕk−1 · · · ◦ ϕ1(x) for all x ∈ Rd1 , with

L =

k∑
i=1

Li, W ≤ 2

k∑
i=1

W i, S ≤
k∑

i=1

Si +

k−1∑
i=1

(∥Ai
Li∥0 + ∥biLi∥0 + ∥Ai+1

1 ∥0) ≤ 2

k∑
i=1

Si, and B ≤ max
1≤i≤k

Bi.

Here Ai
j is the parameter matrix and bij is the bias vector at the jth layer of the ith neural network ϕi.

Next we introduce the identity function.

Lemma F.2 (Identity function (p.19 of Nakada & Imaizumi (2020))). For L ≥ 2 and d ∈ N, there exists a neural network
ϕd,L
Id ∈ Φ(L,W, S,B) with parameters (A1, b1) = ((Id,−Id)⊤, 0), (Ai, bi) = (I2d, 0)(i = 1, 2, · · · , L − 2), (AL) =

((Id,−Id), 0), that realize d-dimensional identity map. Here,

∥W∥∞ = 2d, S = 2dL, B = 1.

For L = 1, a neural network ϕd,1
Id ∈ Φ(1, (d), d, 1) with parameters (A1, b1) = (Id, 0) realizes d-dimensional identity map.

We then consider parallelization of neural networks. The following lemmas are Remarks 14 and 15 of Nakada & Imaizumi
(2020) with a modification to allow sub-networks to have different depths.

Lemma F.3 (Parallelization of neural networks). For any neural networks ϕ1, ϕ2, · · · , ϕk with ϕi : Rdi → Rd′
i and

ϕi ∈ Ψ(Li,W i, Si, Bi) (i = 1, 2, · · · , d), there exists a neural network ϕ ∈ Φ(L,W,S,B) satisfying ϕ(x) =
[ϕ1(x1)⊤ ϕ2(x2)⊤ · · · ϕk(xk)⊤]⊤ : Rd1+d2+···+dk → Rd′

1+d′
2+···+d′

k for all x = (x⊤
1 x⊤

2 · · · x⊤
k )

⊤ ∈ Rd1+d2+···+dk

(here xi can be shared), with

L = L, ∥W∥∞ ≤
k∑

i=1

∥W i∥∞, S ≤
k∑

i=1

Si, and B ≤ max
1≤i≤k

Bi (when L = Li holds for all i),

L = max
1≤i≤k

Li, ∥W∥∞ ≤ 2

k∑
i=1

∥W i∥∞, S ≤ 2

k∑
i=1

(Si + LW i
L), and B ≤ max{ max

1≤i≤k
Bi, 1} (otherwise).

Moreover, there exists a network ϕsum(x) ∈ Φ(L,W, S,B) that realizes =
∑k

i=1 ϕ
i(x), with

L = max
1≤i≤k

Li + 1, ∥W∥∞ ≤ 4

k∑
i=1

∥W i∥∞, S ≤ 4

k∑
i=1

(Si + LWL) + 2WL, and B ≤ max{ max
1≤i≤k

Bi, 1}.

Proof of Lemma F.3. Let us consider the first part. For the case when L = Li holds for all i, the assertions are exactly the
same as Remarks 14 and 15 Nakada & Imaizumi (2020). Otherwise, we first prepare a network ϕ′i realizing ϕd,L−Li

Id ◦ ϕi

for all i, so that every network have the same depth without changing outputs of the networks. From Lemmas F.1 and F.2,
ϕ′i ∈ Φ(L,W ′i, S′i, B′i) holds, with L = max1≤i≤k L

i, ∥W ′i∥∞ = max{∥W i∥∞, 2WL} ≤ 2∥W i∥∞, S′i ≤ 2Si +
2(L−Li)W

i
L ≤ 2(Si+LW i

L), and B′i = max{Bi, 1}. We then apply the results for the case of L = Li (i = 1, 2, · · · , k).

For the second part, since summation of the outputs of k neural networks can be realized by a 1 layer neural network with
the width of k, Lemma F.3 together with Lemma F.1 gives the bound to realize

∑k
i=1 ϕ

i(x).

In the analysis of the score-based diffusion model, we often face unbounded functions. To resolve difficulty coming from
the unboundedness, the clippling operation is often be adopted.
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Lemma F.4 (Clipping function). For any a, b ∈ Rd with ai ≤ bi (i = 1, 2, · · · , d), there exists a clipping function
ϕclip(x; a, b) ∈ Φ(2, (d, 2d, d)⊤, 7d,max1≤i≤d max{|ai|, bi}) such that

ϕclip(x; a, b)i = min{bi,max{xi, ai}} (i = 1, 2, · · · , d)

holds. When ai = c and bi = C for all i, we sometimes denote ϕclip(x; a, b) as ϕclip(x; c, C) using scaler values c and C.

Proof. Because, for each coordinate i, min{bi,max{xi, ai}} is realized as

min{bi,max{xi, ai}} = ReLU(xi − ai)− ReLU(xi − bi) + ai ∈ Φ(2, (1, 2, 1), 7,max{|ai|, bi}),

parallelizing this for all i with Lemma F.3 yields the assertion.

With the above clipping function, we prepare switching functions, which gives the way to construct approximation in the
combined region when there are two different approximations valid for different regions.

Lemma F.5 (Switching function). Let t1 < t2 < t1 < t2, and f(x, t) be some scaler-valued function (for a vector-valued
function, we just apply this coordinate-wise). Assume that ϕ1(x, t) and ϕ2(x, t) approximate f(x, t) up to an additive
error of ϵ but approximation with ϕ1(x, t) and ϕ2(x, t) are valid for [t1, t1] and [t2, t2], respectively. Then, there exist
neural networks ϕ1

swit(t; t2, t1), ϕ
2
swit(t; t2, t1) ∈ Φ(3, (1, 2, 1, 1)⊤, 8,max{t1, (t1− t2)

−1}), and ϕ1
swit(t; t2, t1)ϕ

1(x, t)+
ϕ2
swit(t; t2, t1)ϕ

2(x, t) approximates f(x, t) up to an additive error of ϵ in [t1, t2].

Proof. We define

ϕ1
swit(t; t2, t1) =

1

t1 − t2
ReLU(ϕclip(t; t2, t1)− t2), and ϕ2

swit(t; t2, t1) =
1

t1 − t2
ReLU(t1 − ϕclip(t; t2, t1)).

Here ϕ1
swit(t; t2, t1), ϕ

2
swit(t; t2, t1) ∈ [0, 1], ϕ1

swit(t; t2, t1)+ϕ2
swit(t; t2, t1) = 1 for all t, ϕ1

swit(t; t2, t1) = 0 for all t ≥ t1,
and ϕ2

swit(t; t2, t1) for t ≤ t2. From this construction, the assertion follows.

F.2. Basic neural network structure that approximates rational functions

When approximating a function in the Besov space with a neural network, the most basic structure of the network is that
of approximating polynomials (Suzuki, 2018). In our construction of the diffused B-spline basis, we need to approximate
rational functions.

We begin with monomials. Although the traditional fact that we can approximate monomials with neural networks with an
arbitrary additive error of ϵ using only O(log ε−1) non-zero parameters has been very famous (Yarotsky, 2017; Petersen &
Voigtlaender, 2018; Schmidt-Hieber, 2020), we could not find the result that explicitly states the dependency on parameters
including the degree and the range of the input. Therefore, just to be sure, we revisit Lemma A.3 of Schmidt-Hieber (2020)
and here gives the extended version of that lemma.

Lemma F.6 (Approximation of monomials). Let d ≥ 2, C ≥ 1, 0 < εerror ≤ 1. For any ε > 0, there exists a
neural network ϕmult(x1, x2, · · · , xd) ∈ Ψ(L,W, S,B) with L = O(log d(log ε−1 + d logC)), ∥W∥∞ = 48d, S =
O(d log ε−1 + d logC)), B = Cd such that∣∣∣∣∣ϕmult(x

′
1, x

′
2, · · · , x′

d)−
d∏

d′=1

xd′

∣∣∣∣∣ ≤ ε+ dCd−1εerror, for all x ∈ [−C,C]d and x′ ∈ R with ∥x− x′∥∞ ≤ εerror,

|ϕmult(x)| ≤ Cd for all x ∈ Rd, and ϕmult(x
′
1, x

′
2, · · · , x′

d) = 0 if at least one of x′
i is 0.

We note that some of xi, xj (i ̸= j) can be shared. For
∏I

i=1 x
αi
i with αi ∈ Z+ (i = 1, 2, · · · , I) and

∑I
i=1 αi = d, there

exists a neural network satisfying the same bounds as above, and the network is denoted by ϕmult(x;α).

Proof. First of all, it is known from Schmidt-Hieber (2020) that there exists a neural network ϕ̄′
mult(x, y) ∈ Ψ(L,W, S,B)

with L = i+ 5, ∥W∥∞ = 6, B = 1 such that

|ϕ̄′
mult(x, y)− xy| ≤ 2−i, for all (x, y) ∈ [0, 1]2,
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and |ϕ̄′
mult(x, y)| ≤ 1 for all (x, y) ∈ R2, and ϕ̄′

mult(x, y) = 0 if either x or y is 0. With this network, we can see
that |sign(xy)ϕ̄′

mult(|x|, |y|) − xy| ≤ 2−i holds for all (x, y) ∈ [−1, 1]2, |ϕ̄′
mult(x, y)| ≤ 1 for all (x, y) ∈ R2, and

ϕ̄mult(x, y) = 0 if either x or y is 0. Because

sign(xy)ϕ̄′
mult(|x|, |y|) = ReLU(ϕ̄′

mult(ReLU(x),ReLU(y)) + ϕ̄′
mult(ReLU(−x),ReLU(−y))

− ϕ̄′
mult(ReLU(−x),ReLU(y))− ϕ̄′

mult(ReLU(x),ReLU(−y)))
− ReLU(−ϕ̄′

mult(ReLU(x),ReLU(y))− ϕ̄′
mult(ReLU(−x),ReLU(−y))

+ ϕ̄′
mult(ReLU(−x),ReLU(y)) + ϕ̄′

mult(ReLU(x),ReLU(−y)))
=: ϕ̄mult(x, y)

holds, we can realize the function xy for [−1, 1]d, by a neural network ϕ̄mult(x, y) ∈ Ψ(L,W,S,B) with L = i +
7, ∥W∥∞ = 48, S ≤ L∥W∥∞(∥W∥∞ + 1) = 48(i+ 7), B = 1 with an approximation error up to 2−i.

Then, following Schmidt-Hieber (2020), we recursively construct ϕ̄mult(x1, x2, · · · , x2j+1) using

ϕ̄mult(x1, x2, · · · , x2j+1) = ϕ̄mult(ϕ̄mult(x1, x2, · · · , x2j ), ϕ̄mult(x2j+1, x2j+2, · · · , x2j+1)).

By filling extra dimensions of (x1, x2, · · · , x2j ) with 1, we obtain the neural network ϕmult(x1, x2, · · · , xd) ∈
Ψ(L,W, S,B) for all d ≥ 2 and L = O(log d(log ε−1 + log d)), ∥W∥∞ = 48d, S = O(d(log ε−1 + log d)), B = 1
such that ∣∣∣∣∣ϕ̄mult(x1, x2, · · · , xd)−

d∏
d′=1

xd′

∣∣∣∣∣ ≤ ε, for all x ∈ [−1, 1]d.

We then construct ϕmult as follows:

ϕmult(x) = Cdϕ̄mult(ϕclip(x;−C,C)/C).

Here the approximation error over [−C,C]d is bounded by C−dε. We reset ε ← C−dε so that the approximation error
is smaller than ε, and then we have ϕmult ∈ Φ(L,W, S,B) with L = O(log d(log d + log ε−1 + d logC)), ∥W∥∞ =
48d, S = O(d(log d+ log ε−1 + d logC)), B = 1. Therefore, the bounds on L, ∥W∥∞, B, S in the assertion follows from
Lemmas F.1 and F.4.

When the input fluctuates, we have∣∣∣∣∣Cdϕ̄mult(ϕclip(x
′;−C,C)/C)−

d∏
i=1

xi

∣∣∣∣∣
≤

∣∣∣∣∣Cdϕ̄mult(ϕclip(x
′;−C,C)/C)−

d∏
i=1

min{C,max{x′
i,−C}}

∣∣∣∣∣+
∣∣∣∣∣

d∏
i=1

min{C,max{x′
i,−C}} −

d∏
i=1

xi

∣∣∣∣∣
≤ Cd · C−dε+ Cd−1

d∑
i=1

|xi −min{C,max{x′
i,−C}}| = ε+ dCd−1εerror,

which yields the first part of the assertion.

Finally, we note that some of xi, xj (i ̸= j) can be shared because all we need is to identify columns in the first layer of
ϕ̄mult(x1, · · · , xd) that correspond to the same coordinate.

We next provide how to approximate the reciprocal function y = 1
x . Approximation of rational functions has already

investigated in (Telgarsky, 2017; Boullé et al., 2020). However, we found that their bounds (in Lemma 3.5 of Telgarsky
(2017)) of L = O(log7 ε−1) and O(log4 ε−1) nodes can be improved with careful use of local Taylor expansion up to the
order of O(log ε−1), so we provide our own proof.
Lemma F.7 (Approximating the reciprocal function). For any 0 < ε < 1, there exists ϕrec ∈ Ψ(L,W,S,B) with
L ≤ O(log2 ε−1), ∥W∥∞ = O(log3 ε−1), S = O(log4 ε−1), and B = O(ε−2) such that∣∣∣∣ϕrec(x

′)− 1

x

∣∣∣∣ ≤ ε+
|x′ − x|

ε2
, for all x ∈ [ε, ε−1] and x′ ∈ R.
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Proof. We approximate the inverse function y = 1
x with a piece-wise polynomial function. We take xi = 1.5i · ε (i =

0, 1, · · · , i∗ := ⌈2 log1.5 ε−1⌉) so that xi∗ ≥ ε−1 and approximate y = 1
x in the following way:

1

x
≒

i∗∑
i=1

fi(ϕclip(x;xi−1, xi)) +
1

ε
,

where fi(x) is a function that satisfies fi(x) = 0 for x ≤ xi−1, fi(x) = − 1
xi−1

+ 1
xi

for xi ≤ x, and

max
xi−1≤x≤xi

|fi(x)− 1/x+ 1/xi−1| ≤
ε

2
.

Now we show construction of such functions. First, by 1
x = 1

xi−1

xi−1

x = 1
xi−1

∑∞
l′=1(−

x
xi−1

+ 1)l
′
(1 ≤ x

xi−1
≤ 1.5), let

f̃i(x) =
1

xi−1

l∑
l′=1

(−x/xi−1 + 1)l
′
− 1

xi−1
.

The difference between f̃i(x) and 1
x−

1
xi−1

is ((xi−1−x)/xi−1)
l+1/x, which is bounded by 2−l−1/x. Moreover, by adding

( 1
xi

−f̃i(xi))(x−xi−1)

xi−xi−1
= ((xi−1−xi)/xi−1)

l+1(x−xi−1)
xi(xi−xi−1)

to f̃i(x), we have fi(x), with fi(xi−1) = 0, fi(xi) = − 1
xi−1

+ 1
xi

, and

max
xi−1≤x≤xi

|fi(x)− 1/x+ 1/xi−1| ≤ 2−l/x ≤ 2−lε−1.

Thus, we take l = ⌈log2 2ε−1⌉ so that RHS is smaller than ε
2 . Therefore, we finally have the explicit approximation of

y = 1
x :

f(x) =

i∗∑
i=1

1

xi−1

l∑
l′=1

(−ϕclip(x;xi−1, xi))/xi−1 + 1)l
′

︸ ︷︷ ︸
(a)

−
i∗∑
i=1

1

xi−1
(103)

+

i∗∑
i=1

((xi−1 − xi)/xi−1)
l+1(ϕclip(x;xi−1, xi))− xi−1)

xi(xi − xi−1)︸ ︷︷ ︸
(b)

+
1

ε
.

From Lemma F.6, (−ϕclip(x;xi−1, xi))/xi−1 + 1)l
′

is realized by L = O((log log ε−1 + log ε−1) log log ε−1), ∥W∥∞ =

O(log ε−1), S = O(log ε−1(log log ε−1 + log ε−1)), B = 1.5⌈log2 2ε−1⌉ = O(ε−1) so that approximation error for
each is bounded by O(ε2/li∗). Because there are O(li∗) terms in (a) of (103), from Lemmas F.1 and F.3, the final
approximation error of f(x) using a neural network ϕrec is ε

2 , where ϕrec ∈ Φ(L,W, S,B) with L ≤ O((log log ε−1 +

log ε−1) log log ε−1), ∥W∥∞ = O(log3 ε−1), S = O(log3 ε−1(log log ε−1 + log ε−1)), and B = O(ε−2). (Here B =

O(ε−2) is calculated because in (b) we need to bound the coefficient ((xi−1−xi)/xi−1)
l+1

xi(xi−xi−1)
by ε−2.)

The sensitivity analysis follows from |ϕrec(x
′)− 1

x | ≤ |ϕrec(x
′)− 1

max{x′,ε} |+ |
1

max{x′,ε} −
1
x |.

Combining Lemmas F.6 and F.7, we have the following corollary.

Corollary F.8. For any 0 < ε < 1, there exists ϕrec ∈ Ψ(L,W, S,B) with L ≤ O(log2 l + log2 ε)), ∥W∥∞ = O(l +
log3 ε−1), S = O(l log l + l log ε−1 + log4 ε−1), and B = O(ε−(2∨l)) such that∣∣∣∣ϕrec(x

′; l)− 1

xl

∣∣∣∣ ≤ ε+ l
|x′ − x|
εl+1

, for all x ∈ [ε, ε−1] and x′ ∈ R.

Proof. Consider ϕmult(·; l) ◦ ϕrec. The result directly follows from Lemma F.6 and Lemma F.7.
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F.3. How to deal with exponential functions

We sometimes need to approximate certain types of integrals where the integrand contains a density function of some
Gaussian distribution and the integral interval is Rd. for example, the diffused B-spline basis is a typical example of them.
To deal with them, we adopt the following two-step argument: first we clip the integral interval, and next we approximate
the integrand with rational functions. We need rational functions because the density function depends on the inverse of (the
squared-root of) the variance, which depends on t and should be approximated. The first lemma corresponds to the first step,
and the second and third correspond to the second step, respectively.

Lemma F.9 (Clipping of integrals). Let x ∈ Rd, 0 < mt ≤ 1, α ∈ Zd
+ with

∑d
i=1 αi ≤ k, and f be an any function on Rd

whose absolute value is bounded by Cf . For any 0 < ε < 1
2 , there exists a constant Cf,1 that only depends on k and d, such

that ∣∣∣∣∣
∫
Rd

d∏
i=1

(
mtyi − xi

σt

)αi

f(y)
1

σd
t (2π)

d
2

exp

(
−∥mty − x∥2

2σ2
t

)
dy

−
∫
Ax

d∏
i=1

(
mtyi − xi

σt

)αi

f(y)
1

σd
t (2π)

d
2

exp

(
−∥mty − x∥2

2σ2
t

)
dy

∣∣∣∣∣ ≲ ε,

where Ax =
∏d

i=1 a
x
i with axi = [ xi

mt
− σtCf,1

mt

√
log ε−1, xi

mt
+

σtCf,1

mt

√
log ε−1].

Proof.

1

σd
t (2π)

d
2

∣∣∣∣∣
∫
Rd

d∏
i=1

(
mtyi − xi

σt

)αi

f(y) exp

(
−∥mty − x∥2

2σ2
t

)
dy

−
∫
Ax

d∏
i=1

(
mtyi − xi

σt

)αi

f(y) exp

(
−∥mty − x∥2

2σ2
t

)
dy

∣∣∣∣∣
≤ Cf

σd
t (2π)

d
2

∫
Rd\Ax

d∏
i=1

(
|mtyi − xi|

σt

)αi

1[∥y∥∞ ≤ 1] exp

(
−∥mty − x∥2

2σ2
t

)
dy (by |f(y)| ≤ Cf )

≤ Cf

σd(2π)
d
2

d∑
i=1

∫
R× · · · × R︸ ︷︷ ︸

i−1 times

×(R\ax
i )×R× · · · × R︸ ︷︷ ︸

d−i times

d∏
j=1

(
|mtyj − xj |

σt

)αj

1[|yj | ≤ 1] exp

(
−∥mty − x∥2

2σ2
t

)
dy

= Cf

d∑
i=1

d∏
j=1

(
1[i ̸= j]

∫
R

(
|mtyj − xj |

σt

)αj
1[|yj | ≤ 1]

σt(2π)
1
2

exp

(
− (mtyj − xj)

2

2σ2
t

)
dyj

+1[i = j]

∫
R\ax

i

(
|mtyj − xj |

σt

)αj
1[|yj | ≤ 1]

σt(2π)
1
2

exp

(
− (mtyj − xj)

2

2σ2
t

)
dyj

)
. (104)

We now bound each term. First,∫
R

(
|mtyj − xj |

σt

)αj
1[|yj | ≤ 1]

σt(2π)
1
2

exp

(
− (mtyj − xj)

2

2σ2
t

)
dyj

≤


1
mt

∫
R |y

′
j |αj 1

(2π)
1
2
exp

(
−y′2

j

2

)
dy′j

(
mtyj−xj

σt
= y′j

)
2d+αj

σ
αj+1

t (2π)
1
2

(because of the term of 1[|yj | ≤ 1].)

Thus, LHS can be bounded by ≲ max

{
1
mt

, 1

σ
αj+1

t

}
≲ 1.
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Next, ∫
R\ax

i

(
|mtyj − xj |

σt

)αj
1[|yj | ≤ 1]

σt(2π)
1
2

exp

(
− (mtyj − xj)

2

2σ2
t

)
dyj (105)

≤ 2

mt

∫ ∞

Cf,1

√
log ε−1

|yj |αj exp

(
−
y2j
2

)
dyi

(
by letting

mtyj − xj

σt
7→ yj

)

≤

 2
mt

∑αj−1

2

l=0
(αj−1)!!
(2l)!! (C2

f,1 log ε
−1)lε

Cf,1
2 ( if αj is odd)

2
mt

∑αj
2

l=1
(αj−1)!!
(2l−1)!! (C

2
f,1 log ε

−1)lε
Cf,1

2 + 2
mt

∫∞
Cf,1

√
log ε−1 exp

(
−y2

j

2

)
dyj ( if αj is even).

Therefore, by setting Cf,1 sufficiently large, in a way that Cf,1 depends on αj(≤ k) and d, this can be bounded by ε
mt

.
Moreover, if mt ≳ 1, then the integral interval does not overlap with −1 ≤ yj ≤ 1, and in this case (105) is alternatively
bounded by 0.

Therefore, (104) can further be bounded by

(104) ≲
d∑

i=1

d∏
j=1

1d−1 · ε ≲ ε,

which gives the assertion.

Next we introduce the Taylor expansion of exponential functions with polynomials.

Lemma F.10 (Approximating an exponential function with polynomials). Let A > 0 and 0 ≤ mt ≤ 1. For t ≥
max{4eA2, ⌈log2 ε−1⌉}, we have that∣∣∣∣∣exp

(
− (x−mty)

2

2σ2
t

)
−

t−1∑
s=0

(−1)s

s!

(x−mty)
2s

2sσ2s
t

∣∣∣∣∣ ≤ ε

for all y ∈ [−σtA+x
mt

, σtA+x
mt

].

Proof. By standard Taylor expansion of ez up to degree t− 1, we have

exp

(
− (x−mty)

2

2σ2
t

)
=

t−1∑
s=0

(−1)s

s!

(x−mty)
2s

2sσ2s
t

+
(−1)t

t!

(θ(x−mty))
2t

2tσ2t
t

with some θ ∈ (0, 1). We bound the second term of the residual. When y ∈ [−σtA+x
mt

, σtA+x
mt

] and t is the minimum integer
satisfying t ≥ max{4eA2, ⌈log2 ε−1⌉}, we have

1

t!

(θ(x−mty) + (1− θ)x)2t

2tσ2t
t

≤ (2σtA)2t

t!2tσ2t
t

≤ (2σtA)2t

(t/e)t · 2tσ2t
t

≤ 2tA2t

(4A2)t
≤ 1

2t
≤ ε,

where we used the fact t! ≥ (t/e)t.

F.4. Existing results for approximation

Our diffused B-spline basis decomposition (Section 3 and Appendix B) is built on the B-spline basis decomposition of
the Besov space (DeVore & Popov, 1988; Suzuki, 2018). The following fact can be found in Lemma 2 of Suzuki (2018)
(although the original version adopts Ω = [0, 1]d, we can easily adjust the difference by dividing the domain into cubes with
each side length 1). The magnitude of |αk,j | is evaluated in p.17 of Suzuki (2018).

Lemma F.11 (Approximability of the Besov space (Suzuki (2018))). Let C > 0. Under s > d(1/p − 1/r)+ and
0 < s < min{l, l − 1 + 1/p} where l ∈ N is the order of the cardinal B-spline bases, for any f ∈ Bs

p,q([−C,C]d), there
exists fN that satisfies

∥f − fN∥Lr([−C,C]d) ≲ CsN−s/d∥f∥Bs
p,q([−C,C]d)
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for N ≫ 1, and has the following form:

fN (x) =

K∑
k=0

∑
j∈J(k)

αk,jM
d
k,j(x) +

K∗∑
k=K+1

nk∑
i=1

αk,jiM
d
k,ji(x) with

K∑
k=0

|J(k)|+
K∗∑

k=K+1

nk = N,

where J(k) = {−C2k − l,−C2k − l + 1, · · ·C2k − 1, C2k}, (ji)nk
i=1 ⊆ J(k), K = O(d−1 log(N/Cd)), K∗ = (O(1) +

log(N/Cd))ν−1 +K,nk = O((N/Cd)2−ν(k−K)) (k = K + 1, · · · ,K∗) for δ = d(1/p− 1/r)+ and ν = (s− δ)/(2δ).
Moreover, |αk,j | ≲ N (ν−1+d−1)(d/p−s)+ .

F.5. Elementary bounds for the Gaussian and hitting time

Lemma F.12. Let 0 < ε≪ 1, l ∈ Zd
+, and p(x) be the density funciton of N (0, σ2

t Id), i.e., p(x) = 1

σd
t (2π)

d
2
exp

(
−∥x∥2

σ2
t

)
.

Then, the following bound holds: ∫
∥x∥∞≥σt

√
4 log dlε−1

∏d
i=1 x

li
i

σ
∑d

i=1 li
p(x)dx ≲ ε.

We sometimes write
√
4 log dlε−1 = Cf,2

√
log ε−1.

Proof. Let us denote xl =
∏d

i=1 x
li
i and |l| =

∑d
i=1 li for simple presentation. Let r = ∥x∥∞, and we get∫

∥x∥∞≥σt

√
4 log ε−1

xl

σ
|l|
t

p(x)dx∫
∥x∥1≥σt

√
4 log ε−1

xl

σ
|l|
t

p(x)dx

≤
∫ ∞

r=σt

√
4 log ε−1

r|l|

σ
|l|
t

1

σd
t (2π)

d
2

exp

(
− r2

2σ2

)
(d− 1)rd−1dr

=

∫ ∞

s=
√

4 log ε−1

s|l|+d−1 1

(2π)
d
2

exp

(
−s2

2

)
(d− 1)ds (by letting s = r/σt)

=
(4 log ε−1)(|l|+d−1)/2

(2π)
d
2

exp

(
−4 log ε−1

2

)
(d− 1) +

∫ ∞

s=
√

4 log ε−1

(|l|+ d− 1)s|l|+d−2

(2π)
d
2

exp

(
−s2

2

)
(d− 1)ds

= · · · =
∑

0≤i≤⌊ |l|+d−1
2 ⌋

(|l|+d−1)!!
(|l|+d−1−2i)!! (4 log ε

−1)(|l|+d−1−2i)/2(d− 1)

(2π)
d
2

ε2

+


∫∞
s=
√

4 log ε−1

(|l|+d−1)!!

(2π)
d
2

1

(2π)
d
2
exp

(
− s2

2

)
(d− 1)ds (|l|+ d: even)

0 (|l|+ d: odd)

(by iterating integration by parts)

≲ ε2 log
d+|l|−1

2 ε−1. (106)

Replacing ε by ε/dl, RHS of (106) is bounded by

ε2

d2l2
log

dn+|l|−1
2 (ε/dl)−1 ≲ ε,

which yields the conclusion.

Lemma F.13. Let (Bs)[0,t] be the 1-dimensional Brownian motion and Xt =
∫ t

0
βsdBs, with βs ≤ β. Then, we have that

P

[
sup

s∈[0,t]

|Xt| ≥ 2

√
βt log(2ε−1)

]
≤ ε.
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Proof. We bound the case βs ≡ β because it maximize the hitting probability. According to Karatzas et al. (1991), for
x > 0,

P

[
sup

s∈[0,t]

|Xt| ≥ x

]
=

4√
2π

∫ ∞

x√
2βt

e−y2/2dy =
4√
2π

∫ ∞

x√
4βt

e−z2√
2dz ≤ 2e−x2/4βt.

For the second equality, we simply replaced y/
√
2 with z. For the last inequality, we used 4√

2π
·
√
2 ≤ 2 and

∫∞
x

e−y2

dy ≤

e−x2

. Therefore, setting x = 2
√

βt log(2ε−1) yields the assertion.
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