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Abstract
Graph out-of-distribution (OOD) generalization,
aiming to generalize graph neural networks
(GNNs) under distribution shifts between train-
ing and testing environments, has attracted ever-
increasing attention recently. However, exist-
ing literature heavily relies on sufficient task-
dependent graph labels, which are often scarce
or even unavailable, limiting their applications in
real-world scenarios. In this paper, we study the
self-supervised graph OOD generalization prob-
lem, i.e., learning GNNs capable of achieving
relatively stable performances under distribution
shifts without graph labels. However, the prob-
lem remains largely unexplored, with the critical
challenge that the invariant and variant informa-
tion are highly entangled in graphs. To solve this
problem, we propose an OOD generalized disen-
tangled graph contrastive learning model (OOD-
GCL), which is capable of learning disentangled
graph-level representations with self-supervision
that can handle distribution shifts between train-
ing and testing graph data. Specifically, we first
introduce a disentangled graph encoder to map
each input graph into the factorized graph repre-
sentation. Then we propose a tailored disentan-
gled invariant self-supervised learning module to
maximize predictive ability of the representations
and make sure the representations other than from
one specific channel are invariant to the environ-
ments partitioned by this latent factor for exclud-
ing the information corresponding to this latent
factor for disentanglement. Finally, the disentan-
gled graph representations are fed into a linear
predictor and finetuned for the downstream tasks.
We provide comprehensive theoretical analyses
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to show that our model can learn disentangled
graph representations and achieve OOD gener-
alization. Extensive experiments on real-world
datasets demonstrate the superiority of our model
against state-of-the-art baselines under distribu-
tion shifts for graph classification tasks.

1. Introduction
Graph structured data is ubiquitous in the real world, such
as social networks (Qiu et al., 2018), traffic networks (Yu
et al., 2017), financial networks (Yang et al., 2021), chemi-
cal molecules (Hu et al., 2020), etc. In the last decade, graph
neural networks (GNNs) (Kipf & Welling, 2017; Veličković
et al., 2018; Xu et al., 2019) have been a central topic in
graph machine learning and made great progress in both
academia and industry. Most of the existing literature is
built upon the in-distribution (I.D.) hypothesis that assumes
the testing and training graph data are from the identical
distribution. However, in the real world, distribution shifts
between testing and training graphs widely and inevitably
exist, where the performance of existing GNNs drops sig-
nificantly due to lacking out-of-distribution (OOD) general-
ization capacity (Li et al., 2022b).

Despite the notable success of graph OOD generalization
methods, the existing literature relies on sufficient task-
dependent annotated labels to learn OOD generalized graph
representations, which could be extremely scarce, or even
unavailable in practice. For example, in the context of drug
discovery, it necessitates high costs and substantial human
labor in clinical tests to obtain labeled data for training
OOD generalized graph models in a supervised manner, if
we want to predict the invariant properties of molecules un-
der distribution shifts (Paul et al., 2021). Since the existing
approaches heavily rely on supervised labels, they will fail
to learn invariant representations and model truly predictive
relations with labels under distribution shifts for OOD gen-
eralization, when graph labels are scarce or not available,
leading to severe performance degeneration.

In this paper, we study the self-supervised graph OOD gen-
eralization problem, i.e., learning GNNs capable of achiev-
ing relatively stable performances under distribution shifts
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without graph labels. The key goal is to pretrain the graph
encoder with much more available unlabeled graph data
in a self-supervised manner to produce disentangled graph
representations that can achieve promising OOD general-
ization when evaluated on testing graphs under distribution
shifts. However, self-supervised graph OOD generaliza-
tion is non-trivial due to the following challenges. First, it
is challenging to get rid of spurious correlations between
invariant and variant information in graph representations.
The existing graph self-supervised methods generally adopt
a holistic view meaning that the learned representations
describe graphs as a perceptual whole (Li et al., 2021a),
so that the invariant and variant information are highly en-
tangled in the graph representations. Second, the existing
methods tend to conduct pretraining tasks with spurious
variant information (Li et al., 2022e), which fail to capture
disentangled factors that reflect the semantic information
which can be the labels in downstream tasks, leading to poor
generalization performances.

To tackle these challenges, we propose an OOD generalized
disentangled graph contrastive model (OOD-GCL), which
is capable of learning disentangled graph-level representa-
tions with self-supervision that can handle distribution shifts
between training and testing graph data. Specifically, we
first introduce a disentangled graph encoder to map each
input graph into the corresponding factorized graph repre-
sentation. Each channel is specifically designed to capture
features from a specific disentangled latent factor, thereby
accurately representing the information of that disentan-
gled latent factor. Then we propose a tailored disentangled
invariant self-supervised learning module. It can achieve
sufficient predictive ability of the representations and make
sure the representations other than from one specific channel
are invariant to the environments partitioned by this latent
factor for excluding the information corresponding to this
latent factor. Thus the representations are encouraged to be
disentangled so as to best characterize the aspect pertinent
to a latent factor of the graph and achieve OOD general-
ized predictions when finetuning in downstream tasks. We
further provide comprehensive theoretical analyses to show
that our proposed model can learn disentangled graph rep-
resentations and achieve OOD generalization with a strong
guarantee. Extensive empirical evaluations are performed
on several well-established graph benchmarks. The results
demonstrate that the representations generated by our model
lead to significant enhancements in generalization perfor-
mance for downstream graph classification tasks under dis-
tribution shifts, outperforming the state-of-the-art baselines.

The contributions of this paper are summarized as follows.

• We focus on a novel self-supervised graph out-of-
distribution (OOD) generalization problem and pro-
pose a tailored model to learn disentangled graph-level

representations with self-supervision that can handle
distribution shifts between training and testing graph
data. To the best of our knowledge, we are the first to
study self-supervised graph OOD generalization with
theoretical guarantees.

• We present a disentangled graph encoder with a tai-
lored training strategy to capture the multiple aspects
of the input graph. We further propose an invariance
regularized contrastive learning module so that the spu-
rious correlations between the latent factors can be
eliminated in the graph representations and achieve
representation disentanglement for OOD generalized
predictions in downstream tasks.

• We theoretically show that our model can provably
learn disentangled graph representations, and make
OOD generalization based on the disentangled graph
representations.

• Extensive empirical results demonstrate the effective-
ness of our proposed OOD-GCL against a range of
leading-edge baselines on various benchmark datasets
under distribution shifts.

The rest of the paper is organized as follows. We introduce
some preliminaries in Section 2. Subsequently, in Section
3, we describe the technical details of our proposed OOD-
GCL. The experimental settings and results are present in
Section 4. We review some related works in Section 5.
Finally, we conclude this work in Section 6.

2. Preliminaries
Let G = {Gn}Nn=1 denote the input graph dataset, where
Gn is the n-th graph. The multi-channel graph encoder
maps the input graph into its disentangled representation
Zn = Φ(Gn). Assuming that there are K latent factors be-
hind the input graph, Zn = [Z1

n,Z
2
n, . . . ,Z

K
n ] consists ofK

disentangled components. Let Zk denote the representation
corresponding to the k-th latent factor for all input graphs.
Each Zkn = Φ(k)(Gn) ∈ R∆d, where k ∈ {1, . . . ,K},
∆d = d/K, and d is the representation dimensional-
ity. For simplification, we use Z−k

n ∈ R(K−1)×∆d to de-
note the concatenated representation except for the repre-
sentation Zkn corresponding to the k-th latent factor, i.e.,
Z−k
n = [Z1

n,Z
2
n, . . . ,Z

k−1
n ,Zk+1

n , . . . ,ZKn ].

Following the invariant learning literature (Li et al.,
2022d;b), we make the assumption:

Assumption 1. There exists a portion of information inside
input graph G such that it not only has sufficient abilities
in predicting the graph labels, but has invariant relations
with the labels under distribution shifts, i.e. satisfying:
(a) invariance assumption: P e(Y |Ψ(G)) = P e

′
(Y |Ψ(G))
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for any environment (domain) e, e′ that graph comes from,
and Ψ(·) is to capture the invariant information; and (b)
sufficiency assumption: Y = ω(Ψ(G)) + ϵ, where ω(·) is
one function and ϵ is random noise.

Intuitively, if we accurately capture the latent factors that
satisfy the invariance assumption and sufficiency assump-
tion, and only make predictions based on these “invariant
& sufficient latent factors”, our predictions can be general-
ized across different environments under distribution shifts,
and the representations corresponding to these latent factors
have sufficient abilities in predicting the graph labels. There-
fore, the problem can be solved by accurately identifying
which latent factor belongs to the “invariant & sufficient la-
tent factors” and making OOD generalized predictions only
based on the disentangled representations corresponding to
these latent factors.

3. Method
In this section, we present the proposed OOD-GCL in
detail, whose framework is shown in Figure 1. We first
present the disentangled graph encoder to identify the com-
plex latent factors and output the factorized representations
capturing the multiple aspects of graphs. Then, we propose
the disentangled invariant self-supervised learning strategy
on tailored contrastive tasks and invariance regularization.
Next, we describe how to obtain the predictions based on
the learned disentangled representations for specific down-
stream tasks. Lastly, we provide some theoretical analyses
of our proposed method.

3.1. Disentangled Graph Encoder

In this subsection, we present the disentangled graph en-
coder for producing the factorized graph representation
Zn = [Z1

n,Z
2
n, . . . ,Z

K
n ] for the input graph Gn. After that,

we can infer which latent factor belongs to the “invariant &
sufficient latent factors” and finally make OOD generalized
predictions only based on the representations corresponding
to these factors.

Typically, graph neural networks (GNNs) leverage the topol-
ogy of the graph and attributes of nodes to infer the represen-
tation vector hv for every node v. This is achieved through
a message-passing framework, where the representation of
a node is recursively refined by aggregating the representa-
tions of the adjacent nodes. The message-passing of the lth

message-passing layer is formulated as (Li et al., 2021a):

hlv = COMl
(
hl−1
v ,AGGl

(
{hl−1

u : u ∈ N (v)}
))
, (1)

where hlv is the representation of node v at the lth layer
and h0

v is the input node features. COM and AGG de-
note the combination and aggregation function, respectively.

N (v) denotes the adjacent nodes of node v. For simplic-
ity, we denote GNN as the message-passing layer in Eq.
(1). Define Hl as the set of node embeddings {hlv|v ∈ V }
subsequent to the lth GNN layer, with the set of nodes V
in the graph. After the L conventional message-passing
layers, our model further adopts a layer for graph disentan-
glement to output factorized graph representations by ex-
tracting features attributed to distinct latent factors through
the individual channel. Following (Li et al., 2021a), the
complex multiple latent factors are extracted by K different
message-passing channels, thereby encapsulating various
aspects of the input graph. Specifically, each channel inde-
pendently employs a GNNk, using its unique parameters to
propagate information: HL+1

k = GNNk(H
L, A), with A

representing the adjacency matrix of the graph. The embed-
dings HL+1

k are exclusively associated with the k-th latent
factor for disentanglement. Each channel also employs its
own READOUT function, essentially a pooling function,
to summarize the node embeddings into a graph-level rep-
resentation: hGn,k = READOUTk({HL+1

k }). Finally,
each channel produces a factor-specific graph representa-
tion through an individual MLP: Zkn = MLPk(hGn,k). Fol-
lowing (Li et al., 2021a), the disentangled graph encoder
comprises K message-passing channels, which are more
specialized in capturing different aspects of the graph, com-
pared with the traditional graph encoders (Kipf & Welling,
2017; Veličković et al., 2018; Xu et al., 2019), that are fun-
damentally holistic in nature. This design facilitates the
identification of intrinsic latent factors and enables the en-
capsulation of diverse aspects of graphs, which provides a
basis for further identifying invariant and sufficient latent
factors for OOD generalization.

3.2. Disentangled Invariant Self-supervised Learning

Different from traditional contrastive learning approaches,
our proposed OOD-GCL introduces an innovative task cen-
tered around sufficiently discriminative instance identifica-
tion of invariant factors. Our model not only draws simi-
lar instances closer together while pushing dissimilar ones
apart in the representation space to learn sufficiently predic-
tive representations, but it also facilitates the integration of
factor-specific information into these representations. This
integration enhances the disentanglement of these latent
factors, thereby improving the identification of invariant
and sufficient latent factors for out-of-distribution (OOD)
generalization.

In detail, the formation of real-world graphs is usually driven
by multiple latent factors consisting of invariant and suf-
ficient latent factors that can be OOD generalized as well
as the other variant latent factors under distribution shifts.
Based on the disentangled graph encoder, we can obtain the
disentangled graph representations Z ∈ RN×K×∆d for the
whole graph dataset, where Zkn ∈ R∆d be the k-th chan-
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Figure 1. The framework of OOD-GCL. It consists of the following stages: (1) The input graph Gn is subjected to graph augmentations,
resulting in an augmented view G′

n. Both Gn and G′
n are subsequently processed by a shared multi-channel disentangled graph encoder

to produce the factorized graph representations. (2) The disentangled invariant self-supervision learning module is to maximize the
predictive ability of the disentangled graph representations and make sure the disentangled graph representations other than that from
the k-th channel are invariant under the environment partition inferred by the k-th latent factor, to exclude the information of the k-th
latent factor for enhancing representation disentanglement. (3) At the downstream finetuning stage, our model can achieve theoretically
guaranteed OOD generalization ability with a linear predictor based on the learned disentangled graph representations.

nel’s disentangled representation for Gn. We first infer the
environment partition Ek by clustering the representation
corresponding to the k-th latent factor for all graphs Zk as
follows:

Ek = Cluster(Zk). (2)

Here the motivation is that since the disentangled graph
representation of each channel only captures the specific in-
formation in terms of each latent factor, the representations
should naturally form multiple clusters (i.e., partitions) ac-
cording to their intrinsic semantic information of the latent
factor.

Specifically, we adopt the k-means (MacQueen et al., 1967)
clustering algorithm by setting the cluster number C in an
adaptive manner. The Eq. (2) is implemented by:

C∗ = argmaxC Sil(Ek), (3)

where Sil(·) is the Silhouette Score (Rousseeuw, 1987) that
is a commonly used metric for evaluating the quality of
clustering. It measures how similar each sample is to its
own cluster compared to other clusters. The score ranges
from −1 to 1, where a higher score indicates better-defined
clusters. By calculating this Silhouette Score for differ-
ent numbers of clusters, we can adaptively determine the
optimal number of clusters by maximizing the score, thus

ensuring the most appropriate cluster configuration. Finally,
we obtain the environment partition with the optimal number
of clustering, i.e.,

Ek = k-means(Zk;C∗). (4)

We expect the inferred environment partition can reflect
the intrinsic clusters in semantic space of the latent fac-
tor that could be the label information in the downstream
tasks (Wang et al., 2021a).

After obtaining the inferred environment partition, we uti-
lize the disentangled representation Z−k

n that is from all
channels except for the k-th channel to calculate the con-
trastive loss which can be regarded as discriminating oneself
from several negative samples. We define the loss function
ℓke in the e-th environment (i.e., cluster) inferred by the dis-
entangled representation of the k-th latent factor as follows:

ℓke = −
N∑
n=1

1[ψn=e]log
exp ϕ(Z−k

n ,Z′−k
n )∑

n′ ̸=n 1[ψn′=e]exp ϕ(Z
−k
n ,Z′−k

n′ )
,

(5)
where e ∈ {1, . . . , |Ek|}, |Ek| denotes the number of clus-
ters, and n′ ∈ {1, . . . , N}. 1[ψn=e] ∈ {0, 1} is an indi-
cator function evaluating to 1 iff. ψn = e and ψn is the
environment of the n-th graph considering the current en-
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vironment partition. ϕ is the cosine similarity with tem-
perature τ , i.e., ϕ(a,b) = cos(a,b)/τ and cos(a,b) =
a⊤b/ (∥a∥2∥b∥2). Z′−k

n is the corresponding representa-
tion from the augmented view of the n-th graph except for
the k-th channel. We adopt the common augmentation strate-
gies following (You et al., 2020) to obtain Z′−k

n . Overall,
the training objective is formulated as:

ℓ =

K∑
k=1

ℓk, (6)

where
ℓk =

∑
e∈Ek

ℓke + λInv(ℓke ; Ek). (7)

Inv(·) denotes the invariance regularization. In our method,
we adopt V-REx (Krueger et al., 2021) as our invariance
regularization and λ is the invariance coefficient. Note that
our method is also compatible with the other invariance reg-
ularization, e.g., IRM (Arjovsky et al., 2019), IGA (Koyama
& Yamaguchi, 2020), etc.

Intuitively, the first contrastive loss term in Eq. (7) is to
encourage sufficient predictive ability of the disentangled
graph representations, while the second invariance regu-
larization term in Eq. (7) is to make sure the disentangled
graph representations other than that from the k-th channel
are invariant under the environment partition inferred by the
k-th latent factor, so as to exclude the information of the
k-th latent factor for representation disentanglement.

Finally, we iteratively update Ek by Eq. (4) and optimize the
disentangled graph encoder by Eq. (6) until convergence.

3.3. Downstream Finetuning

Based on the disentangled invariant self-supervised learning,
the graph encoder can be optimized to make the represen-
tation disentangled in a self-supervised manner. After that,
when deployed in the specific downstream tasks, the disen-
tangled graph representations are further fed into a linear
predictor ω to calculate the graph labels. We finetune the
disentangled graph representations and linear predictor to
make predictions to the graph labels as:

Ŷn = ω(Zn). (8)

Note that although more powerful predictors (e.g., MLP,
etc.) can also be utilized to map the disentangled graph
representations into the labels, we show that such a simple
linear predictor is good enough to achieve OOD generaliza-
tion in the next subsection.

3.4. Theoretical Analyses

Here we provide some theoretical analyses from two aspects,
which show: (1) our model can provably learn disentangled

graph representations, and (2) our model can make OOD
generalization based on the output disentangled graph rep-
resentations.

First, we analyze why our model can learn disentangled
graph representations. Note that in this work, we fol-
low (Wang et al., 2021a) to adopt the established definition
of disentanglement (Higgins et al., 2018).

Definition 1. (Disentangled Representation (Higgins et al.,
2018; Wang et al., 2021a)) Let U denote the semantic space.
The semantic information potentially corresponds to the
label of the downstream task. Let Z denote the representa-
tion space. Let G denote the group that acts on U . Assume
that there is a direct product decomposition where G is
decomposed into G1 × . . . × GK , and U is decomposed
into U1 × . . . × UK , with Gk acting on Uk respectively.
The representation is disentangled if it satisfies the follow-
ing equivariant property and decomposable property in the
meantime.

1. Equivariant property: ∀g ∈ G,∀u ∈ U , f(g · u) =
g ·f(u), where f : U → Z is the representation function.

2. Decomposable property: there is a decomposition Z =
Z1×. . .×ZK , where each Zk is affected only by Gk and
unaffected by all Gk′ , k ̸= k′, and k, k′ ∈ {1, . . . ,K}.

Intuitively, the equivariant property means that the action of
G on semantic space U is equivariant to the action on Z . The
decomposable property means that the representation corre-
sponding to one latent factor is not affected by changing the
semantic information of the other latent factors.

Let g denote a group element in G and g can be decom-
posed by (g1, g2, ..., gK), where gk ∈ Gk . The goal of our
method is to learn the disentangled graph representations
w.r.t.

∏K
k=1 Gk. The group action g ∈ G on the semantic

space U is equivariant to its action on the representation
Z . Furthermore, the representation space Z is decomposed
into K parts: Z1 × . . .×ZK , where Zk is affected only by
gk ∈ Gk and unaffected by all gk

′ ∈ Gk′(k′ ̸= k). Inspired
by the literature (Wang et al., 2021a), in the following the-
orem, we prove that optimizing the objective function of
our method can lead to disentangled graph representations,
formulated by this definition.
Theorem 1. The graph representation is disentangled w.r.t.∏K
k=1 Gk if the objective function Eq. (7) reaches the mini-

mum for any k-th latent factor, k ∈ {1, . . . ,K}.

The proof is shown in Appendix due to the page limit.

Next, we prove that the disentangled graph representations
can lead to OOD generalized predictions under mild assump-
tions. Following the literature (Xu et al., 2022), we want to
estimate the coefficient of the linear predictor to calculate
the label given the disentangled graph representations.
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Theorem 2. Given the disentangled graph representations,
(1) if the k-th latent factor does not belong to the invariant
and sufficient latent factors to predict the label Y , then the
coefficient of the linear predictor wk equals zero; and (2) if
the k-th latent factor belongs to the invariant and sufficient
latent factors to predict the label Y , then the coefficient of
the linear predictor wk does not equal zero.

The proof is also shown in Appendix. Intuitively, for achiev-
ing OOD generalization, we aim to identify the invariant and
sufficient latent factors under distribution shifts, so that we
can learn a graph model that is generalized to unknown test-
ing distribution. As relationships between entangled graph
representations usually change under distribution shifts, the
model will fail to achieve OOD generalization if we use
traditional entangled representations. Therefore, it is critical
to find the invariant and sufficient latent factors and adopt
their disentangled representations for making predictions,
so that it can relieve the negative impact from the other la-
tent factors that are not in the invariant and sufficient latent
factors under distribution shifts.

4. Experiments
In this section, we conduct experiments on real-world
datasets to show the effectiveness of the proposed OOD-
GCL model for handling distribution shifts on graphs.

4.1. Experimental Setup

Datasets. We adopt real-world benchmark datasets for the
graph classification task, including the datasets from graph
OOD generalization benchmark GOOD (Gui et al., 2022)
and the datasets from Open Graph benchmark (Hu et al.,
2020). Following (Sui et al., 2023), the datasets in the
experiment consist of:

• Motif. Each graph in this dataset consists of a motif and
a base graph, where the ground-truth label only depends
on the motif. The distribution shift is induced by different
spurious correlations between the label and the base graph,
as well as different sizes.

• CMNIST. Each graph is converted from an image in
MNIST (LeCun et al., 1998) which is to be classified into
the corresponding handwritten digit. The distribution shift
exists on node features by colorizing the digits differently.

• Molbbbp and Molhiv. The distribution shift exists on graph
structural properties (scaffolds) or sizes. The provided split
separates structurally different molecules with different
scaffolds or sizes into different subsets.

Note that all of the datasets consist of two data split strate-
gies to create different distribution shifts except for CM-

NIST, following the well-established settings (Gui et al.,
2022; Sui et al., 2023).

Baselines. We compare our OOD-GCL with several rep-
resentative state-of-the-art methods, which can be divided
into three groups:

• General invariant learning methods, including standard
ERM, IRM (Arjovsky et al., 2019), GroupDRO (Sagawa
et al., 2019), V-REx (Krueger et al., 2021).

• Graph OOD generalization methods, including DIR (Wu
et al., 2022b), CAL (Sui et al., 2022), GSAT (Miao et al.,
2022), OOD-GNN (Li et al., 2022a), StableGNN (Fan
et al., 2021), CIGA (Chen et al., 2022), DisC (Fan et al.,
2022), DropEdge (Rong et al., 2019), GREA (Liu et al.,
2022), FLAG (Kong et al., 2022), M-Mixup (Wang et al.,
2021b), G-Mixup (Han et al., 2022), AIA (Sui et al.,
2023).

• Graph self-supervised learning methods, including In-
foGraph (Sun et al., 2019), GraphCL (You et al., 2020),
GMI (Peng et al., 2020), CNC (Zhang et al., 2022a).

Implementation Details. The number of epochs for pre-
training and finetuning is chosen from {50, 100, 200}. The
Adam optimizer (Kingma & Ba, 2014) is adopted for gradi-
ent descent. The evaluation metric is accuracy for Motif and
CMNIST datasets and ROC-AUC for Molbbbp and Mol-
hiv datasets. The dimensionality of the representations d is
chosen from [128, 256, 512]. The invariance regularizer co-
efficient λ is chosen from {10−4, 10−2, 100}. The number
of disentangled channels K is chosen from {2, 3, 4, 5}. We
report mean results and standard deviations of ten runs.

4.2. Main Results

The comparisons of different methods on the real-world
graph datasets under distribution shifts are shown in Table 1.
We have the following observations.

• Graph OOD generalization methods achieve better per-
formance than general invariant learning methods, e.g.,
IRM, V-REx, etc. Such performance gains demonstrate
the importance of considering and addressing the com-
plex structural distribution shifts on graphs in the model
design.

• Graph self-supervised learning methods, despite lacking
tailored designs for handling graph distribution shifts,
exhibit comparable performance to the graph OOD gen-
eralization methods in some comparisons. This suggests
that the inherent capacity of graph self-supervised learn-
ing to capture truly predictive structural information in
graph data contributes to its effectiveness in tackling
distribution shifts.
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Table 1. Comparisons of different methods on the real-world graph datasets under distribution shifts. Numbers after the ± signs represent
the standard deviations. The best results are in bold. The results show that our method outperforms the baseline methods consistently,
including general invariant learning methods, graph OOD generalization methods, and graph self-supervised learning methods.

Dataset Motif CMNIST Molbbbp Molhiv

base size color scaffold size scaffold size

ERM 68.66±4.25 51.74±2.88 28.60±1.87 68.10±1.68 78.29±3.76 69.58±2.51 59.94±2.37
IRM 70.65±4.17 51.41±3.78 27.83±2.13 67.22±1.15 77.56±2.48 67.97±1.84 59.00±2.92

GroupDRO 68.24±8.92 51.95±5.86 29.07±3.14 66.47±2.39 79.27±2.43 70.64±2.57 58.98±2.16
V-REx 71.47±6.69 52.67±5.54 28.48±2.87 68.74±1.03 78.76±2.37 70.77±2.84 58.53±2.88

DIR 62.07±8.75 52.27±4.56 33.20±6.17 66.86±2.25 76.40±4.43 68.07±2.29 58.08±2.31
CAL 65.63±4.29 51.18±5.60 27.99±3.24 68.06±2.60 79.50±4.81 67.37±3.61 57.95±2.24

GSAT 62.80±11.41 53.20±8.35 28.17±1.26 66.78±1.45 75.63±3.83 68.66±1.35 58.06±1.98
OOD-GNN 61.10±7.87 52.61±4.67 26.49±2.94 66.72±1.23 79.48±4.19 70.46±1.97 60.60±3.77
StableGNN 57.07±14.10 46.93±8.85 28.38±3.49 66.74±1.30 77.47±4.69 68.44±1.33 56.71±2.79

CIGA 66.43±11.31 49.14±8.34 32.22±2.67 64.92±2.09 65.98±3.31 69.40±2.39 59.55±2.56
DisC 51.08±3.08 50.39±1.15 24.99±1.78 67.12±2.11 56.59±10.09 68.07±1.75 58.76±0.91

DropEdge 45.08±4.46 45.63±4.61 22.65±2.90 66.49±1.55 78.32±3.44 70.78±1.38 58.53±1.26
GREA 56.74±9.23 54.13±10.02 29.02±3.26 69.72±1.66 77.34±3.52 67.79±2.56 60.71±2.20
FLAG 61.12±5.39 51.66±4.14 32.30±2.69 67.69±2.36 79.26±2.26 68.45±2.30 60.59±2.95

M-Mixup 70.08±3.82 51.48±4.91 26.47±3.45 68.75±0.34 78.92±2.43 68.88±2.63 59.03±3.11
G-Mixup 59.66±7.03 52.81±6.73 31.85±5.82 67.44±1.62 78.55±4.16 70.01±2.52 59.34±2.43

AIA 73.64±5.15 55.85±7.98 36.37±4.44 70.79±1.53 81.03±5.15 71.15±1.81 61.64±3.37

InfoGraph 69.73±2.74 50.17±3.72 33.84±1.52 70.39±1.34 80.82±0.49 67.51±3.65 60.16±2.12
GraphCL 71.34±3.76 52.77±5.89 32.81±1.71 69.36±1.32 80.64±0.78 70.12±2.19 57.19±3.18

GMI 65.26±1.98 51.85±3.49 30.24±5.98 69.38±1.02 77.67±0.30 68.95±2.92 59.86±2.78
CNC 70.34±2.73 50.64±4.86 32.41±1.28 68.16±1.25 76.19±3.52 69.13±3.71 58.67±3.41

OOD-GCL 76.31±2.37 60.12±2.35 41.89±2.03 72.86±1.97 83.12±3.21 74.13±2.01 63.41±2.59

• Our method outperforms the baseline methods consis-
tently, including general invariant learning methods,
graph OOD generalization methods, and graph self-
supervised learning methods. This superiority can be
attributed to the ability to effectively identify underlying
invariant and sufficient latent factors that are crucial for
preserving truly predictive graph properties and learn-
ing disentangled representations. Unlike the baseline
methods, our approach employs disentangled invariant
self-supervised learning during the pretraining stage,
leading that the graph representations can be disentan-
gled and OOD generalized. This unique design enables
our method to more effectively generalize to unknown
distribution shifts, ultimately resulting in superior per-
formance across a range of graph prediction tasks under
distribution shifts. Overall, the results highlight the
significance of learning disentangled representations in
addressing challenges posed by graph distribution shifts.

4.3. Time Complexity Analysis

Now we analyze the time complexity of our method to
show its efficiency. The time complexity of the proposed

OOD-GCL is O(|E| d+ |V | d2), where |V | represents the
number of nodes, |E| denotes the number of edges, and
d is the dimensionality of the representations. In particu-
lar, we employ the message-passing GNN to instantiate the
GNN components in the disentangled graph encoder, which
also exhibits a complexity of O(|E| d+ |V | d2). As for the
disentangled invariant self-supervised learning module, the
time complexity is O(|B|2d), where |B| is the batch size.
Since |B| is small constant, the overall time complexity
of OOD-GCL is O(|E| d + |V | d2). In comparison, the
time complexity of the other GNN-based baselines is also
O(|E| d + |V | d2). Therefore, the time complexity of our
OOD-GCL is comparable with the existing baselines. Al-
though our method exhibits effectiveness, it does not induce
a higher time cost.

4.4. Ablation Study

In this subsection, we conduct ablation studies to verify the
effectiveness of the key modules in our proposed OOD-
GCL. We consider the following ablated variants:

• Variant “w/o Inv.” means that we set λ = 0 in Eq. (7),
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Figure 2. Hyperparameter sensitivity analysis on CMNIST dataset. The blue lines denote the results of our method and the red dashed
lines are the results of the best baseline.
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Figure 3. Ablation studies. The ablated version “w/o Inv.” removes
the invariance regularization by setting λ = 0 in Eq. (7), and “w/o
Disen.” removes the disentangled module and degenerates to the
entangled version.

namely removing the invariance regularization.

• Variant “w/o Disen.” means that we remove the disen-
tanglement design and the model is degenerated to the
entangled version.

The results of OOD-GCL and its variants are shown in Fig-
ure 3. Notably, there is a noticeable performance drop for
the variant “w/o Inv.”, indicating the effectiveness of infer-
ring and identifying the latent factor behind graphs for each
channel accurately. The invariance regularization term en-
sures that the k-th part of disentangled graph representations
only includes the information of the k-th latent factor. So it
will affect the disentanglement if this invariance regulariza-
tion is removed. In the case of “w/o Disen.”, the absence of
disentanglement leads to entangled latent factors within the
graph representations. This entanglement poses challenges
in characterizing distinct aspects of the graphs and hinders
the ability to learn informative graph representations and
achieve OOD generalization.

4.5. Hyperparameter Sensitivity

In this subsection, we analyze the sensitivity of some im-
portant hyperparameters. First, the hyperparameter λ in
Eq. (7) has a moderate influence on the performance, since
λ serves a role in encouraging the model to capture the
invariance among different environments. To explore the
sensitivity of our method on this hyperparameter, we adjust
λ ∈ {10−5, 10−4, 10−3, 10−2, 10−1}, while maintaining
the default value of the other hyperparameters unchanged.
The results on the CMNIST dataset are shown in Figure 2,
while the results on the other datasets show similar pat-
terns. The results show that a small λ may struggle to
capture disentangled latent factors to output representations
accurately, leading to challenges in achieving OOD gen-
eralized predictions. Conversely, a large λ can lead that
the learned representations are not informative enough to
capture the graph properties. Besides, we also conduct sen-
sitivity analysis on the other hyper-parameters, including
the number of factors K ∈ {2, 3, 4, 5}, the dimensionality
d ∈ {128, 256, 512, 1024}, and the number of GNN lay-
ers L ∈ {2, 3, 4, 5, 6}. The results show that our method
outperforms the best baseline in a wide range of hyperparam-
eters, showing our method is not sensitive to hyperparameter
choices.

5. Related Work
OOD Generalization on Graphs. A basic assumption for
most machine learning methods is that there exists an iden-
tical distribution between training and testing data. How-
ever, this assumption is frequently violated in real-world
scenarios due to inevitable distribution shifts, thereby intro-
ducing substantial challenges to the model’s generalization
performance, particularly in out-of-distribution (OOD) sce-
narios (Shen et al., 2021). The model performance decline
becomes noticeable when it lacks enough OOD general-
ization capability. To tackle this problem, several general
invariant learning methods have been developed (Arjovsky
et al., 2019; Krueger et al., 2021; Koyama & Yamaguchi,
2020; Chang et al., 2020; Creager et al., 2021; Liu et al.,
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2021a). Recently, OOD generalization on graphs (Li et al.,
2022b) has also attracted much attention, considering the
complex distribution shifts existing on the graph structure
and node feature. Several famous graph OOD generaliza-
tion work (Wu et al., 2022c;a; Li et al., 2022d; Fan et al.,
2022; Sui et al., 2022; Liu et al., 2022; Sui et al., 2023;
Zhang et al., 2022b; 2023b;c;d; Li et al., 2023; Mao et al.,
2024) have been proposed, in general focusing on learning
invariant graph patterns among different environments for
tackling the distribution shifts. Most of the approaches typi-
cally adopt a supervised manner to get rid of the spurious
correlations between the variant patterns and the labels and
facilitate the invariant patterns for predictions. However,
they heavily rely on sufficient task-dependent annotated la-
bels to learn OOD generalized graph representations, which
could be unavailable in practice. To this end, in this paper,
we focus on the self-supervised graph OOD generalization
problem, namely learning GNNs capable of achieving rela-
tively stable performances under distribution shifts without
graph labels. This problem is not explored in the literature.

Contrastive Learning on Graphs. Self-supervised learn-
ing is one machine learning technique to learn informative
representations by training the model using the data itself
rather than the external annotated labels (Liu et al., 2021b).
Recently, self-supervised learning has been revolutionized
by the development of contrastive learning, which primarily
focuses on instance discrimination as a pretext task (Jaiswal
et al., 2020). The methodologies on this technique are
widely developed (Oord et al., 2018; Wu et al., 2018; He
et al., 2020; Chen et al., 2020; Tsai et al., 2021). In the
meantime, the application of contrastive learning on graph
data has also been explored in various research works (Sun
et al., 2019; Qiu et al., 2020; Hassani & Khasahmadi, 2020;
You et al., 2020; Zhang et al., 2021; Li et al., 2021a; Ren
& Liu, 2020; Peng et al., 2020; Li et al., 2022e;c). The
fundamental principle of these approaches is to enhance the
similarity or agreement between different views of the input
graph. Nevertheless, current methods in graph contrastive
learning primarily focus on general settings and ignore the
diverse latent factors within the complex graph data. Con-
sequently, such approaches may not adequately preserve
intrinsic and truly predictive graph characteristics, leading
to the potential fragility to distribution shifts.

Disentangled Representation Learning. Disentangled
representation learning is expected to capture the latent
factors behind the observed data, where these latent fac-
tors are represented as factorized vectors (Bengio et al.,
2013; Higgins et al., 2018; Wang et al., 2022a; Pfau et al.,
2020; Winter et al., 2022; Shu et al., 2018). It has found
widespread applications in various domains, including com-
puter vision (Hsieh et al., 2018; Wang et al., 2021a; 2023b;
Chen et al., 2023), recommendation systems (Wang et al.,

2022b; 2023a; Zhang et al., 2023a; Wang et al., 2024), etc.
Noteworthy advancements in this field also involve the ap-
plication of disentangled representation learning for graph
data through the development of disentangled graph neural
networks (Ma et al., 2019; Li et al., 2021b; 2022c; Yang
et al., 2020; Zhang et al., 2023e; 2024b;a). For instance,
(Ma et al., 2019) introduce a neighborhood routing mech-
anism within graph convolution to identify latent factors
influencing node-to-neighbor connections. (Liu et al., 2020)
strive to enhance the independence of graph latent factors by
eliminating their mutual dependence, leveraging a kernel-
based metric. Some works (Li et al., 2021b; 2022c; Wang
et al., 2021a) extend the disentangled representation learn-
ing in a self-supervised manner, but they fail to tackle the
distribution shifts for OOD generalization with a theoretical
guarantee. We draw inspirations from the concept of disen-
tangled representation learning (Higgins et al., 2018; Wang
et al., 2021a; 2022a) to address the graph out-of-distribution
generalization problems and bridge the disentanglement and
OOD generalization on graphs from a theoretical view.

6. Conclusion
In this paper, we study the self-supervised graph OOD gen-
eralization problem. The key challenge lies in disentangling
invariant and variant latent factors behind the graphs with-
out graph labels for tackling distribution shifts. To address
the challenge, we propose a novel OOD generalized dis-
entangled graph contrastive learning model (OOD-GCL),
which is able to learn disentangled graph representations
with self-supervision that can generalize under distribution
shifts. We conduct comprehensive theoretical analyses to
prove that our method can learn disentangled graph repre-
sentations and achieve OOD generalization. The extensive
experiments on several real-world benchmarks demonstrate
the superiority of the proposed method over state-of-the-art
baselines.
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A. Proof
A.1. Proof of Theorem 1

Proof. We prove that our learned graph representation is disentangled by showing it satisfies the equivariant property and
decomposable property in Definition 1. The reasoning process is inspired by Lemma 1 in (Wang et al., 2021a), but we
extend it into a more general scenario that the representation is disentangled w.r.t.

∏K
k=1 Gk instead of disentangled w.r.t.

some Gk and the others in (Wang et al., 2021a), thanks to our tailored model design.

First, we prove that the graph representation learned from our method satisfies the equivariant property. Consider that
the objective function Eq. (7) reaches the minimum for any k-th latent factor, k ∈ {1, . . . ,K}. Assume that there are
representations Zn and Zn′ of two different graphs satisfying Zn = Zn′ . The similarity between the two graphs can be
further reduced by outputting different representations for the n-th graph and the n′-th graph for reaching a lower loss in
Eq. (7). It contradicts that the objective function reaches the minimum. Therefore, the sample-equivariant property (Wang
et al., 2021a) can be achieved, i.e., different graphs have different representations. We assume that the transition from the
n-th graph to the n′-th graph in semantic space is from the group action and denote this action as g ∈ G that is transitive on
representation space, i.e. g · Zn = Zn′ . Therefore, the sample-equivariant graph representations can be an approximation of
group-equivariant graph representations (Wang et al., 2021a).

Then, we prove that the graph representation learned from our method satisfies the decomposability property. Consider
that the objective function Eq. (7) reaches the minimum for any k-th latent factor, k ∈ {1, . . . ,K}. Assume that ∃Zk is
affected by not only the action gk but also one different action gk

′
and consider obtaining the environment partition by

clustering the representation Zk
′
. The similarity between two graphs measured by the part Zk can be further reduced by

excluding the action gk
′

for reaching a lower loss in Eq. (7). Furthermore, since Zk is also affected by gk
′

in addition to gk,
the invariant regularization term in Eq. (7) can also be further reduced by excluding the information of the k′-th latent factor.
It contradicts that the objective function reaches the minimum. Finally, we conclude that each Zk is affected only by gk

corresponding to the k-th latent factor and unaffected by the actions corresponding to the other latent factors.

Overall, the learned graph representation of our method can be disentangled.

A.2. Proof of Theorem 2

Proof. The OOD generalization means that the model can make predictions only based on the invariant and sufficient
disentangled graph latent factors. Therefore, given the disentangled graph representations Z = [Z1, . . . ,ZK ], the coefficient
w = [w1, . . . , wK ] of the linear predictor for predicting label Y can be regarded to identify the invariant and sufficient latent
factors and the predictions can be OOD generalized with the corresponding disentangled graph representations. Following
the reasoning line of Theorem 5.1 and Theorem 5.2 in (Xu et al., 2022), we assume that the ordinary least square method is
adopted, the mean of each disentangled representation is zero, and the independence among the disentangled representations.
We derive the solutions of the coefficient w = [w1, . . . , wK ].

Specifically, we have

wk =
Cov(Zk, Y )

Var(Zk)
=

E
[
ZkY

]
Var(Zk)

=
E
[
ZkE [Y |Z]

]
Var(Zk)

, (9)

where Cov and Var denote the covariance and variance respectively, and E denotes the expectation.

On the one hand, if k-th latent factor does not belong to the invariant and sufficient latent factors to predict the label Y , then
E [Y |Z] can be represented as the function Ω(Z−k), where Z−k = [Z1, . . . ,Zk−1,Zk+1, . . . ,ZK ]. Therefore,

wk =
E
[
ZkΩ(Z−k)

]
Var(Zk)

= 0. (10)

The coefficient wk is zero, meaning that the prediction does not rely on the representation corresponding to the k-th latent
factor. The spurious correlation between this latent factor and the label can be removed, leading to OOD generalized
predictions.

On the other hand, if k-th latent factor belongs to the invariant and sufficient latent factors to predict the label Y , then
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E [Y |Z] can be represented as the function Θ(Zk). Therefore,

wk =
E
[
ZkΘ(Zk)

]
Var(Zk)

̸= 0. (11)

The coefficient wk is not zero, meaning that the prediction relies on the representation corresponding to the k-th latent factor.
The invariant and sufficient correlation between this latent factor and the label can be identified accurately, leading to OOD
generalized predictions.

15


