
SparQ Attention: Bandwidth-Efficient LLM Inference

Luka Ribar * 1 Ivan Chelombiev * 2 Luke Hudlass-Galley * 1 Charlie Blake 1 Carlo Luschi 1 Douglas Orr 1

Abstract

The computational difficulties of large language
model (LLM) inference remain a significant obsta-
cle to their widespread deployment. The need for
many applications to support long input sequences
and process them in large batches typically causes
token-generation to be bottlenecked by data trans-
fer. For this reason, we introduce SparQ At-
tention, a technique for increasing the inference
throughput of LLMs by utilising memory band-
width more efficiently within the attention layers,
through selective fetching of the cached history.
Our proposed technique can be applied directly to
off-the-shelf LLMs during inference, without re-
quiring any modification to the pre-training setup
or additional fine-tuning. We show that SparQ At-
tention brings up to 8× savings in attention data
transfers without substantial drops in accuracy, by
evaluating Llama 2 and 3, Mistral, Gemma and
Pythia models on a wide range of downstream
tasks.

1. Introduction
Transformer models trained on large corpora of text have
recently shown remarkable performance on complex natural
language processing tasks (Achiam et al., 2023; Touvron
et al., 2023). This has been attributed to the in-context
learning capabilities that emerge with large-scale training,
enabling arbitrary textual information (e.g. long instructions,
chat histories, relevant documents) to be incorporated at
inference-time (Wei et al., 2022).

To leverage the benefits of in-context learning, there has
been demand for LLMs to support increasingly long input
sequences. However, the standard inference optimisation

*Equal contribution 1Graphcore Research, United Kingdom
2Synthesia, United Kingdom (work done while at Graphcore Re-
search). Correspondence to: Luka Ribar, Luke Hudlass-Galley,
Douglas Orr {lukar, lukehg, douglaso}@graphcore.ai.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

dense
transfers

1
2

1
4

1
8

128 MB256 MB512 MB

Attention transfers per token

0.2

0.4

0.6

0.8

S
Q

u
A

D
A

cc
u

ra
cy

Dense SparQ Attention

H2O LM-Infinite FlexGen (16-bit)

Figure 1: Llama 2 13B SQuAD 1-shot performance versus
attention transfers over a range of compression ratios. SparQ
Attention achieves matching performance, while transfer-
ring between 1/8 and 1/4 as much data as the original dense
model. Line thickness shows ± one standard error over
4000 examples (the uncertainty from a finite test set). This
pattern is representative of the performance across various
models and tasks, shown in Figures A1 to A3.

used to support in-context learning, key-value (KV) caching
(Pope et al., 2023), is constrained by the need to fetch a large
amount of data from memory when processing batches of
long sequences. This in turn limits the speed at which tokens
can be generated—a key usability metric for LLMs.

This bottleneck can be attributed to the auto-regressive na-
ture of transformer generation. For each token generated,
the full KV cache must be fetched from memory. The size
of the KV cache scales linearly with the sequence length,
as well as the batch size, thus rendering generation for long
batched sequences increasingly memory bandwidth limited.

Despite this expensive cache-fetch at each step, tokens gen-
erally only attend to a small part of the sequence at a time
(Vig, 2019; Yun et al., 2020). If it were possible to efficiently
predict which tokens will have high attention scores, mem-
ory bandwidth efficiency could be significantly increased by
only transferring the key-value pairs of high-scoring tokens.

Building upon this idea, we present SparQ Attention, a
technique for significantly improving the memory band-
width efficiency of transformer inference. By approximating
attention scores using a subset of query and key components,

1

SparQ Attention: Bandwidth-Efficient LLM Inference

10−1 100 101 102 103 104 105

Arithmetic intensity (FLOPs / byte)

1011

1012

1013

1014

1015
P

er
fo

rm
an

ce
(F

L
O

P
S

)
compute boundbandwidth bound

B = 1, S = 1

B = 1, S = 23,000

B = 20, S = 1,000

Figure 2: Roofline analysis of Llama 2 7B on A100 (40GB),
highlighting that for a range of LLM inference settings with
batch size B and sequence length S, practical performance
is memory bandwidth bound.

we fetch only the most relevant tokens for each generation
step, reducing the amount of data transferred without de-
grading the model.

We also provide a new set of challenging downstream task
variants which we use to evaluate SparQ Attention. These
are based on existing tasks, modified to assess a model’s
ability to utilise information from long input sequences
for multi-token generation. We show that SparQ Atten-
tion performs favourably compared to other state-of-the-art
methods, giving up to 8× compression without substantial
loss in accuracy. SparQ Attention is robust across tasks
and models, demonstrated by evaluation on Llama 2 and
3, Mistral, Gemma and Pythia. We also provide bench-
marks measured on IPU and GPU, showing the practical
computational benefits of our approach.

2. Background
In this section we provide a straightforward framework to
understand the computational efficiency of sequence gen-
eration using transformer models (similar to the modelling
introduced by Kaplan et al. (2020)) and use it to motivate
transfer-efficient attention mechanisms.

Arithmetic intensity Consider a compute unit capable of
rA scalar arithmetic operations per second that is connected
to a memory via an interface which can transfer rM scalar
elements per second. Given a workload requiring A arith-
metic operations andM transfers, and assuming concurrent
compute and data transfer, the arithmetic intensity is defined
as A/M. In LLM inference, A is primarily a function of
the size of matrix multiplications in the model, andM de-
pends on various factors such as the size of the KV cache,
model size, and batch size. When the arithmetic intensity of
the workload is less than the ratio rA/rM, execution time
is limited by rM, due to the data transfer taking longer than
the computation in the concurrent setting.

The arithmetic intensity of typical sequence generation
workloads in transformer models is shown in Figure 2, high-

10000 20000 30000 40000 50000 60000

Sequence length (S)

20

40

60

80

T
im

e
in

at
te

n
ti

on
(%

)

Theoretical

CPU

GPU

Figure 3: The proportion of time that is spent in attention
layers during Llama 2 7B inference with a single sample
when using llama.cpp on both CPU and GPU platforms.
For more details, see Appendix D.

lighting that execution time is bandwidth bound, not com-
pute bound. We provide a more general analysis of the
arithmetic intensity of sequence generation in Appendix C,
showing that it is typically bandwidth bound. A corollary of
this is that the most effective way to accelerate transformer
sequence generation is to reduce data transfers.

Time in attention Sequence generation with transform-
ers is dominated by two types of computation. The first is
a position-wise matrix multiplication between activations
and parameters. The second is dot-product self-attention
between activations (Vaswani et al., 2017). Assuming a stan-
dard transformer layer with model dimension dm, batch size
B, sequence length S and using Grouped Query Attention
(GQA) (Ainslie et al., 2023) with g grouped-query heads
per key-value head (g=1 for standard multi-head attention),
the proportion of data transfers associated with attention is
given by

Mattn

Mattn +Mparams
=

ρ

ρ+ 6/B
, (1)

whereMparams andMattn are the total data transfers of
parameters and KV cache respectively, and ρ = S/(gdm)
is a variable we have introduced to capture the relevant
model hyperparameters (see Appendix C). When ρ� 6/B
(for example, with large S or B), attention dominates data
transfers, as the entire KV cache must be transferred during
each generative step. This theoretical trend is backed up
by empirical results from llama.cpp (Gerganov, 2024)
benchmarks in Figure 3.

Since data transfer is the performance-limiting factor, and
attention transfers dominate as sequence length is increased,
there is a need for transfer-efficient alternatives to the stan-
dard attention mechanism.

3. Approximating Attention
In this section we examine several properties of the attention
operation that enable us to introduce an accurate bandwidth-
efficient approximation.

2

SparQ Attention: Bandwidth-Efficient LLM Inference

0.0 0.2 0.4 0.6 0.8 1.0

Sum of top-32 attention scores

0

500

1000

1500

2000

2500

3000

C
ou

n
t

(a)

0 8 16 24

Layer

0

8

16

24

H
ea

d
(s

or
te

d
)

0.0

0.2

0.4

0.6

0.8

1.0

S
u

m
of

to
p

-3
2

at
te

n
ti

on
sc

or
es

(b)

−10 −5 0 5 10

Components of q (z-score)

100

10−3

10−6

10−9

10−12

D
en

si
ty

KDE per-head Unit Gaussian

(c)

0 8 16 24

Layer

0

10

20

30

K
u

rt
os

is

(d)

8 16 32 64

r

0.0

0.5

1.0

T
op

-k
ag

re
em

en
t

k

64

128

256

(e) (f)

Figure 4: Statistics of Llama 2 7B, evaluated over 40 SQuAD queries, over all 32 layers × 32 heads unless noted. (a) Sum
softmax output allocated to the 32 highest-scoring positions, demonstrating natural attention sparsity; (b) for each head.
(c) Kernel density estimate (Rosenblatt, 1956) of components of q in layer 16, showing heavy tails. (d) Fisher Kurtosis of
q components, for each head, showing that the query vector is leptokurtic for most heads. (e) Top-k agreement between
approximate and true scores for multiple values of r selected from query vector. Top-k agreement is the proportion of the
top-k positions that are correctly predicted by an approximated softmax, using a projection of q. (f) Agreement between the
coverage α based on estimated scores versus the true mass of the top 128 scores, for different softmax temperatures (a point
for each example × head), showing the importance of correct temperature. Further analysis is presented in Appendix E.

Consider a single attention query head with the head dimen-
sion dh, processing an input token sequence of length S.
During autoregressive generation, the output of the attention
head is calculated as:

y = softmax
(q ·K>√

dh

)
· V (2)

where q is the query, andK ∈ RS×dh and V ∈ RS×dh are
the key and value caches respectively. When using GQA
(Ainslie et al., 2023), K and V are shared across g query
heads.

For each forward pass, we need to fetch the key and value
matrices from memory, as well as write (append) k and
v vectors for the current token, giving a total number of
elements transferred per attention head:

Mdense = 2S dh + 2 dh (3)

where the first term corresponds to reading the K and V
caches and the second term corresponds to writing the cur-

rent k and v to memory. Memory transfer may be equiva-
lently expressed in terms of bytes, however we use scalar
elements to disentangle cache compression methods from
the number format used to represent the cache.

Attention scores sparsity First, consider the attention
scores s ∈ (0, 1)S in Equation (2):

s = softmax
(q ·K>√

dh

)
(4)

Due to the normalising effect of the softmax function, the
resulting s vector is sparse (see Figures 4a and 4b), i.e. we
can find a boolean mask ms ∈ {0, 1}S corresponding to
the top-k elements in s (k � S) such that:

y1 = (s ◦ms) · V ≈ s · V (5)

As a result, only the values vi corresponding to the non-zero
elements ofms need to be fetched from memory. However,
the algorithm still requires fetching the fullK from memory
in order to calculate the attention scores s, limiting the
minimum amount of data transferred to 1

2Mdense.

3

SparQ Attention: Bandwidth-Efficient LLM Inference

Table 1: Excess correlation ratio η (Roche et al., 1998)
along axes of V (excess: subtract d−0.5, so uniform random
data = 0.0). This demonstrates substantial auto-correlation
along the sequence axis. Calculated for Llama 2 7B over 40
SQuAD examples.

B S Layer Head dh

η−d−0.5 0.143 0.256 0.0 0.0 0.0

Mean value reallocation In order to further improve
the approximation in Equation (5), we note a further ob-
servation: vi vectors within the sequence exhibit a high
degree of auto-correlation (see Table 1). Thus, an addi-
tional correction term using a running-mean value vector
v̄ = 1

S

∑S
i=1 vi can be added as follows:

y2 = (s ◦ms) · V + (1− s ·ms)v̄ (6)

This introduces a minimal additional overhead compared to
Equation (5) due to the mean vector v̄ being updated and
written back to memory at each step.

Query sparsity In order to improve the lower bound on
memory transfers, we further consider efficiently approxi-
mating the maskms by calculating approximate attention
scores ŝ without using the full matrix K. Here, we con-
sider the distribution of magnitudes of the components of the
query vector q and observe that it is highly heavy-tailed (see
Figures 4c and 4d). This observation allows us to efficiently
approximate the attention scores s by defining a per-query
boolean mask mq ∈ {0, 1}dh corresponding to the top-r
components of q. The scores are then approximated as:

ŝ = softmax

(
(q ◦mq) ·K>

τ

)
(7)

where τ is the softmax temperature. Due to the maskmq,
only the components ofK corresponding to non-zero ele-
ments of the mask need to be fetched from memory. The
top-k mask mŝ ∈ {0, 1}S can then be calculated using
ŝ (see Figure 4e) and the approximate attention output is
obtained as:

y3 = softmax

(
q ·K>√

dh
+ log(mŝ + ε)

)
· V (8)

with ε→ 0. Again, due to the maskmŝ, only the key-value
pairs corresponding to the non-masked elements need to be
fetched from the memory.

Mean value reallocation with query sparsity As a final
consideration, we look at combining the mean value reallo-
cation improvement of Equation (6) with the approach in
Equation (8). As we do not have access to the full scores

s, we proceed to approximate the weighted sum using the
approximate scores in Equation (7). Note that, since the
query-key dot product is performed over only r dimensions,
care needs to be taken when choosing the appropriate soft-
max temperature τ in Equation (7). If r components were
chosen randomly, the appropriate temperature would be

√
r.

On the other hand, if the top-r components were the only
non-zero elements of the query vector, the appropriate tem-
perature would remain

√
dh. As a balance between the two

extremes, we have found the following temperature to yield
a good approximation (see Figure 4f):

τ =

√
dh
‖q ◦mq‖1
‖q‖1

(9)

The final attention output can be then calculated as a
weighted sum:

y = αy3 + (1− α)v̄ (10)

where α = mŝ · ŝ is the relative weight of the top-k terms.

4. SparQ Attention
Following the analysis in Section 3, we propose SparQ
Attention (see Figure 5) consisting of three steps:

Step 1: Find the indices of r largest components of |q|1 and
only fetchK along the dimensions corresponding
to these indices. Calculate approximate attention
scores ŝ using the sliced query and keys.

Step 2: Find the top-k positions in the approximate atten-
tion scores and fetch the corresponding full key and
value vectors. Calculate the output of the attention
operation using the top-k keys and values.

Step 3: Estimate the total score α assigned to the top-k po-
sitions using the approximate attention scores. Use
this total score to interpolate between the attention
output from the top-k positions, and a mean value
vector, v.

The memory transfer of the SparQ Attention algorithm for
a single attention head forward-pass:

MSparQ = S r + 2 k dh + 4 dh (11)

where the first term corresponds to reading r rows ofK, the
second term corresponds to reading the top-k columns ofK
and V and the third term corresponds to transfers associated
with writing the current k and v, in addition to reading and
writing v.

1We use | · | to denote element-wise absolute value.

4

SparQ Attention: Bandwidth-Efficient LLM Inference

q[i1]

0.8

−0.2

−1.3

0.4

⊗ K[i1,:]

sequence dimension

approximate attention scores ŝ

α =
∑

i∈i2
ŝi

q

0.8

−0.2

−1.3

0.4

⊗ K[:,i2]

sparse attention scores s
⊗

V[:,i2]

v̄
=

m
ea

n(
V
)

⊕

y

×(1− α) ×α

Algorithm 1 SparQ Attention

Input: q ∈ Rdh ,K ∈ RS×dh , V ∈ RS×dh ,
v ∈ Rdh , r ∈ N, k ∈ N, l ∈ N

Indices of top r elements of |q|
i1 ← argtopk (|q|, r)

Softmax temperature, weighted by L1 coverage

τ ←
√
dh ·
‖q[i1]‖1
‖q‖1

Approximate attention scores (all positions)
ŝ← softmax

(
q[i1] ·K>

[i1,:]
/τ
)

Local mask of last l positions
m← [1 if i > S − l else 0]Si=1

Indices of top k approximate scores or local
i2 ← argtopk (ŝ+m, k)

Total approximate score of top k
α← sum

(
ŝ[i2]

)
Final attention scores (top k positions)
s← softmax

(
q ·K>

[:,i2]
/
√
dh
)

Mixed scores and values, interpolating with v
y ← α s · V[:,i2] + (1− α) v

return y

Figure 5: SparQ Attention for a single attention head. The algorithm consists of three steps. First, we find the r largest
components of the incoming query vector and gather the corresponding components along the hidden dimension of the key
cacheK. This allows us to approximate the full attention scores (ŝ). In the second step, we identify the top-k largest scores
in the approximation and proceed to gather the corresponding full key and value vectors from the cache. As a final step, to
compensate for the missing value vectors, we additionally maintain and fetch the running mean value vector v̄ and reassign
it the leftover mass based on approximate score weightings. The attention output is then calculated as usual using the top-k
fetched key and value pairs, together with v̄.

By varying r and k, we can tune the total amount of data
transferred by the scheme, trading-off approximation accu-
racy for token-generation speed-up. Since typically S � dh,
r is the most important parameter controlling the data trans-
fer compression ratioMSparQ/Mdense.

Grouped query attention For models using GQA,
groups of g queries access the same KV head. In order to
accommodate this, we modify Step 1 to sum |q| within each
group before selecting top-r components. Similarly, Step 2
is modified by summing the approximate attention scores
within each group before selecting top-k keys and values
for each KV head. Although Step 3 can be implemented ex-
actly as before, we found that GQA models obtained better
performance without it, so we omitted this step for Llama 3
and Mistral. The full code can be found in Appendix B.

5. Experiments
5.1. Setup

Models We evaluate our method on five widely-used open-
source language model variants: Llama 2 (Touvron et al.,

2023), Llama 3 (Meta AI, 2024), Mistral (Jiang et al., 2023),
Gemma (Mesnard et al., 2024) and Pythia (Biderman et al.,
2023), evaluating model sizes up to 13 billion parameters.2

All models are decoder-only transformers (Radford et al.,
2018), pre-trained on causal language modelling. They
share similar architectural components such as rotary posi-
tional embedding (Su et al., 2021), while also having some
notable differences such as different attention mechanisms
(multi-head and grouped query attention), layer normalisa-
tion implementations, activation functions and execution of
modules in parallel.

Tasks In order to evaluate our method on a spectrum of rel-
evant NLP tasks that present a particular challenge to sparse
attention techniques, our evaluation setup consists of various
tasks requiring information retrieval and reasoning over long
input sequences. This includes question answering, sum-
marisation, perplexity/bits-per-character (BPC), and text
repetition. For this, we adapted standard downstream tasks
and datasets to generate examples of sequence lengths be-

2https://github.com/graphcore-research/
llm-inference-research/tree/2024-05-sparq

5

https://github.com/graphcore-research/llm-inference-research/tree/2024-05-sparq
https://github.com/graphcore-research/llm-inference-research/tree/2024-05-sparq

SparQ Attention: Bandwidth-Efficient LLM Inference

Table 2: Results for the largest model of each family tested are presented below. SQuAD and TriviaQA measure performance
in accuracy as a percentage; CNN/DailyMail uses ROUGE-L score; WikiText task measures perplexity in bits per character
(BPC); Repetition counts the number of characters before the generation diverges. Values presented are those closest to the
target compression ratio for each technique, where bold represents the best score for each setting. Median standard errors
across all models and sparsity settings are: SQuAD 0.8, TriviaQA 0.8, CNN/DailyMail 0.4, WikiText 0.01, Repetition 2.

Dataset Name SQuAD ↑ TriviaQA ↑ CNN/DailyMail ↑ WikiText ↓ Repetition ↑
Compression 1 1/2 1/8 1 1/2 1/8 1 1/2 1/8 1 1/2 1/8 1 1/2 1/8

Llama 2
LM-∞ 80.8 50.0 30.1 78.7 73.4 68.1 22.1 16.8 14.9 0.61 0.64 0.71 229 76 29

13B H2O 80.8 73.2 63.0 78.7 78.5 78.4 22.1 22.2 20.3 0.61 0.61 0.64 229 61 26
SparQ 80.8 80.7 74.9 78.7 78.8 78.2 22.1 22.5 21.6 0.61 0.61 0.70 229 227 190

Llama 3
LM-∞ 81.2 66.0 51.8 83.2 81.8 80.6 23.4 17.1 16.1 0.56 0.58 0.64 213 102 27

8B H2O 81.2 74.5 61.7 83.2 83.2 82.5 23.4 23.3 21.9 0.56 0.56 0.59 213 67 30
SparQ 81.2 81.2 78.3 83.2 83.0 82.8 23.4 23.4 23.4 0.56 0.57 0.58 213 214 213

Mistral LM-∞ 81.0 51.0 29.0 80.9 75.8 72.6 23.7 18.0 16.6 0.62 0.65 0.72 231 81 20

7B H2O 81.0 71.2 56.9 80.9 80.8 80.2 23.7 23.5 22.8 0.62 0.63 0.66 231 38 14
SparQ 81.0 80.9 77.5 80.9 80.8 79.0 23.7 23.5 23.0 0.62 0.63 0.65 231 209 201

Gemma LM-∞ 80.4 64.2 48.7 82.8 81.6 80.8 17.4 13.1 13.3 0.59 0.61 0.68 245 101 23

7B H2O 80.4 73.7 60.2 82.8 82.9 82.5 17.4 17.4 16.9 0.59 0.59 0.62 245 68 18
SparQ 80.4 80.3 80.3 82.8 82.8 82.7 17.4 17.9 18.0 0.59 0.59 0.59 245 240 237

Pythia LM-∞ 57.8 38.5 17.0 52.6 41.6 29.7 20.2 14.9 14.0 0.68 0.71 0.79 150 64 18

6.9B H2O 57.8 52.9 45.5 52.6 52.6 52.3 20.2 20.3 18.5 0.68 0.69 0.71 150 47 17
SparQ 57.8 58.0 57.1 52.6 52.4 51.7 20.2 20.6 20.6 0.68 0.68 0.70 150 151 144

tween 1k and 2k tokens. To define the tasks independently
of the selected models, our examples were chosen to have se-
quence lengths between 4000 and 8000 characters, roughly
giving the desired lengths in tokens.

For question answering, we use the SQuAD (Rajpurkar
et al., 2016) and TriviaQA (Joshi et al., 2017) datasets in
the open-book setting. In order to construct the SQuAD ex-
amples, we augment the provided context (i.e. the standard
SQuAD input sequence required to answer the question)
with seven additional “confusion contexts” from unrelated
questions. This ensures that the examples have a large se-
quence length, while making the task harder as the model
needs to distinguish the relevant information from the con-
text from the unrelated paragraphs. We use SQuAD v1.1,
as it does not include unanswerable questions included in
SQuAD v2.0, since we aim to measure the model’s abil-
ity to extract useful information from the KV cache. For
both question answering tasks we use exact string match
accuracy as the evaluation metric. Summarisation is evalu-
ated on the CNN/DailyMail dataset (See et al., 2017) using
the ROUGE-L F-score (Lin, 2004) as the metric. We use
the WikiText-103 dataset (Merity et al., 2016) with bits per
character (BPC) for evaluating language modelling perfor-
mance.3 Finally, we construct an artificial “Text Repetition”
task to evaluate the capability of the model to repeat sen-
tences from its context verbatim. Such a task can commonly
appear in a dialogue setting where the LLM agent is re-

3We quote performance for sub-word language modelling in
BPC, to account for any differences in vocabulary across models.

quired to retrieve a piece of text from a possibly long context
provided, and can be challenging for sparse attention tech-
niques. We construct examples using the Tiny-Shakespeare
dataset (Karpathy, 2015) by chunking the text into contexts
of the appropriate size, appending them with the prompts
containing a subset of the context, and evaluating the output
exact character length match with the continuation from the
context.

Baselines We consider the cache eviction technique H2O
(Zhang et al., 2023), top-k sparse attention in the form
of FlexGen (Sheng et al., 2023), and LM-Infinite, a local
windowing scheme with initial-tokens included proposed by
Han et al. (2023) as baselines. For each experiment we fix
the KV cache transfer budget k idependently of the sequence
length. With H2O, we set the local window size l = k/4
(with 3k/4 heavy hitters), and for LM-Infinite we always
include the first 16 positions (with k − 16 local positions).
Due to the lower bound of FlexGen’s compression ratio
being 1/2, we do not report the technique’s results in Table 2
and Table 3, but full results can be found in Appendix A. The
compression ratio definitions for each of these techniques
can be found in Appendix G.

5.2. Results

Our experiments span eight distinct models: Llama 2 with 7
and 13 billion parameters, Llama 3 with 8 billion parameters,
Mistral with 7 billion parameters, Gemma with 7 billion
parameters, and three Pythia models with 1.4, 2.8 and 6.9

6

SparQ Attention: Bandwidth-Efficient LLM Inference

2000 4000 6000 8000 10000 12000

Sequence length S

0.2

0.3

0.4

0.5

0.6

0.7

S
Q

u
A

D
ac

cu
ra

cy
(t

ra
in

se
t)

Dense SparQ H2O

Figure 6: SQuAD performance vs input sequence length.
The compression ratio is fixed at 1/4. Uses Vicuna 1.5 7B
with 16k maximum sequence length against our SQuAD
(train) task with 7 (default) to 63 confusion contexts to
increase the sequence length. We believe the drop in perfor-
mance at 3k tokens is an artefact of the RoPE scaling and
fine-tuning procedure used to extend the context window of
the Vicuna model.

billion parameters. Results from the largest models are
presented in Table 2, with further results in Figures A1
to A3.

We observe that SparQ Attention performance is robust
across all tasks and models tested, as compression ratios
of 1/2 to 1/8 are readily achievable with little to no loss
in task performance. H2O can attain good performance on
some tasks such as TriviaQA and WikiTest-103, although
other tasks, including SQuAD and Text Repetition, are more
challenging and notable degradation occurs. LM-Infinite
performance degrades across all tasks, demonstrating that
the tasks do not permit the trivial solution of discarding the
long input sequence.

5.3. Sequence Length Scaling

The sequence lengths of different examples in our main
tasks vary between 1k and 2k tokens, whereas many LLMs
support sequence lengths far greater than this. We consid-
ered two tasks to evaluate how SparQ Attention performs as
sequence length scales.

The first task is a variation of SQuAD, which increases
both sequence length and task difficulty by increasing the
number of confusion contexts present in the prompt, which
is akin to increasing the number of retrieved documents
with a retrieval augmented generation system (Borgeaud
et al., 2022). We test SparQ Attention and H2O in this
setting using Vicuna (Chiang et al., 2023), a descendent
of Llama 2 that has been adapted for longer sequences.
Both SparQ Attention and H2O are configured to maintain a
fixed compression ratio versus the dense baseline (keeping
r = 32 and modifying k to maintain 1/4 compression). The
results in Figure 6 show that SparQ Attention is scalable to
large sequences, as it can maintain performance up to 128k
sequence length.

Table 3: Needle in a haystack results, averaged over all
depths and sequence lengths S within the specified range.
See Figure A4 for full heatmap results and more details.

S Range Compression LM-∞ H2O SparQ

8k - 16k
1 100% 100% 100%

1/4 23.5% 5.9% 100%
1/8 11.8% 2.9% 79.4%

16k - 24k
1 100% 100% 100%

1/4 23.5% 8.8% 100%
1/8 11.8% 5.9% 100%

24k - 32k
1 90.4% 90.4% 90.4%

1/4 23.5% 10.3% 90.4%
1/8 11.8% 5.9% 87.5%

The second task evaluated is needle in a haystack, in which
a “text needle” is inserted into the context at a certain depth,
and the model is tasked with retrieving information from the
needle. The exact implementation of this task we used is out-
lined in Dhinakaran (2024). We compare SparQ Attention
with H2O and LM-Infinite over a range of different compres-
sion ratios. The results, as seen in Table 3 and Figure A4,
show that SparQ Attention achieves performance very close
to the dense attention baseline, even in high-sparsity set-
tings.

5.4. Ablations

Key cache compression The first step in SparQ Attention
involves reading r components of the key cache to approx-
imately determine which keys yield the highest attention
scores. To examine the practical trade-off of the approx-
imation, we look at how SparQ Attention performs when
compared to a theoretical upper-bounding “oracle” which
provides the exact top-k keys without requiring any data
transfer to calculate the top-k. The results in Figure 7a show
that SparQ Attention retains comparable performance to the
oracle for a wide range of compression ratios, and attains
considerably higher performance than a baseline compres-
sion scheme, in which a random low rank projection ofK
is transferred from memory.

Approximate softmax temperature To empirically sup-
port our statistical analysis of α agreement shown in Fig-
ure 4f, we evaluate a number of different viable temperature
settings, including the square root of the head dimension
(τ =

√
dh), the square root of the rank (τ =

√
r), and the

temperature proposed in Equation (9). We also consider the
scenario where we do not reallocate mass to mean value
(α = 0), which corresponds to the limit of the temperature
tending towards 0. We find that our proposed temperature
performs best, as shown in Figure 7b.

7

SparQ Attention: Bandwidth-Efficient LLM Inference

8163264128256

Attention transfers per token (MB)

0.5

0.6

0.7

0.8

S
Q

u
A

D
A

cc
u

ra
cy

Oracle

SparQ

Low Rank

(a) Accuracy results of SparQ Attention and a random low rank
compression scheme against an oracle top-k selector.

k = 128, r = 32 k = 128, r = 64

0.65

0.70

0.75

S
Q

u
A

D
A

cc
u

ra
cy limx→0 x√

r
√
dh
‖q ◦mq‖1
‖q‖1

√
dh

(b) Comparison of different softmax temperatures for approximate
attention scores for two different hyperparameter configurations.

3264128

Transfers (MB)

50

100

150

200

R
ep

et
it

io
n

m
at

ch
le

n
g
th

3264128

Transfers (MB)

0.5

0.6

0.7

0.8

S
Q

u
A

D
A

cc
u

ra
cy

k = 32

k = 64

k = 128

k = 256

(c) Results for Repetition and SQuAD tasks with r ∈ {16, 32, 64}.

Figure 7: Ablations results, investigated on Llama 2 7B.

Hyperparameter selection The reduction of data transfer
attained by SparQ Attention is controlled by its two hyper-
parameters, k and r. Reducing either of these variables will
improve the bandwidth efficiency, but can negatively impact
task performance. Figure 7c shows the relationship between
k and r on both of these factors. Based on these results, we
propose a simple recipe of setting k = 128 and tuning r
to maintain a good trade-off between data transfer and task
performance for a range of models and tasks.

6. Benchmarking
The results above use a theoretical cost model of total mem-
ory transfers (the number of scalar elements transferred to
and from memory per token), allowing us to evaluate SparQ
Attention independently of the specific hardware setup and
number formats used. To validate our findings, we per-
formed a set of microbenchmarks of an attention operation
in isolation.

SparQ Attention benefits from two optimisations. The first
is to storeK twice, in both dh-contiguous and S-contiguous
layouts, since this allows for an efficient gather (indexing)
on either axis, at the cost of 50% extra memory usage. The

2048 4096 8192 16384

Sequence length S

8 µs

16 µs

32 µs

64 µs

128 µs

256 µs

T
im

e
p

er
q
u

er
y

Dense

SparQ (Triton, 1×K)

SparQ (PyTorch)

SparQ (Triton)

Figure 8: Microbenchmark results for batch size 64, 32
heads, dh = 128, r = 32, k = 128, A100 (40GB).

Table 4: GPU performance with batch size 64, sequence
length S = 4096, r = 32, k = 128. The theoretical speed-
up is 6.4×.

Kernel A100 (40GB) A10G

Dense 49 µs (1×) 128 µs (1×)
SparQ (Triton, 1×K) 38 µs (1.28×) 79 µs (1.63×)

SparQ (PyTorch) 37 µs (1.33×) 78 µs (1.63×)
SparQ (Triton) 16 µs (3.02×) 31 µs (4.17×)

second optimisation is to use a fused gather-then-matmul
operation to avoid writing the result of the gather to memory.

We tested multiple implementations of baseline and SparQ
Attention on IPU using the Poplar C++ interface and GPU
using PyTorch (Paszke et al., 2019). In all cases, we used
the Llama 2 7B shape parameters: 32 heads, dh = 128. The
implementations tested were: Dense baseline, choosing the
faster of a plain PyTorch implementation and the builtin
scaled dot product attention, SparQ (Triton),
storingK twice and using fused gather-then-matmul kernels
written using Triton (Tillet et al., 2019), SparQ (PyTorch),
with no Triton and SparQ (Triton, 1×K), storingK in dh-
contiguous layout only, for no additional memory cost. In an
example configuration running on a single IPU from a Bow
Pod16, batch size 1, sequence length S = 16384, the dense
baseline achieves 40.4 ms/query, while SparQ (r = 32,
k = 128) achieves 5.28 ms/query for a speedup of 7.41×
(the theoretical speedup of SparQ is 7.53×). This near-
perfect speedup is achieved because attention is strongly
memory bound when using remote memory. In contrast, the
baseline running in local SRAM takes 134 µs for a 345×
speedup, but this is only practically achievable when the
whole model fits in SRAM.

Our achieved GPU speed-ups are presented in Table 4, and
the performance trend with sequence length is shown in
Figure 8. Standard error for all results given is < 1% of the
mean. See Appendix F for further details.

8

SparQ Attention: Bandwidth-Efficient LLM Inference

These microbenchmark results show that the theoretical ben-
efits of SparQ Attention can yield substantial wall-clock
time speedups on current hardware. Further work is needed
to show improvements for small batch sizes, and to investi-
gate alternatives to storingK twice.

7. Related Work
Efficient attention methods have been a very active area
of research (Tay et al., 2020b). Schemes such as Sparse
Transformers (Child et al., 2019), Combiner (Ren et al.,
2021), Longformer (Beltagy et al., 2020), BigBird (Zaheer
et al., 2020), Reformer (Kitaev et al., 2020) and Sparse
Sinkhorn Attention (Tay et al., 2020a) have been developed
to increase efficiency of the attention mechanism by ex-
tracting information from the most salient tokens in the
sequence or approximating dense attention maps. Two
schemes that reduce memory footprint and data transfer
of the attention operation, while maintaining quadratic com-
plexity are Multi-Query Attention (MQA) (Shazeer, 2019)
and Grouped-Query Attention (GQA) (Ainslie et al., 2023)
that share each KV head across multiple query heads. These
methods form part of the architecture: they must be imple-
mented during pre-training, carry varying task performance
trade-offs, and may affect model quality and stability.

An emerging area of research similar to SparQ Attention
aims to only adapt the inference procedure of a pre-trained
model. The simplest method of this category is part of
FlexGen (Sheng et al., 2023), and calculates exact attention
scores, retrieving only the values associated with the top-
k scores. This process uses the full key cache to produce
attention scores, limiting the asymptotic reduction of the
memory transfers to only 50%. LM-Infinite (Han et al.,
2023) and StreamingLLM (Xiao et al., 2023) employ a
fixed sparsity pattern preserving the most recent tokens and
a few initial tokens for better attention efficiency, but are
not selective in their cache lookup.

Eviction schemes cache only a subset of keys and values,
by continually deleting tokens that are uninformative for
future outputs. By reducing the cache size itself, both the
amount of memory used and data transferred are reduced.
H2O (Zhang et al., 2023), Scissorhands (Liu et al., 2023a)
and FastGen (Ge et al., 2024) are examples of such eviction
methods. H2O uses a greedy eviction policy that maintains
in memory the most salient “Heavy Hitter” tokens that con-
tribute most to the attention scores. Scissorhands identifies
and maintains “pivotal tokens” by counting when a token’s
attention score exceeds an importance threshold. FastGen
adopts heuristics such as preventing the eviction of special
tokens and punctuation, and tailors the compression strategy
to each individual attention head. While these methods re-
duce the memory footprint of the KV cache as well as data
transfer, they also lead to permanent loss of information

from the context window, which can lead to mistakes for
queries seeking less-attended parts of the sequence.

IceFormer (Mao et al., 2023) uses multiple existing approx-
imate nearest neighbour algorithms for approximating atten-
tion scores of pre-trained models, focusing on speeding-up
the prefill stage, rather than generation. Scatterbrain (Chen
et al., 2021) employs similar techniques, but for computer
vision applications.

In addition to compressing the KV cache, a number of
methods strive to speed up LLM inference by inducing
sparsity in the weights of the model. Deja Vu (Liu et al.,
2023c) is a contextually-sparse approach that aims to pre-
dict which model parameters are required such that the error
between the full computation and sparse approximation is
minimised. Similarly, activation sparsity methods, includ-
ing Kurtz et al. (2020) and Mirzadeh et al. (2024), exploit
zero-values found in activations, typically induced by ReLU
activation functions. Kurtz et al. (2020) introduce an alter-
native forced activation threshold ReLU function which can
induce sparsity at specified thresholds. Similarly, Mirzadeh
et al. (2024) replace the activation functions in LLMs with
ReLUs, followed by additional fine-tuning. These methods
are most suitable for small batch size and short sequence
length regimes, where inference is bottlenecked by param-
eter transfer, rather than the KV cache, but are compatible
with sparse attention techniques such as SparQ Attention.

An orthogonal line of work increases bandwidth efficiency
by compressing the KV cache with 4-bit number formats
(Liu et al., 2023b; Sheng et al., 2023). Liu et al. (2023a)
demonstrate that 4-bit compression is complementary to
techniques that reduce the number of transferred elements.

8. Conclusion
In this work we have presented SparQ Attention, a novel
technique for unlocking faster inference for pre-trained
LLMs. Our proposed technique modifies the attention mech-
anism to access only the relevant tokens from the KV cache
at every generation step, leading to considerable data trans-
fer savings. This is particularly beneficial in long sequence
length regimes, where inference speed is often bottlenecked
by memory transfers rather than computation.

We also highlight the advantages of maintaining the full KV
cache in memory for task performance by comparing SparQ
Attention to other popular strategies which discard informa-
tion from the input sequence. These alternative approaches
rely on heuristics or predefined policies to determine which
items in the KV cache to remove, which may not generalise
across the wide range of applications LLMs are used for.
We show that SparQ Attention is robust across numerous
tasks and models, making it a viable technique for reducing
inference times in unseen settings.

9

SparQ Attention: Bandwidth-Efficient LLM Inference

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgements
We would like to thank Daniel Justus, Paul Balança and
Andrew Fitzgibbon for their helpful input and feedback on
this work.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. GPT-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y.,
Lebrón, F., and Sanghai, S. GQA: Training generalized
multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023.

Beltagy, I., Peters, M. E., and Cohan, A. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

Biderman, S., Schoelkopf, H., Anthony, Q. G., Bradley,
H., OBrien, K., Hallahan, E., Khan, M. A., Purohit, S.,
Prashanth, U. S., Raff, E., et al. Pythia: A suite for ana-
lyzing large language models across training and scaling.
In International Conference on Machine Learning, pp.
2397–2430. PMLR, 2023.

Borgeaud, S., Mensch, A., Hoffmann, J., Cai, T., Rutherford,
E., Millican, K., Van Den Driessche, G. B., Lespiau, J.-B.,
Damoc, B., Clark, A., et al. Improving language models
by retrieving from trillions of tokens. In International
conference on machine learning, pp. 2206–2240. PMLR,
2022.

Chen, B., Dao, T., Winsor, E., Song, Z., Rudra, A., and Ré,
C. Scatterbrain: Unifying sparse and low-rank attention.
Advances in Neural Information Processing Systems, 34:
17413–17426, 2021.

Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang,
H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J. E.,
Stoica, I., and Xing, E. P. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality, March 2023.

Child, R., Gray, S., Radford, A., and Sutskever, I. Gen-
erating long sequences with sparse transformers. arXiv
preprint arXiv:1904.10509, 2019.

Dhinakaran, A. The needle in a haystack test, February
2024. URL https://towardsdatascience.
com/the-needle-in-a-haystack-test-
a94974c1ad38.

Ge, S., Zhang, Y., Liu, L., Zhang, M., Han, J., and Gao,
J. Model tells you what to discard: Adaptive kv cache
compression for llms. In International Conference on
Learning Representations, 2024.

Gerganov, G. llama.cpp. https://https://github.
com/ggerganov/llama.cpp, 2024.

Graphcore. Bow-2000 datasheet. (Online: ac-
cessed 25 January 2024), March 2023. URL
https://docs.graphcore.ai/projects/
bow-2000-datasheet.

Han, C., Wang, Q., Xiong, W., Chen, Y., Ji, H., and Wang, S.
LM-infinite: Simple on-the-fly length generalization for
large language models. arXiv preprint arXiv:2308.16137,
2023.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Joshi, M., Choi, E., Weld, D. S., and Zettlemoyer, L.
TriviaQA: A large scale distantly supervised challenge
dataset for reading comprehension. arXiv preprint
arXiv:1705.03551, 2017.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Karpathy, A. The unreasonable effectiveness of recurrent
neural networks. (Online: accessed 27 January 2024),
2015. URL https://github.com/karpathy/
char-rnn.

Kitaev, N., Kaiser, Ł., and Levskaya, A. Reformer: The
efficient transformer. arXiv preprint arXiv:2001.04451,
2020.

Kurtz, M., Kopinsky, J., Gelashvili, R., Matveev, A., Carr, J.,
Goin, M., Leiserson, W., Moore, S., Nell, B., Shavit, N.,
and Alistarh, D. Inducing and exploiting activation spar-
sity for fast neural network inference. In International
Conference on Machine Learning, 2020.

Lin, C.-Y. ROUGE: A package for automatic evaluation
of summaries. In Text Summarization Branches Out,
pp. 74–81, Barcelona, Spain, July 2004. Association for
Computational Linguistics.

10

https://towardsdatascience.com/the-needle-in-a-haystack-test-a94974c1ad38
https://towardsdatascience.com/the-needle-in-a-haystack-test-a94974c1ad38
https://towardsdatascience.com/the-needle-in-a-haystack-test-a94974c1ad38
https://https://github.com/ggerganov/llama.cpp
https://https://github.com/ggerganov/llama.cpp
https://docs.graphcore.ai/projects/bow-2000-datasheet
https://docs.graphcore.ai/projects/bow-2000-datasheet
https://github.com/karpathy/char-rnn
https://github.com/karpathy/char-rnn

SparQ Attention: Bandwidth-Efficient LLM Inference

Liu, Z., Desai, A., Liao, F., Wang, W., Xie, V., Xu, Z.,
Kyrillidis, A., and Shrivastava, A. Scissorhands: Ex-
ploiting the persistence of importance hypothesis for
llm kv cache compression at test time. arXiv preprint
arXiv:2305.17118, 2023a.

Liu, Z., Oguz, B., Zhao, C., Chang, E., Stock, P., Mehdad,
Y., Shi, Y., Krishnamoorthi, R., and Chandra, V. LLM-
QAT: Data-free quantization aware training for large lan-
guage models. arXiv preprint arXiv:2305.17888, 2023b.

Liu, Z., Wang, J., Dao, T., Zhou, T., Yuan, B., Song, Z.,
Shrivastava, A., Zhang, C., Tian, Y., Re, C., and Chen,
B. Deja Vu: Contextual sparsity for efficient llms at
inference time. In International Conference on Machine
Learning, 2023c.

Mao, Y., Ester, M., and Li, K. Iceformer: Accelerated infer-
ence with long-sequence transformers on CPUs. In Third
Workshop on Efficient Natural Language and Speech Pro-
cessing (ENLSP-III): Towards the Future of Large Lan-
guage Models and their Emerging Descendants, 2023.

Merity, S., Xiong, C., Bradbury, J., and Socher, R.
Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843, 2016.

Mesnard, T., Hardin, C., Dadashi, R., Bhupatiraju, S.,
Pathak, S., Sifre, L., Rivière, M., Kale, M. S., Love,
J., et al. Gemma: Open models based on gemini research
and technology. arXiv preprint arXiv:2403.08295, 2024.

Meta AI. Introducing meta llama 3: The most
capable openly available llm to date, April 2024
2024. URL https://https://ai.meta.com/
blog/meta-llama-3.

Mirzadeh, S. I., Alizadeh-Vahid, K., Mehta, S., del Mundo,
C., Tuzel, O., Samei, G., Rastegari, M., and Farajtabar,
M. ReLU strikes back: Exploiting activation sparsity in
large language models. In International Conference on
Learning Representations, 2024.

NVIDIA. NVIDIA A10 datasheet. (Online: ac-
cessed 22 January 2024), March 2022. URL
https://www.nvidia.com/content/dam/
en-zz/Solutions/Data-Center/a10/pdf/
datasheet-new/nvidia-a10-datasheet.
pdf.

NVIDIA. NVIDIA H100 datasheet. (Online: accessed
22 January 2024), July 2023. URL https://www.
nvidia.com/en-gb/data-center/h100/.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Pope, R., Douglas, S., Chowdhery, A., Devlin, J., Bradbury,
J., Heek, J., Xiao, K., Agrawal, S., and Dean, J. Efficiently
scaling transformer inference. Proceedings of Machine
Learning and Systems, 5, 2023.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever,
I. Improving language understanding by generative
pre-training. (Online: accessed 29 January 2024),
2018. URL https://openai.com/research/
language-unsupervised.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. SQuAD:
100,000+ questions for machine comprehension of text.
arXiv preprint arXiv:1606.05250, 2016.

Ren, H., Dai, H., Dai, Z., Yang, M., Leskovec, J., Schuur-
mans, D., and Dai, B. Combiner: Full attention trans-
former with sparse computation cost. Advances in Neural
Information Processing Systems, 34:22470–22482, 2021.

Roche, A., Malandain, G., Pennec, X., and Ayache, N. The
correlation ratio as a new similarity measure for multi-
modal image registration. In Medical Image Computing
and Computer-Assisted Intervention MICCAI98: First
International Conference Cambridge, MA, USA, October
11–13, 1998 Proceedings 1, pp. 1115–1124. Springer,
1998.

Rosenblatt, M. Remarks on Some Nonparametric Estimates
of a Density Function. The Annals of Mathematical Statis-
tics, 27(3):832 – 837, 1956.

See, A., Liu, P. J., and Manning, C. D. Get to the point:
Summarization with pointer-generator networks. arXiv
preprint arXiv:1704.04368, 2017.

Shazeer, N. Fast transformer decoding: One write-head is
all you need. arXiv preprint arXiv:1911.02150, 2019.

Sheng, Y., Zheng, L., Yuan, B., Li, Z., Ryabinin, M., Chen,
B., Liang, P., Ré, C., Stoica, I., and Zhang, C. FlexGen:
high-throughput generative inference of large language
models with a single GPU. In International Conference
on Machine Learning, pp. 31094–31116. PMLR, 2023.

Su, J., Lu, Y., Pan, S., Wen, B., and Liu, Y. Roformer:
Enhanced transformer with rotary position embedding.
CoRR, abs/2104.09864, 2021. URL https://arxiv.
org/abs/2104.09864.

Tay, Y., Bahri, D., Yang, L., Metzler, D., and Juan, D.-C.
Sparse sinkhorn attention. In International Conference
on Machine Learning, pp. 9438–9447. PMLR, 2020a.

Tay, Y., Dehghani, M., Bahri, D., and Metzler, D. Efficient
transformers: A survey. CoRR, abs/2009.06732, 2020b.
URL https://arxiv.org/abs/2009.06732.

11

https://https://ai.meta.com/blog/meta-llama-3
https://https://ai.meta.com/blog/meta-llama-3
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a10/pdf/datasheet-new/nvidia-a10-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a10/pdf/datasheet-new/nvidia-a10-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a10/pdf/datasheet-new/nvidia-a10-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a10/pdf/datasheet-new/nvidia-a10-datasheet.pdf
https://www.nvidia.com/en-gb/data-center/h100/
https://www.nvidia.com/en-gb/data-center/h100/
https://openai.com/research/language-unsupervised
https://openai.com/research/language-unsupervised
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2009.06732

SparQ Attention: Bandwidth-Efficient LLM Inference

Tillet, P., Kung, H.-T., and Cox, D. Triton: an intermediate
language and compiler for tiled neural network computa-
tions. In Proceedings of the 3rd ACM SIGPLAN Interna-
tional Workshop on Machine Learning and Programming
Languages, pp. 10–19, 2019.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Vig, J. A multiscale visualization of attention in the trans-
former model. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics: System
Demonstrations, pp. 37–42, 01 2019.

Wei, J., Bosma, M., Zhao, V., Guu, K., Yu, A. W., Lester,
B., Du, N., Dai, A. M., and Le, Q. V. Finetuned lan-
guage models are zero-shot learners. In International
Conference on Learning Representations, 2022.

Xiao, G., Tian, Y., Chen, B., Han, S., and Lewis, M. Ef-
ficient streaming language models with attention sinks.
arXiv preprint arXiv:2309.17453, 2023.

Yun, C., Chang, Y.-W., Bhojanapalli, S., Rawat, A. S.,
Reddi, S., and Kumar, S. O(n) connections are expressive
enough: Universal approximability of sparse transform-
ers. Advances in Neural Information Processing Systems,
33:13783–13794, 2020.

Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Al-
berti, C., Ontanon, S., Pham, P., Ravula, A., Wang, Q.,
Yang, L., et al. Big bird: Transformers for longer se-
quences. Advances in Neural Information Processing
Systems, 33:17283–17297, 2020.

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai,
R., Song, Z., Tian, Y., Ré, C., Barrett, C., et al. H2O:
Heavy-hitter oracle for efficient generative inference of
large language models. arXiv preprint arXiv:2306.14048,
2023.

12

SparQ Attention: Bandwidth-Efficient LLM Inference

A. Detailed Results
Figures A1 to A3 report the compression/performance trade-off curves for all models and tasks that were evaluated.

128 MB256 MB512 MB

0.5

0.6

0.7

0.8

S
Q

u
A

D
A

cc
u

ra
cy

Llama 2 13B

64 MB128 MB256 MB

0.4

0.5

0.6

0.7

0.8

Llama 2 7B

16 MB32 MB64 MB

0.5

0.6

0.7

0.8

Llama 3 8B

128 MB256 MB512 MB

0.4

0.5

0.6

0.7

0.8

T
ri

v
ia

Q
A

A
cc

u
ra

cy

64 MB128 MB256 MB

0.4

0.5

0.6

0.7

0.8

16 MB32 MB64 MB

0.5

0.6

0.7

0.8

64 MB128 MB256 MB512 MB

0.12

0.15

0.18

0.21

C
N

N
/D

a
il

y
M

ai
l

R
O

U
G

E
-L

64 MB128 MB256 MB

0.12

0.15

0.18

0.21

8 MB16 MB32 MB64 MB

0.12

0.15

0.18

0.21

0.24

64 MB128 MB256 MB512 MB

0.60

0.65

0.70

0.75

W
ik

iT
ex

t-
10

3
B

P
C

64 MB128 MB256 MB

0.65

0.70

0.75

0.80

16 MB32 MB64 MB

0.55

0.60

0.65

128 MB256 MB512 MB

Attention transfers per token

0

100

200

R
ep

et
it

io
n

m
at

ch
le

n
gt

h

64 MB128 MB256 MB512 MB

Attention transfers per token

0

50

100

150

200

16 MB32 MB64 MB

Attention transfers per token

0

50

100

150

200

Dense SparQ Attention H2O LM-Infinite FlexGen (16-bit)

Figure A1: Compression versus performance trade-off curves over all tasks for the Llama 2 and Llama 3 model families. The
y-axis minimum is set to (0.5, 0.5, 0.5, 1.25, 0.0)× the dense baseline for the tasks, reading top-to-bottom, in order to give
a consistent view of the performance loss across models. Vertical dotted lines show 1/2×, 1/4× and 1/8× compression
versus dense. Shaded lines show ±1 standard error of the mean (uncertainty due to a finite test set).

13

SparQ Attention: Bandwidth-Efficient LLM Inference

16 MB32 MB64 MB

0.5

0.6

0.7

0.8

S
Q

u
A

D
A

cc
u

ra
cy

Mistral 7B

32 MB64 MB128 MB

0.5

0.6

0.7

0.8

Gemma 7B

16 MB32 MB64 MB

0.5

0.6

0.7

0.8

T
ri

v
ia

Q
A

A
cc

u
ra

cy

32 MB64 MB128 MB

0.5

0.6

0.7

0.8

16 MB32 MB64 MB

0.12

0.15

0.18

0.21

0.24

C
N

N
/D

ai
ly

M
ai

l
R

O
U

G
E

-L

32 MB64 MB128 MB

0.10

0.12

0.14

0.16

0.18

16 MB32 MB64 MB

0.65

0.70

0.75W
ik

iT
ex

t-
1
03

B
P

C

32 MB64 MB128 MB

0.60

0.65

0.70

16 MB32 MB64 MB128 MB

Attention transfers per token

0

100

200

R
ep

et
it

io
n

m
at

ch
le

n
gt

h

32 MB64 MB128 MB256 MB

Attention transfers per token

0

100

200

Dense SparQ Attention H2O LM-Infinite FlexGen (16-bit)

Figure A2: Compression versus performance trade-off curves over all tasks for Mistral 7B and Gemma 7B models. The
y-axis minimum is set to (0.5, 0.5, 0.5, 1.25, 0.0)× the dense baseline for the tasks, reading top-to-bottom, in order to give
a consistent view of the performance loss across models. Vertical dotted lines show 1/2×, 1/4× and 1/8× compression
versus dense. Shaded lines show ±1 standard error of the mean (uncertainty due to a finite test set).

14

SparQ Attention: Bandwidth-Efficient LLM Inference

64 MB128 MB256 MB

0.3

0.4

0.5

0.6

S
Q

u
A

D
A

cc
u

ra
cy

Pythia 6.9B

32 MB64 MB128 MB

0.3

0.4

0.5

Pythia 2.8B

16 MB32 MB64 MB128 MB

0.25

0.30

0.35

0.40

0.45

Pythia 1.4B

64 MB128 MB256 MB

0.3

0.4

0.5

T
ri

v
ia

Q
A

A
cc

u
ra

cy

32 MB64 MB128 MB

0.3

0.4

0.5

16 MB32 MB64 MB128 MB

0.25

0.30

0.35

0.40

0.45

32 MB64 MB128 MB256 MB

0.12

0.15

0.18

0.21

C
N

N
/D

ai
ly

M
ai

l
R

O
U

G
E

-L

32 MB64 MB128 MB

0.12

0.15

0.18

0.21

16 MB32 MB64 MB

0.10

0.12

0.14

0.16

0.18

64 MB128 MB256 MB

0.70

0.75

0.80

0.85

W
ik

iT
ex

t-
10

3
B

P
C

32 MB64 MB128 MB

0.70

0.75

0.80

0.85

16 MB32 MB64 MB128 MB

0.75

0.80

0.85

0.90

64 MB128 MB256 MB

Attention transfers per token

0

50

100

150

R
ep

et
it

io
n

m
at

ch
le

n
gt

h

32 MB64 MB128 MB256 MB

Attention transfers per token

0

50

100

150

32 MB64 MB128 MB

Attention transfers per token

0

50

100

150

Dense SparQ Attention H2O LM-Infinite FlexGen (16-bit)

Figure A3: Compression versus performance trade-off curves over all tasks for the Pythia family of models. The y-axis
minimum is set to (0.5, 0.5, 0.5, 1.25, 0.0)× the dense baseline for the tasks, reading top-to-bottom, in order to give a
consistent view of the performance loss across models. Vertical dotted lines show 1/2×, 1/4× and 1/8× compression
versus dense. Shaded lines show ±1 standard error of the mean (uncertainty due to a finite test set).

15

SparQ Attention: Bandwidth-Efficient LLM Inference

1k 8k 16k 24k 32k

Sequence length S

0.00

0.25

0.50

0.75

1.00

D
ep

th

Dense

0.00

0.25

0.50

0.75

1.00

D
ep

th

Compression = 1/4 Compression = 1/8

SparQ Attention

0.00

0.25

0.50

0.75

1.00

D
ep

th

Compression = 1/4 Compression = 1/8

H2O

1k 8k 16k 24k 32k

Sequence length S

0.00

0.25

0.50

0.75

1.00

D
ep

th

Compression = 1/4

1k 8k 16k 24k 32k

Sequence length S

Compression = 1/8

LM-Infinite

Figure A4: Heatmaps of the results for the needle in a haystack task, as outlined in Dhinakaran (2024). For various sequence
lengths (comprising of essays by Paul Graham), the needle (which is the sequence “The best thing to do in San Francisco is
eat a sandwich and sit in Dolores Park on a sunny day”) is inserted into the sequence at various depths, and the model is
prompted to answer what the best thing to do in San Francisco was. The heatmaps show whether the model returns the
correct (blue) or incorrect (red) answer. We evaluated this task over SparQ Attention, H2O and LM-Infinite (in addition to
the dense baseline) on the togethercomputer/LLaMA-2-7B-32K model, for two compression ratios.

16

SparQ Attention: Bandwidth-Efficient LLM Inference

B. Code
from torch import softmax, sqrt, tensor, topk

def gather(t, dim, i):
dim += (dim < 0) * t.ndim
return t.gather(dim, i.expand(*t.shape[:dim], i.shape[dim], *t.shape[dim + 1 :]))

def attn(Q, K, V, M):
s = (Q @ K.transpose(-1, -2)) / sqrt(tensor(Q.shape[-1])) + M
y = softmax(s, dim=-1) @ V
return y

def sparq_attn(Q, K, V, V_mean, M, r, k):
Q -- (batch_size, n_kv_heads, n_heads // n_kv_heads, 1, head_size)
K, V -- (batch_size, n_kv_heads, 1, seq_len, head_size)

1. Approximate attention scores using r largest components of Q
i1 = topk(abs(Q).sum(dim=2, keepdim=True), r, -1).indices
Q_hat, K_hat = gather(Q, -1, i1), gather(K, -1, i1)
scale = sqrt(

Q.shape[-1]
* abs(Q_hat).sum(dim=-1, keepdim=True)
/ abs(Q).sum(dim=-1, keepdim=True)

)
s_hat = softmax(Q_hat @ K_hat.transpose(-1, -2) / scale + M, dim=-1)

2. Gather top k positions based on approximate attention scores & run attention
i2 = topk(s_hat.sum(dim=2, keepdim=True), k, -1).indices
iKV = i2[..., 0, :, None]
K, V, M = gather(K, -2, iKV), gather(V, -2, iKV), gather(M, -1, i2)
y_ = attn(Q, K, V, M)

3. Estimate the total score of the top k, and interpolate with V_mean
alpha = gather(s_hat, -1, i2).sum(-1, keepdim=True)
y = alpha * y_ + (1 - alpha) * V_mean
return y

C. Arithmetic Intensity
Consider a full transformer layer, with N parameters, batch size B, C elements in the attention KV cache per batch element
and g grouped-query heads per key-value head. This implies the arithmetic intensity:

A
M =

BN +BCg

N +BC
=

N + Cg

N/B + C
(C1)

We can increase arithmetic intensity by making B large, causing A/M to approach N/C + g. Hence the limiting factor for
large-batch transformer inference is the ratio of the KV cache size per-item to the size of the model.

We can alternatively express this in terms of the model’s basic hyperparameters. A standard transformer with model
dimension dm and sequence-length S has N = 12(dm)2 and C = 2S dm/g (Kaplan et al., 2020). Substituting these values
into Equation (C1), we get

A
M =

6 + ρ g

6/B + ρ
(C2)

where ρ = S/(gdm) is a variable we have introduced, and underlies the KV cache-model size relationship outlined above,
determining the point at which the model becomes memory bandwidth bound. We observe that the arithmetic intensity as
batch size increases approaches g + 6/ρ.

17

SparQ Attention: Bandwidth-Efficient LLM Inference

1 4 16 64 256 1024

B

1

10

100

A
ri

th
m

et
ic

in
te

n
si

ty

1/64

1/16

1/4

1

4

16

64

ρ

(a)

1 4 16 64 256 1024

B

1

10

100

A
ri

th
m

et
ic

in
te

n
si

ty

1/64

1/16

1/4

1

4

16

64

ρ

(b)

Figure C1: Relationship between ρ=S/(gdm), B and arithmetic intensity. (a) Multi-head attention, g = 1. (b) Grouped-
query attention, g = 8. This highlights the importance of ρ, even with large batch size and GQA.

Model g dm S ρ = S/(gdm) Max A/M
Llama 2 7B 1 4096 4096 1 7

Llama 2 70B 8 8192 4096 1/16 104
Llama 2 70B 8 8192 16384 1/4 32

The general relationship between ρ and arithmetic intensity is shown in Figure C1.

Hardware Properties of selected machine learning hardware.4 Note that rA is the number of multiply-adds per second
and rM the number of data elements transferred per second.

Name Memory technology rA/1012 rM/1012 rA/rM

Bow IPU (FP16) SRAM 175 5.5 32
A10 GPU (INT8) GDDR 125 0.6 210

H100 SXM GPU (FP8) HBM 990 3.35 295

Comparing rA/rM for this hardware to the arithmetic intensity achievable for standard transformer models, it’s clear that
sequence generation will hit a data transfer bottleneck.

In summary, we have seen that sequence generation exhibits a large-batch arithmetic intensity of just 7 for multi-head
attention with S = dm, up to 100 for grouped-query attention with S � dm, while ML hardware can provide rA/rM > 200.

D. Measuring Time Spent in Attention
Deriving exact measurements of how long is spent in attention layers in optimised inference libraries such as llama.cpp
and vLLM can be non-trivial, due to limited existing tooling in their implementations and (to a lesser extent) probing models
during inference may impact performance. llama.cpp features a benchmarking tool called llama-bench, which
measures the time it takes to either prefill a model with a prompt of certain length, or autoregressively generate a sequence.

We employ llama-bench’s existing functionality to calculate the approximate time that is spent in attention, by observing
that when generating a single token, the compute and data transfer associated with the attention layers scale linearly with the

4For IPU (Graphcore, 2023), we use the exchange memory bandwidth of 11 TB/s. A10 (NVIDIA, 2022). H100 (NVIDIA, 2023).

18

SparQ Attention: Bandwidth-Efficient LLM Inference

0 10000 20000 30000 40000 50000 60000

Sequence length (S)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
im

e
to

ge
n

er
at

e
to

ke
n

(s
ec

on
d

s)

CPU

(a)

0 10000 20000 30000 40000 50000 60000

Sequence length (S)

0.010

0.015

0.020

0.025

0.030

0.035

0.040

T
im

e
to

ge
n

er
at

e
to

ke
n

(s
ec

on
d

s)

GPU

(b)

Figure D1: For each sequence length S, we prefill the KV cache with a prompt of length S before measuring the time it
takes to generate a single additional token with Llama 2 7B (batch size 1). We report the mean and standard deviation over
200 runs per sequence length, for (a) CPU and (b) A100 GPU. Measurements were carried out via the llama-bench
tooling from llama.cpp.

sequence length, with all other costs remaining constant. This can be seen in Figure D1, which shows the measured time it
takes to generate a single token, given an existing sequence length S. As S increases, the time it takes to generate a single
token scales linearly.

From the measured benchmarks, lines of best fit were computed over the interquartile range of each S (to reduce variance)
for each hardware platform, which were found to be

yCPU(S) = (1.62× 10−5)S + 0.2438 (D1)

and
yGPU(S) = (4.686e× 10−7)S + 0.009481 (D2)

for CPU and GPU respectively. The value of yXPU(0) corresponds to the time it takes for all non-attention data transfer and
operations. Therefore, the proportion of time spent in attention, zXPU(S), can be approximated as

zXPU(S) ≈ yXPU(S)− yXPU(0)

yXPU(S)
, (D3)

the results of which can be seen in Figure 3.

E. Attention Sparsity Analysis
In order to understand how to approximate attention in pretrained transformers, we analysed the queries, values and
intermediate scores vector (softmax output). We took 40 examples from our SQuAD 1-shot task, and generated the first
completion token using the dense Llama 2 7B model, capturing the q vector and K, V matrices from every layer and
attention head, showing derived statistics in Figures 4, E1 and E2.

In Figures 4c and 4d we show that elements of the query vectors are not normally distributed, but have high sample kurtosis
values. If compared to a normal distribution, the combined mass of the elements with absolute z-score exceeding 3.0 is up
to 20× higher. This leads us to theorise that query vectors in a pre-trained model inherently encode information sparsely
using the tails. Therefore, the magnitude based sparsity we induce in the first stage of the algorithm does not significantly
harm the approximation of the attention mappings.

We validate this claim by comparing the correspondence between the exact and approximated attention scores. SparQ
Attention uses the approximate attention scores to only choose the tokens that are important for the next generation step. The

19

SparQ Attention: Bandwidth-Efficient LLM Inference

0 8 16 24

Layer

0

10

20

30

K
u

rt
os

is

(a)

0 8 16 24

Layer

0

8

16

24

H
ea

d
(s

or
te

d
)

0

5

10

15

20

25

K
u

rt
os

is

(b)

0 8 16 24

Layer

10−1

100

101

q
m

as
s

(|z
|>

3)
v
s

G
au

ss
ia

n

(c)

0 8 16 24

Layer

0

8

16

24

H
ea

d
(s

or
te

d
)

1×

2×

4×

8×

16×

q
m

as
s

(|z
|>

3)
v
s

G
au

ss
ia

n

(d)

Figure E1: Statistics of components of q for each head, as a function of layer. (Top) Kurtosis (Fisher), indicating that most
heads have heavy-tailed q. (Bottom) z-value mass, normalised by that of a Gaussian (0.3%), showing that most heads are
outlier-heavy. All Llama 2 7B, measured over 40 SQuAD examples.

actual values of the approximate scores are not relevant, as these scores are not multiplied with value vectors and thus the
property of interest to us is whether the top-k indices in the approximate scores match those of the exact counterpart. This
can be measured on a scale from 0 to 1, where 1 means top-k indices are identical between the approximation and the exact
scores and 0 means these sets do not overlap. We call this measure top-k correspondence. Figure E2 provides an overview
how the choice of rank and k affects the top-k correspondence aggregated over all attention heads of the model. We see
that the query vector sparsity of 50% and 75% maintain high top-k correspondence to the exact attention scores, which is
consistently maintained over various values of k. Further analysis and a more detailed examination of top-k correspondence
is presented in Appendix E.

It is useful to drop positions in V given attention scores, but this can save at most half of the data transfers, since the whole
ofK is needed to calculate these scores. We propose approximating these scores using a subset of the components ofK.
To test such an approximation, we measure the proportion of overlap between the top 32 positions in the approximated
and true scores. If overlap is high, we can use the approximation to avoid transferring the whole K matrix, instead only
transferring some components ofK for all positions, then all components ofK for some positions.

Our hypothesis is that the r largest-magnitude components of q are most useful to predicting the score, qK>. The coverage
of this technique against an arbitrary-component baseline is shown in Figure E2. These results show that it is possible to
achieve reasonably high overlap even using r = dh/8, but that some later layers are harder to predict. Using the top-r
components outperforms the first r baseline considerably.

20

SparQ Attention: Bandwidth-Efficient LLM Inference

0.0 0.2 0.4 0.6 0.8 1.0

Top-32 agreement

0

1

2

3

4

5

6

7

8

D
en

si
ty

Top-r |q|
First-r

Last-r

Random projection

Figure E2: Top-k agreement between approximate and true scores (Llama 2 7B, measured over 40 SQuAD examples).
Top-k agreement is the proportion of the top-k positions that are correctly predicted by an approximated softmax, using a
projection of q, either component-wise or a random low-rank projection.

F. Benchmarking Detail
Benchmarking code is made available from:
https://github.com/graphcore-research/llm-inference-research/tree/2024-05-sparq.

IPU measurements We tested custom fully-fused Poplar implementations of both dense attention and SparQ Attention,
compiled using Poplar SDK 3.3.0+1403. On initialisation, we fill large K and V tensors with values ∼ N(0, 1) in
streaming memory. On each benchmarking (outer) iteration, we first randomise the contents of a q in local memory, then
perform multiple inner repeats of the attention op being profiled. We use 4 inner repeats for dense attention, otherwise
1024/batch size, chosen because dense attention is much slower, and we swept a wide range of settings. We ran an outer
loop of 2 warm-up iterations followed by 10 timed iterations, reporting the mean and standard error. The sweep covered
S ∈ [1024, 2048, . . . , 65536], batch size ∈ [1, 4, 16, 64], SparQ Attention r ∈ [16, 32, 64] and k ∈ [64, 128, 256, 512].

GPU measurements All experiments use PyTorch 2.1.2+cu121 on Ubuntu AWS instances. To set up the experi-
ment, we initialise the large K and V tensors with values ∼ N(0, 1). On each step, we draw q ∼ N(0, 1), run
torch.cuda.synchronize before starting a host-side wall-clock timer, run the op, and synchronize again before
stopping the timer. We run 20 warm-up iterations followed by 200 timed iterations, reporting mean and standard error.
For dense baseline implementations, we tested a vanilla PyTorch implementation, with/without torch.compile and
torch.nn.functional.scaled dot product attention, selecting each backend (math, flash, mem efficient)
manually. For SparQ Attention implementations, we tested vanilla PyTorch (lightly hand-optimised from Appendix B),
with/without torch.compile. We also toggled fused gather-matmul kernels written in Triton, and whether K was
stored twice in S-contiguous (for Step 1) and dh-contiguous (for Step 2) layouts, or only once in dh-contiguous lay-
out. We tested S ∈ [1024, 2048, 4096, 8192, 16384], batch size ∈ [1, 4, 16, 64], SparQ Attention r ∈ [16, 32, 64] and
k ∈ [64, 128, 256, 512].

Additional results In addition to the headline results shared in Section 6 and Figure 8, we give an aggregate picture of the
trends in Figure F1. Since the number and dimension of heads is fixed, the x-axis is proportional to the size of the input
tensors. On IPU (M2000), strong speedups are available across a range of input sizes, principally depending on r, but also
on k (not shown). On GPU, sufficient input size is required to observe a speedup over the dense baseline, with the more
bandwidth-limited A10G reaching speedups sooner. While part of this effect can be linked to the fundamental additional
complexity of SparQ Attention, we anticipate that small input sizes could be accelerated considerably with additional kernel
fusion. With an appropriate limit to sequence length, SparQ Attention could even be fused into a single CUDA kernel.

21

https://github.com/graphcore-research/llm-inference-research/tree/2024-05-sparq

SparQ Attention: Bandwidth-Efficient LLM Inference

103 104 105 106

Batch size × Sequence length

1×

10×

S
p

ee
d

u
p

r

16

32

64

Device

M2000

A10G

A100-40GB

Figure F1: SparQ speedup over the dense baseline, across a range of batch size (1-64), sequence length (1024-65536) and k
(64-512), for different devices. We note that for both GPUs, the number of KV elements is a limiting factor for the achieved
speedup, and that this could be improved by writing a fully fused SparQ Attention kernel.

Storing K twice One limitation of a theoretical model of data transfer is that it does not account for the granularity
of memory access. Since the K matrix is indexed on different axes in Step 1 and Step 2 of SparQ Attention, a naive
implementation would fetch non-contiguous elements in one of the two steps. To mitigate this, we propose storingK twice,
once in S-major format and once in dh-major format. This increases KV cache memory usage by 50%, but uses only a small
amount of extra bandwidth to write k twice. This extra write is non-contiguous, but small, so should not form a bottleneck.

G. Methodology
We provide a comprehensive description of our experimental setup for reference in Table G1.

Baselines We use our own implementation of H2O (Zhang et al., 2023), which differs from the authors’ implementation
in that it uses a fixed cache size k, rather than a fixed proportion of the current sequence length. To validate that these
implementations are sufficiently similar, we ran their implementation through our harness on a small model and sample
size. On SQuAD 1-shot, with Pythia-1.4B, using k = 256, l = 64, our implementation was correct for 60 of 200 examples,
theirs for 57 (the dense baseline achieved 74). Perhaps more importantly, we found that of the 79 times that either output
differed from dense, 41 occurrences showed a 20-character prefix match between our implementation and theirs. The fact
that the two implementations often generate the same errors (despite minor implementation differences) reassures us that
our results should be a fair representation of H2O.

Compression ratio We define the compression ratio as the ratio of attention data transfers required for the sparse technique
and the dense data transfers. Similarly as we have derived the transfers for SparQ Attention in Section 4, we can define the
transfers required for each baseline technique:

MH2O = 2 k dh + 2 dh + 2S

MLM∞ = 2 k dh + 2 dh

MFlexGen = S dh + k dh + 2 dh

andMdense = 2S dh + 2 dh. For each technique, the compression ratio is thenMtechnique/Mdense.

22

SparQ Attention: Bandwidth-Efficient LLM Inference

Models

Llama 2
7B (dh = 128, Max S = 4096, g = 1)
13B (dh = 128, Max S = 4096, g = 1)

Llama 3 8B (dh = 128, Max S = 8192, g = 4)
Mistral 7B (dh = 128, Max S = 8192, g = 4)

Gemma 7B (dh = 256, Max S = 8192, g = 1)

Pythia
1.4B (dh = 128, Max S = 2048, g = 1)
2.8B (dh = 80, Max S = 2048, g = 1)
6.9B (dh = 128, Max S = 2048, g = 1)

Tasks

Question Answering
SQuAD 1-shot (4000 samples)
TriviaQA 0-shot (2992 samples)

Summarisation CNN/DailyMail 0-shot (500 samples)
Language Modelling WikiText-103 LM (500 samples)

Artificial Repetition (1000 samples)

Baselines

H2O
keep (k − l) tokens with highest score(n) =∑

i sin and the most recent l = k/4
k ∈ {192, 256, 384, 512, 768}

LM-Infinite
take the first 16 tokens, and most recent k−16
k ∈ {192, 256, 384, 512, 768}

FlexGen
take top-k tokens using exact attention scores
k ∈ {2, 8, 32, 128, 256}

SparQ Attention
Rank r {8, 16, 32, 64}

Number of values k 128

Local window l k/4

Table G1: Experimental setup.

23

SparQ Attention: Bandwidth-Efficient LLM Inference

G.1. Examples

We illustrate the task setup with a single example per task, showing the prompt formatting and a cherry-picked example. In
each case, we show outputs from a dense Llama 2 13B model, SparQ Attention (r = 8, k = 128), H2O and LM-Infinite
(k = 192). Where “...” appears, we have truncated the line of text for brevity.

G.1.1. QUESTION ANSWERING (SQUAD 1-SHOT)

PROMPT (5725e1c4271a42140099d2d9)
Title: University of Chicago. Background: Current ...
Title: Harvard University. Background: Harvard has...
Title: Oxygen. Background: In one experiment, Lavo...
Title: Oxygen. Background: Oxygen storage methods ...
Title: Fresno, California. Background: This vibran...
Title: Fresno, California. Background: Before Worl...
Title: Steam engine. Background: The working fluid...
Title: Sky (United Kingdom). Background: While BSk...
From what you've just read about Fresno, California, please answer the following questions.
Question: Where is Audra McDonald from?
Answer: Fresno
Question: In what year did Roger Rocka's Dinner Theater & Good Company Players open?
Answer:

OUTPUT
DENSE: 1978
SPARQ: 1978

H2O: 1979
LM-INFINITE: 1975 (Roger Rock

G.1.2. QUESTION ANSWERING (TRIVIAQA 0-SHOT)

PROMPT (dpql_5685)
Apritifs and digestifs (and) are drinks, typical...
Apritifs
An apritif is an alcoholic beverage usually serve...
"Apritif" may also refer to a snack that precedes...
"Apritif" is a French word derived from the Latin...
...
...
* Distilled liquors (ouzo, tequila, whisky or akva...
* Liquor cocktails (Black Russian, Rusty Nail, etc...
In certain areas, it is not uncommon for a digesti...
Bitter digestifs typically contain carminative her...
In many countries, people drink alcoholic beverage...
Question: Which aperitif is named for the Paris chemist who created it in 1846?
Answer:

OUTPUT
DENSE: Dubonnet
SPARQ: Dubonnet

H2O: Dubonnet
LM-INFINITE: Byrrh

Note that for Pythia, the prompt “Single-word answer:” was used in place of “Answer:”, as this helped prevent the model
from restating the question in the answer (often qualitatively correct, but not a regex match).

24

SparQ Attention: Bandwidth-Efficient LLM Inference

G.1.3. SUMMARISATION (CNN/DAILYMAIL)

PROMPT (a62bbf503be06e8b1f8baa4f3cd537310d5aa3bc)
Article: Prince William arrived in China tonight for one of the most high-profil...
Summary:

OUTPUT
DENSE: Prince William arrived in China tonight for one of the most high-profile ...
SPARQ: Prince William arrived in China tonight for one of the most high-profile ...

H2O: Prince William arrived in China tonight for a high-profile visit that will ...
LM-INFINITE: Prince William and Kate Middleton are in Japan for a three-day tour. The ro...

G.1.4. REPETITION (SHAKESPEARE)

PROMPT (210496)
you mistake me much;

I do lament the sickness of the king.
...
...
Peace, children, peace! the king doth love you well:
Incapable and shallow innocents,
You cannot guess who caused your father's death.

Boy:
Grandam, we can; for my good uncle Gloucester
Told me, the king, provoked by the queen,
Devised impeachments to imprison him :
And when my uncle told me so, he wept,
And hugg'd me in his arm, and kindly kiss'd my cheek;
...
...
the king doth love you well:

Incapable and shallow innocents,
You cannot guess who caused your father's death.

Boy:
Grandam, we

OUTPUT
DENSE: can; for my good uncle Gloucester
SPARQ: can; for my good uncle Gloucester

H2O: can;
LM-INFINITE: 'll not stand to prate, but to the purpose.

25

SparQ Attention: Bandwidth-Efficient LLM Inference

G.1.5. LANGUAGE MODELLING (WIKITEXT-103)

QUERY (2)

= Mellor hill fort =

Mellor hill fort is a prehistoric site in North West England , that dates from ...

= = Location = =

Mellor lies on the western edge of the Peak District in the Metropolitan Boroug...

= = Background = =

Until the 19th century little was known about hill forts ; none had been excava...
The study of hill forts was popular in the 19th century , with a revival in the...

= = History = =

There is evidence of human activity on the site pre @-@ dating the Iron Age , a...
A flint dagger was discovered on the site . This type of artefact is rare in Gr...
The hill fort was built in and used throughout the Iron Age , as demonstrated b...

Fragments of glass , possibly Roman in origin , and shards of pottery which date to the 1st and
2nd centuries AD , indicate the site was used in the Romano @-@ British period . However no Roman
structures have been discovered , and the nature of Roman activity at the site is a source of
speculation . The position of the hilltop indicate that it was easily defended ; however , local finds
indicate it was a high @-@ status settlement rather than a military outpost unless a similar feature
was located nearby . One reason that Roman structures have not been identified is that the Romano

BPC
DENSE: 0.669
SPARQ: 0.673

H2O: 0.685
LM-INFINITE: 0.692

26

