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Abstract

Cross-modal place recognition methods are flexible
GPS-alternatives under varying environment conditions
and sensor setups. However, this task is non-trivial since
extracting consistent and robust global descriptors from dif-
ferent modalities is challenging. To tackle this issue, we pro-
pose Voxel-Cross-Pixel (VXP), a novel camera-to-LiDAR
place recognition framework that enforces local similarities
in a self-supervised manner and effectively brings global
context from images and LiDAR scans into a shared feature
space. Specifically, VXP is trained in three stages: first,
we deploy a visual transformer to compactly represent in-
put images. Secondly, we establish local correspondences
between image-based and point cloud-based feature spaces
using our novel geometric alignment module. We then ag-
gregate local similarities into an expressive shared latent
space. Extensive experiments on the three benchmarks (Ox-
ford RobotCar, ViViD++ and KITTI) demonstrate that our
method surpasses the state-of-the-art cross-modal retrieval
by a large margin. Our evaluations show that the proposed
method is accurate, efficient and light-weight. Our project
page is available at: https://yunjinli.github.io/projects-vxp/.

1. Introduction

Since the emergence of autonomous systems, global place
recognition has become essential for mobile robotics. De-
spite the widespread availability of the Global Navigation
Satellite System (GNSS), signal outages remain inevitable,
particularly in parking spaces or urban areas where build-
ings or tunnels can block satellite signals [38]. These dis-
ruptions are critical challenges for achieving autonomous
driving on a city-wide scale and must be managed using on-
board devices like cameras [4], LiDARs [41], or radars [36].
The Autonomous Vehicle (AV) sensor suite provides var-
ious strategies for data recording and, thus, enables alter-
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native ways for global localization in GNSS-denied areas.
Although numerous solutions have been proposed within
the computer vision and robotics communities, most still
rely on the same type of data during both map acquisition
and operation. This dependence on a single data source
may limit the applicability of these solutions in cases of
sensor malfunctions or variations in sensor setups. Conse-
quently, there is a need for more flexible localization meth-
ods that can take advantage of different sensor modalities
under varying environmental conditions. This presents sig-
nificant potential for cross-modal place recognition tech-
niques. While multi-modal approaches require data to be
available from all sensors, cross-modal methods are in-
tended to be more flexible and seamlessly switch between
the map and query sources. For instance, camera-to-LiDAR
method would support querying a database of encoded Li-
DAR scans with RGB images (2D-3D localization). In
terms of practical value, it would save the on-board compu-
tational load of processing large point clouds and guarantee
global localization even in cases of LiDAR malfunctioning
using image data.
Although cross-modal place recognition offers significant
potential, it also presents challenges due to substantial
differences between observations from various sensors.
Specifically, in camera-to-LiDAR localization, images and
point clouds exhibit a clear gap in both raw data (2D im-
ages vs 3D scans) and extracted features. The lack of ex-
plicit correlation between these two data modalities com-
plicates the development of cross-modal global localization
solutions. Due to this, only a few approaches have been
proposed to tackle the task so far. Cattaneo et al. [9] first
introduce 2D and 3D feature extraction networks to create a
shared embedding space between images and point clouds.
LC2 [21] proposes to transform image and point clouds into
the same 2.5D space for reducing the domain gap. LIP-
Loc [33] advocates usage of multi-class N-pair batched loss
in the contrastive learning regime to boost cross-modal re-
trieval. While these methods focus on designing powerful
networks to encode data into robust global descriptors, they
ignore geometric relation between local structures captured
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by both modalities. Local consistency not only provides ad-
ditional constraints in order to effectively bridge the domain
gap during the cross-modal training, but also enhances the
representative power of the shared latent space.
In light of this, we introduce a novel method Voxel-Cross-
Pixel (VXP) for camera-LiDAR place recognition. Our
pipeline is three-fold: firstly, we leverage the power of
visual transformers to obtain an expressive feature map
and compact global embedding for an input image. Sec-
ondly, we choose sparse voxelized representation of a cor-
responding LiDAR scan and hierarchically aggregate fea-
tures by utilizing sparse 3D convolutions. By means of
projective geometry we establish local feature correspon-
dences between image- and voxel-based feature maps and
enforce their similarity during training. Lastly, we enforce
similarities between global descriptors of the cross-modal
matches. This comprehensive training paradigm enables the
network to effectively capture both fine-grained local details
and broader global context, facilitating successful cross-
modal learning. We evaluate our model on three real-world
datasets, achieving state-of-the-art cross-modal retrieval.
To summarize, the main contributions of the paper are:
• We propose a novel framework for the cross-modal place

recognition, Voxel-Cross-Pixel (VXP), which effectively
encodes images and LiDAR scans in a shared latent space.

• We demonstrate the effectiveness of local similarity con-
straints in learning robust global descriptors for the cross-
modal place recognition task.

• We establish state-of-the-art performance in cross-modal
retrieval on the Oxford RobotCar, ViViD++ datasets and
KITTI benchmark, while maintaining high uni-modal
global localization accuracy.

• We publicly release our code along with implemented
baselines at: https://github.com/yunjinli/vxp.

2. Related Work
In this section, we first review uni-modal place recogni-
tion techniques. We then introduce some fusion-based ap-
proaches. Finally, the existing cross-modal methods are
presented.
Visual and point cloud-based retrieval. Uni-modal place
recognition methods operate within one sensor type and
aim to find the closest query match in a database. Most
widely researched modalities are visual and LiDAR-based,
while other types such as radar recently have received at-
tention from the community [5]. Traditional image-based
approaches, such as bag-of-words [13], represent different
places with a visual vocabulary of quantized local descrip-
tors [28] and they are widely used in the SLAM commu-
nity for re-localization and loop closure tasks [7, 15]. In
recent years, Convolutional Neural Network (CNN)-based
methods have gained popularity for their expressiveness
and enhanced robustness. Arandjelović et al. introduced

NetVLAD [4], a CNN-based approach that encodes RGB
images into dense feature maps and learns to effectively ag-
gregate these features into a global descriptor. CosPlace [6]
explored to perform the retrieval as a classification task. Re-
cent works [1, 2] proposed to process the features extracted
by a CNN with a Conv-AP layer or a Feature-Mixer. Any-
Loc [17] utilizes the features generated from off-the-shelf
self-supervised model (DINOv2 [26]) to achieve SOTA per-
formance in many VPR benchmarks.
As for LiDAR-based place recognition, Uy et al. pro-
posed PointNetVLAD [34], in which they employed Point-
Net [29] to extract features from a point cloud map and
then aggregate them into a global descriptor using a sub-
sequent NetVLAD layer. LPD-Net was introduced by Liu
et al. [24], in which an adaptive local feature extraction
module is proposed to extract local features along with
the graph-based aggregation module to effectively com-
bine them. SOE-Net [39] first introduces orientation en-
coding into PointNet and a self-attention unit to generate
a robust 3D global descriptor. Furthermore, various meth-
ods [11, 45] explored the integration of different trans-
former networks to learn long-range contextual relation-
ships. In contrast, Minkloc3D [18] employed a voxel-based
strategy to generate a compact global descriptor. However,
the voxelization methods inevitably suffer from information
loss due to the quantization. Recent CASSPR [40] thus in-
troduced a hierarchical cross attention transformer, combin-
ing both the advantages of voxel-based strategies with the
point-based strategies. Text2Loc [42] achieved the 3D lo-
calization based on textual descriptions. In this paper, our
work brings the best practices of 2D image and 3D point
cloud communities together into a coherent framework that
can achieve state-of-the-art performance in cross-modal re-
trieval.
Fused-Modal Place Recognition. LiDAR-based methods
are more robust to variations in illumination and appearance
when compared to the vision-based approaches. However,
obtained scans are limited in capturing fine details of the
observed scenes, while image data offers rich and dense
scene capture. To this end, researchers have started ex-
ploring the possibility of fusing image and LiDAR data for
the place recognition task. Pan et al. proposed a method
called CORAL [27], in which point cloud data is converted
into an elevation image in order to perform further fusion.
MinkLoc++ [19], on the other hand, employed a late fusion
technique, processing point cloud and image data separately
and performing fusion at the final stage. While our ap-
proach relies on having both image and LiDAR data avail-
able during training, due to the chosen architecture with
two independent branches we are capable of dealing with
a single stream data during inference, which enables cross-
modal retrieval.
Cross-Modal Place Recognition. Cattaneo et al. [8]
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Figure 1. (Left) Voxel-Cross-Pixel (VXP) can effectively map data from different modalities (2D images and 3D LiDAR scans) into the
shared latent space, which exhibits local similarities and captures global context. (Right) Recall for up-to K = 25 retrieved places on
Oxford RobotCar benchmark. VXP consistently demonstrates superior cross-modal large-scale global retrieval preformance.

were the first to introduce this task, proposing a data-driven
method where two networks were trained to encode images
and point cloud maps separately using a teacher-student
training approach. Initially, the image network (teacher)
was trained using the triplet loss function [32], and then
the point cloud network (student) was trained to align point
embeddings within the shared latent space. In our work, we
build on this paradigm with a stronger image backbone and
enhance global descriptors by incorporating local feature
constraints. The LC2 approach, proposed by Lee et al. [21],
presented an alternative method for cross-modal retrieval,
where the domain gap was bridged by pre-processing sen-
sor data and transforming it into the same data represen-
tations. Specifically, they converted both types of data into
the 2.5D space, where RGB images were turned into dispar-
ity maps using depth network [37] and LiDAR point clouds
were transformed into range images. A self-supervised pre-
training scheme [22] was employed on the encoders, en-
abling the networks convergence. Similar method such as
Lip-Loc [33] also proposed to process LiDAR-scans into
range images and optimize their encoders by contrastive
learning. In comparison, our method directly handles input
raw data and does not require computationally demanding
pre-processing steps such as generation of range images or
depth maps, which would be more favorable for on-board
devices.
A few studies have been proposed to tackle cross-modal
registration such as 2D-3D re-localization [12, 23, 31, 35].
These methods primarily concentrate on accurately align-
ing a given camera view with a corresponding point cloud
map and estimating relative 6-DoF transformation between
them. In our work, we propose a solution for finding the
cross-modal pairs, which are often unavailable in a real-
world scenario, and advocate usefulness of local constraints
in achieving this goal.

3. Problem Statement
We begin by defining the task of cross-modal place recog-
nition. In particular, we are interested in camera-to-LiDAR
retrieval, however the definition can be naturally extended
to other modalities such as radars.
Given a reference map Mref, where each element (a 2D im-
age I or a 3D point cloud P) is tagged with a GPS coordi-
nate, we aim to retrieve the geographically closest match to
a query Q from a different sensor modality, such as LiDAR
scanner or camera respectively. With this, the cross-modal
place recognition can be defined formally for 3D-2D as

I∗ = argmin{d(g(Q), f(I))}

or for 2D-3D as

P ∗ = argmin{d(f(Q), g(P ))},

where d(·) is a distance metric (e.g. L1 norm), f is an im-
age network, g is a point cloud network and I, P ∈ Mref.
This step can be efficiently done using a KD-tree (e.g. from
FAISS library [16]).

4. Method
In this section, we introduce our cross-modal place recog-
nition approach in detail. We design two separate networks
that map image and point cloud into the shared latent space.
Practically, dealing with raw point cloud data, which typ-
ically consists of thousands of points, can pose a signifi-
cant computational challenge. To tackle this problem, we
downsample each input scan before feeding it to a net-
work. To this end, we leverage point cloud grouping tech-
niques, which has also been shown to effectively capture
local structures [30]. Consequently, we deploy voxeliza-
tion method [44] to transform the raw point cloud data P ∈



Figure 2. VXP pipeline comprises three steps: (1) image network training (Sec. 4.1), (2) cross-modal local feature training (Sec. 4.2), and
cross-modal global descriptor training (Sec. 4.3). Starting from step (2) image features are frozen ( ), while the point cloud features
are trained ( ). The two networks operate independently during inference, so queries and database samples can be processed separately.
The objective is to map different data into a shared latent space and minimize the distance (e.g. L2 norm) between global descriptors of
different modalities taken from the same space.

RN×3 into a voxel grid V = {vi ∈ RM×3, ci ∈ R3}1,2,...,T ,
where T is the number of non-empty voxels and M repre-
sents the maximal number of points within a voxel. If the
number of points in a voxel is lower than M , we do zero-
padding. From this point, the framework employs a voxel-
based representation of LiDAR scans.
Our Voxel-Cross-Pixel (VXP) pipeline comprises three
steps as demonstrated in Fig. 2. Firstly, we train an im-
age network to learn distinctive global descriptors based
on positive and negative image pairs (Sec. 4.1). The
learned feature space guides optimization in the second
stage, where we enforce local correspondences by deploy-
ing the Voxel-Pixel Projection module in the point cloud
branch (Sec. 4.2). Lastly, we optimize for the similarity be-
tween global descriptors to ensure consistency (Sec. 4.3).

4.1. Image Network

The image network architecture comprises two compo-
nents: (1) the DINO ViTs-8 encoder and (2) a global pool-
ing layer (GeM + FCN) as illustrated in Fig. 2. In the initial
phase, an RGB image, denoted as I ∈ RH×W×3, is pro-
cessed by the DINO ViTs-8 encoder fenc : RH×W×3 →
RH∗×W∗×D, where H∗ = H//8 and W ∗ = W//8. This
operation yields 2D features, which are also recognized as
local image feature descriptors. Subsequently, these gener-
ated image features are passed through the global pooling
layer fpool : RH∗×W∗×D → RD, resulting in the creation
of a global image descriptor.
We train the image network in a contrastive learning regime
using a triplet loss function as per Eq. (1), where an anchor
image denoted as Iai , a positive image Ipi closely related to
the anchor image’s location, and a negative image Ini posi-

tioned far away from the anchor image.

Limg =
∑

Ia,p,n
i ∈B

[d(f(Iai ), f(I
p
i ))− d(f(I

a
i ), f(I

n
i ))+m]+

(1)
Note that d(·) is the distance function, f(·) is the im-
age branch model, m is the margin, and [·]+ means
max{ 0, [·] }. In order to train more efficiently, we find
the hardest positive sample with maximal distance and the
hardest negative sample with minimal distance to the anchor
within the mini-batch B.

4.2. Cross-modal Local Feature Training

In this section we describe the second stage of our pipeline,
where we pre-train point cloud-based branch using lo-
cal feature correspondences. The overview can be seen
in Fig. 2.
Voxel Feature Encoding. The initial voxel feature v ∈
RM×3 aggregates information from M raw point coordi-
nates contained within the voxel boundaries. We use Voxel-
Net [44] to extract more detailed descriptor for each voxel
v ∈ RM×3 → RD∗

. Finally, we perform a series of
sparse 3D convolutions [43] to generate a sparse 3D feature
map of grid size 28× 28× 28, namely Vout, as formulated
in Eq. (2).

Vout = {vout
i ∈ RD, cout

i ∈ R3}1,2,...,T∗ (2)

The vout
i ∈ RD represents a local descriptor of a single

voxel in the output voxel grid, which is a D-dimensional
vector corresponding to the channel size of the 2D fea-
ture from fenc, while couti denotes the coordinate of this
voxel within the voxel grid. Here, couti is defined with re-
spect to the voxel grid coordinate frame {V}. Note that
T ∗ represents the number of non-empty voxel local descrip-
tors. Sparse convolutions allow us to aggregate spatial in-



Figure 3. Illustration of our proposed local feature optimization between projected voxel- and image-based feature maps. φ represents
“empty” as the 3D feature maps are sparse. Note that the voxel local descriptor is the vout

i introduced in Eq. (2). After the projection,
multiple vout

i could be projected as per Eq. (4).

formation from neighboring voxels in a hierarchical fash-
ion, which allows to capture long-distance relations.
Voxel-Pixel Projection. In order to bridge the domain
gap between point cloud and image, we introduce simple
yet effective Voxel-Pixel Projection module. This module
projects voxels onto the image plane using the pinhole cam-
era model. However, it’s important to note that the voxel co-
ordinates are defined within the voxel grid coordinate sys-
tem denoted as {V}. As per Eq. (3), we first transform the
voxels into the point cloud (LiDAR) coordinate frame and
apply projection matrix M to transform points onto the im-
age plane. This way, we can obtain the voxel-based fea-
ture map and establish local descriptor constraints with the
image-based features. Projection matrix is assumed to be
provided and comprises intrinsic camera parameters and ex-
trinsic LiDAR-camera calibration transformation.

λ

uivi
1

 = M ·

vx 0 0
0 vy 0
0 0 vz

 couti +

vx/2 + xmin

vy/2 + ymin

vz/2 + zmin


(3)

Note that (vx, vy, vz) is the dimension of the output voxel
grid and the lower bound of the point cloud range is
represented as (xmin, ymin, zmin).

Local Feature Optimization. During the local descriptor
optimization phase shown in Fig. 3, we utilize the projected
voxel coordinates (ui, vi) as indices to retrieve the cor-
responding local descriptors from the image feature map.
Once retrieved, we can apply the local descriptor loss as

Llocal =
∑

(ui,vi)∈MV

||di·MV (ui, vi)−MI(ui, vi)||1; smooth.

(4)
The projected voxel feature map is denoted asMV , the im-
age feature map is MI . We also take care of collisions,
when multiple voxels are projected to the same pixel, by
weighting descriptors with their voxels’ inverse depths di.
This way we give preference to the voxels that are closer to
the camera, however propagate gradients to all voxels. This

strategy allowed more stable training over the z-buffering.

4.3. Cross-Modal Global Descriptor Training

In the last stage, we fine-tune the Voxel-Pixel Encoder
and train pooling layers together with the subsequent FCN
to bring global embeddings closer to their image-based
matches with

Lglobal =
∑
i

||f(Ii)− g(Pi)||1; smooth, (5)

where Ii and Pi are an image and a point cloud correspond-
ing to the same location, f(.) and g(.) refer to the corre-
sponding networks. This allows us to ensure global consis-
tency of aggregated descriptors in addition to local similar-
ities enforced in the previous stage.

5. Experiments and Results

5.1. Implementation Details

Image Network Training: We resize the image to 224 ×
224. During training of the image network, positive pairs
are chosen from images that are within 10 meters, while the
negative pairs are defined from samples that are more than
25 meters away as [21]. We set the margin of the triplet loss
function to 0.3. To handle zero-triplets, i.e. anchor-positive-
negative tuples with zero triplet loss, we employ a strategy
of gradually increasing the batch size if the proportion of
zero-triplets exceeds 30% of the original batch size. The
training with branch expansion rate is adopted from [18]
and configured to 1.4, while the maximum batch size is set
to 256. We use pre-trained model (dino-vits8) and finetune
all its parameters together with our GeM + FCN block using
Eq. (1). A custom batch sampler with at least one positive
pair within each batch {B} is implemented. For each sam-
ple in {B}, its hard positive / negative sample is the farthest
/ closest sample in {B} based on the L2 distance between
the global descriptors.
Point Cloud Network Training. We take the fine-tuned



image network and freeze all its parameter during the train-
ing of the point cloud network. We adopt the following
voxelization parameters: point cloud boundaries range is
x : [0, 44], y : [−22, 22], z : [−4, 18], voxel dimensions are
set to [vx, vy, vz] = [0.4, 0.4, 0.2]. This would allow us to
have a final voxel grid with size (110, 110, 110). Both the
cost functions in Llocal and Lglobal are chosen as smooth L1
loss || · ||1; smooth to ensure robustness to outliers. Adam op-
timizer and LambdaLR learning rate scheduler are utilized
in our training pipeline.

5.2. Datasets

Oxford RobotCar Dataset. We utilize the Oxford Robot-
Car benchmark [25] for evaluation, where the same trajec-
tory was traveled over a year in different times of the day
and seasonal conditions. We generate data samples follow-
ing the same protocol as conducted by Cattaneo et al. [9],
where image is recorded every five meters and the corre-
sponding point cloud map is constructed by concatenating
the subsequent 2D LiDAR scans. The four test regions are
excluded from the training dataset as per [34].
ViViD++ Dataset. Additionally, we assess the performance
of our model on the ViViD++ dataset [20], which consists of
driving and handheld sequences and offers 3D LiDAR, vi-
sual and GPS data. In the scope of our work, we are mainly
interested in the urban data, which contains sensor measure-
ments recorded during a day, evening and night. We follow
the training procedures proposed by Lee et al. [21] where
only the day1 sequences are used for training, while per-
forming evaluation with day2 and night sequences.
KITTI Odometry Dataset. We further test the generaliza-
tion capability of our VXP on the KITTI Odometry bench-
mark [14], which contains sequences with LiDAR scans,
images, and ground-truth poses.

5.3. Results

Across various datasets we evaluate different combinations
of modalities for query and database: 2D-3D (image query
and point cloud database), 3D-2D (point cloud query and
image database) and their uni-modal variations, i.e. 2D-2D
(image-only) and 3D-3D (point cloud-only).
Oxford RobotCar. We adhere to the evaluation metric em-
ployed by Cattaneo [9], in which we select each pair of dis-
tinct runs from 23 sequences as query and database. The
query contains samples only from the four excluded regions
as per [34], while database consists of samples from the en-
tire trajectory. Finally, the average of the recall is computed
for all the pairs. In Tab. 1, we compare our model with
the existing cross-modal retrieval approaches, such as the
method by Cattaneo et al. [9], LC2 [21] and LIP-Loc [33].
As the code from Cattaneo et al. [9] is not publicly released,
we have implemented the approach with the authors’ help
to the best of our abilities. We report performance on dif-

Recall@1% 2D-3D 3D-2D 2D-2D 3D-3D

Cattaneo’s [9] 77.3 70.4 96.6 98.4
LC2 [21] 81.2 73.8 84.1 83.0
LIP-Loc [33] 77.8 73.6 90.2 92.3

VXP (Ours) 84.4 76.9 98.8 98.8

Table 1. Retrieval performance compared with existing cross-
modal methods on Oxford dataset. Our model consistently out-
performs other baselines on both cross- and uni-modal settings.

2D-2D 3D-3D
1 1% 1 1%

AnyLoc [17] 93.5 98.9 – –
MixVPR [2] 92.8 97.7 – –
MinkLoc3D-S [46] – – 95.8 99.0
CASSPR [40] – – 94.7 98.4

VXP (Ours) 92.0 98.8 94.7 98.8

Table 2. Retrieval performance compared with existing uni-modal
methods on Oxford dataset. Provided values correspond to Re-
call@1 and 1%. Our model has comparable performance with the
uni-modal state-of-the-art approaches.

ferent modality configurations, namely database and query
combinations of 2D images and 3D point clouds.
Our method outperforms other baselines on 2D-3D place
recognition by a significant margin due to the proposed lo-
cal constraints. We also demonstrate the best performance
in the uni-modal retrieval. Fig. 1 shows average recall up to
K = 25 nearest neighbors for cross-modal place recogni-
tion on the Oxford dataset. Our method is the most accurate
and precise with respect to all the baselines from Cattaneo
et al. [9] and LIP-Loc [33] and across the whole K-range,
which validates consistency of our method.
We also compare the performance of our method with
the state-of-the-art uni-modal approaches for visual place
recognition methods AnyLoc [17] and MixVPR [2], and
LiDAR-based retrieval, such as MinkLoc3D-S [46] and
CASSPR [40]. Tab. 2 shows our method performs on-par
with the uni-modal baselines, while additionally offering
cross-modal capabilities that are practical for multi-sensor
on-board suites.
ViViD++. We further evaluate our model on the ViViD++
dataset and compare the results of different approaches on
day1−day2 sequences in Tab. 3. Note that day1−day2
represents query from day1 sequences and database using
day2 sequences. Overall, we outperform the other base-
lines [9, 21, 33] on the cross-modal place recognition and
perform on par with [9] on uni-modal retrieval task.
We also evaluate our method on the night-day retrieval,
where database map is recorded in the day and queries are
obtained at night. We report average performance computed



2D-3D 3D-2D 2D-2D 3D-3D
1 1% 1 1% 1 1% 1 1%

LC2 [21] 60.9 96.0 51.8 94.6 69.2 96.9 58.1 96.1
Cattaneo’s [9] 87.6 99.6 78.6 98.6 93.4 99.8 91.0 99.9
LIP-Loc [33] 73.7 98.4 54.9 93.0 61.1 94.0 78.8 97.4

VXP (Ours) 96.8 99.6 94.7 99.8 96.7 99.9 97.0 99.7

Table 3. Retrieval performance (average recall) for top 1 and 1%
retrieved places on the ViViD++ dataset (day1−day2 sequences).
Our model outperforms the other baselines on both uni- and cross-
modal experiments.

2D-2D 3D-2D
1 1% 1 1%

LC2 [21] 0.8 5.5 49.4 93.4
Cattaneo’s [9] 2.2 10.1 56.9 94.9
LIP-Loc [33] 2.7 12.0 45.5 90.0

VXP (Ours) 10.2 21.7 82.0 97.5

Table 4. Retrieval performance (average recall) for top 1 and 1%
retrieved places on ViViD++ dataset (night−day2 sequences). We
can observe the advantage of deploying LiDAR scans as a query,
which significantly boosts performance for all baselines. Due to
the proposed architectural design, our VXP performs the best in
both settings.

on the city night−city day2 and campus night−campus
day2 sequences from the dataset. Despite significant ap-
pearance differences between night queries and map sam-
ples recorded during the day, our VXP is able to tackle
this challenge by incorporating information from the Li-
DAR scans that are not affected by insufficient lighting con-
ditions. As shown in Tab. 4, image retrieval (2D-2D) strug-
gles in the challenging scenarios of the night-day retrieval,
while cross-modal recognition is capable to offer more ac-
curate place recognition performance across all baselines.
Moreover, our approach outperforms other methods such as
LC2, [9], and [33] on the 3D-2D place recognition task
and shows highly accurate results based on the top selected
retrieval candidate. Specifically, on Recall@1 we achieve a
boost in performance by a large margin (∼ 25% improve-
ment), which demonstrates the effectiveness of our pipeline
for this challenging scenario.
KITTI Odometry Benchmark. The results are shown in
Tab. 5. Different to the evaluation procedure followed by
[10, 40] for LiDAR-based place recognition, we propose
our own evaluation protocol on the dataset. Specifically,
we train the model on sequences 03, 04, 05, 06, 07, 08,
09, 10. For testing we select 4 regions from sequences 00
and 02 and include the remaining parts of the trajectory into
the training data. Notably, none of the sequences traverses
the same place, so we test our model on completely un-
seen regions to demonstrate generalisation capability of our
method. Further training details are provided in the supple-

2D-3D 3D-2D 2D-2D 3D-3D
1 1% 1 1% 1 1% 1 1%

Cattaneo’s [9] 15.9 23.4 12.8 28.7 95.7 97.8 58.6 71.3
LIP-Loc [33] 20.0 40.9 21.9 29.3 29.3 44.0 27.2 37.8

VXP (Ours) 32.1 38.6 36.1 38.3 97.8 100.0 86.3 89.4

Table 5. Retrieval performance (average recall) for top 1 and 1%
retrieved places on KITTI Odometry dataset (00, 02 sequences).
Our model shows competitive performance among all baselines.

2D-3D 3D-2D
1 1% 1 1%

Global-only 41.3 81.5 30.2 74.7

Local + Global (Ours) 44.6 84.4 30.8 76.9

Table 6. Ablation study of the local feature optimization (Eq. (4))
for cross-modal retrieval on the Oxford RobotCar benchmark. In-
troducing local constraints significantly improves retrieval accu-
racy over global-only baseline (Eq. (5)), which validates our ar-
chitectural design.

mentary.
As shown in Tab. 5 our method demonstrates competitive
performance on all configurations. Since the full code for
the LC2 was not publicly available at the submission time,
we could not provide comparison on this benchmark. While
LIP-Loc [33] achieves the best performance on Recall@1%
2D-3D setting, it is more sensitive to the sampling range of
the database samples and queries. We provide details of the
experiment in the supplementary.

6. Ablation Studies
Local Descriptor Loss Analysis. We evaluate the im-
pact of the Local Descriptor Optimization (Sec. 4.2) on the
cross-modal place recognition. As shown in Tab. 6, the pro-
posed combination of local and global optimizations allows
the model to effectively bridge the domain gap between
image and point cloud and achieve higher cross-modal re-
trieval performance.
Fine-tuning Image Backbone. Foundation models such
as DINO [26] have demonstrated capability of addressing
a wide range of tasks [3]. However, we have noticed that
their off-the-shelf performance on the visual (2D-2D) place
recognition task is quite poor and fine-tuning is necessary
to reach a competitive accuracy. Specifically, we scored
only 59.5% on the 2D-2D Recall@1 with the pre-trained
DINO ViTs-8 model, while with additional fine-tuning we
achieved 2D-2D accuracy of 92.0% (Tab. 2). We can also
observe the effect of fine-tuning the model on the attention
maps. An example from the Oxford benchmark is shown
in Fig. 4. Specifically, buildings, road markings and traffic
lights receive higher attention scores after fine-tuning, while
the car hood is ignored.



Figure 4. DINO fine-tuning effects on attention maps. From left
to right: an input image, an attention map generated by pretrained
DINO’s ViTs-8 without fine-tuning and a map produced after fine-
tuning. Due to the latter, important scene structures such as build-
ings and traffic poles receive higher attention.

Recall@1% 2D-3D 3D-2D 2D-2D 3D-3D

Ortho-VXP 78.1 71.9 98.8 98.9
VXP (Ours) 84.4 76.9 98.8 98.8

Table 7. Ablation study of projection module on the Oxford
RobotCar dataset. Perspective projection with VXP benefits local-
ization when compared with its orthographic analog, Ortho-VXP.

Voxel-Pixel Projection Module Analysis. We compare our
VXP model against a simple baseline, Ortho-VXP, which
transforms Vout to a dense form and performs an ortho-
graphic projection of the features to obtain an analogue in
the image plane. As shown in Tab. 7, we achieve a boost on
the cross-modal localization due to the perspective nature of
the VXP module, which associates voxels to corresponding
pixels considering the former depth and provides stronger
place recognition cues than maintaining original distances
and size as per orthographic projection.
Qualitative Evaluation for VXP. As we have shown in
Sec. 5, VXP achieves state-of-the-art cross-modal retrieval
performance and maintains high uni-modal global localiza-
tion accuracy. At the same time, we are capable of mit-
igating the domain gap between different modalities and
learning expressive shared latent space. We demonstrate
the correlation between the attention map of an RGB im-
age and the feature map of the projected voxels in Fig. 5.
Notably, the projected voxels exhibit a similar pattern with
the image-based attention map. Since our focus is on place
recognition, structures such as buildings carry greater sig-
nificance, resulting in higher attention scores in those re-
gions for feature maps from both modalities. With this,
global descriptors are learned based on consistent infor-
mation across modalities and we are capable of effectively
bridging the domain gap.
Training and Inference Efficiency. We evaluate model in-
ference time using a single RTX3080 and pre-processing
time with Intel i7-12700. Depth image generation for LC2

[21] baseline is done on GPU. Our VXP takes 7 ms to ob-
tain a global descriptor for an image and 18 ms for a point
cloud respectively, while LC2 [21] encodes input image

Figure 5. From left to right: an input image, its attention map and
projected feature map generated from the respective point cloud.

in 17 ms and LiDAR scan in 53 ms due to expensive pre-
processing step of depth image generation and point cloud-
to-range image conversion. In terms of model parameters
and memory footprint, 2D and 3D networks of VXP have
21.7M (87.2MB) and 5.9M (23.6MB) parameters respec-
tively. With this, our model is fast and lightweight to run as
part of a real-time system. Notably, the reference map can
be encoded offline.

7. Limitations and Future Work
Our VXP pipeline comprises three steps as described
in Sec. 4. Although this multi-stage design showcases the
best performance based on our ablation studies (Sec. 6),
end-to-end training requires less engineering effort and
opens a possibility for generalization when training on
larger or multi-source datasets, which is desirable for the
autonomous driving applications. In addition, our model
is specific for every dataset. While it achieves good per-
formance on the unseen views from the training in-domain
dataset, it does not work on different, out-domain se-
quences. As VXP needs a dataset-specific calibration ma-
trix to establish local descriptor consistency, it remains a
limitation towards multi-dataset generalization. Learning
calibration on diverse input images and point clouds is a
straightforward extension of the VXP pipeline, which is part
of the future work.

8. Conclusion
We have presented a new framework, Voxel-Cross-Pixel
(VXP), for camera-LiDAR place recognition. VXP makes
use of a novel 3D-to-2D projection module specifically de-
signed to establish local feature correspondences and facil-
itate bridging the domain gap between LiDAR scans and
images. To this end, we proposed a cross-modal pipeline,
which captures both fine-grained local details and broader
global context. Notably, our approach directly works on
raw data without any pre-processing steps. Experimental
evaluations demonstrate that VXP provides a new state-of-
the-art performance on cross-modal image-LiDAR retrieval
and offers competitive performance against uni-modal base-
lines. It shows real-time capability and low memory foot-
print, which makes it an excellent candidate for deployment
on the embedded systems.
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