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Abstract

The prompt tuning paradigm, with its great advantages of low parameter count and stable
training, has recently inspired numerous applications of CLIP-like vision-language models
in federated learning. However, in this work, we posit that under significant domain gaps
across federated participants, prompt-based CLIP may easily collapse to non-optimal so-
lutions due to the neglect of domain-aware knowledge. We present a novel prompt tuning
method, termed ADAPT, to address this issue by learning both intra- and inter-domain
prompts. Specifically, we assign each federated participant a domain-specific prompt and
use the image’s visual features as a condition to guide the generation of language features,
with the underlying idea that the prompted CLIP should detect the input image’s domain
correspondence before making the prediction of its category. Extensive experiments demon-
strate ADAPT’s significant efficiency and effectiveness in federated learning. For example,
by learning and sharing only 2.1M parameters, ADAPT attains a 69.8% average accuracy
over the six domains of DomainNet, which improves the original CLIP accuracy by 16.2%.

1 Introduction

Contrastive Language Image Pretraining (CLIP) (Radford et al., 2021) has recently been proven to be a
powerful framework for multi-modality representation learning. By connecting the latent spaces of visual and
textual inputs, CLIP offers a convenient approach of open-vocabulary inference for various downstream tasks.
Building upon CLIP, the prompt learning technique, which freezes the encoders and introduces learnable
tokens at the input side, can help CLIP adapt to downstream domains with minimal cost. Compared to
the traditional finetuning paradigm, prompt learning approaches can produce competitive results with much
fewer learnable parameters (e.g., 0.1% of encoder parameters). This significant advantage in parameter
efficiency has motivated numerous recent works to explore the potential applications of prompt-based CLIP
in Federated Learning, where communication efficiency and training stability play important roles (Lu et al.,
2023; Guo et al., 2023; Yang et al., 2023; Su et al., 2024; Li et al., 2024).

However, in this work, we identify that prompt learning approaches are sensitive in processing domain
information, with prompts learned from a specific domain often struggling to transfer effectively to new
data with significantly different features. This issue has greatly limited the applications of prompt tuning
in federated learning scenarios. As in federated learning, one of the primary objectives is to learn from
heterogeneous data, while this heterogeneity may manifest as domain gaps when feature distributions become
significantly diverse. To thoroughly examine the potential of prompt tuning in federated learning, we consider
a challenging yet realistic scenario in which we assume there are multiple participants intending to train a
shared model with their local data originating from different domains. Following the previous practice (Peng
et al., 2020), we formulate this scenario using domain-aware datasets like DomainNet (Peng et al., 2019),
where there are labeled images sourced from six distinct domains with different styles like real-world, paining,
and sketch. Due to large diversity in input, conventional domain-agnostic federated learning approaches often
struggle to generalize well in this problem.

Under this challenging scenario, we find most parameter-efficient federated learning methods—which previ-
ously worked well in simpler heterogeneous settings with label-wise non-i.i.d.—now fail to produce favorable
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results. This observation suggests that, federated learning tasks involving significant domain gaps cannot be
addressed solely by collaborative training methods; instead, they require the careful incorporation of domain
awareness into the model. To this end, we propose a new federated learning framework termed ADAPT
(FederAted Domain-Aware Prompt Tuning), aiming to enhance prompt tuning’s ability to handle highly
heterogeneous data in federated learning by incorporating domain-wise knowledge. Specifically, ADAPT is
built upon a pretrained CLIP model and consists of three key components: 1) visual and 2) textual prompts
set up for each domain, where the text prompt consists of several learnable tokens that represent textual
descriptions indicative of each domain’s style information, and each visual prompt denotes a single learnable
token that is appended to patch-embedded image tokens; and 3) a vision-language coupling module done by
AdaLN (Perez et al., 2018). We highlight that ADAPT effectively incorporates domain knowledge, achiev-
ing significantly superior predictive performance over traditional prompt tuning baselines in domain-aware
federated learning tasks. Our contributions can be summarized as follows:

e Domain-aware prompt learning. We assign domain-specific textual prompts to each federated
participant, enabling the model to make predictions by input images’ corresponding domain infor-
mation, which effectively addresses the widespread issue of domain gaps in federated learning. Our
experimental results demonstrate a significant performance improvement with this design: based on
a pretrained CLIP model equipped with a ViT-Base image encoder, ADAPT achieves an average
accuracy of 69.8% on DomainNet, which significantly outperforms the zero-shot CLIP’s 53.6%, the
basic prompt learning’s 63.2%, and PedProx’s (Li et al., 2020b) 55.3% with a same image encoder.

o Efficient communication. ADAPT requires training and sharing only a small fraction of pa-
rameters, significantly reducing the communication overhead in federated learning. For instance,
in our domain-aware federated learning experiments, ADAPT, with just 0.08M trainable pa-
rameters, achieved state-of-the-art performance on the DomainNet (Peng et al., 2019), Office-
Home (Venkateswara et al., 2017), and PACS (Li et al., 2017) datasets.

e Superior privacy preservation. Due to the minimal amount of trainable parameters in ADAPT,
traditional federated learning attack algorithms (Zhu et al., 2019; Geiping et al., 2020) struggle to
reconstruct the local data of participants from model gradients. Additionally, the learnable prompts
themselves do not leak customer privacy—we have attempted to decode our prompts but found it
difficult to extract any interpretable information from them.

2 Related Work

Federated learning was first introduced in the Federated Averaging (FedAvg) paper (McMahan et al.,
2017), addressing machine learning problems with massively distributed private data. To enhance the learn-
ing potential of FedAvg, FedProx (Li et al., 2020b) adds a £s regularization term into the FedAvg’s objective.
Following FedAvg’s success, many follow-up works improve federated learning in terms of privacy-preserving
potentials (Wei et al., 2020; Truex et al., 2019), robustness to heterogeneous data (Karimireddy et al., 2020;
Li et al., 2019), communication efficiency (Konecény et al., 2016; Sattler et al., 2019), and compatibility
to model architectures (Li et al., 2020a; Qu et al., 2022). Unlike general federated learning methods that
simulate non-i.i.d. data by partitioning datasets in the label space, many recent works consider federated
learning in a more realistic context of domain adaptation (Yao et al., 2022a; Shenaj et al., 2023; Peng et al.,
2020). Recently, based on advances in multi-modal contrastive learning (Radford et al., 2021), various works
develop CLIP-based federated learning methods (Lu et al., 2023; Li et al., 2024; Su et al., 2024; Qiu et al.,
2024). For example, FedCLIP (Lu et al., 2023) leverages a pre-trained CLIP model with an additional
adaptor layer for federated training. FedOPT (i et al., 2024) trains both global and local prompts, while
FedAPT (Su et al., 2024) creates global prompts from local ones. FedTPG (Qiu et al., 2024) develops a
global prompt generator that transforms class names into prompt vectors. Similarly, PromptFL (Guo et al.,
2023) employs simple prompt learning techniques to enhance federated optimization.

Vision-language models. Following the success of contrastive pre-training in visual modality (He et al.,
2020; Chen et al., 2020; Grill et al., 2020; Caron et al., 2021; Chen & He, 2021; Chen et al., 2021), multi-
modal contrastive pre-training has become a common paradigm in recent years as well. A representative work
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is CLIP (Radford et al., 2021), which jointly pre-trains a visual and a textual encoder using an InfoNCE
objective (Gutmann & Hyvéirinen, 2010) with around 400 million curated image-text pairs. ALIGN (Jia
et al., 2021) improves CLIP by scaling up the training dataset to 1.8 billion noisy image-text pairs, and
BASIC (Pham et al., 2021) further increases the scale of both data and model. As a result, such CLIP-like
models allow zero-shot inference when it comes to transfer learning on downstream tasks.

Prompt tuning. While fine-tuning a pre-trained model for downstream machine learning tasks has tra-
ditionally dominated the field of transfer learning, recent progress in prompt learning offers a compelling
alternative. Specifically, the prompt tuning techniques fine-tune learnable prompt tokens attached to CLIP’s
inputs instead of training the entire model (Zhou et al., 2021; 2022; Wang et al., 2023; Yao et al., 2023).
There also exist prompt tuning protocols for visual modality (Jia et al., 2022) and both visual and textual
modalities (Yao et al., 2021; Zang et al., 2022). Similarly, there are adapter-based methods designed for
CLIP-like models, which also freeze the encoders and only fine-tune several newly attached layers on top of
them (Gao et al., 2021; Zhang et al., 2021).

3 Preliminaries

3.1 Contrastive Language-Image Pre-training

CLIP is a weakly supervised learning paradigm that combines visual and language encoders to solve image
recognition problems. Formally, CLIP has an image encoder Fy : R3***" — R4 where w and h denotes
the input image’s spatial resolution and d denotes the dimension of the latent space, and a text encoder
Fr : R>de 5 R? where [ is the length of input sentence and d, is the dimension of word embedding. CLIP
is trained by image-text pairs, in which the text briefly describes the information in the image. By encoding
both image and text into the same latent space, CLIP can learn an alignment between visual and textual
input with a contrastive loss (Gutmann & Hyvérinen, 2010). During inference, CLIP supports zero-shot
classification by matching the visual representation of input image and the textual representation of target
class names.

3.2 Prompt Tuning for Vision and Language

Despite CLIP’s impressive zero-shot inference capabilities, there remains a noticeable accuracy gap in com-
parison to in-domain fine-tuning. However, fine-tuning the CLIP model may easily break the well-established
alignment between vision and language, and CLIP will therefore lose the ability of open-vocabulary infer-
ence. Instead, prompt tuning attaches learnable tokens to the input, leaving the feature encoders fixed,
which allows the model to retain its zero-shot and open-set inference abilities while significantly improving
its in-domain accuracy.

Textual Prompt Tuning (TPT). As previously mentioned, CLIP’s text query consists of a hand-crafted
prompt (also referred to as prefix) such as “A photo of a” and a class name such as “dog”. TPT replaces the
prefix by learnable vectors (Zhou et al., 2021). During training, both CLIP’s vision and language encoders
are frozen and only the prompt vectors are optimized.

Visual Prompt Tuning (VPT). The prompt tuning protocol also works for visual input if the image
encoder is a transformer-like model such as the Vision Transformer (Dosovitskiy et al.; 2021). Specifically,
this method attaches trainable vectors to the patch-wise embedded image, and uses an additional head to
project the output. In VPT, only the prompt tokens and the head are optimized.

4 Methodology

Problem Formulation. Suppose there are n clients that desire to deal with the same machine learning
problem, e.g., image classification with the same target categories. The n clients possess their own training
data that originate from n distinct domains. In other words, each client stands for a specific domain.
We simulate this scenario using domain adaptation datasets like DomainNet (Peng et al., 2019), which
encompass images from six different domains including clipart, information graph, painting, quickdraw, real-
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Figure 1: Local training framework. We load a pre-trained CLIP model and freeze both its image and text
encoders. For each client, we feed the text encoder with n text prompts followed by class names, where one
is optimized by the gradients and the rest n — 1 are loaded from other clients with momentum update. We
feed the image encoder with n learnable prompt tokens followed by patch-wise embedded images, where the
prompt tokens are optimized by gradients.

world images, and sketch. As the image features exhibit significant variations across different domains, it
is indeed a challenging task for federated optimization. However, it is a realistic scenario because many
times, the data heterogeneity between clients arises from differences in feature distributions rather than
label distributions. Notably, our setting is compatible with the task that clients have non-i.i.d. labels. In
our ablation study, we also further divide each domain into five splits with non-i.i.d. categories.

4.1 Local training

Textual prompts. With CLIP, a very simple way to deal with domain shift is to use domain-aware prompt
contexts for text queries. For example, in DomianNet, when we use prefix “a painting of a” for the painting
domain, and use “a sketch of a” for the sketch domain, the predictions can be more accurate and robust. This
idea is also referred to as domain-specific prompts (Ge et al., 2022), while employing learnable text prompts
can further improve the predictive performance. Inspired by this observation, we propose domain-specific
prompts for CLIP’s text encoder. Formally, we define a text prompt by a sequence of learnable tokens:

Pr = [t]l[t]g Ce [t]m S Rdee, (1)

where m is the length of prompt and each token [t]; € R% has the same dimension as CLIP’s word embedding.

Figure 1 illustrates ADAPT’s local training framework and process. We initialize ADAPT by loading the
same CLIP model for each client and freezing the parameters of both the image encoder Fy and the text
encoder Fr. For our task, we have n text prompts P%, P%, ..., P} corresponding to the n domains. During
local training, the n text prompts are shared among the clients, yet the i-th prompt P4 can only be trained
by the i-th client (we will detail this mechanism later). We separately feed the encoder Fr with all the n
text prompts followed by a class name, leading to n representation vectors fi, f2,..., f2, where

fi = Fr(P%, [class name]). (2)

Note that we suppose each fi stands for the representation of the class name in the i-th domain.
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Visual prompts. We define visual prompts by n learnable tokens [v]1, [v]2,. .., [v], which also correspond
to the n domains. During local training, we feed the visual encoder Fy (ViT architecture) with a class
token [cls] (directly loaded from CLIP), n visual prompts, and the patch-wise embedded image, leading to
an image representation vector

fv = Fy([cls], [v]1, [v]a, - . ., [V]a, [image]). (3)

We obtain the final textual representation through a cross attention layer. To minimize the number of
parameters as much as possible, here we replace the query, key, and value projection matrices in the cross
attention block with identity matrices, which we empirically find does not affect performance too much.
Formally, denoting g.j4 as the query vector of the class token, and k; as the key vector of the i-th prompt
token in Fy’s last self-attention block, we have w = [wq, wa, ..., w,] with

exp(< qcls,k:,; > /Td)
Z] exp(< quS’ k] > /Td)7

(4)

w; =

where 74 is a temperature coefficient. We regard each component w; as the visual feature’s correlation to
the i-th domain, and compute the final text output by

fr= Zwif%- (5)
i=1

During training, we optimize the model (actually learnable parameters only appear in prompts) using object
classification loss, which is a cross-entropy function applied between f, and fr, and a domain correspondence
loss which is another cross entropy function applied between each pair of visual and textual outputs. Here
we explain why we optimize these parameters. We desire the i-th text prompt P} to represent the features
of the i-th domain in the latent space of textual embeddings. However, the i-th client only possesses images
from the i-th domain, so we cannot train P (j # 4) yet instead load them from other clients. We introduce
visual prompts to detect the correlations between an input image and the n domains, so it is fine to optimize
all of them. A detailed comparison of different training strategies can be found in our ablation study (see
Table 5a and 5b for details).

Guiding textual output by visual clues. To facilitate domain-specific representations, we additionally
introduce conditioning modules to guide textual outputs. The underlying idea of this strategy is that through
the image encoder, we can effectively extract the domain information from the visual input; this domain
information can help the text encoder to produce domain-specific outputs so that to accurately match the
visual representation. In this work, we follow the prior practice of diffusion models (Peebles & Xie, 2023)
to perform conditioning by AdaLN (Perez et al., 2018) which is efficient in parameter count. To process
the textual features after the CLIP’s text encoder, we employ a light-weight adapter which comprises a self-
attention layer. We concatenate the text features with the output of visual prompts to further encourage
domain-aware representations.

4.2 Parameters Aggregation

As mentioned above, for the i-th client, we optimize P} by using gradients and load P% (j #14) from other
clients, so the aggregation of text prompts does not involve parameter merging processes (e.g. averaging).

Suppose there is a centralized parameter server — although ADAPT also works for decentralized communi-
cation — and the clients upload their corresponding text prompt to it in each communication round. The
server concatenates the n uploaded text prompts and sends to every client. For visual parameters, as all
visual prompts are optimized by every client, we perform federated averaging in the server and then send
the merged parameters to each client. Note that we do not need to share the CLIP encoders’ parameters as
each client is initialized with the same CLIP model and its parameters are frozen during training.

This parameter aggregation paradigm works well for ADAPT, yet may create a minor problem for the text
encoder. Specifically, after each communication round, the external text prompts of the i-th client, i.e.,
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Method #Com. cost DomainNet

clipart info g. paint. quick d. real sketch avg.
Zero-Shot CLIP (Radford et al., 2021) - 66.1 40.6 62.3 13.5 80.4 585 53.6
Single-Domain Tuning - 72.3 47.2 67.1 18.8 83.6 65.8 59.1
Conventional domain generalization methods:
MIRO7Y (ResNet-50) (Cha et al., 2022) 25.7TM 40.6 58.3 54.3 34.5 75.0 61.5 54.0
PCL{t (ResNet-50) (Yao et al., 2022b) 25.6M 41.2 59.9 54.8 32.9 741 615 54.1
Fishrt (ResNet-50) (Rame et al., 2022) 25.6M 39.8 54.5 53.6 33.7 73.9 59.7 525
Conventional federated learning methods:
FedAvg (ResNet-50 ) (McMahan et al., 2017) 25.6M 40.2 61.1 57.6 33.5 75.6  60.3 54.7
FedAvg (ViT-B/16 ) (McMahan et al., 2017) 85.8M 424 60.7 57.0 30.4 79.8 61.1 552
FedProx (ResNet-50 ) (Li et al., 2020b) 25.6M 41.5 62.0 56.8 34.9 79.2  62.6 56.2
FedProx (ViT-B/16) (Li et al., 2020b) 85.8M 40.5 63.1 57.4 29.7 81.2 59.8 55.3
FedBN7Y (ResNet-50) (Li et al., 2021) 45.4M 35.7 43.6 41.0 30.1 67.7 44.6 438
FPLt (ResNet-50) (Huang et al., 2023) 25.6M 40.5 49.2 56.9 35.0 70.2  60.7 52.1
Domain-agnostic vision-language tuning methods:
PromptFL (Guo et al., 2023) <5M 76.0 50.2 70.4 33.5 81.2 67.8 63.2
FedCLIP (Lu et al., 2023) <5M 74.1 48.3 68.5 31.8 80.5 58.6 60.3
pFedPG (Yang et al., 2023) <5M 73.9 49.2 69.8 32.2 81.4 626 61.5
FedOPT (Li et al., 2024) <5M 76.1 60.1 65.2 34.2 81.3 59.2  62.7
FedAPT (Su et al., 2024) <5M 76.3 49.8 69.2 35.7 81.5 682 63.5
FedTPGt (Qiu et al., 2024) 21M 75.4 50.3 69.3 33.5 81.0 674 628
ADAPT (ours) <5M 78.5 64.7 72.5 44.5 85.8 73.2 69.8

Table 1: Test accuracy (%) on DomainNet. The info g., paint., and quick d. denote the domains of
infogragh, painting, and quickdraw, respectively. Communication cost is measured by the number of learnable
parameter shared at each round. f indicates reproduced results as experimental setup differs. Our results
are marked in blue . The best results in each domain are bolded.

P% (j # i) will be re-loaded. We observe that this sudden change of parameters often negatively affects
our model. To address this issue, we propose to apply momentum update (also referred to as exponential
moving average) to the external text prompts. Formally, we have

[t = aft]™" + (1 - a)[t], (6)

where [t]*, [t]*~! denote the prompt tokens at the s and s — 1 step, and [¢] denotes the vector received from
other clients, and « € [0,1] is a coefficient to control the smoothness. The details of our ablation study
related to momentum update are presented in Table 5a.

5 Experiments

Datasets and Baselines. We evaluate the proposed ADAPT and baseline methods on three domain
adaptation image classification benchmarks: the DomainNet (Peng et al., 2019), OfficeHome (Venkateswara
et al., 2017), and PACS (Li et al., 2017) datasets, with presented in the Appendix. We first consider the
baselines of CLIP and its adapted models to federated learning. The Zero-shot CLIP, which infers by aligning
images to class names with a hand-crafted prompt, is a direct baseline to evaluate whether in-domain tuning
is necessary for vision-language models in federated learning. We also introduce Single-domain tuning,
which applies textual prompt tuning (Zhou et al., 2021) to CLIP only in the local domain, as another
baseline to testify whether it is helpful to combine the information across multiple domains. There are
also domain-agnostic federated learning approaches based on CLIP such as PromptFL (Guo et al., 2023),
pFedPG (Yang et al., 2023), FedAPT (Su et al., 2024), FedOPT (Li et al., 2024), FedTPG (Qiu et al., 2024)
and FedCLIP (Lu et al., 2023), which train text prompt and an adapter layer in federated learning fashion,
respectively. To further validate the effectiveness of ADAPT, comparisons were made with established
federated learning algorithms such as FedAvg (McMahan et al., 2017) and FedProx (Li et al., 2020b), as
well as recent approaches like Fed BN (Li et al., 2021) and FPL (Huang et al., 2023) that address domain
shift challenges not based on CLIP. Additionally, we compared traditional domain generalization methods
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including MIRO (Cha et al., 2022), PCL (Yao et al., 2022b), and Fishr (Rame et al., 2022), which also do
not utilize CLIP. For these comparisons, we equipped the baselines with a 50-layer ResNet (He et al., 2016)
and a base-scale Vision Transformer with a 16x16 patch size (Dosovitskiy et al., 2021), both pretrained on
ImageNet-1k (Deng et al., 2009).

Implementation details. We employ a pre-trained CLIP model(Radford et al., 2021) with a ViT-Base/16
image encoder, so each textual and visual prompt token has the dimension of 512 and 768, respectively. We
set the length of each textual prompt sequence m = 16 for better robustness, which follows the practice of
TPT (Zhou et al., 2021). By default, the number of clients is determined by the number of domains for
each dataset, i.e. n = 6 for DomainNet and n = 4 for OfficcHome and PACS. We train both our model and
the baseline models for 200 epochs and execute the aggregation or broadcast process after every one epoch.
We train the ResNet-based models and prompt tokens by a SGD optimizer with 0.01 learning rate, 0.9
momentum, and 0.005 weight decay. ADAPT instead uses AdamW (Loshchilov & Hutter, 2019) optimizer
with 81 = 0.9, B2 = 0.999, 5e-4 learning rate, and 0.01 weight decay for transformer-based models. We
set the temperature coefficient 74 = 0.1 in Equation 4, and set the momentum update ratio a = 0.99 in
Equation 6. If not specified, all reported results are average numbers over three trials.

5.1 Main Results

Table 1 shows that ADAPT significantly outperforms baseline methods on DomainNet, with notably high
improvement in the "quickdraw" domain at 44.5% accuracy. This underscores the effectiveness of our prompt
learning approach, which requires fewer trainable parameters, enhancing robustness even with larger models.
In contrast, traditional methods like FedAvg and FedProx show minimal or negative gains, especially when
upgrading from ResNet-50 to ViT-Base. ADAPT also achieves higher average accuracy and lower standard
deviation compared to domain-agnostic methods, demonstrating better resilience against domain shifts.
We further evaluate the models on OfficeHome and PACS datasets, and the results are summarized in
Table 2. The experiments on these benchmarks also support our conclusion of ADAPT’s effectiveness by
demonstrating higher average accuracy and lower deviation across domains. Specifically, we improve the
zero-shot CLIP by 16.2% average accuracy and 0.82% standard deviation over four domains in OfficeHome.
We also observe that overall, the prompt-based methods consistently outperform the conventional federated
learning algorithms that require to train the entire model. This confirms the benefits of employing parameter-
efficient approaches in federated learning, and validates our choice of using prompt tuning to address the
domain shift issues.

Communication Costs. ADAPT markedly reduces communication overhead in federated learning by
only transferring domain prompts, contrary to standard methods that share all trainable parameters. To
provide a clear comparison, we have included the following results in Table 1. An additional benefit of
this approach is its ability to produce favorable results without requiring a substantial volume of training
data. As shown in Table 8 (in the supplementary material), we obtain competitive few-shot results by our
prompt tuning technique. In practice, We avoid fine-tuning the CLIP model to maintain its visual-language
alignment. Fine-tuning large models such as CLIP escalates communication expenses and impedes the rate
of convergence. With an equivalent number of training iterations, the fine-tuning protocol often falls short
to prompt learning.

5.2 Ablation Studies

We first dissect the ADAPT model to ablate its performance gains. ADAPT comprises two primary com-
ponents: visual prompts and domain-specific text prompts. By dissecting these components, we get three
more variants of our method: 1) Visual Only, which leverages learnable prompt tokens for only image input
and uses CLIP’s hand-crafted prompt for texts. 2) Textual Only, which discards the visual prompt tokens
of ADAPT and uses learnable text prompts only. Note that in the absence of visual prompts, we cannot get
the weight w; (see Equations 4 and 5) for each domain, so the text prompts from external clients should also
be discarded. We instead aggregate the textual prompts by federated averaging (McMahan et al., 2017). 3)
Domain-Agnostic, which retains both ADAPT’s visual and textual prompts but decouples them, i.e., we do
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Method OfficeHome PACS

Ar Cl Pr Rw  Avg. P A C S Avg.
Zero-Shot CLIP 79.5 63.1 853 865 786 998 969 988 87.7 958
Single-Domain 80.0 65.2 875 8.9 799 998 972 99.1 88.9 96.3
Conventional domain generalization methods:
MIROfY (ResNet-50) 64.2 489 773 723 657 905 533 783 772 748
PCLt (ResNet-50) 61.8 452 759 736 64.1 894 52,7 77.0 759 738
Conventional federated learning methods:
FedAvg (ResNet-50) 66.3 494 771 779 677 89.6 525 786 76.1 742
FedAvg (ViT-B/16) 679 496 775 810 69.0 91.3 548 792 779 758
FedProx (ResNet-50) 68.8 505 786 80.3 69.6 91.7 570 818 80.2 777
FedProx (ViT-B/16) 704 51.3 80.3 824 711 920 594 835 81.6 79.1
FedBN (ResNet-50) 71.2 51.6 81.5 836 720 925 63.8 852 84.3 815

Domain-agnostic vision-language tuning methods:
PromptFL (Guo et al., 2023) 79.8 65.6 89.5 89.1 81.0 99.9 971 99.0 90.6 96.7
FedCLIP (Lu et al., 2023) 79.1 65.0 88.6 884 803 998 974 989 89.0 96.3

Ours 83.1 69.6 90.5 90.4 83.4 99.9 983 99.2 91.7 97.3

Table 2: Test accuracy (%) on OfficcHome and PACS. Domains include art, clipart, product, and real-
world for OfficeHome, and photo, art painting, cartoon, and sketch for PACS. Our results are marked in
blue . The best results are bolded.

Method Fed VPT TPT domain AdaLN acc.
Zero-Shot CLIP X X X X X 53.6
Single-Domain X X 4 X X 59.1
Visual Only v v X X X 54.2
Textual Only v X v X X 63.2
Domain-Agnostic v v v X X 63.5
Prompt-only v v v v X 68.4
ADAPT v v v v v 69.8

Table 3: Ablation study to model components. We report the average accuracy (%) over six domains in
DomainNet. VPT and TPT denote whether using visual or textual prompts.

not perform the weighted sum process in Equation 5, which can be considered as a simple combination of
the modes Teztual Only and Visual Only.

We summarize the results in Table 3. Since we introduce visual prompt tuning to combine domain information
rather than enhancing the visual feature extraction abilities, we do not attach an additional head for the
image encoder as in (Jia et al., 2022). Therefore, the Visual Only mode cannot yield significant performance
improvements. We also observe that tuning textual prompts results in a 5.5% increase in accuracy, and when
tuning them in a federated learning fashion, we achieve an additional 4.1% improvement (Textual Only).
Notably, compared to the simple visual-and-textual prompt tuning with 63.5% accuracy, ADAPT achieves
a much higher result of 69.8%, demonstrating the crucial significance of our domain-aware design.

Momentum update, prompt length, and communication frequency. We consider three more factors
that may affect results. As mentioned in Section 4, we update the external text prompts by exponential
moving average to prevent parameters’ sudden change. Table 5a presents comparisons regarding the update
mechanism for text prompts, where the accuracy drops by 2.6% in the absence of momentum update. If we
train all text prompt tokens in every client, i.e., we disregard the relationship between text prompts and
domains, the accuracy drops by 4.7% as it makes ADAPT a domain-agnostic approach.
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Reconstructed images (ours)

Figure 2: Examples of reconstructed images produced by Deep Leakage from Gradient (Zhu et al., 2019).
It shows that the gradient attack algorithm cannot reconstruct semantically meaningful information from
ADAPT as we only share few parameters.

# clipart infograph painting quickdraw real sketch
1 ~ fe N/A N/A ° kd

2 N/A # dng , .. with
3 lh bh some ? N/A N/A
4 and N/A lh N/A the pjf

Table 4: Nearest Words of textual prompts learned by ADAPT in DomainNet dataset. N/A means non-Latin
characters. It shows that our prompts tend to capture high-level and abstract semantics that are difficult to
summarize using standard natural language words found in the dictionary.

By default, we aggregate the visual prompt tokens by federated averaging, as separately training each token
in a specific domain does not yield better performance (see Table 5b). As shown in Table 5e, we set each
textual prompt length to m = 16, as it works more robust than a shorter prompt (m = 4), and when
we further increase the length, the model tends to overfit and accuracy drops. Notably, the visual and
textual prompt lengths are consistent. In Table 5d we also assess the impact of communication frequency by
varying it to 0.5, 1, and 2 training epochs per communication round. It shows that compared to our default
setup of one epoch per communication round, more frequent aggregation (0.5 epoch/round) does not lead
to improved performance, while conversely, infrequent communication (2 epochs/round) results in a 0.7%
accuracy degradation.

AdaLN component. We evaluated the effect of varying the number of AdaLLN layers in our model. Beyond
the default three layers, we tested configurations with an AdaLN layer after every two blocks in the vision
encoder (six layers total) and after each block (12 layers total). As shown in Figure 5f, increasing from
three to 12 AdaLN layers resulted in only a 0.2% accuracy improvement, which is minimal considering
the additional network parameters. Thus, we retained the default three-layer configuration. Replacing
the AdaLN layers with cross-attention mechanisms improved performance by 0.7% compared to the model
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mode acc. mode acc. mode acc.
w/ mtm. 69.8 average 69.8 w/ AlaLN 69.8
w/o mtm. 67.2 split w/ mtm. 69.6 w/o AlaLN 68.4
train all 65.1 split w/o mtm. 68.5 cross attention 69.1
(a) Text prompt update. (b) Visual prompt update. (c) Visual conditioning.
#eps/round acc. #tokens acc. numbers acc.
0.5 69.8 4 67.8 0 68.4
1 69.8 9 68.5 3 69.8
2 69.1 16 69.8 6 69.8
3 68.4 32 68.3 12 70.0
(d) Comm. frequency (e) Prompt length. (f) AlaLN amount.

Table 5: Ablation studies. We report the average accuracy over six domains in DomainNet. The mitm.
denotes momentum update. Our default setup is marked in blue . The best results of each ablation study
is bolded.

without AdaLN. Using AdaLN layers provided an additional 0.7% improvement over the cross-attention
approach, as illustrated in Figure 5c.

Privacy Preservation. In ADAPT, there are two potential ways to expose participants’ private data. First,
similar to most federated learning algorithms, ADAPT shares gradient information across all participants,
so some private information might be able to be reconstructed by gradient-based attacking algorithms such
as Deep Leakage from Gradient (DLG) (Zhu et al., 2019). However, as ADAPT has relatively small number
of learnable parameters, such attacks cannot extract sufficient information from gradients to reconstruct
participants’ local data, which gives ADAPT a significant privacy advantage over traditional federated
learning algorithms. Figure 2 presents examples of DLG applied to our model and FedAvg. While ADAPT
shows no significant information leakage, attacks on Fed Avg reveal extensive details from the original image.

Another potential way to expose privacy is decoding the trained text prompts, which might contain some
statistical information of participants. However, our experiments showcase that this is difficult as well. we
follow CoOp (Zhou et al., 2021) to decode each text prompt by finding a standard vocabulary word with
minimum Euclidean distance to it in the embedding space, and summarize the interpretation results for
DomainNet in Table 4. It shows that our prompts tend to capture some high-level and abstract semantics
that are difficult to be summarized to standard natural words.

6 Conclusion

This work introduces ADAPT, a novel federated learning approach explicitly designed to address the key
challenges of domain shift and communication efficiency. Our method strategically combines CLIP and
prompt learning techniques for both visual and textual inputs, thereby enhancing parameter-efficiency and
minimizing communication costs, while maintaining robustness in federated optimization involving hetero-
geneous data. Furthermore, we confront the pervasive issue of domain shift across clients by introducing
domain-specific prompts and facilitating correlations between visual and textual representations through
self-attention mechanisms. These innovations result in a domain-aware federated learning methodology that
consistently demonstrates outstanding effectiveness. Notably, our experiments reveal a remarkable achieve-
ment—an average accuracy of 69.8% across six domains in the DomainNet dataset, marking an impressive
16.2% improvement over the original CLIP model. In comparisons with traditional federated learning meth-
ods like FedAvg and FedProx, as well as existing domain-agnostic CLIP-based approaches such as PromptFL
and FedCLIP, our ADAPT consistently outperforms them across three benchmark scenarios.
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A Appendix
Method DomainNet
clipart infograph  painting  quickdraw real sketch average

Zero-Shot CLIP 66.1 40.6 62.3 13.5 80.4 58.5 53.6
FedAvg 37.6 56.4 55.6 31.0 71.9 57.2 51.6
FedProx 38.4 57.2 54.9 325 72.8 58.5 52.4
PromptFL 73.2 48.1 68.7 31.9 78.6 64.7 60.9
FedCLIP 2.7 47.0 66.2 32.8 76.9 57.2 58.8
ADAPT (ours) 75.9 63.3 72.3 40.9 84.2 72.4 68.2

Table 6: Test accuracy (%) on DomainNet with 30 clients. Our results are marked in blue . The best results
in each domain are bolded.

Method CLIP-based full 1-shot 2-shot 4-shot 8-shot 16-shot
Single Domain Tuning v 59.1 51.1 51.8 53.2 54.7 56.2
FedAvg (ResNet-50) X 54.7 - - - - 15.1
FedAvg (ViT-Base/16) X 55.2 - - - - 19.7
PromptFL v 63.2 51.4 51.8 55.2 57.6 61.2
FedCLIP v 60.3 50.8 51.2 52.1 53.4 54.6
ADAPT (ours) v 69.8 55.2 57.4 61.4 64.4 65.7

Table 7: Few-shot accuracy (%) on DomainNet. n-shot denotes training with n samples per class and per
domain. Our results are marked in blue . The best results are bolded.

Datasets. We evaluate our ADAPT and baseline methods on the following three domain adaptation image
classification benchmarks:

o DomainNet Peng et al. (2019). The DomainNet dataset has around 600,000 images spanning 345
categories from six domains, which covers diverse image styles including clipart, infograph, painting,
quickdraw, real, and sketch.

o OfficeHome Venkateswara et al. (2017). The OfficeHome dataset consists of approximately 15,500
images depicting everyday objects in 65 classes. It further categorizes the images into four domains:
art, clipart, product, and real-world.

o PACS Lietal. (2017). The PACS dataset contains around 10,000 images drawn from seven categories
and four domains, including photo, sketch, cartoon, and painting styles.

Decentralization. By default, we consider each domain in the dataset as a single client, leading to non-
identical feature distributions yet the same class distribution across clients. To further validate our method’s
effectiveness and flexibility, we consider a more challenging scenario on DomainNet where each domain
is further divided into five clients by Dirichlet sampling, leading to 30 sub-datasets with either non-i.i.d.
features or non-i.i.d. categories. Under this setup, we average the text prompt tokens for clients in the same
domain at the aggregation step. The results are summarized in Table 6. Compared to our default setting
which each domain is considered as one client, ADAPT only has 1.6% accuracy decrease when the dataset is
further divided. In contrast, the conventional methods FedAvg and FedProx perform more sensitive to the
non-i.i.d categories, with 3.6% and 2.9% accuracy decrease, respectively.

Robustness to few-shot learning. One of the advantages of prompt learning is the robustness to few-shot
scenarios. We investigate if our dual prompt tuning method retains this merit in the context of federated
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learning. Therefore, we conduct few-shot learning experiments on DomainNet, employing 1, 2, 4, 8, and
16 training samples per category and per domain. We evaluate the other CLIP-based methods with the
same setting, yet only test 16-shot performance for FedAvg as it fails to yield reasonable results with fewer
training samples. The corresponding results are summarized in Table 7. As is shown, CLIP-based methods
exhibit superior robustness against few-shot learning than FedAvg, which again demonstrates the significant

benefits of using parameter-efficient approaches. Also, our ADAPT consistently outperforms the baselines
in few-shot learning.

Algorithm 1 Training Process of ADAPT

Input:

CLIP vision encoder Fy, text encoder Fr

n local datasets, each D; = {([image], [class name])j};}:1
Total communication rounds T, momentum coefficient «

Initialization:
Randomly initialize text prompts [P£]°, ..., [Pr]°
Randomly initialize visual prompts [V] = {[v]1,..., [v]n}

Broadcast the pretrained model and prompts to n clients

1: for t =1 to T do

2: # Local training in parallel

3: for i =1 ton do

4: Keep Fy and Fr frozen

5: for j =1 to J do

6: Compute ff. = Fr(Pyf, [class name];) for k € {1,...,n}

7. Compute fv = Fy ([cls], [0]1, . - ., [0]n, [image] )

8: Extract attention scores w = [w1, ..., wy,] from Fy using Eq.5

9: Weighted sum: fr = Zk:l wy, fx

10: Compute Ly loss: £ =< fv, fr > /|[fv|| - |Ifrll

11: Update [v]1, ..., [v], and P} by L

12: Update PE,k € {1,...,n},k # i by momentum: Pf = aPyF + (1 — a)[PF]*~!
13: end for

14: end for
15: # Global aggregation in the server
16: Average [V] = L ZZ—l[V]k’ where [V]* = {[v]1, ..., [v].} obtained from #k client
17: Assign [PTk]t = PTk, where PTk obtained from #k client
18: Broadcast [V], [P£]*(k € {1,...,n}) to all clients
19: end for
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