
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WARPD: WORLD MODEL ASSISTED REACTIVE
POLICY DIFFUSION

Anonymous authors
Paper under double-blind review

ABSTRACT

With the increasing availability of open-source robotic data, imitation learning has
become a promising approach for both manipulation and locomotion. Diffusion
models are now widely used to train large, generalized policies that predict con-
trols or trajectories, leveraging their ability to model multimodal action distribu-
tions. However, this generality comes at the cost of larger model sizes and slower
inference, an acute limitation for robotic tasks requiring high control frequencies.
Moreover, Diffusion Policy (DP), a popular trajectory-generation approach, suf-
fers from a trade-off between performance and action horizon: fewer diffusion
queries lead to larger trajectory chunks, which in turn accumulate tracking errors.
To overcome these challenges, we introduce WARPD (World model Assisted Re-
active Policy Diffusion), a method that generates closed-loop policies (weights for
neural policies) directly, instead of open-loop trajectories. By learning behavioral
distributions in parameter space rather than trajectory space, WARPD offers two
major advantages: (1) extended action horizons with robustness to perturbations,
while maintaining high task performance, and (2) significantly reduced inference
costs. Empirically, WARPD outperforms DP in long-horizon and perturbed en-
vironments, and achieves multitask performance on par with DP while requiring
only ∼ 1/45th of the inference-time FLOPs per step.

Figure 1: WARPD generates policies from heterogeneous trajectory data. With state-
conditioned policy generation, the diffusion model can run inference at a lower frequency.
With task-conditioned policy generation, the generated policies can be small yet maintain task-
specific performance. Demonstrations of this work can be found on the project website:
https://sites.google.com/view/warpd/home.

1 INTRODUCTION

The rise of open-source robotic datasets has made imitation learning a promising approach for
robotic manipulation and locomotion tasks (Collaboration et al., 2023; Peng et al., 2020). While
methods like Behavioral Cloning (Florence et al., 2022) and transformer-based models (e.g., RT-1
(Brohan et al., 2022)) have shown promise, they struggle with multimodal action distributions. For
example, in navigation tasks where both “turn left” and “turn right” are valid, these models often
predict an averaged action, i.e., “go straight”, leading to suboptimal performance.

Diffusion models offer a compelling alternative, providing continuous outputs and learning multi-
modal action distributions (Tan et al., 2024). Action trajectory diffusion for robotic tasks (Chi
et al., 2024) has shown promise but incurs high computational costs, particularly at high control

1

https://sites.google.com/view/warpd/home

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

frequencies. Moreover, such trajectory diffusion models are susceptible to the trade-off between
performance and action horizon (or action chunk size, representing the number of environment in-
teractions between consecutive trajectory generations). Fewer diffusion queries lead to larger action
chunks, giving greater trajectory tracking errors.

To overcome these limitations, we introduce World model Assisted Reactive Policy Diffusion
(WARPD), a novel approach that uses latent diffusion and a world model to generate closed-
loop policies directly in parameter space, bypassing trajectory generation. WARPD first encodes
demonstration trajectories into a latent space, then learns their distribution using a diffusion model,
and finally decodes them into policy weights via a hypernetwork (Ha et al., 2016). The generated
policy is also optimized with model-based imitation learning using a co-trained world (dynamics)
model (Ha & Schmidhuber, 2018), which helps in understanding the environment transitions dur-
ing training. This approach leverages the success of latent diffusion techniques in vision (Rombach
et al., 2022b) and language (Lovelace et al., 2024), and combines them with learned dynamics mod-
els, bringing their advantages to robotic control. The world model, and accompanying loss terms,
help the agent learn the optimal policy that can be backpropagated through the learned (differen-
tiable) dynamics, and also apply corrective actions to bring the agent states back into the distri-
bution of the input trajectory dataset. For WARPD, the action horizon corresponds to the number
of environment interactions between consecutive policy weight generations. To achieve trajectory
encoding and policy parameter decoding, we derive a novel objective function described in sec-
tion 3.1, and show that we can approximate its components with a hypernetwork-based VAE and
a World Model, and optimize it using a novel loss function described in section 3.2. This paper
provides the following key contributions:

1. Theoretical Foundations for generating policies: By integrating concepts from latent
diffusion, hypernetworks, and world models, we derive a novel objective function, which
when optimized, allows us to generate policy parameters instead of action trajectories.

2. Longer Action Horizons & Robustness to Perturbations: By generating closed-loop
policies under learned dynamics, WARPD mitigates trajectory tracking errors, enabling
policies to operate over extended time horizons with fewer diffusion queries. Additionally,
closed-loop policies are reactive to environmental changes, ensuring WARPD-generated
policies remain robust under stochastic disturbances.

3. Lower Inference Costs: The computational burden of generalization is shifted to the dif-
fusion model, allowing the generated policies to be smaller and more efficient.

We validate these contributions through experiments on the PushT task (Chi et al., 2024), the Lift and
Can tasks from Robomimic (Mandlekar et al., 2021), and 10 tasks from Metaworld Yu et al. (2020).
On Metaworld, WARPD achieves comparable performance to Diffusion Policy but with a ∼ 45x
reduction in FLOPs per step, representing a significant improvement in computational efficiency
(FLOPs per step are the floating point operations, amortized over all steps of the episode). Analysis
across a range of benchmark robotic locomotion and manipulation tasks, demonstrates WARPD’s
ability to accurately capture the behavior distribution of diverse trajectories, showcasing its capacity
to learn a distribution of behaviors.

2 RELATED WORK

2.1 IMITATION LEARNING AND DIFFUSION FOR ROBOTICS

Behavioral cloning has progressed with transformer-based models such as PerAct (Shridhar et al.,
2022) and RT-1 (Brohan et al., 2022), which achieve strong task performance. Vision-language mod-
els like RT-2 (Brohan et al., 2023) interpret actions as tokens, while RT-X (Collaboration et al., 2023)
generalizes across robot embodiments. Object-aware representations (Heravi et al., 2022), energy-
based models, and temporal abstraction methods (implicit behavioral cloning (Florence et al., 2022),
sequence compression (Zheng et al., 2024)) improve multitask learning. DBC (Chen et al., 2024)
increases robustness to sensor noise (this is complementary to WARPD, which targets dynamics
perturbations such as object shifts or execution-time disturbances). Diffusion models, originally
introduced for generative modeling (Ho et al., 2020a; Rombach et al., 2022a), have become pow-
erful tools for robotics. Trajectory-based approaches capture multimodal action distributions (Chi
et al., 2024), while goal-conditioned methods such as BESO (Reuss et al., 2023) and Latent Dif-
fusion Planning (Kong et al., 2024) improve efficiency through latent conditioning. Diffusion has

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

also been applied to grasping and motion planning (Urain et al., 2022; Luo et al., 2024; Carvalho
et al.), skill chaining (Mishra et al., 2023), and locomotion (Huang et al., 2024). Hierarchical exten-
sions including ChainedDiffuser (Xian & Gkanatsios, 2023), SkillDiffuser (Liang et al., 2024b), and
multitask latent diffusion (Tan et al., 2024) address long-horizon planning. Recently, OCTO (Octo
Model Team et al., 2024) demonstrates diffusion-based generalist robot policies.

2.2 HYPERNETWORKS AND POLICY GENERATION

Hypernetworks, introduced by Ha et al. (2016), generate parameters for secondary networks and
have been applied in multiple domains. They were first used for meta-learning in one-shot learning
tasks (Bertinetto et al., 2016) and more recently extended to robot policy representations (Hegde
et al., 2024). This direction aligns with Dynamic Filter Networks (Jia et al., 2016), which emphasize
adaptability to input data. Latent Diffusion Models (LDMs) have also been used to model training
dynamics in parameter spaces (Peebles et al., 2022). LDMs have enabled behavior-conditioned
policies from text (Hegde et al., 2023) and trajectory embeddings (Liang et al., 2024a), as well as
architectures distributions such as ResNets (Wang et al., 2024). Unlike Hegde et al. (2023) and
Liang et al. (2024a), which rely on pre-collected policy datasets, this paper requires a dataset of
trajectories.

2.3 WORLD MODELS

Ha & Schmidhuber (2018) introduced world models for forecasting in latent space. PlaNet (Hafner
et al., 2019b) added pixel-based dynamics learning and online planning. Dreamer (Hafner et al.,
2019a) learned latent world models with actor-critic RL for long horizons, followed by DreamerV2
(Hafner et al., 2020) with discrete representations achieving human-level Atari, and DreamerV3
(Hafner et al., 2023) scaling across domains. IRIS (Micheli et al., 2023) applied transformers for
sequence modeling, reaching superhuman Atari in two hours. SLAC (Lee et al., 2019) showed
stochastic latent variables accelerate RL from high-dimensional inputs. VINs (Tamar et al., 2016)
embedded differentiable value iteration for explicit planning, while E2C (Watter et al., 2015) com-
bined VAEs with locally linear dynamics. DayDreamer (Wu et al., 2022) enabled real robot learning
in one hour, and MILE (Hu et al., 2022) adapted Dreamer to CARLA with 31% gains. Popov et al.
(2024) scaled model-based imitation learning to large self-driving datasets. Recent work includes
SafeDreamer (Zhang et al., 2023) for safety, STORM (Micheli et al., 2024) with efficient trans-
formers, UniZero (Zhang et al., 2024) for joint model-policy optimization, and Time-Aware World
Models (Chen et al., 2025) capturing temporal dynamics. Beyond these, large-scale pretraining
and multimodal foundations extend world models. V-JEPA 2 (Assran et al., 2025) demonstrated
self-supervised video models. DINO-based methods, including Back to the Features (Baldassarre
et al., 2025) and DINO-WM (Zhou et al., 2024), leverage pre-trained visual features. NVIDIA’s
Cosmos platform (NVIDIA et al., 2025) proposes a foundation model ecosystem for physical AI.
Vid2World (Huang et al., 2025) adapts video diffusion models to interactive world modeling, and
Pandora (Xiang et al., 2024) integrates natural language actions with video states.

3 METHOD & PROBLEM FORMULATION

Figure 2: WARPD: Stage 1: Pre-train a VAE and world
model. The VAE encodes trajectories into a latent space and
decodes them as policy parameters, which are optimized for
behavior cloning and trajectory tracking With teacher forc-
ing enabled, the world model is optimized; when disabled,
it optimizes the VAE. Stage 2: Train a conditional latent dif-
fusion model to learn the latent distribution.

We address policy neural network
weight generation, inspired by Hegde
et al. (2023), which used latent diffu-
sion to model policy parameter distri-
butions but relied on policy datasets
that are often unavailable. Our
method, WARPD, instead trains on
trajectory datasets through a two-step
process: a variational autoencoder
(VAE) with weak KL regulariza-
tion encodes trajectories into a latent
space, decoded by a conditioned hy-
pernetwork into policy weights opti-
mized with a co-trained world model.
During ”teacher forcing”, the world
model is trained to model the state
transitions using ground truth data.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

We use this trained world model to guide the generated policy to always be in the desired trajec-
tory state distribution. Then, a diffusion model learns the latent distribution (see fig. 2).

Compared to Hegde et al. (2023), which encodes policy parameters and employs a graph hypernet-
work with a MSE loss on parameter reconstruction, our approach differs as it: (1) encodes trajecto-
ries as opposed to parameters, into latent space (i.e., we do not require a dataset of policies) (2) uses
a simple hypernetwork, (3) applies a behavior cloning loss (detailed in section 3.1 & section 3.2) on
the generated policy, and (4) learns a world model for predicting observations given the action in an
environment. Below we discuss the problem formulation and derivation.

3.1 LATENT POLICY REPRESENTATION

We begin by formulating our approach for unconditional policy generation. Assume a distribution
over stochastic policies, where variability reflects behavioral diversity. Each policy is parameterized
by θ, with π(·, θ) denoting a sampled policy and p(θ) the parameter distribution. Sampling a policy
corresponds to drawing θ ∼ p(θ). When a policy interacts with the environment, it gives us a tra-
jectory τ = {st, at}Tt=0. We assume multiple such trajectories are collected by repeatedly sampling
θ and executing the corresponding policy. This enables a heterogeneous dataset, e.g., from humans
or expert agents. For a given θ, actions are noisy: at ∼ N (π(st, θ), σ

2).

Our objective is to recover the distribution p(θ) that generated the trajectory dataset. We posit a
latent variable z capturing behavioral modes, and assume conditional independence: p(τ | z, θ) =
p(τ | θ). Given trajectory data, we maximize the likelihood log p(τ). To do so, we derive a modified
Evidence Lower Bound (mELBO) that incorporates p(θ) (see below). This differs from the standard
ELBO used in VAEs.

log p(τ) = log

∫ ∫
p(τ, θ, z) dz dθ (Introduce policy parameter θ and latent variable z)

= log

∫ ∫
p(τ | z, θ)p(θ | z)p(z) dz dθ (Apply the chain rule)

= log

∫ ∫
p(τ | z, θ)p(θ | z)p(z)

q(z | τ)
q(z | τ) dz dθ (1a)

(Introduce a variational distribution q(z | τ), approximating the true posterior p(z | τ))

= log

∫
Ep(θ|z)

[
p(τ | z, θ)p(z)

q(z | τ)
q(z | τ)

]
dz (1b)

≥ Eq(z|τ)

[
log

(Ep(θ|z) [p(τ | z, θ)] p(z)
q(z | τ)

)]
(Jensen’s inequality)

= Eq(z|τ)
[
log

(
Ep(θ|z) [p(τ | z, θ)]

)]
− Eq(z|τ) [log (q(z | τ))− log (p(z))] (1c)

= Eq(z|τ)
[
log

(
Ep(θ|z) [p(τ | θ)]

)]
− KL(q(z | τ) ∥ p(z)) (cond. independence) (1d)

≥ Eq(z|τ)
[
Ep(θ|z) [log (p(τ | θ))]

]
− KL(q(z | τ) ∥ p(z)) (Jensen’s inequality) (1e)

Assuming the state transitions are Markov and s1 is independent of θ, the joint likelihood of the
entire sequence {(s1, a1), (s2, a2), . . . , (sT , aT)} (i.e., p(τ | θ)) is given by:

p(s1, a1, . . . , sT , aT | θ) = p(s1)p(a1 | s1, θ) ·
T∏

t=2

p(st | st−1, at−1)p(at | st, θ) (2a)

log p(s1, a1, . . . , sT , aT | θ) = log p(s1) + log p(a1 | s1, θ)

+

T∑
t=2

[log p(st | st−1, at−1) + log p(at | st, θ)] (2b)

Substituting 2b in 1e:
log p(τ) ≥ Eq(z|τ)

[
Ep(θ|z) [log (p(τ | θ))]

]
− KL(q(z | τ) ∥ p(z))

= Eq(z|τ)

[
Ep(θ|z)

[
T∑

t=1

log p(at | st, θ) +
T∑

t=2

log p(st | st−1, at−1)

]]
− KL(q(z | τ) ∥ p(z)) +A (3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Where A consists of log p(s1), and since this cannot be subject to maximization, we shall ignore it.

Therefore, our modified ELBO is:

Eq(z|τ)

Ep(θ|z)

 T∑
t=1

log p(at | st, θ)︸ ︷︷ ︸
Behavior Cloning

+

T∑
t=2

log p(st | st−1, at−1)︸ ︷︷ ︸
WorldModel


− KL(q(z | τ) ∥ p(z))︸ ︷︷ ︸

KLRegularizer

(4)

3.2 LOSS FUNCTION

Since we now have a modified ELBO objective, we shall now try to approximate its components
with a variational autoencoder and a world model. Let ϕenc be the parameters of the VAE encoder
that variationally maps trajectories to z, ϕdec be the parameters of the VAE decoder, and ϕwm

be the world model parameters. We assume the latent z is distributed with mean zero and unit
variance. We construct the VAE decoder to approximate p(θ | z) with pϕdec

(θ | z). Considering
at ∼ N (π(st, θ), σ

2), and τk = {skt , akt }Tt=1, we derive our VAE loss function as:

LBC =

T∑
t=1

Eqϕenc (z|τk)
[
(akt − π(skt , fϕdec

(z)))2
]

LRO =

T∑
t=2

Eqϕenc (z|τk)
[
KL

(
pϕwm(st | skt−1, π(s

k
t−1, fϕdec

(z)))
∥∥ pϕwm

(st | skt−1, a
k
t−1)

)]
LTF =

T∑
t=2

(skt − ŝkt)
2 LKL = βkl

dim(z)∑
i=1

(
σ2
ei + µ2

ei − 1− log σ2
ei

)
L
(
{skt , akt }Tt=1 | ϕenc, ϕdec, ϕwm

)
= LBC + LRO + LTF + LKL (5)

where, LBC is the behavior cloning loss to train the policy decoder, LRO is the rollout loss to correct
the decoded policy’s actions using the world model, LTF is the teacher forcing loss to train the world
model, and LKL is the KL loss to regularize the latent space. θ is obtained from the hypernetwork
decoder fϕdec

(z). (µe, σe) = fϕenc({skt , akt }Tt=1), z ∼ N (µe, σe), ŝkt ∼ pϕwm(skt | skt−1, a
k
t−1)

and βkl is the regularization weight. The complete derivation is shown in section A.1. Since the
decoder in the VAE outputs the parameter of a secondary network, we shall use a conditional hy-
pernetwork, specifically the model developed for continual learning by (von Oswald et al., 2020).
For computational stability, we shall use LBC , LRO and LKL to optimize the VAE (encoder and
decoder parameters) and LTF to train the world model parameters. With the teacher forcing objec-
tive we get a reliable world model that we can then use in the rollout objective. This is similar to
procedures followed in Assran et al. (2025); Popov et al. (2024); Hu et al. (2022). In practice, we see
that approximating p(z) = N (0, I) is suboptimal, and therefore we set βkl to a very small number
∼ (10−10, 10−6). After training the VAE to maximize the objective provided in eq. (5) with this βkl,
we have access to this latent space z and can train a diffusion model to learn its distribution p(z).
We can condition the latent denoising process on the current state and/or the task identifier c of the
policy required. Therefore the model shall be approximating pϕdif

(zt−1 | zt, c). After denoising for
a given state and task identifier, we can convert the denoised latent to the required policy. Therefore,
to sample from p(θ), first sample z using the trained diffusion model z ∼ pϕdif

(z0), and then apply
the deterministic function fϕdec

to the sampled z. Note that to sample policies during inference, we
do not need to encode trajectories; rather, we need to sample a latent using the diffusion model and
use the hypernetwork decoder of a pre-trained VAE to decode a policy from it.

4 EXPERIMENTS

We run four sets of experiments. In the first set (section 4.1), we evaluate the validity of our main
contributions. In the second set (section 4.2), we ablate different components of our method. In
the third set (section 4.3), we show how WARPD can be scaled to vision-based observation envi-
ronments. In the final set (section 4.4), we analyze the behavior distribution modeled by our latent
space. In the first set, we compare WARPD with action trajectory generation methods with respect to
1) Longer Action Horizons and Environment Perturbations, where experiments are performed while
varying these parameters on the PushT task (Chi et al., 2024) and the Lift and Can Robomimic
tasks (Mandlekar et al., 2021), and 2) Lower inference costs, where experiments are performed on

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 3: Longer action horizons and robustness to perturbations on PushT: Performance of
WARPD and baselines on the PushT task as we vary the action horizon and environment perturba-
tions.

Figure 4: Visualization of Perturbation: When an adversarial perturbation is applied, we see that
WARPD’s generated closed-loop policy successfully adapts to the change.

10 tasks from the Metaworld Yu et al. (2020) suite of tasks, to show WARPD requires fewer parame-
ters during inference while maintaining multi-task performance. The task descriptions are provided
in section A.5. We choose a multi-task experiment here as the model capacity required for solving
multiple tasks generally increases with the number of tasks.

We focus on demonstrating results in state-based observation spaces. Our generated policies are
Multi-Layer Perceptrons (MLP) with 2 hidden layers with 256 neurons each. In the VAE, the en-
coder is a sequential network that flattens the trajectory and compresses it to a low-dimensional
latent space, and the decoder is a conditional hypernetwork (Ehret et al., 2021). The details of the
VAE implementation are provided in section A.8.2 and section A.8.3. For the world model, since
we use low-dimensional observation spaces, we use a simple MLP with 2 hidden layers with 1024
neurons each to map the history of observations and actions to the next observation. For stability,
we use LRO only after 10 epochs of training. This warm-starts the world model before we use it to
optimize the policy generator. For all experiments, the latent space is R256 and the learning rate is
10−4 with the Adam optimizer. For the diffusion model, we use the DDPM Scheduler for denoising.
Based on the results are shown in section A.3 (inspired by Chi et al. (2024)), we chose the Condi-
tionalUnet1D model for all experiments in the paper. Just as Chi et al. (2024), we condition the
diffusion model with FiLM layers, and also use the Exponential Moving Average (He et al., 2020)
of parameter weights (commonly used in DDPM) for stability. All results presented are obtained
over three seeds, and the compute resources are described in section A.9

4.1 EMPIRICAL EVALUATION OF CONTRIBUTIONS

4.1.1 LONGER ACTION HORIZONS & ROBUSTNESS TO PERTURBATIONS

We first evaluate our method on the PushT task (Chi et al., 2024), a standard benchmark for
diffusion-based trajectory generation in manipulation. The goal is to align a ‘T’ block with a target
position and orientation on a 2D surface. Observations consist of the end-effector’s position and the
block’s position and orientation. Actions specify the end-effector’s target position at each time step.
Success rate is defined as the maximum overlap between the actual and desired block poses during
a rollout. We test under different action horizons and varying levels of environment perturbation,
simulated via an adversarial agent that randomly displaces the ‘T’ block.

For the WARPD model, we first train a VAE to encode trajectory snippets (of length equal to the
action horizon) into latents representing locally optimal policies. These policies are optimized with a
co-trained world model. A conditional latent diffusion model, given the current state, then generates

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 5: Longer action horizons and robustness to perturbations on Robomimic tasks: Perfor-
mance of WARPD and DP as we vary the action horizon and environment perturbations.

a latent that the VAE decoder transforms into a locally optimal policy for the next action horizon.
The inference process is illustrated in fig. 1. We train two variants of WARPD, with (WARPD) and
without (WARPD w/o WM) the world model (i.e., we train WARPD with just LBC + LKL).

As baselines for this experiment, we compare the proposed WARPD variants against four alter-
natives: 1) a Diffusion Policy (DP) model that generates open-loop action trajectories for a fixed
action horizon; 2) a Latent Diffusion Policy (LDP) model, which is structurally similar to WARPD
but decodes the latent representation into an action trajectory rather than a closed-loop policy; 3)
a Multilayer Perceptron (MLP) policy, which shares the same architecture as the policy network
generated by WARPD and serves to isolate the impact of diffusion modeling; 4) a Random Policy,
which provides a lower-bound performance reference. For a fair comparison, all diffusion-based
models (WARPD, DP, and LDP) use the same diffusion model size and hyperparameters, corre-
sponding to the medium configuration described in section A.8.4 and section A.8.7. LDP uses a
VAE decoder, implemented as an MLP with two hidden layers of 256 neurons each, to output an
action chunk of the same length as the action horizon.

All models are evaluated across 50 uniquely seeded environment instances, with each evaluation re-
peated 10 times, across 3 training seeds. Figure 3 illustrates the impact of perturbation magnitudes
and action horizons on success rates across all baselines. Perturbations refer to random displace-
ments applied to the T block, occurring at randomly selected time steps with 10% probability. A
sample rollout with a perturbation magnitude of 50 is shown in fig. 4.

While DP demonstrates comparable performance to both WARPD variants at an action horizon of
16 with minimal perturbations, WARPD exhibits superior robustness as the action horizon increases.
This enhanced robustness of WARPD with the world model becomes more pronounced in the pres-
ence of larger perturbations. Specifically, at longer action horizons such as 128, WARPD w/ WM
maintains a significantly higher success rate compared to DP across all perturbation levels. The
MLP generally underperforms compared to both WARPD variants and DP, highlighting the benefits
of diffusion-based approaches for this task. LDP has a lower success rate than WARPD, indicating
that generating a closed-loop policy is more important than learning the latent representation space.
The relatively lower sensitivity to perturbations at an action horizon of 16 for both policies can be at-
tributed to the more frequent action trajectory queries inherent in DP at shorter horizons (i.e. smaller
action chunks), effectively approximating a more closed-loop control strategy.

We also ran experiments on the Robomimic (Mandlekar et al., 2021) Lift and Can tasks, using the
same hyperparameters as the PushT experiment, the same task settings, and the mh demonstration
data from (Chi et al., 2024). To simulate perturbations, we add random translation and rotation vec-
tors to the end effector, applied 10% of the time. fig. 5 shows the performance of the WARPD vari-
ants and baselines under these perturbations across different action horizons. The x-axis corresponds
to perturbation magnitude. Similar to PushT, WARPD outperforms DP for longer horizons and is
more robust to perturbations. Here, we see that WARPD also significantly outperforms WARPD

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

w/o WM. We believe that this is because the state density of the provided dataset is higher in PushT
as compared to Robomimic, and model-based imitation learning (with the world model) provides
robustness to covariate shift (Popov et al., 2024; Hu et al., 2022).

4.1.2 LOW INFERENCE COST

Figure 6: Success rate vs. average
compute of WARPD, DP, and MLP
policies on 10 Metaworld tasks for var-
ious model sizes. The x-axis shows the
GFLOPs/step for each policy on a log
scale. WARPD performs ∼ 45x fewer
inference computations than a DP pol-
icy with comparable performance.

We will now look at the next contribution, namely, lower
inference cost compared to methods that diffuse action
trajectories instead of policies. When training a single
policy on multiple tasks, it is known that a larger model
capacity is needed. This is detrimental in robotics appli-
cations as this increases control latency. We train a task-
conditioned WARPD model and show that the cost of
task generalization is borne by the latent diffusion model,
while the generated execution policy remains small.
Because WARPD generates a smaller policy, the runtime
compute required for inference is lower than SOTA diffu-
sion methods.

We experiment on 10 tasks of the Metaworld benchmark,
the details of which are in section A.5. We set the action
horizon to the length of the entire trajectory for WARPD
to generate policies that shall work for the entire dura-
tion of the rollout, where at each time step, the gener-
ated MLPs shall predict instantaneous control. We ex-
perimented over three sizes of the generated MLP policy:
128, 256, and 512 neurons per layer, each having 2 hidden
layers. We also train 10 DP models, spread over a grid of
5 different sizes (xs, s, m, l, xl) and 2 action horizons: 32
and 128. Each DP model is run at an inference frequency

of half the action horizon. We provide the details of the DP model in section A.8.1. Finally, we also
train 3 MLP models with 128, 256, and 512 neurons per layer, as baselines.

Note that WARPD uses a fixed action horizon equal to the full episode length (500 steps), whereas
the DP model uses a variable horizon. The WARPD inference process is illustrated on the right-hand
side of fig. 1. All baseline models receive the task identifier as part of the state input. Each model is
trained with 3 random seeds, and evaluated across 10 tasks, with 16 rollouts per task. fig. 6 presents
the results of this evaluation. In the plot, the x-axis represents average per-step inference compute (in
GFLOPs), and the y-axis indicates the overall success rate across tasks. For DP models, achieving
high success rates requires increasing model size or denoising frequency (i.e., predicting shorter
action chunks), both of which raise computational cost. In contrast, WARPD generates a simpler,
more efficient controller, requiring significantly less compute. The best-performing WARPD model
achieves an 81% success rate with ∼ 45× fewer inference operations than the closest-performing
DP model. Interestingly, the MLP baseline also performs well, and is comparable in efficiency to
WARPD, but still lags in performance. We attribute this to the unimodal nature of this dataset, as
MLPs struggled with the multimodal PushT task in the previous section. Note that the WARPD
performed comparably to the w/o WM variant. In different scenarios, such as the state-conditioned
experiments where the policy is regenerated more frequently, the generation cost could also be
amortized. Even in such a conservative setting, when we incorporate the computational cost for
generation (0.0227 GFLOPs), WARPD still requires ∼ 4.5× fewer inference operations.

4.2 ABLATIONS

Considering that WARPD consists of multiple components, we analyze each one. We perform
ablations over three components of our method: 1) Diffusion model architecture, section A.3; 2)
VAE decoder size, section A.4; 3) KL coefficient for the VAE, section A.4.1. We find that: 1) a
UNET converges faster than a transformer, 2) using a larger hypernetwork decoder increases the
performance, 3) using a lower KL coefficient generates policies that better track a desired trajectory.
Further, in section 4.1.1, we ablate the world model and see that it helps more in the Robomimic tasks
than in the PushT task. We believe this is because the state space is more complex in Robomimic than

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

that in PushT, whilst the number of trajectories remains roughly the same. This results in insufficient
trajectories covering the state space, rendering the learned policy susceptible to covariate shift.

4.3 VISION OBSERVATION SCALING

We conducted initial experiments on the PushT image environment to evaluate the applicability of
our method in vision-based tasks. Our approach involved pre-training a vision encoder to map im-
ages of the PushT environment to their corresponding ground truth states. We then trained WARPD
to utilize these image embeddings as states. For comparison, we also trained a Diffusion Policy (DP)
model on the same embeddings. The results for an action horizon of 64 are presented below.

Perturbation WARPD DP
0 0.54 ± 0.05 0.57 ± 0.05

20 0.53 ± 0.01 0.50 ± 0.05
40 0.45 ± 0.01 0.42 ± 0.05
60 0.41 ± 0.08 0.34 ± 0.02
80 0.36 ± 0.06 0.30 ± 0.02

100 0.28 ± 0.05 0.24 ± 0.06

Table 1: PushT Image results with horizon 64

As shown in table 1, WARPD consistently out-
performs DP in the presence of increasing pertur-
bation, demonstrating its robustness even when
operating on image-derived state embeddings.
These experiments strongly suggest that if an ef-
fective image embedding can be learned, the low-
dimensional state space version of WARPD is
readily applicable to vision-based tasks. This
serves as an encouraging proof-of-concept for
WARPD’s generalizability beyond state-based environments. It can be noted here as well that a
diffusion model’s inference cost (∼ 3.99 GFLOPs) is still much greater than the hypernetwork
decoder (∼ 0.056 GFLOPs) and the ResNet18 vision encoder (∼ 0.334 GFLOPs)

4.4 BEHAVIOR ANALYSIS

Figure 7: Behavior distribution

WARPD models trajectory data from a distribution of poli-
cies, exposing this distribution through its latent space. On the
Robomimic Lift task with the MH dataset (300 trajectories from
6 operators of varied proficiency: 2 “worse,” 2 “okay,” and 2
“better.”), WARPD encoded entire demonstration trajectories.
A 2D t-SNE plot revealed clusters aligned with operator iden-
tity, despite WARPD receiving no explicit operator labels. This
shows WARPD can cluster behaviors and potentially filter un-
wanted ones. This is further studied in section A.7.

5 LIMITATIONS AND FUTURE WORK

While WARPD is a promising framework for policy generation, Diffusion Policy (DP) performs bet-
ter in short-horizon, low-perturbation settings. This gap likely stems from VAE approximation errors
and WARPD’s added complexity. Another limitation is the additional training overhead compared
to traditional diffusion policy models (see section A.9). But we believe that this training overhead is
comparable to other established world model-based imitation learning methods.

Thus, future work could improve WARPD’s VAE decoder through chunked deconvolutional hy-
pernetworks (von Oswald et al., 2020), enabling more efficient decoding. Extending WARPD to
Transformer or ViT policies is another direction, especially for sequential or visual tasks (Dosovit-
skiy et al., 2020). Incorporating WARPD to foundation VLA models as an action head is another
exciting avenue. Finally, warm-starting with prior latents (Chi et al., 2024) may further boost per-
formance by providing richer priors.

6 CONCLUSION
We introduce World Model Assisted Reactive Policy Diffusion (WARPD), a novel framework for
learning a distribution over policies from diverse demonstration trajectories. WARPD models be-
havioral diversity via latent diffusion, a world model, and uses a hypernetwork decoder to generate
policy weights, enabling closed-loop control directly from sampled latents. Our evaluation high-
lights two key strengths of WARPD: robustness and computational efficiency. Compared to Diffu-
sion Policy, WARPD delivers more reliable performance in environments with long action horizons
and perturbations, while reducing inference costs, especially in multi-task settings.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

All reported results are averaged over three random seeds to ensure statistical reliability. We pro-
vide full implementation details of model architectures, training objectives, hyperparameters, and
evaluation protocols in the main text and appendix.

REFERENCES

Mido Assran, Adrien Bardes, David Fan, Quentin Garrido, Russell Howes, Matthew Muckley, Am-
mar Rizvi, Claire Roberts, Koustuv Sinha, Artem Zholus, et al. V-jepa 2: Self-supervised video
models enable understanding, prediction and planning. arXiv preprint arXiv:2506.09985, 2025.

Federico Baldassarre, Marc Szafraniec, Basile Terver, Vasil Khalidov, Francisco Massa, Yann Le-
Cun, Patrick Labatut, Maximilian Seitzer, and Piotr Bojanowski. Back to the features: Dino as a
foundation for video world models, 2025. URL https://arxiv.org/abs/2507.19468.

Sumeet Batra, Bryon Tjanaka, Matthew C Fontaine, Aleksei Petrenko, Stefanos Nikolaidis, and
Gaurav Sukhatme. Proximal policy gradient arborescence for quality diversity reinforcement
learning. arXiv preprint arXiv:2305.13795, 2023.

Luca Bertinetto, João F. Henriques, Jack Valmadre, Philip Torr, and Andrea Vedaldi. Learn-
ing feed-forward one-shot learners. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 29. Curran
Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper_files/
paper/2016/file/839ab46820b524afda05122893c2fe8e-Paper.pdf.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, Julian Ibarz, Brian
Ichter, Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil Joshi, Ryan Julian, Dmitry Kalash-
nikov, Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deek-
sha Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta, Emily Perez,
Karl Pertsch, Jornell Quiambao, Kanishka Rao, Michael Ryoo, Grecia Salazar, Pannag Sanketi,
Kevin Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clayton Tan, Huong Tran, Vincent
Vanhoucke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and
Brianna Zitkovich. Rt-1: Robotics transformer for real-world control at scale. In arXiv preprint
arXiv:2212.06817, 2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan Fu,
Montse Gonzalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alex Her-
zog, Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov,
Yuheng Kuang, Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu, Hen-
ryk Michalewski, Igor Mordatch, Karl Pertsch, Kanishka Rao, Krista Reymann, Michael Ryoo,
Grecia Salazar, Pannag Sanketi, Pierre Sermanet, Jaspiar Singh, Anikait Singh, Radu Soricut,
Huong Tran, Vincent Vanhoucke, Quan Vuong, Ayzaan Wahid, Stefan Welker, Paul Wohlhart,
Jialin Wu, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich. Rt-
2: Vision-language-action models transfer web knowledge to robotic control. In arXiv preprint
arXiv:2307.15818, 2023.

Joao Carvalho, An T Le, Mark Baierl, Dorothea Koert, and Jan Peters. Motion planning diffusion:
Learning and planning of robot motions with diffusion models. in 2023 ieee. In RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 1916–1923.

Shang-Fu Chen, Hsiang-Chun Wang, Ming-Hao Hsu, Chun-Mao Lai, and Shao-Hua Sun. Diffusion
model-augmented behavioral cloning. In International Conference on Machine Learning, pp.
7486–7510. PMLR, 2024.

Yixuan Chen, Hao Zhang, and Jian Liu. Time-aware world model for adaptive prediction and con-
trol. arXiv preprint arXiv:2506.08441, 2025.

10

https://arxiv.org/abs/2507.19468
https://proceedings.neurips.cc/paper_files/paper/2016/file/839ab46820b524afda05122893c2fe8e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/839ab46820b524afda05122893c2fe8e-Paper.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The Inter-
national Journal of Robotics Research, 2024.

Open X-Embodiment Collaboration, Abby O’Neill, Abdul Rehman, Abhinav Gupta, Abhiram Mad-
dukuri, Abhishek Gupta, Abhishek Padalkar, Abraham Lee, Acorn Pooley, Agrim Gupta, Ajay
Mandlekar, Ajinkya Jain, Albert Tung, Alex Bewley, Alex Herzog, Alex Irpan, Alexander Khaz-
atsky, Anant Rai, Anchit Gupta, Andrew Wang, Andrey Kolobov, Anikait Singh, Animesh Garg,
Aniruddha Kembhavi, Annie Xie, Anthony Brohan, Antonin Raffin, Archit Sharma, Arefeh
Yavary, Arhan Jain, Ashwin Balakrishna, Ayzaan Wahid, Ben Burgess-Limerick, Beomjoon Kim,
Bernhard Schölkopf, Blake Wulfe, Brian Ichter, Cewu Lu, Charles Xu, Charlotte Le, Chelsea
Finn, Chen Wang, Chenfeng Xu, Cheng Chi, Chenguang Huang, Christine Chan, Christopher
Agia, Chuer Pan, Chuyuan Fu, Coline Devin, Danfei Xu, Daniel Morton, Danny Driess, Daphne
Chen, Deepak Pathak, Dhruv Shah, Dieter Büchler, Dinesh Jayaraman, Dmitry Kalashnikov,
Dorsa Sadigh, Edward Johns, Ethan Foster, Fangchen Liu, Federico Ceola, Fei Xia, Feiyu Zhao,
Felipe Vieira Frujeri, Freek Stulp, Gaoyue Zhou, Gaurav S. Sukhatme, Gautam Salhotra, Ge Yan,
Gilbert Feng, Giulio Schiavi, Glen Berseth, Gregory Kahn, Guangwen Yang, Guanzhi Wang, Hao
Su, Hao-Shu Fang, Haochen Shi, Henghui Bao, Heni Ben Amor, Henrik I Christensen, Hiroki
Furuta, Homanga Bharadhwaj, Homer Walke, Hongjie Fang, Huy Ha, Igor Mordatch, Ilija Ra-
dosavovic, Isabel Leal, Jacky Liang, Jad Abou-Chakra, Jaehyung Kim, Jaimyn Drake, Jan Peters,
Jan Schneider, Jasmine Hsu, Jay Vakil, Jeannette Bohg, Jeffrey Bingham, Jeffrey Wu, Jensen
Gao, Jiaheng Hu, Jiajun Wu, Jialin Wu, Jiankai Sun, Jianlan Luo, Jiayuan Gu, Jie Tan, Jihoon
Oh, Jimmy Wu, Jingpei Lu, Jingyun Yang, Jitendra Malik, João Silvério, Joey Hejna, Jonathan
Booher, Jonathan Tompson, Jonathan Yang, Jordi Salvador, Joseph J. Lim, Junhyek Han, Kaiyuan
Wang, Kanishka Rao, Karl Pertsch, Karol Hausman, Keegan Go, Keerthana Gopalakrishnan, Ken
Goldberg, Kendra Byrne, Kenneth Oslund, Kento Kawaharazuka, Kevin Black, Kevin Lin, Kevin
Zhang, Kiana Ehsani, Kiran Lekkala, Kirsty Ellis, Krishan Rana, Krishnan Srinivasan, Kuan
Fang, Kunal Pratap Singh, Kuo-Hao Zeng, Kyle Hatch, Kyle Hsu, Laurent Itti, Lawrence Yun-
liang Chen, Lerrel Pinto, Li Fei-Fei, Liam Tan, Linxi ”Jim” Fan, Lionel Ott, Lisa Lee, Luca
Weihs, Magnum Chen, Marion Lepert, Marius Memmel, Masayoshi Tomizuka, Masha Itkina,
Mateo Guaman Castro, Max Spero, Maximilian Du, Michael Ahn, Michael C. Yip, Mingtong
Zhang, Mingyu Ding, Minho Heo, Mohan Kumar Srirama, Mohit Sharma, Moo Jin Kim, Naoaki
Kanazawa, Nicklas Hansen, Nicolas Heess, Nikhil J Joshi, Niko Suenderhauf, Ning Liu, Nor-
man Di Palo, Nur Muhammad Mahi Shafiullah, Oier Mees, Oliver Kroemer, Osbert Bastani,
Pannag R Sanketi, Patrick “Tree” Miller, Patrick Yin, Paul Wohlhart, Peng Xu, Peter David
Fagan, Peter Mitrano, Pierre Sermanet, Pieter Abbeel, Priya Sundaresan, Qiuyu Chen, Quan
Vuong, Rafael Rafailov, Ran Tian, Ria Doshi, Roberto Mart’in-Mart’in, Rohan Baijal, Rosario
Scalise, Rose Hendrix, Roy Lin, Runjia Qian, Ruohan Zhang, Russell Mendonca, Rutav Shah,
Ryan Hoque, Ryan Julian, Samuel Bustamante, Sean Kirmani, Sergey Levine, Shan Lin, Sherry
Moore, Shikhar Bahl, Shivin Dass, Shubham Sonawani, Shubham Tulsiani, Shuran Song, Sichun
Xu, Siddhant Haldar, Siddharth Karamcheti, Simeon Adebola, Simon Guist, Soroush Nasiriany,
Stefan Schaal, Stefan Welker, Stephen Tian, Subramanian Ramamoorthy, Sudeep Dasari, Suneel
Belkhale, Sungjae Park, Suraj Nair, Suvir Mirchandani, Takayuki Osa, Tanmay Gupta, Tatsuya
Harada, Tatsuya Matsushima, Ted Xiao, Thomas Kollar, Tianhe Yu, Tianli Ding, Todor Davchev,
Tony Z. Zhao, Travis Armstrong, Trevor Darrell, Trinity Chung, Vidhi Jain, Vikash Kumar, Vin-
cent Vanhoucke, Wei Zhan, Wenxuan Zhou, Wolfram Burgard, Xi Chen, Xiangyu Chen, Xiaolong
Wang, Xinghao Zhu, Xinyang Geng, Xiyuan Liu, Xu Liangwei, Xuanlin Li, Yansong Pang, Yao
Lu, Yecheng Jason Ma, Yejin Kim, Yevgen Chebotar, Yifan Zhou, Yifeng Zhu, Yilin Wu, Ying
Xu, Yixuan Wang, Yonatan Bisk, Yongqiang Dou, Yoonyoung Cho, Youngwoon Lee, Yuchen
Cui, Yue Cao, Yueh-Hua Wu, Yujin Tang, Yuke Zhu, Yunchu Zhang, Yunfan Jiang, Yunshuang
Li, Yunzhu Li, Yusuke Iwasawa, Yutaka Matsuo, Zehan Ma, Zhuo Xu, Zichen Jeff Cui, Zichen
Zhang, Zipeng Fu, and Zipeng Lin. Open X-Embodiment: Robotic learning datasets and RT-X
models. https://arxiv.org/abs/2310.08864, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. CoRR, abs/2010.11929, 2020. URL https://arxiv.org/abs/2010.11929.

11

https://arxiv.org/abs/2310.08864
https://arxiv.org/abs/2010.11929

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Benjamin Ehret, Christian Henning, Maria R. Cervera, Alexander Meulemans, Johannes von Os-
wald, and Benjamin F. Grewe. Continual learning in recurrent neural networks. In International
Conference on Learning Representations, 2021. URL https://arxiv.org/abs/2006.
12109.

Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid, Laura Downs, Adrian
Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning. In Alek-
sandra Faust, David Hsu, and Gerhard Neumann (eds.), Proceedings of the 5th Conference on
Robot Learning, volume 164 of Proceedings of Machine Learning Research, pp. 158–168. PMLR,
08–11 Nov 2022. URL https://proceedings.mlr.press/v164/florence22a.
html.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2020.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evo-
lution. In Advances in Neural Information Processing Systems 31, pp. 2451–
2463. Curran Associates, Inc., 2018. URL https://papers.nips.cc/paper/
7512-recurrent-world-models-facilitate-policy-evolution. https://
worldmodels.github.io.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019a.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. arXiv preprint arXiv:1811.04551,
2019b.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Mastering atari with discrete world models. arXiv preprint arXiv:2010.02193, 2020.

Danijar Hafner, Jurgis Pašukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738, 2020.

Shashank Hegde, Sumeet Batra, KR Zentner, and Gaurav Sukhatme. Generating behaviorally di-
verse policies with latent diffusion models. Advances in Neural Information Processing Systems,
36:7541–7554, 2023.

Shashank Hegde, Zhehui Huang, and Gaurav S Sukhatme. Hyperppo: A scalable method for find-
ing small policies for robotic control. In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pp. 10821–10828. IEEE, 2024.

Negin Heravi, Ayzaan Wahid, Corey Lynch, Peter R. Florence, Travis Armstrong, Jonathan Tomp-
son, Pierre Sermanet, Jeannette Bohg, and Debidatta Dwibedi. Visuomotor control in multi-object
scenes using object-aware representations. 2023 IEEE International Conference on Robotics and
Automation (ICRA), pp. 9515–9522, 2022. URL https://api.semanticscholar.org/
CorpusID:248798881.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020a. URL https://proceedings.neurips.cc/paper/2020/hash/
4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020b.

12

https://arxiv.org/abs/2006.12109
https://arxiv.org/abs/2006.12109
https://proceedings.mlr.press/v164/florence22a.html
https://proceedings.mlr.press/v164/florence22a.html
https://papers.nips.cc/paper/7512-recurrent-world-models-facilitate-policy-evolution
https://papers.nips.cc/paper/7512-recurrent-world-models-facilitate-policy-evolution
https://worldmodels.github.io
https://worldmodels.github.io
https://api.semanticscholar.org/CorpusID:248798881
https://api.semanticscholar.org/CorpusID:248798881
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Anthony Hu, Zak Murez, Nikhil Mohan, Sofia Dudas, Jeffrey Hawke, Vijay Badrinarayanan,
Roberto Cipolla, and Alex Kendall. Model-based imitation learning for urban driving. arXiv
preprint arXiv:2210.07729, 2022.

Siqiao Huang, Jialong Wu, Qixing Zhou, Shangchen Miao, and Mingsheng Long. Vid2world: Craft-
ing video diffusion models to interactive world models, 2025. URL https://arxiv.org/
abs/2505.14357.

Xiaoyu Huang, Yufeng Chi, Ruofeng Wang, Zhongyu Li, Xue Bin Peng, Sophia Shao, Borivoje
Nikolic, and Koushil Sreenath. Diffuseloco: Real-time legged locomotion control with diffusion
from offline datasets. arXiv preprint arXiv:2404.19264, 2024.

Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V Gool. Dynamic filter net-
works. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 29. Curran Associates, Inc.,
2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/
file/8bf1211fd4b7b94528899de0a43b9fb3-Paper.pdf.

Deqian Kong, Dehong Xu, Minglu Zhao, Bo Pang, Jianwen Xie, Andrew Lizarraga, Yuhao Huang,
Sirui Xie, and Ying Nian Wu. Latent plan transformer for trajectory abstraction: Planning as
latent space inference. Advances in Neural Information Processing Systems, 37:123379–123401,
2024.

Alex X Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent actor-critic:
Deep reinforcement learning with a latent variable model. arXiv preprint arXiv:1907.00953,
2019.

Yongyuan Liang, Tingqiang Xu, Kaizhe Hu, Guangqi Jiang, Furong Huang, and Huazhe Xu. Make-
an-agent: A generalizable policy network generator with behavior-prompted diffusion. arXiv
preprint arXiv:2407.10973, 2024a.

Zhixuan Liang, Yao Mu, Hengbo Ma, Masayoshi Tomizuka, Mingyu Ding, and Ping Luo. Skilldif-
fuser: Interpretable hierarchical planning via skill abstractions in diffusion-based task execution.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
16467–16476, 2024b.

Justin Lovelace, Varsha Kishore, Chao Wan, Eliot Shekhtman, and Kilian Q Weinberger. Latent
diffusion for language generation. Advances in Neural Information Processing Systems, 36, 2024.

Yunhao Luo, Chen Sun, Joshua B Tenenbaum, and Yilun Du. Potential based diffusion motion
planning. arXiv preprint arXiv:2407.06169, 2024.

Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-
Fei, Silvio Savarese, Yuke Zhu, and Roberto Martı́n-Martı́n. What matters in learning from offline
human demonstrations for robot manipulation. In arXiv preprint arXiv:2108.03298, 2021.

Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample-efficient world mod-
els. In International Conference on Learning Representations, 2023.

Vincent Micheli, Eloi Alonso, and François Fleuret. Storm: Efficient stochastic transformer based
world models for reinforcement learning. arXiv preprint arXiv:2310.09615, 2024.

Utkarsh Aashu Mishra, Shangjie Xue, Yongxin Chen, and Danfei Xu. Generative skill chaining:
Long-horizon skill planning with diffusion models. In Conference on Robot Learning, 2023.
URL https://api.semanticscholar.org/CorpusID:261685884.

NVIDIA, :, Niket Agarwal, Arslan Ali, Maciej Bala, Yogesh Balaji, Erik Barker, Tiffany Cai,
Prithvijit Chattopadhyay, Yongxin Chen, Yin Cui, Yifan Ding, Daniel Dworakowski, Jiaojiao
Fan, Michele Fenzi, Francesco Ferroni, Sanja Fidler, Dieter Fox, Songwei Ge, Yunhao Ge, Jin-
wei Gu, Siddharth Gururani, Ethan He, Jiahui Huang, Jacob Huffman, Pooya Jannaty, Jingyi Jin,
Seung Wook Kim, Gergely Klár, Grace Lam, Shiyi Lan, Laura Leal-Taixe, Anqi Li, Zhaoshuo
Li, Chen-Hsuan Lin, Tsung-Yi Lin, Huan Ling, Ming-Yu Liu, Xian Liu, Alice Luo, Qianli Ma,

13

https://arxiv.org/abs/2505.14357
https://arxiv.org/abs/2505.14357
https://proceedings.neurips.cc/paper_files/paper/2016/file/8bf1211fd4b7b94528899de0a43b9fb3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/8bf1211fd4b7b94528899de0a43b9fb3-Paper.pdf
https://api.semanticscholar.org/CorpusID:261685884

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Hanzi Mao, Kaichun Mo, Arsalan Mousavian, Seungjun Nah, Sriharsha Niverty, David Page, De-
spoina Paschalidou, Zeeshan Patel, Lindsey Pavao, Morteza Ramezanali, Fitsum Reda, Xiaowei
Ren, Vasanth Rao Naik Sabavat, Ed Schmerling, Stella Shi, Bartosz Stefaniak, Shitao Tang, Lyne
Tchapmi, Przemek Tredak, Wei-Cheng Tseng, Jibin Varghese, Hao Wang, Haoxiang Wang, Heng
Wang, Ting-Chun Wang, Fangyin Wei, Xinyue Wei, Jay Zhangjie Wu, Jiashu Xu, Wei Yang,
Lin Yen-Chen, Xiaohui Zeng, Yu Zeng, Jing Zhang, Qinsheng Zhang, Yuxuan Zhang, Qingqing
Zhao, and Artur Zolkowski. Cosmos world foundation model platform for physical ai, 2025. URL
https://arxiv.org/abs/2501.03575.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Charles Xu, Jianlan Luo, Tobias Kreiman, You Liang Tan, Lawrence Yunliang
Chen, Pannag Sanketi, Quan Vuong, Ted Xiao, Dorsa Sadigh, Chelsea Finn, and Sergey Levine.
Octo: An open-source generalist robot policy. In Proceedings of Robotics: Science and Systems,
Delft, Netherlands, 2024.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023.

William Peebles, Ilija Radosavovic, Tim Brooks, Alexei A Efros, and Jitendra Malik. Learning to
learn with generative models of neural network checkpoints. arXiv preprint arXiv:2209.12892,
2022.

Xue Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and Sergey Levine. Learning
agile robotic locomotion skills by imitating animals. 07 2020. doi: 10.15607/RSS.2020.XVI.064.

Alexander Popov, Alperen Degirmenci, David Wehr, Shashank Hegde, Ryan Oldja, Alexey
Kamenev, Bertrand Douillard, David Nistér, Urs Muller, Ruchi Bhargava, et al. Mitigating co-
variate shift in imitation learning for autonomous vehicles using latent space generative world
models. arXiv preprint arXiv:2409.16663, 2024.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning Complex Dexterous Manipulation with Deep Reinforce-
ment Learning and Demonstrations. In Proceedings of Robotics: Science and Systems (RSS),
2018.

Moritz Reuss, Maximilian Li, Xiaogang Jia, and Rudolf Lioutikov. Goal-conditioned imitation
learning using score-based diffusion policies. arXiv preprint arXiv:2304.02532, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp.
10674–10685. IEEE, 2022a. doi: 10.1109/CVPR52688.2022.01042. URL https://doi.
org/10.1109/CVPR52688.2022.01042.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022b.

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Perceiver-actor: A multi-task transformer for
robotic manipulation. In Proceedings of the 6th Conference on Robot Learning (CoRL), 2022.

Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration networks.
In Advances in Neural Information Processing Systems, pp. 2154–2162, 2016.

Wenhui Tan, Bei Liu, Junbo Zhang, Ruihua Song, and Jianlong Fu. Multi-task manipulation policy
modeling with visuomotor latent diffusion. ArXiv, abs/2403.07312, 2024. URL https://api.
semanticscholar.org/CorpusID:268364239.

Julen Urain, Niklas Funk, Jan Peters, and Georgia Chalvatzaki. Se(3)-diffusionfields: Learning
smooth cost functions for joint grasp and motion optimization through diffusion. 2023 IEEE
International Conference on Robotics and Automation (ICRA), pp. 5923–5930, 2022. URL
https://api.semanticscholar.org/CorpusID:252367206.

14

https://arxiv.org/abs/2501.03575
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1109/CVPR52688.2022.01042
https://api.semanticscholar.org/CorpusID:268364239
https://api.semanticscholar.org/CorpusID:268364239
https://api.semanticscholar.org/CorpusID:252367206

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Johannes von Oswald, Christian Henning, Benjamin F. Grewe, and João Sacramento. Continual
learning with hypernetworks. In International Conference on Learning Representations, 2020.
URL https://arxiv.org/abs/1906.00695.

Kai Wang, Dongwen Tang, Boya Zeng, Yida Yin, Zhaopan Xu, Yukun Zhou, Zelin Zang, Trevor
Darrell, Zhuang Liu, and Yang You. Neural network diffusion. arXiv preprint arXiv:2402.13144,
2024.

Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control:
A locally linear latent dynamics model for control from raw images. In Advances in Neural
Information Processing Systems, pp. 2746–2754, 2015.

Philipp Wu, Alejandro Escontrela, Danijar Hafner, Ken Goldberg, and Pieter Abbeel. Daydreamer:
World models for physical robot learning. arXiv preprint arXiv:2206.14176, 2022.

Zhou Xian and Nikolaos Gkanatsios. Chaineddiffuser: Unifying trajectory diffusion and keypose
prediction for robotic manipulation. In Conference on Robot Learning/Proceedings of Machine
Learning Research. Proceedings of Machine Learning Research, 2023.

Jiannan Xiang, Guangyi Liu, Yi Gu, Qiyue Gao, Yuting Ning, Yuheng Zha, Zeyu Feng, Tianhua
Tao, Shibo Hao, Yemin Shi, Zhengzhong Liu, Eric P. Xing, and Zhiting Hu. Pandora: Towards
general world model with natural language actions and video states. 2024.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020.

Hao Zhang, Zhihan Xu, Jian Liu, and Qingzhao Wang. Generalized and efficient planning with
scalable latent world models. arXiv preprint arXiv:2406.10667, 2024.

Weidong Zhang, Jian Liu, Lihe Xia, Qingzhao Wang, and Hongming Zhou. Safedreamer: Safe
reinforcement learning with world models. arXiv preprint arXiv:2307.07176, 2023.

Ruijie Zheng, Ching-An Cheng, Hal Daumé Iii, Furong Huang, and Andrey Kolobov. Prise: Llm-
style sequence compression for learning temporal action abstractions in control. In International
Conference on Machine Learning, pp. 61267–61286. PMLR, 2024.

Gaoyue Zhou, Hengkai Pan, Yann LeCun, and Lerrel Pinto. Dino-wm: World models on pre-trained
visual features enable zero-shot planning. arXiv preprint arXiv:2411.04983, 2024.

15

https://arxiv.org/abs/1906.00695

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 VAE LOSS DERIVATION

Since at ∼ N (π(st, θ), σ
2):

p(at | st, θ) =
1√
2πσ2

exp

(
− (at − π(st, θ))

2

2σ2

)
(6)

Our objective is to maximize the mELBO. The negative log likelihood of trajectory τk =
{skt , akt }Tt=1 for the given VAE parameters is:

L (τk | ϕenc, ϕdec, ϕwm)

= −
T∑

t=1

Eqϕenc (z|τk)

[
Epϕdec

(θ|z)
[
log p

(
akt | skt , θ

)]]
−

T∑
t=2

Eqϕenc (z|τk)

[
Epϕdec

(θ|z)
[
log pϕwm

(skt | skt−1, a
k
t−1)

]]
+ KL (qϕenc (z | τk) ∥ p(z)) (7)

Consider the second term in the above equation. On maximization akt−1 = π(skt−1, θ), and because
the inner quantity is a constant w.r.t. st we can add a harmless expectation Est∼π[.] (i.e., states
visited by the estimated policy, not necessarily those in the dataset), therefore it becomes:

Eqϕenc (z|τk)

[
Epϕdec

(θ|z)
[
Est∼π

[
log pϕwm

(skt | skt−1, π(s
k
t−1, θ))

]]]
= Eqϕenc (z|τk)

[
Epϕdec

(θ|z)

[
Est∼π

[
log

pϕwm
(skt | skt−1, π(s

k
t−1, θ))

pϕwm
(skt | skt−1, a

k
t−1)

]]]
+ Eqϕenc (z|τk)

[
Epϕdec

(θ|z)
[
Est∼π

[
log pϕwm

(skt | skt−1, a
k
t−1)

]]]
(8)

We can now substitute in the KL term, and drop the expectation in the last term (since the inner
terms only depend on skt−1 and not st ∼ π, θ, or z). Therefore, the loss now becomes:

L (τk | ϕenc, ϕdec, ϕwm)

= C +
1

2σ2

T∑
t=1

Eqϕenc (z|τk)

[
Epϕdec

(θ|z)
[
(akt − π(skt , θ))

2
]]

+

T∑
t=2

Eqϕenc (z|τk)

[
Epϕdec

(θ|z)
[
KL

(
pϕwm

(skt | skt−1, π(s
k
t−1, θ))

∥∥ pϕwm
(skt | skt−1, a

k
t−1)

)]]
−

T∑
t=2

log pϕwm(skt | skt−1, a
k
t−1)

+ KL (qϕenc
(z | τk) ∥ p(z)) (9)

For computational stability, we construct our decoder to be a deterministic function fϕdec
, i.e.,

pϕdec
(θ | z) becomes δ(θ − fϕdec

(z)). Further, if we have a trained world model, we can ap-
proximate skt with st (i.e., direct model output samples) in the second term. This is done so that we
can optimize the world model and policy correction separately with the teacher forcing and rollout

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

objectives (similar to that followed in Assran et al. (2025). Therefore:

L (τk | ϕenc, ϕdec, ϕwm)

= C +
1

2σ2

T∑
t=1

Eqϕenc (z|τk)
[
(akt − π(skt , fϕdec

(z)))2
]

+

T∑
t=2

Eqϕenc (z|τk)
[
KL

(
pϕwm(st | skt−1, π(s

k
t−1, fϕdec

(z)))
∥∥ pϕwm(st | skt−1, a

k
t−1)

)]
−

T∑
t=2

log pϕwm
(skt | skt−1, a

k
t−1)

+ KL (qϕenc
(z | τk) ∥ p(z))

Where C is a constant from the substitution. Enforcing p(z) = N (0, I), and ignoring constants, we
get:

L (τk | ϕenc, ϕdec, ϕwm) = LBC + LRO + LTF + LKL (10)

LBC =

T∑
t=1

Eqϕenc (z|τk)
[
(akt − π(skt , fϕdec

(z)))2
]

(11)

LRO =

T∑
t=2

Eqϕenc (z|τk)
[
KL

(
pϕwm(st | skt−1, π(s

k
t−1, fϕdec

(z)))
∥∥ pϕwm(st | skt−1, a

k
t−1)

)]
(12)

LTF =

T∑
t=2

(skt − ŝkt)
2 (13)

LKL = βkl

dim(z)∑
i=1

(
σ2
ei + µ2

ei − 1− log σ2
ei

)
(14)

where, LBC is the behavior cloning loss to train the policy decoder, LRO is the rollout loss to correct
the decoded policy’s actions using the world model, LTF is the teacher forcing loss to train the world
model, LKL is the KL loss to regularize the latent space, (µe, σe) = fϕenc

(τk), z ∼ N (µe, σe),
ŝkt ∼ pϕwm

(skt | skt−1, a
k
t−1) and βkl is the regularization weight.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.2 ABLATIONS

A.3 DIFFUSION MODEL ARCHITECTURE

Figure 8: Diffusion Architecture Ablation

Diffusion models typically adopt either UNet-
based Ho et al. (2020b) or Transformer-based Pee-
bles & Xie (2023) architectures (described as
medium ”m” in section A.8.1). To guide our choice
for the WARPD diffusion policy, we performed an
ablation study on the PushT task (Chi et al., 2024)
using an action horizon of 32. As shown in fig. 8,
the UNet model demonstrated faster initial learning,
achieving higher average success rates early in train-
ing. However, both architectures eventually con-
verged to comparable final success rates. For con-
sistency, we adopt the UNet architecture for all other
experiments.

A.4 DECODER SIZE

0 250 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

xs
s
m
l

(a) Trajectory length 500

0 250 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

xs
s
m
l

(b) Trajectory length 50

Figure 9: Effect of VAE decoder size: For long tra-
jectories, even the smallest decoder (xs) yields high
task performance, whereas short trajectories benefit
from a larger decoder.

An interesting experiment was the effect
of breaking a large trajectory into sub-
trajectories and how this affects the latent
space. A key takeaway from that experi-
ment was that for halfcheetah locomotion,
even small VAE decoders generated accurate
policies from trajectory snippets. Whereas,
for manipulation tasks from Metaworld, the
same-sized small decoder was not capable of
reconstructing the original policy. See sec-
tion A.6 for this experiment. This finding
prompted an ablation on the decoder size,
evaluating the average success rate of de-
coded policies across all 10 Metaworld tasks.
fig. 9 illustrates the performance of decoders
with varying sizes, denoted as xs (3.9M pa-
rameters), s (7.8M parameters), m (15.6M
parameters), and l (31.2M parameters). It’s

important to note that despite the substantial parameter count of the hypernetwork decoder, the re-
sulting inferred policy remains relatively small (< 100K parameters, see fig. 6). The results demon-
strate that increasing the decoder size consistently improves the average success rate of the decoded
policies. Refer section A.8.3 for more details regarding the decoder size characterization.

This contrasts with rollouts from the HalfCheetah environment, where even smaller decoders gen-
erated accurate policies from trajectory snippets. We hypothesize this discrepancy stems from two
key factors. First, the cyclic nature of HalfCheetah provides sufficient information within snippets
to infer the underlying policy. Second, the increased complexity of Metaworld tasks means that
snippets may lack crucial information for inference. For instance, in a pick-and-place task, a snippet
might only capture the “pick” action, leaving the latent without sufficient information to infer the
“place” action.

A.4.1 KL COEFFICIENT

A key hyperparameter in WARPD is the KL regularization term, βKL, used during VAE training. In
this section, we analyze its impact on the learned latent space using the PushT task with an action
horizon of 32. We train three VAEs with βKL values of 1e−7, 1e−9, and 1e−10. For evaluation, we
sample a trajectory of length 32, encode and decode it via the VAE to generate a policy, and then
execute this policy in the environment starting from the same initial state. We compute the MSE
between the final state reached after 32 steps and the corresponding state in the original trajectory.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 10: Effect of KL coefficient

fig. 10 in fig. 11 shows this metric across 3 seeds during training. Lower βKL values result in lower
final-state MSE, indicating better trajectory reconstruction. This is due to a more expressive, multi-
modal latent space made possible by weaker regularization, without compromising sampling, as
diffusion still operates effectively within this space. Visualizations are provided below in fig. 11.
Based on these results, we use βKL = 1e−10 in all PushT experiments.

Following the KL ablation experiment above, we analyzed the latent space of the encoded trajec-
tories with PCA, similar to that performed in section A.6. The three plots in fig. 11, show that the
trajectory encodings get closer and lose behavioral diversity when the KL coefficient is high.

(a) KL coefficient: 1e-7 (b) KL coefficient: 1e-9 (c) KL coefficient: 1e-10

Figure 11: Latent space representation of PushT trajectories at different KL coefficients

A.5 METAWORLD TASK DESCRIPTIONS

A.6 EFFECT OF TRAJECTORY SNIPPING ON LATENT REPRESENTATIONS

For most robotics use cases, it is impossible to train on long trajectories due to the computational
limitations of working with large batches of long trajectories. In some cases, it may also be ben-
eficial to generate locally optimum policies for shorter action horizons (as done for experiments
presented in section 4.1.1). Therefore, we analyze the effect of sampling smaller sections of trajec-
tories from the dataset. After training a VAE for the D4RL half-cheetah dataset on three policies
(expert, medium, and random), we encode all the trajectories in the mixed dataset to the latent space.
We then perform Principal Component Analysis (PCA) on this set of latents and select the first two
principal components. fig. 12a shows us a visualization of this latent space. We see that the VAE has

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Task Description
Window Open Push and open a window. Randomize window positions
Door Open Open a door with a revolving joint. Randomize door positions
Drawer Open Open a drawer. Randomize drawer positions
Dial Turn Rotate a dial 180 degrees. Randomize dial positions
Faucet Close Rotate the faucet clockwise. Randomize faucet positions
Button Press Press a button. Randomize button positions
Door Unlock Unlock the door by rotating the lock clockwise. Randomize door positions
Handle Press Press a handle down. Randomize the handle positions
Plate Slide Slide a plate into a cabinet. Randomize the plate and cabinet positions
Reach Reach a goal position. Randomize the goal positions

Table 2: Metaworld task descriptions and randomization settings

learned to encode the three sets of trajectories to be well separable. Next, we run the same experi-
ment, but now we sample trajectory snippets of length 100 from the dataset instead of the full-length
(1000) trajectories. fig. 12b shows us the PCA on the encoded latents of these trajectory snippets.
We see that the separability is now harder in the latent space. Surprisingly, we noticed that after
training our VAE on the snippets, the decoded policies from randomly snipped trajectories were still
faithfully behaving like their original policies. We believe that this is because the halfcheetah env is
a cyclic locomotion task, and all trajectory snippets have enough information to indicate its source
policy. More dimensions of the PCA are shown in fig. 13.

(a) Trajectory Length 1000 (b) Trajectory Length 100

Figure 12: Effect of trajectory snipping in HalfCheetah. Top two principal components of the
latent.

(a) Trajectory length 1000 (b) Trajectory length 100

Figure 13: Effect of trajectory snipping in HalfCheetah. Top third and fourth principal components
of the latent.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

To validate this hypothesis, we analyze our method on trajectory snippets for non-cyclic tasks. We
choose the MT10 suite of tasks in Metaworld (Yu et al., 2020) (note that these are different from the
original 10 tasks discussed in the rest of the paper. We utilize the hand-crafted expert policy for each
of the tasks in MT10 to collect trajectory data. For each task, we collect 1000 trajectories of length
500.

(a) Trajectory Length 500 (b) Trajectory Length 50

Figure 14: Effect of trajectory snipping in MT10. Top two principal components of the latent.

(a) Trajectory length 500 (b) Trajectory length 50

Figure 15: Effect of trajectory snipping in MT10. Top third and fourth principal components of
the latent.

fig. 14a shows the principal components of the latents of the full trajectories in the dataset, and
fig. 14b shows the same for the split trajectories. We can see that the separability of different tasks
is much harder in this case. More dimensions of the PCA are shown in fig. 15b. Further, we
noticed that the decoded policies from the trajectory snippets did not perform as well as the original
policies - for the same decoder size as the half cheetah task. This validates our hypothesis that the
snippets are unable to reproduce the original policy for non-cyclic tasks. To have the same degree of
behavior reconstruction as the half-cheetah tasks, we need a larger decoder model. This is discussed
in section A.4.

A.7 BEHAVIOR RECONSTRUCTION ANALYSIS

Here, we ask – Does WARPD reconstruct the original policies and reproduce diverse behaviors?

A.7.1 LOCOMOTION

First, we analyze the behavior reconstruction capability of different components of WARPD in loco-
motion domains. For this experiment, we use the halfcheetah dataset from D4RL (Fu et al., 2020).
The parameters used for this experiment are shown in section A.8.5. Each trajectory in this dataset
has a length of 1000. We combine trajectory data from three original behavior policies provided in
this dataset: expert, medium, and random. Following (Batra et al., 2023), we track the foot contact
timings of each trajectory as a metric for measuring behavior. For each behavior policy, we get 32
trajectories. These timings are normalized to the trajectory length and are shown in fig. 16. For each
plot, the x-axis denotes the foot contact percentage of the front foot, while the y-axis denotes the
foot contact percentage of the back foot.

We first visualize the foot contact timings of the original policies in fig. 16a. We see that different
running behaviors of the half cheetah can be differentiated in this plot. Then, we train the VAE
model on this dataset to embed our trajectories into a latent space. We then apply the hypernetwork

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

decoder to generate policies from these latents. These policies are then executed on the halfcheetah
environment, to create trajectories. We plot the foot contact timings of these generated policies
in fig. 16b. We see that the VAE captures each of the original policy’s foot contact distributions,
therefore empirically showing that the assumption pϕdec

(θ | z) = δ(θ − fϕdec
(z)) is reasonable.

Then, we train a latent diffusion model conditioned on a behavior specifier (i.e., one task ID per
behavior). In fig. 16c, we show the distribution of foot contact percentages of the policies generated
by the behavior specifier conditioned diffusion model. We see that the diffusion model can learn
the conditional latent distribution well, and the behavior distribution of the decoded policies of the
sampled latent matches the original distribution. Apart from visual inspection, we also track rewards
obtained by the generated policies and empirically calculated Jensen Shannon Divergence between
the original and obtained foot contact distributions and observe that WARPD maintains behavioral
diversity in this locomotion task. See below for more details.

(a) Original policies that provide
the trajectory dataset.

(b) VAE generated policies from
trajectories.

(c) Diffusion generated policies
from trajectories.

Figure 16: Foot-contact times shown for various trajectories on the Half Cheetah task. We use
foot contact times as the chosen metric to show different behaviors for the half cheetah run task
by different policies. The first plot on the left shows the distribution of foot contact percentages for
each of the three original policies. The second plot in the center denotes the foot contact percentages
for the policies generated by the trained VAE when provided each original policy’s entire trajectory.
The third plot on the right denotes the foot contact percentages for the policies generated by the
diffusion model, trained without any task conditioning.

We can analyze the behavior reconstruction capability of WARPD by comparing the rewards ob-
tained during a rollout. The VAE parameters used for this experiment are shown in section A.8.5.
fig. 17 shows us the total objective obtained by the original, VAE-decoded, and diffusion-denoised
policies. We see that the VAE-decoded and diffusion-generated policies achieve similar rewards to
the original policy for each behavior.

Apart from these plots, we use Jensen-Shannon divergence to quantify the difference between two
distributions of foot contact timings. table 3 shows the JS divergence between the empirical distribu-
tion of the foot contact timings of the original policies and those generated by WARPD. The lower
this value is, the better. As a metric to capture the stochasticity in the policy and environment, we get
the JS divergence between two successive sets of trajectories generated by the same original policy,
which we shall denote SOS (Same as source). A policy having a JS divergence score lesser than
this value indicates that that policy is indistinguishable from the original policy by behavior. As a
baseline for this experiment, we train a large (5-layer, 512 neurons each) behavior-conditioned MLP
on the same mixed dataset with MSE loss. We see that policies generated by WARPD consistently
achieve a lower JS divergence score than the MLP baseline for expert and medium behaviors. The
random behavior is difficult to capture as the actions are almost Gaussian noise. Surprisingly, for the
HalfCheetah environment, policies generated by WARPD for expert and medium had lower scores
than SOS, making it behaviorally indistinguishable from the original policy.

A.7.2 MANIPULATION

To verify the behavior reconstruction capabilities of WARPD in manipulation, we also experiment
on the D4RL Adroit dataset (Rajeswaran et al., 2018). We choose a tool use task, where the agent

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

expert medium random
Tasks

0

2000

4000

6000

8000

10000

12000

Re
wa

rd
s

Original
VAE
Diffusion

(a) HalfCheetah

expert medium random
Tasks

0

1000

2000

3000

4000

5000

6000

Re
wa

rd
s

Original
VAE
Diffusion

(b) Ant

expert medium random
Tasks

0

1000

2000

3000

4000

5000

Re
wa

rd
s

Original
VAE
Diffusion

(c) Walker

Figure 17: Reconstruction Rewards: For each of the 3 environments shown above, the generated
policy from trajectory decoded VAE and task-conditioned diffusion model, achieves similar total
objective as the original policies. Each bar indicates the mean total objective obtained with error
lines denoting the standard deviation.

Environment Source Policy Target Policy
SOS MLP WARPD

Ant
Expert 0.187 ± 0.142 1.272 ± 0.911 0.510 ± 0.159

Medium 0.624 ± 0.232 1.907 ± 0.202 1.328 ± 0.283
Random 1.277 ± 1.708 4.790 ± 0.964 8.859 ± 0.792

HalfCheetah
Expert 0.158 ± 0.146 2.810 ± 1.139 0.088 ± 0.050

Medium 0.275 ± 0.196 0.692 ± 0.787 0.194 ± 0.157
Random 0.0467 ± 0.009 0.11 ± 0.009 0.104 ± 0.0187

Walker2D
Expert 0.342 ± 0.329 2.879 ± 1.493 1.093 ± 0.310

Medium 0.078 ± 0.058 0.165 ± 0.126 0.155 ± 0.091
Random 0.080 ± 0.004 60.514 ± 52.461 2.776 ± 1.260

Table 3: Behavior Reconstruction: JS divergence between foot contact distributions from source
and target policies. The lower the value, the better.

must hammer a nail into a board. We utilize their 5000 expert and 5000 human-cloned trajectories,
to train our WARPD model. The implementation details are in section A.8.6. Then, we evaluate
the behavior of the original and generated policy on the following metrics: Mean object height -
Average height of the object during eval; Alignment error (goal distance) - Mean distance between
the target and the final goal position; Max nail impact - Maximum value of the nail impact sensor
during eval; Contact ratio - Fraction of time steps where the nail impact sensor value exceeds 0.8;
Object manipulation score - Proportion of time steps where the object height exceeds 0.04 meters.
From fig. 18, we can see that the policy generated by WARPD behaves similarly to the original
policy.

A.8 IMPLEMENTATION DETAILS

The following are the hyperparameters we use for our experiments:

A.8.1 BASELINE DIFFUSION POLICY MODEL

To train the diffusion policy baseline model shown in fig. 6, we utilize the training script provided
by the authors of DP here:

https://colab.research.google.com/drive/1gxdkgRVfM55zihY9TFLja97cSVZOZq2B?usp=sharing.

To set the model size we use the following parameters:

For the ablation described in section A.3, we use a transformer architecture, the details of which are:

23

https://colab.research.google.com/drive/1gxdkgRVfM55zihY9TFLja97cSVZOZq2B?usp=sharing

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

cloned expert
Tasks

0.00

0.05

0.10

0.15

0.20
Mean Object Height

Original
Diffusion

cloned expert
Tasks

0.005

0.000

0.005

0.010

0.015

0.020

0.025

Mean Goal Distance

cloned expert
Tasks

0.0

0.2

0.4

0.6

0.8

1.0

Max Nail Impact

cloned expert
Tasks

0.01

0.00

0.01

0.02

0.03

0.04

Contact Ratio

cloned expert
Tasks

0.0

0.2

0.4

0.6

0.8

1.0
Object Manipulation Score

Figure 18: Behavior Reconstruction for Manipulation: We track these metrics on the Adroit ham-
mer task, and the WARPD-generated policy behaves similarly to the original policy. The ‘cloned’
bars represent metrics with respect to a human demonstration behavior cloned policy, and ‘expert’
bars represent metrics from an RL-trained policy.

Size Diffusion Step Embed Dim Down Dims Kernel Size
extra-small: (s) 64 [16, 32, 64] 5

small: (s) 256 [32, 64, 128] 5
large: (m) 256 [128, 256, 256] 5
large: (l) 256 [256, 512, 1024] 5

extra large: (xl) 512 [512, 1024, 2048] 5

Table 4: Architectural configurations for the ConditionUnet1D Diffusion Policy (DP) across differ-
ent model sizes.

Size Diffusion Step Embed Dim Model Dim # Layers # Heads
extra-small: (xs) 64 64 3 2

small: (s) 128 128 4 4
medium: (m) 256 256 6 8
large: (l) 256 512 8 8

extra-large: (xl) 512 768 12 12

Table 5: Architectural configurations for Transformer-based Diffusion models across different
model sizes.

A.8.2 VAE ENCODER DETAILS

For the encoder, we first flatten the trajectory to form a one-dimensional array, which is then fed to
a Multi-Layer Perceptron with three hidden layers of 512 neurons each.

A.8.3 VAE HYPERNETWORK DECODER SIZE CHARACTERIZATION

For the hypernetwork, we utilize an HMLP model (a full hypernetwork) from the
https://hypnettorch.readthedocs.io/en/latest/ package with default parameters. We condition the
HMLP model on the generated latent of dimension 256. To vary the size of the decoder, as ex-
plained in section A.4, we set the hyperparameter in the HMLP as shown in table 6

Size No. of parameters layers
xs 3.9M [50, 50]
s 7.8M [100, 100]
m 15.6 M [200, 200]
l 31.2M [400, 400]

Table 6: VAE size varying parameters

24

https://hypnettorch.readthedocs.io/en/latest/

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

A.8.4 DIFFUSION MODEL PARAMETERS

For all our experiments, we utilize the same ConditionalUnet1D network from Chi et al. (2024) as
the diffusion model. This is the same as the DP-medium (m) model described in section A.8.1.

A.8.5 MUJOCO LOCOMOTION TASKS

We use the following hyperparameters to train VAEs for all D4RL mujoco tasks shown in the paper.
To show the effect of shorter trajectories in section A.6, we change the Trajectory Length to 100.

Parameter Value
Trajectory Length 1000
Batch Size 32
VAE Num Epochs 150
VAE Latent Dimension 256
VAE Decoder Size s
Evaluation MLP Layers {256, 256}
VAE Learning Rate 3× 10−4

KL Coefficient 1× 10−6

Diffusion Num Epochs 200

Table 7: Mujoco locomotion hyperparameters.

A.8.6 ADROIT HAMMER TASK

We use the same hyperparameters as table 7 and override the following hyperparameters to train
VAEs for the D4RL Adroit hammer task shown in the paper.

Parameter Value
Trajectory Length 128
VAE Num Epochs 20
Diffusion Num Epochs 10

Table 8: Adroit hammer hyperparameters.

Further, for the experiment where we show the hammer task can be composed of sub-tasks, we
change the Trajectory Length to 32 to enable WARPD to learn the distribution of shorter horizon
policies.

A.8.7 PUSHT AND ROBOMIMIC WARPD

For all the experiments shown in section 4.1.1, we use the same hyper-parameters described in
table 7, and override the following:

Parameter Value
Trajectory Length 256
VAE Num Epochs 1000
Diffusion Num Epochs 1000
Diffusion Model size l
VAE Decoder Size l
VAE KL coefficient 1e− 10

Table 9: PushT WARPD hyperparameters.

A.8.8 METAWORLD TASKS

For all the experiments shown in section 4.1.2, we use the same hyper-parameters described in
table 7, and override the following:

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Parameter Value
Trajectory Length 500
VAE Num Epochs 100
Diffusion Num Epochs 100
VAE Decoder Size xs

Table 10: Metaworld hyperparameters.

To show the effect of shorter trajectories in section A.6, we change the Trajectory Length to 50.

A.9 COMPUTE RESOURCES

Each VAE and diffusion experiment was run on jobs that were allocated 6 cores of a Intel(R)
Xeon(R) Gold 6154 3.00GHz CPU, an NVIDIA GeForce RTX 2080 Ti GPU, and 108 GB of RAM.

Our observations indicate that the training time for each component of WARPD is approximately
equivalent to that of a full DP training run: traintime(DP) ≃ traintime(VAEWARPD) ≃
traintime(DiffusionWARPD)

Therefore, the total training time for WARPD is approximately 2 ∗ traintime(DP). To provide a
concrete example, for the PushT task with image observations, using a compute configuration of a
Tesla P100-PCIE-16GB GPU, 16 Intel Xeon Gold 6130 CPU cores, and 64GB RAM, we observed
the following wall-clock training times:

• 2000 epochs of DP training: 13 hours 8 minutes
• 1000 epochs of WARPD’s VAE training: 12 hours 32 minutes
• 1000 epochs of WARPD’s diffusion training: 13 hours 37 minutes

26

	Introduction
	Related Work
	Imitation Learning and Diffusion for Robotics
	Hypernetworks and Policy Generation
	World Models

	Method & Problem Formulation
	Latent Policy Representation
	Loss function

	Experiments
	Empirical Evaluation of Contributions
	Longer Action Horizons & Robustness to Perturbations
	Low Inference Cost

	Ablations
	Vision Observation Scaling
	Behavior Analysis

	Limitations and Future Work
	Conclusion
	Appendix
	VAE loss derivation
	Ablations
	Diffusion Model Architecture
	Decoder size
	KL coefficient

	Metaworld task descriptions
	Effect of Trajectory snipping on Latent Representations
	Behavior Reconstruction Analysis
	Locomotion
	Manipulation

	Implementation Details
	Baseline Diffusion Policy model
	VAE Encoder details
	VAE Hypernetwork decoder size characterization
	Diffusion model parameters
	Mujoco locomotion tasks
	Adroit Hammer task
	PushT and Robomimic WARPD
	Metaworld tasks

	Compute Resources

