Under review as a conference paper at ICLR 2026

WARPD: WORLD MODEL ASSISTED REACTIVE
PoLIiCcY DIFFUSION

Anonymous authors
Paper under double-blind review

ABSTRACT

With the increasing availability of open-source robotic data, imitation learning has
become a promising approach for both manipulation and locomotion. Diffusion
models are now widely used to train large, generalized policies that predict con-
trols or trajectories, leveraging their ability to model multimodal action distribu-
tions. However, this generality comes at the cost of larger model sizes and slower
inference, an acute limitation for robotic tasks requiring high control frequencies.
Moreover, Diffusion Policy (DP), a popular trajectory-generation approach, suf-
fers from a trade-off between performance and action horizon: fewer diffusion
queries lead to larger trajectory chunks, which in turn accumulate tracking errors.
To overcome these challenges, we introduce WARPD (World model Assisted Re-
active Policy Diffusion), a method that generates closed-loop policies (weights for
neural policies) directly, instead of open-loop trajectories. By learning behavioral
distributions in parameter space rather than trajectory space, WARPD offers two
major advantages: (1) extended action horizons with robustness to perturbations,
while maintaining high task performance, and (2) significantly reduced inference
costs. Empirically, WARPD outperforms DP in long-horizon and perturbed en-
vironments, and achieves multitask performance on par with DP while requiring
only ~ 1/45th of the inference-time FLOPs per step.

State-Conditioned Policy Generation 1 Task-Conditioned Policy Generation

q
=~ ~ = o s e

3 < c Y - . . Iﬁ —:
2T SNV S ~
:
1

(=)
1+ [1 4+
WARPD WARPD I WARPD WARPD

'T T T i Peg Window

@ ' " |
) Gaussian I . Parameter Environment
I\ | Noise DCondltlonlng T) Policy * Generation “ Interactions

Figure 1: WARPD generates policies from heterogeneous trajectory data. With state-
conditioned policy generation, the diffusion model can run inference at a lower frequency.
With task-conditioned policy generation, the generated policies can be small yet maintain task-
specific performance. Demonstrations of this work can be found on the project website:
https://sites.google.com/view/warpd/home.

—

1 INTRODUCTION

The rise of open-source robotic datasets has made imitation learning a promising approach for
robotic manipulation and locomotion tasks (Collaboration et al., 2023} [Peng et al., [2020). While
methods like Behavioral Cloning (Florence et al.l [2022)) and transformer-based models (e.g., RT-1
(Brohan et al., 2022)) have shown promise, they struggle with multimodal action distributions. For
example, in navigation tasks where both “turn left” and “turn right” are valid, these models often
predict an averaged action, i.e., “go straight”, leading to suboptimal performance.

Diffusion models offer a compelling alternative, providing continuous outputs and learning multi-
modal action distributions (Tan et al.l 2024). Action trajectory diffusion for robotic tasks (Chi
et al.l 2024) has shown promise but incurs high computational costs, particularly at high control

https://sites.google.com/view/warpd/home

Under review as a conference paper at ICLR 2026

frequencies. Moreover, such trajectory diffusion models are susceptible to the trade-off between
performance and action horizon (or action chunk size, representing the number of environment in-
teractions between consecutive trajectory generations). Fewer diffusion queries lead to larger action
chunks, giving greater trajectory tracking errors.

To overcome these limitations, we introduce World model Assisted Reactive Policy Diffusion
(WARPD), a novel approach that uses latent diffusion and a world model to generate closed-
loop policies directly in parameter space, bypassing trajectory generation. WARPD first encodes
demonstration trajectories into a latent space, then learns their distribution using a diffusion model,
and finally decodes them into policy weights via a hypernetwork (Ha et al.| [2016). The generated
policy is also optimized with model-based imitation learning using a co-trained world (dynamics)
model (Ha & Schmidhuber, 2018), which helps in understanding the environment transitions dur-
ing training. This approach leverages the success of latent diffusion techniques in vision (Rombach
et al.| [2022b)) and language (Lovelace et al., 2024)), and combines them with learned dynamics mod-
els, bringing their advantages to robotic control. The world model, and accompanying loss terms,
help the agent learn the optimal policy that can be backpropagated through the learned (differen-
tiable) dynamics, and also apply corrective actions to bring the agent states back into the distri-
bution of the input trajectory dataset. For WARPD, the action horizon corresponds to the number
of environment interactions between consecutive policy weight generations. To achieve trajectory
encoding and policy parameter decoding, we derive a novel objective function described in sec-
tion and show that we can approximate its components with a hypernetwork-based VAE and
a World Model, and optimize it using a novel loss function described in section 3.2] This paper
provides the following key contributions:

1. Theoretical Foundations for generating policies: By integrating concepts from latent
diffusion, hypernetworks, and world models, we derive a novel objective function, which
when optimized, allows us to generate policy parameters instead of action trajectories.

2. Longer Action Horizons & Robustness to Perturbations: By generating closed-loop
policies under learned dynamics, WARPD mitigates trajectory tracking errors, enabling
policies to operate over extended time horizons with fewer diffusion queries. Additionally,
closed-loop policies are reactive to environmental changes, ensuring WARPD-generated
policies remain robust under stochastic disturbances.

3. Lower Inference Costs: The computational burden of generalization is shifted to the dif-
fusion model, allowing the generated policies to be smaller and more efficient.

We validate these contributions through experiments on the PushT task (Chi et al.,|2024]), the Lift and
Can tasks from Robomimic (Mandlekar et al.,[2021), and 10 tasks from Metaworld |Yu et al.|(2020).
On Metaworld, WARPD achieves comparable performance to Diffusion Policy but with a ~ 45x
reduction in FLOPs per step, representing a significant improvement in computational efficiency
(FLOPs per step are the floating point operations, amortized over all steps of the episode). Analysis
across a range of benchmark robotic locomotion and manipulation tasks, demonstrates WARPD’s
ability to accurately capture the behavior distribution of diverse trajectories, showcasing its capacity
to learn a distribution of behaviors.

2 RELATED WORK

2.1 IMITATION LEARNING AND DIFFUSION FOR ROBOTICS

Behavioral cloning has progressed with transformer-based models such as PerAct (Shridhar et al.,
2022) and RT-1 (Brohan et al., 2022)), which achieve strong task performance. Vision-language mod-
els like RT-2 (Brohan et al.,[2023) interpret actions as tokens, while RT-X (Collaboration et al.,[2023))
generalizes across robot embodiments. Object-aware representations (Heravi et al., [2022), energy-
based models, and temporal abstraction methods (implicit behavioral cloning (Florence et al.,[2022)),
sequence compression (Zheng et al., [2024)) improve multitask learning. DBC (Chen et al., 2024)
increases robustness to sensor noise (this is complementary to WARPD, which targets dynamics
perturbations such as object shifts or execution-time disturbances). Diffusion models, originally
introduced for generative modeling (Ho et al., 2020a; [Rombach et al., 2022a), have become pow-
erful tools for robotics. Trajectory-based approaches capture multimodal action distributions (Chi
et al.| [2024), while goal-conditioned methods such as BESO (Reuss et al.| [2023) and Latent Dif-
fusion Planning (Kong et al., 2024) improve efficiency through latent conditioning. Diffusion has

Under review as a conference paper at ICLR 2026

also been applied to grasping and motion planning (Urain et al.| 2022} [Luo et al., 2024} (Carvalho
et al.), skill chaining (Mishra et al.,[2023)), and locomotion (Huang et al.,|2024)). Hierarchical exten-
sions including ChainedDiffuser (Xian & Gkanatsios, |2023)), SkillDiffuser (Liang et al.,|2024b), and
multitask latent diffusion (Tan et al., [2024) address long-horizon planning. Recently, OCTO (Octo
Model Team et al., 2024) demonstrates diffusion-based generalist robot policies. RDP (Xue et al.}
2025) performs diffusion in latent action chunk space to speed up inference.

2.2 HYPERNETWORKS AND POLICY GENERATION

Hypernetworks, introduced by [Ha et al.| (2016)), generate parameters for secondary networks and
have been applied in multiple domains. They were first used for meta-learning in one-shot learning
tasks (Bertinetto et al.l 2016) and more recently extended to robot policy representations (Hegde
et al.,|2024). This direction aligns with Dynamic Filter Networks (Jia et al.,2016), which emphasize
adaptability to input data. Latent Diffusion Models (LDMs) have also been used to model training
dynamics in parameter spaces (Peebles et al. [2022). LDMs have enabled behavior-conditioned
policies from text (Hegde et al., 2023) and trajectory embeddings (Liang et al., [2024a)), as well as
architectures distributions such as ResNets (Wang et al.,|2024)). Unlike Hegde et al.|(2023) and Liang
et al.| (2024al)), which rely on pre-collected policy datasets, WARPD requires a dataset of trajectories.

2.3 WORLD MODELS

Ha & Schmidhuber| (2018) introduced world models for forecasting in latent space. PlaNet (Hafner,
et al., 2019b) added pixel-based dynamics learning and online planning. Dreamer (Hafner et al.,
2019a)) learned latent world models with actor-critic RL for long horizons, followed by DreamerV2
(Hafner et al.l [2020) with discrete representations achieving human-level Atari, and DreamerV3
(Hafner et al., 2023)) scaling across domains. IRIS (Micheli et al |2023) applied transformers for
sequence modeling, reaching superhuman Atari in two hours. SLAC (Lee et all 2019) showed
stochastic latent variables accelerate RL from high-dimensional inputs. VINs (Tamar et al., 2016)
embedded differentiable value iteration for explicit planning, while E2C (Watter et al., [2015) com-
bined VAEs with locally linear dynamics. DayDreamer (Wu et al., 2022)) enabled real robot learning
in one hour, and MILE (Hu et al., 2022)) adapted Dreamer to CARLA with 31% gains. [Popov et al.
(2024) scaled model-based imitation learning to large self-driving datasets. Recent work includes
SafeDreamer (Zhang et al. [2023)) for safety, STORM (Micheli et al.l [2024) with efficient trans-
formers, UniZero (Zhang et al., 2024) for joint model-policy optimization, and Time-Aware World
Models (Chen et al., |2025) capturing temporal dynamics. Beyond these, large-scale pretraining
and multimodal foundations extend world models. V-JEPA 2 (Assran et al., [2025) demonstrated
self-supervised video models. DINO-based methods, including Back to the Features (Baldassarre
et al.l 2025) and DINO-WM (Zhou et al) 2024)), leverage pre-trained visual features. NVIDIA’s
Cosmos platform (NVIDIA et al., [2025) proposes a foundation model ecosystem for physical Al
Vid2World (Huang et al., 2025) adapts video diffusion models to interactive world modeling, and
Pandora (Xiang et al.|[2024) integrates natural language actions with video states.

3 METHOD & PROBLEM FORMULATION

Qg ooy @yt ..
(el Trajectol Noising
..... Encoder Process
Zq
eacher
ing?

{26, 8¢-1,- .+, 81-W)

Task Identifier Conditioning

We address policy neural network
weight generation, inspired by [Hegde
et al.|(2023)), which used latent diffu-
sion to model policy parameter distri-
butions but relied on policy datasets

o[that are often unavailable. Our
netwwork Dq method, WARPD, instead trains on
Decodet” 20| AJ zz1| Denoising trajectory datasets through a two-step

Z U-Net) c .
‘—'fv Stage 1: World Model VAE| Stage 2: Latent Diffusion process: _a variational autoencher
(VAE) with weak KL regulariza-

Figure 2: WARPD: Stage 1: Pre-train a VAE and world tion encodes trajectories into a latent
model. The VAE encodes trajectories into a latent space and ~space, decoded by a conditioned hy-
decodes them as policy parameters, which are optimized for pernetwork into policy weights opti-
behavior cloning and trajectory tracking With teacher forc- mized with a co-trained world model.
ing enabled, the world model is optimized; when disabled, During “teacher forcing”, the world
it optimizes the VAE. Stage 2: Train a conditional latent dif- model is trained to model the state
fusion model to learn the latent distribution. transitions using ground truth data.

Under review as a conference paper at ICLR 2026

We use this trained world model to guide the generated policy to always be in the desired trajec-
tory state distribution. Then, a diffusion model learns the latent distribution (see fig. .

Compared to |Hegde et al.| (2023)), which encodes policy parameters and employs a graph hypernet-
work with a MSE loss on parameter reconstruction, our approach differs as it: (1) encodes trajecto-
ries as opposed to parameters, into latent space (i.e., we do not require a dataset of policies) (2) uses
a simple hypernetwork, (3) applies a behavior cloning loss (detailed in section[3.3|& section[3.2)) on
the generated policy, and (4) learns a world model for predicting observations given the action in an
environment. Below we discuss the problem formulation and derivation.

3.1 LATENT POLICY REPRESENTATION

We begin by formulating our approach for unconditional policy generation. Assume a distribution
over stochastic policies, where variability reflects behavioral diversity. Each policy is parameterized
by 6, with (-, 8) denoting a sampled policy and p(f) the parameter distribution. Sampling a policy
corresponds to drawing 6 ~ p(6). When a policy interacts with the environment, it gives us a tra-
jectory T = {4, a;}1_,. We assume multiple such trajectories are collected by repeatedly sampling
and executing the corresponding policy. This enables a heterogeneous dataset, e.g., from humans
or expert agents. For a given 6, actions are noisy: a; ~ N (7(s,0),0?).

Our objective is to recover the distribution p(#) that generated the trajectory dataset. We posit a
latent variable z capturing behavioral modes, and assume conditional independence: p(7 | z,6) =
p(7 | 0). Given trajectory data, we maximize the likelihood log p(7). To do so, we derive a modified
Evidence Lower Bound (mELBO) that incorporates p(6) (see below).

logp(7) = log / / p(7,0,2)dzdf (Introduce policy parameter 6 and latent variable z)
= log//p(T | z,0)p(0 | z2)p(z) dzdf (Apply the chain rule)

p(r | 2, 9 (0 | 2)p(z)
log// Gl q(z | 7)dzdo (la)

(Introduce a varlatlonal distribution ¢(z | 7), approximating the true posterior p(z | 7))

= log / Epo2) {Wq(z | T)} dz (1b)
> Eqzm) [log <]Ep(9|z) [Iq)((: || :_; O)lp() ﬂ (Jensen’s inequality)
,O))] = Eqezr llog (a(z | 7)) — log (p(2))] (lc)

Eq(zir) [log (Eporz) [p(7 | 2
= Ey(z)7) [log (Ep(9|z) [p(T | 9)})} —KL(g(z | 7) || p(2)) (cond. independence) (1d)
> Eqeair) [Epeor) log (p(7 | 0))]] — KL(q(z | 7) || p(2)) (Jensen’s inequality) ~ (le)

Assuming the state transitions are Markov and s; is independent of 6, the joint likelihood of the
entire sequence {(s1,a1), (s2,a2),...,(sr,ar)} (.e., p(r | 8)) is given by:

p(s1,a1,..., s ar | 0) = p(s1)p(ai | 51,0 Hp st | se—1,ai-1)p(ar | s¢,0) (2a)

logp(s1,a1,...,s7,ar | 0) =logp(s1) +1ng(a1 | s1,0)
T
+ 3 logp(sy | se—1,ai-1) +logp(as | 51,0)] (2b)
t=2
Substituting 2b in le:

logp(7) > Ey(zir) [Epeal2) llog (p(7 [0))]] — KL(q(z | 7) || p(2))

T T
]Ep(9|z) [Z log p(az | 5¢,0) + Zlogp(st | St—laat—l)‘|‘|

CKL(:))+ A G)

=Eqez1m)

Under review as a conference paper at ICLR 2026

Where A consists of log p(s1), and since this cannot be subject to maximization, we shall ignore it.

Therefore, our modified ELBO is:

T T
Eqz1r) | Epeol2) Z log p(ay | s¢,0) +Zlogp(5t | si—1,a0-1) | | = KL(q(z | 7) || p(2)) 4

=1 =2
¢ Behavior Cloning ¢ World Model KL Regularizer

3.2 LOSS FUNCTION

Since we now have a modified ELBO objective, we shall now try to approximate its components
with a variational autoencoder and a world model. Let ¢, be the parameters of the VAE encoder
that variationally maps trajectories to z, ¢g4.. be the parameters of the VAE decoder, and ¢,
be the world model parameters. We assume the latent z is distributed with mean zero and unit
variance. We construct the VAE decoder to approximate p(6 | z) with py,. (6 | z). Considering

ai ~ N(m(s4,0),02), and 71, = {s¥, aF}L |, we derive our VAE loss function as:

T
Lpe = By, (aro [(@F = 7(sF, fpue(2)))°]

t=1

T
Lro = ZE%SM(Z\W) [KL(p¢wm(St | 85567177(85717]%{1“(2))) || Pouwm (St | Sfflvaitl))]

t=2
T dim(z)
Lrp = Z(Sf - §f)2 Lxr = Bu Z (Ufi + ufﬂ. —1—log USI_)

t=2 i=1

L ({sF,af Y1 | Gencs aees bum) = Lpe + Lro + Lrr + Lir (5)

where, £ ¢ is the behavior cloning loss to train the policy decoder, £ ro is the rollout loss to correct
the decoded policy’s actions using the world model, L7 is the teacher forcing loss to train the world
model, and L, is the KL loss to regularize the latent space. 6 is obtained from the hypernetwork
decoder fg,,.(2). (ke,00) = f¢cnc({si€’ af}?:l)’ z .~ N(:U'e’ c)s ‘§1’£€ ~ Phum (8? | Sicflv aﬂ]&tl)
and Sy is the regularization weight. The complete derivation is shown in section [A.T] Since the
decoder in the VAE outputs the parameter of a secondary network, we shall use a conditional hy-
pernetwork, specifically the model developed for continual learning by (von Oswald et al., 2020).
For computational stability, we shall use Lpc, Lro and Lk, to optimize the VAE (encoder and
decoder parameters) and L to train the world model parameters. With the teacher forcing objec-
tive we get a reliable world model that we can then use in the rollout objective. This is similar to
procedures followed in|Assran et al.|(2025);|Popov et al.|(2024));|Hu et al.[(2022)). In practice, we see
that approximating p(z) = AN (0, I) is suboptimal, and therefore we set () to a very small number
~ (10710,1076). After training the VAE to maximize the objective provided in eq. (5) with this 34,
we have access to this latent space z and can train a diffusion model to learn its distribution p(z).
We can condition the latent denoising process on the current state and/or the task identifier c of the
policy required. Therefore the model shall be approximating pg,, ; (2¢—1 | 2¢,). After denoising for
a given state and task identifier, we can convert the denoised latent to the required policy. Therefore,
to sample from p(6), first sample z using the trained diffusion model z ~ py,, ;(20), and then apply
the deterministic function f4, . to the sampled z. Note that to sample policies during inference, we
do not need to encode trajectories; rather, we need to sample a latent using the diffusion model and
use the hypernetwork decoder of a pre-trained VAE to decode a policy from it.

3.3 POSITIONING TO PRIOR WORK

In table [T} we compare WARPD with closely related methods. While many other methods have
conceptual overlap with our method, WARPD is the only method that uses diffusion to generate
policy parameters with trajectory datasets (without any reward data). Further, we use model-based
imitation learning with world models to further guide our generated policies. The necessity of the
components used used in WARPD is based on the derivation described in section[3.3}

5

Under review as a conference paper at ICLR 2026

Method Diffusion Generates policy Trajectory data only World
based params (not traj.) (no reward signal) model

WARPD (ours)
Chi et al.[(2024)
Xue et al.|(2025)
Hegde et al.|(2023)
Liang et al.[(2024a)
Zhu et al.|(2025))
Hegde et al.|(2024)
Pu et al.

Hafner et al.|(2023)
Zhang et al.| (2024)
Hu et al.| (2022)
Popov et al.|(2024)

R R R SE SR S NENENENENEN
XXX XX AKX XK
AN RN NN
CANNNNUX X XXX

Table 1: Comparison of WARPD (ours) with closely related work. WARPD is a conceptually novel
framework for generating policy parameters with state-action only trajectory datasets.

4 EXPERIMENTS

We run four sets of experiments. In the first set (section . 1)), we evaluate the validity of our main
contributions. In the second set (section @]), we ablate different components of our method. In
the third set (section , we show how WARPD can be scaled to vision-based observation envi-
ronments. In the final set (section f.4), we analyze the behavior distribution modeled by our latent
space. In the first set, we compare WARPD with action trajectory generation methods with respect to
1) Longer Action Horizons and Environment Perturbations, where experiments are performed while
varying these parameters on the PushT task (Chi et al.| 2024) and the Lift and Can Robomimic
tasks (Mandlekar et al., 2021)), and 2) Lower inference costs, where experiments are performed on
10 tasks from the Metaworld|Yu et al.|(2020) suite of tasks, to show WARPD requires fewer parame-
ters during inference while maintaining multi-task performance. The task descriptions are provided
in section[A.5] We choose a multi-task experiment here as the model capacity required for solving
multiple tasks generally increases with the number of tasks.

We focus on demonstrating results in state-based observation spaces. Our generated policies are
Multi-Layer Perceptrons (MLP) with 2 hidden layers with 256 neurons each. In the VAE, the en-
coder is a sequential network that flattens the trajectory and compresses it to a low-dimensional
latent space, and the decoder is a conditional hypernetwork (Ehret et al.| [2021). The details of the
VAE implementation are provided in section and section For the world model, since
we use low-dimensional observation spaces, we use a simple MLP with 2 hidden layers with 1024
neurons each to map the history of observations and actions to the next observation. For stability,
we use Lro only after 10 epochs of training. This warm-starts the world model before we use it to
optimize the policy generator. For all experiments, the latent space is R?°% and the learning rate is
10~* with the Adam optimizer. For the diffusion model, we use the DDPM Scheduler for denoising.
Based on the results are shown in section (inspired by |Chi et al.| (2024)), we chose the Condi-
tionalUnet1D model for all experiments in the paper. Just as (Chi et al.| (2024), we condition the
diffusion model with FILM layers, and also use the Exponential Moving Average (He et al., [2020)
of parameter weights (commonly used in DDPM) for stability. All results presented are obtained
over three seeds, and the compute resources are described in section

4.1 EMPIRICAL EVALUATION OF CONTRIBUTIONS

4.1.1 LONGER ACTION HORIZONS & ROBUSTNESS TO PERTURBATIONS

We first evaluate our method on the PushT task (Chi et al. [2024), a standard benchmark for
diffusion-based trajectory generation in manipulation. The goal is to align a ‘T’ block with a target
position and orientation on a 2D surface. Observations consist of the end-effector’s position and the
block’s position and orientation. Actions specify the end-effector’s target position at each time step.
Success rate is defined as the maximum overlap between the actual and desired block poses during
a rollout. We test under different action horizons and varying levels of environment perturbation,
simulated via an adversarial agent that randomly displaces the ‘T’ block.

Under review as a conference paper at ICLR 2026

Action Horizon: 16 Action Horizon: 32 Action Horizon: 64 Action Horizon: 128

Yos 9 i) 2
© © © ©
5 \ 5 k B \ B
w ")))
w (%] n "
Yog o) @ A\bQ
o (9] Q | T—— 9]
o (9} (9} o 9]
> > > > >
oo e e :ﬁﬁj @ M:

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

Perturbation Perturbation Perturbation Perturbation
—— DP —— LDP MLP —— Random —— WARPD w/o WM —s=— WARPD

Figure 3: Longer action horizons and robustness to perturbations on PushT: Performance of
WARPD and baselines on the PushT task on variable action horizon and environment perturbations.

t t t t,

(o] 1 2 3 4 5
Perturbation Recovery
ARPD r:Jw\ f:_'i‘\ v:f\;‘:,.‘ —xk o p j")“
j‘J 3 + =% ¢ :. g | "
Perturbation Failure
4 4 4 & 4 4 <4

Figure 4: Visualization of Perturbation: When an adversarial perturbation is applied, we see that
WARPD’s generated closed-loop policy successfully adapts to the change.

For the WARPD model, we first train a VAE to encode trajectory snippets (of length equal to the
action horizon) into latents representing locally optimal policies. These policies are optimized with a
co-trained world model. A conditional latent diffusion model, given the current state, then generates
a latent that the VAE decoder transforms into a locally optimal policy for the next action horizon.
The inference process is illustrated in fig. [I] We train two variants of WARPD, with (WARPD) and
without (WARPD w/o WM) the world model (i.e., we train WARPD with just Lo + Lk).

As baselines for this experiment, we compare the proposed WARPD variants against four alter-
natives: 1) a Diffusion Policy (DP) model that generates open-loop action trajectories for a fixed
action horizon; 2) a Latent Diffusion Policy (LDP) model, which is structurally similar to WARPD
but decodes the latent representation into an action trajectory rather than a closed-loop policy; 3)
a Multilayer Perceptron (MLP) policy, which shares the same architecture as the policy network
generated by WARPD and serves to isolate the impact of diffusion modeling; 4) a Random Policy,
which provides a lower-bound performance reference. For a fair comparison, all diffusion-based
models (WARPD, DP, and LDP) use the same diffusion model size and hyperparameters, corre-
sponding to the medium configuration described in section and section LDP uses a
VAE decoder, implemented as an MLP with two hidden layers of 256 neurons each, to output an
action chunk of the same length as the action horizon.

All models are evaluated across 50 uniquely seeded environment instances, with each evaluation re-
peated 10 times, across 3 training seeds. Figure [3]illustrates the impact of perturbation magnitudes
and action horizons on success rates across all baselines. Perturbations refer to random displace-
ments applied to the T block, occurring at randomly selected time steps with 10% probability. A
sample rollout with a perturbation magnitude of 50 is shown in fig. 4]

While DP demonstrates comparable performance to both WARPD variants at an action horizon of
16 with minimal perturbations, WARPD exhibits superior robustness as the action horizon increases.
This enhanced robustness of WARPD with the world model becomes more pronounced in the pres-
ence of larger perturbations. Specifically, at longer action horizons such as 128, WARPD w/ WM
maintains a significantly higher success rate compared to DP across all perturbation levels. The
MLP generally underperforms compared to both WARPD variants and DP, highlighting the benefits
of diffusion-based approaches for this task. LDP has a lower success rate than WARPD, indicating
that generating a closed-loop policy is more important than learning the latent representation space.
The relatively lower sensitivity to perturbations at an action horizon of 16 for both policies can be at-
tributed to the more frequent action trajectory queries inherent in DP at shorter horizons (i.e. smaller
action chunks), effectively approximating a more closed-loop control strategy.

Under review as a conference paper at ICLR 2026

Action Horizon: 16 Action Horizon: 32 Action Horizon: 64

1.0

. '—'\._\\‘ @ @
o 0.8 o o
o 4 4
9 o° a A :\
%] wn %]
[[[
g 18 ~| & 1
‘ Perturbation ‘ % 0.2 \ a \ S
0.0
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Perturbation Perturbation Perturbation

Lift

—— DP
Action Horizon: 16

—— LDP MLP
Action Horizon: 32

IEa—]

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Perturbation Perturbation Perturbation
—— DP —— LDP MLP —— WARPD w/o WM —=— WARPD

—— WARPD w/o WM —=— WARPD

Action Horizon: 64

o o o

@
Success Rate
Success Rate

Success Rate

e o
o N

Can

Figure 5: Longer action horizons and robustness to perturbations on Robomimic tasks: Perfor-
mance of WARPD and DP as we vary the action horizon and environment perturbations.

We also ran experiments on the Robomimic (Mandlekar et al., 2021} Lift and Can tasks, using the
same hyperparameters as the PushT experiment, the same task settings, and the mh demonstration
data from (Chi et al.}[2024). To simulate perturbations, we add random translation and rotation vec-
tors to the end effector, applied 10% of the time. fig. [5|shows the performance of the WARPD vari-
ants and baselines under these perturbations across different action horizons. The x-axis corresponds
to perturbation magnitude. Similar to PushT, WARPD outperforms DP for longer horizons and is
more robust to perturbations. Here, we see that WARPD also significantly outperforms WARPD
w/o WM. We believe that this is because the state density of the provided dataset is higher in PushT
as compared to Robomimic, and model-based imitation learning (with the world model) provides
robustness to covariate shift (Popov et al.}2024; Hu et al., [2022).

4.1.2 Low INFERENCE COST

100 4 We will now look at the next contribution, namely, lower
inference cost compared to methods that diffuse action
trajectories instead of policies. When training a single
policy on multiple tasks, it is known that a larger model
capacity is needed. This is detrimental in robotics appli-
cations as this increases control latency. We train a task-
conditioned WARPD model and show that the cost of
task generalization is borne by the latent diffusion model,
while the generated execution policy remains small.

80 1

60 4

Model Size

40 A
s WARPD A

Average Success Rate (%)

= \WARPD w/0 WM @ size:xl ' !
MLP @ size:l Because WARPD generates a smaller policy, the runtime
20 | mmmm DP - f: 1/16 A Size:m
OP £ 1/64 v sizers compute required for inference is lower than SOTA diffu-
o @ sizeixs sion methods.
<&

0 T T T T T .

0% 10 102 1071 10° 10t We experiment on 10 tasks of the Metaworld benchmark,

Amortised GFLOPs/step (log scale)

the details of which are in section We set the action
horizon to the length of the entire trajectory for WARPD

Figure 6: Success rate vs. average N .
to generate policies that shall work for the entire dura-

compute of WARPD, DP, and MLP

policies on 10 Metaworld tasks for var-
ious model sizes. The x-axis shows the
GFLOPs/step for each policy on a log
scale. WARPD performs ~ 45x fewer
inference computations than a DP pol-
icy with comparable performance.

tion of the rollout, where at each time step, the gener-
ated MLPs shall predict instantaneous control. We ex-
perimented over three sizes of the generated MLP policy:
128, 256, and 512 neurons per layer, each having 2 hidden
layers. We also train 10 DP models, spread over a grid of
5 different sizes (xs, s, m, 1, x1) and 2 action horizons: 32
and 128. Each DP model is run at an inference frequency

of half the action horizon. We provide the details of the DP model in section[A:8.1] Finally, we also
train 3 MLP models with 128, 256, and 512 neurons per layer, as baselines.

Under review as a conference paper at ICLR 2026

Component/ Ablation / Baseline What It Tests Where in Paper
Claim
With and without | WARPD w/o WM Does modeling dynamics sectionM
a World model and using rollout loss actu-

ally help?
Policy-space Diffusion Policy (DP) | Is diffusing actions suffi- | section{4.1.1|
vs action-space cient vs generating policies?
diffusion
Policy-space vs | Latent Diffusion Policy | Is decoding latent action sectionm
latent trajectory (LDP) chunks comparable to de-

coding weights?
Need for policy | MLP policy (no diffu- | Does simple BC on the same | section 4.1.1}
generation at all sion) architecture suffice? section4.1.2
Strength of KL | 3 sweep (10=7, 10=Y, | Does strong N(0,) regu- | section|A.4.1
regularization (8) | 10710) larization help or hurt?

Table 2: Summary of key components and the corresponding ablations or baselines that test them.
More ablations are analyzed in section .2}

Note that WARPD uses a fixed action horizon equal to the full episode length (500 steps), whereas
the DP model uses a variable horizon. The WARPD inference process is illustrated on the right-hand
side of fig.[T} All baseline models receive the task identifier as part of the state input. Each model is
trained with 3 random seeds, and evaluated across 10 tasks, with 16 rollouts per task. fig. [] presents
the results of this evaluation. In the plot, the x-axis represents average per-step inference compute (in
GFLOPs), and the y-axis indicates the overall success rate across tasks. For DP models, achieving
high success rates requires increasing model size or denoising frequency (i.e., predicting shorter
action chunks), both of which raise computational cost. In contrast, WARPD generates a simpler,
more efficient controller, requiring significantly less compute. The best-performing WARPD model
achieves an 81% success rate with ~ 45x fewer inference operations than the closest-performing
DP model. Interestingly, the MLP baseline also performs well, and is comparable in efficiency to
WARPD, but still lags in performance. We attribute this to the unimodal nature of this dataset, as
MLPs struggled with the multimodal PushT task in the previous section. Note that the WARPD
performed comparably to the w/o WM variant. In different scenarios, such as the state-conditioned
experiments where the policy is regenerated more frequently, the generation cost could also be
amortized. Even in such a conservative setting, when we incorporate the computational cost for
generation (0.0227 GFLOPs), WARPD still requires ~ 4.5x fewer inference operations.

4.2 ABLATIONS

Considering that WARPD consists of multiple components, we analyze each one. We perform
ablations over three components of our method: 1) Diffusion model architecture, section [A.3} 2)
VAE decoder size, section 3) KL coefficient for the VAE, section We find that: 1) a
UNET converges faster than a transformer, 2) using a larger hypernetwork decoder increases the
performance, 3) using a lower KL coefficient generates policies that better track a desired trajectory.
Further, in sectiond.1.1] we ablate the world model and see that it helps more in the Robomimic tasks
than in the PushT task. We believe this is because the state space is more complex in Robomimic than
that in PushT, whilst the number of trajectories remains roughly the same. This results in insufficient
trajectories covering the state space, rendering the learned policy susceptible to covariate shift.

Since WARPD relies on several interacting components derived from our probabilistic formulation,
we summarize their roles in table 2} The ablation results show that each theoretically motivated
component is also empirically necessary, jointly justifying the overall design.

4.3 VISION OBSERVATION SCALING

We conducted initial experiments on the PushT image environment to evaluate the applicability of
our method in vision-based tasks. Our approach involved pre-training a vision encoder to map im-
ages of the PushT environment to their corresponding ground truth states. We then trained WARPD
to utilize these image embeddings as states. For comparison, we also trained a Diffusion Policy (DP)
model on the same embeddings. The results for an action horizon of 64 are presented below.

Under review as a conference paper at ICLR 2026

As shown in table EL WARPD consistently out- Perturbation WARPD DP

performs DP in the presence of increasing pertur- 0 0.54 +£0.05 | 0.57 £+ 0.05
bation, demonstrating its robustness even when 20 0.53 +£0.01 | 0.50 £0.05
operating on image-derived state embeddings. 40 0.45+0.01 | 0.42 £0.05
These experiments strongly suggest that if an ef- 60 0.41 £ 0.08 | 0.34 £ 0.02
fective image embedding can be learned, the low- 80 0.36 = 0.06 | 0.30 £ 0.02
dimensional state space version of WARPD is 100 0.28 +0.05 | 0.24 4 0.06

readily applicable to vision-based tasks. This
serves as an encouraging proof-of-concept for
WARPD’s generalizability beyond state-based environments. It can be noted here as well that a
diffusion model’s inference cost (~ 3.99 GFLOPs) is still much greater than the hypernetwork
decoder (~ 0.056 GFLOPs) and the ResNet18 vision encoder (~ 0.334 GFLOPs)

Table 3: PushT Image results with horizon 64

4.4 BEHAVIOR ANALYSIS

WARPD models trajectory data from a distribution of poli- . gz:::tg:; ‘
cies, exposing this distribution through its latent space. On the © Operator 3
Robomimic Lift task with the MH dataset (300 trajectories from ¢ o opertrs

6 operators of varied proficiency: 2 “worse,” 2 “okay,” and 2 g ¢ © Operator 6 uh‘
“better.”), WARPD encoded entire demonstration trajectories. %;‘hm . =
A 2D t-SNE plot revealed clusters aligned with operator iden- & % 2P '?’

SY -

A
tity, despite WARPD receiving no explicit operator labels. This 4 K.
shows WARPD can cluster behaviors and potentially filter un-

Encoding Di:
wanted ones. This is further studied in section[A.7] . . e er s
Figure 7: Behavior distribution

S5 LIMITATIONS AND FUTURE WORK

While WARPD is a promising framework for policy generation, Diffusion Policy (DP) performs bet-
ter in short-horizon, low-perturbation settings. This gap likely stems from VAE approximation errors
and WARPD’s added complexity. Another limitation is the additional training overhead compared
to traditional diffusion policy models (see section[A.9). The world model is a key component when
covariate shift is significant, as illustrated by the performance gap between WARPD and WARPD
w/o WM on Robomimic. At the same time, the behavior cloning loss ensures that, in the limit of a
weak or undertrained world model, WARPD behaves similarly to a diffusion-augmented BC model
rather than failing catastrophically. Compared to standard trajectory-diffusion policies, our training
pipeline introduces additional overhead (VAE + world model + diffusion), which we detail in sec-
tion [A.9} this is comparable to other world model-based imitation learning methods. Our primary
target is regimes where training is offline but runtime compute is constrained, and in this setting,
WARPD offers substantial FLOPs-per-step savings while maintaining or improving performance.

Thus, future work could improve WARPD’s VAE decoder through chunked deconvolutional hy-
pernetworks (von Oswald et al., [2020), enabling more efficient decoding. Extending WARPD to
Transformer or ViT policies is another direction, especially for sequential or visual tasks (Dosovit-
skiy et al.| |2020). Incorporating WARPD to foundation VLA models as an action head is another
exciting avenue. Finally, warm-starting with prior latents (Chi et al., 2024)) may further boost per-
formance by providing richer priors.

6 CONCLUSION

We introduce World Model Assisted Reactive Policy Diffusion (WARPD), a novel framework for
learning a distribution over policies from diverse demonstration trajectories. WARPD models be-
havioral diversity via latent diffusion, a world model, and uses a hypernetwork decoder to generate
policy weights, enabling closed-loop control directly from sampled latents. Our evaluation high-
lights two key strengths of WARPD: robustness and computational efficiency. Compared to Diffu-
sion Policy, WARPD delivers more reliable performance in environments with long action horizons
and perturbations, while reducing inference costs, especially in multi-task settings.

10

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

All reported results are averaged over three random seeds to ensure statistical reliability. We pro-
vide full implementation details of model architectures, training objectives, hyperparameters, and
evaluation protocols in the main text and appendix.

REFERENCES

Mido Assran, Adrien Bardes, David Fan, Quentin Garrido, Russell Howes, Matthew Muckley, Am-
mar Rizvi, Claire Roberts, Koustuv Sinha, Artem Zholus, et al. V-jepa 2: Self-supervised video
models enable understanding, prediction and planning. arXiv preprint arXiv:2506.09985, 2025.

Federico Baldassarre, Marc Szafraniec, Basile Terver, Vasil Khalidov, Francisco Massa, Yann Le-
Cun, Patrick Labatut, Maximilian Seitzer, and Piotr Bojanowski. Back to the features: Dino as a
foundation for video world models, 2025. URL https://arxiv.org/abs/2507.19468.

Sumeet Batra, Bryon Tjanaka, Matthew C Fontaine, Aleksei Petrenko, Stefanos Nikolaidis, and
Gaurav Sukhatme. Proximal policy gradient arborescence for quality diversity reinforcement
learning. arXiv preprint arXiv:2305.13795, 2023.

Luca Bertinetto, Jodo F. Henriques, Jack Valmadre, Philip Torr, and Andrea Vedaldi. Learn-
ing feed-forward one-shot learners. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 29. Curran
Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper_files/
paper/2016/file/839ab46820b524afda05122893c2fe8e—-Paper.pdf.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, Julian Ibarz, Brian
Ichter, Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil Joshi, Ryan Julian, Dmitry Kalash-
nikov, Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deek-
sha Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta, Emily Perez,
Karl Pertsch, Jornell Quiambao, Kanishka Rao, Michael Ryoo, Grecia Salazar, Pannag Sanketi,
Kevin Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clayton Tan, Huong Tran, Vincent
Vanhoucke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and
Brianna Zitkovich. Rt-1: Robotics transformer for real-world control at scale. In arXiv preprint
arXiv:2212.06817,2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan Fu,
Montse Gonzalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alex Her-
zog, Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov,
Yuheng Kuang, Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu, Hen-
ryk Michalewski, Igor Mordatch, Karl Pertsch, Kanishka Rao, Krista Reymann, Michael Ryoo,
Grecia Salazar, Pannag Sanketi, Pierre Sermanet, Jaspiar Singh, Anikait Singh, Radu Soricut,
Huong Tran, Vincent Vanhoucke, Quan Vuong, Ayzaan Wahid, Stefan Welker, Paul Wohlhart,
Jialin Wu, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich. Rt-
2: Vision-language-action models transfer web knowledge to robotic control. In arXiv preprint
arXiv:2307.15818, 2023.

Joao Carvalho, An T Le, Mark Baierl, Dorothea Koert, and Jan Peters. Motion planning diffusion:
Learning and planning of robot motions with diffusion models. in 2023 ieee. In RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 1916-1923.

Shang-Fu Chen, Hsiang-Chun Wang, Ming-Hao Hsu, Chun-Mao Lai, and Shao-Hua Sun. Diffusion
model-augmented behavioral cloning. In International Conference on Machine Learning, pp.
7486-7510. PMLR, 2024.

Yixuan Chen, Hao Zhang, and Jian Liu. Time-aware world model for adaptive prediction and con-
trol. arXiv preprint arXiv:2506.08441, 2025.

11

https://arxiv.org/abs/2507.19468
https://proceedings.neurips.cc/paper_files/paper/2016/file/839ab46820b524afda05122893c2fe8e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/839ab46820b524afda05122893c2fe8e-Paper.pdf

Under review as a conference paper at ICLR 2026

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The Inter-
national Journal of Robotics Research, 2024.

Open X-Embodiment Collaboration, Abby O’Neill, Abdul Rehman, Abhinav Gupta, Abhiram Mad-
dukuri, Abhishek Gupta, Abhishek Padalkar, Abraham Lee, Acorn Pooley, Agrim Gupta, Ajay
Mandlekar, Ajinkya Jain, Albert Tung, Alex Bewley, Alex Herzog, Alex Irpan, Alexander Khaz-
atsky, Anant Rai, Anchit Gupta, Andrew Wang, Andrey Kolobov, Anikait Singh, Animesh Garg,
Aniruddha Kembhavi, Annie Xie, Anthony Brohan, Antonin Raffin, Archit Sharma, Arefeh
Yavary, Arhan Jain, Ashwin Balakrishna, Ayzaan Wahid, Ben Burgess-Limerick, Beomjoon Kim,
Bernhard Scholkopf, Blake Wulfe, Brian Ichter, Cewu Lu, Charles Xu, Charlotte Le, Chelsea
Finn, Chen Wang, Chenfeng Xu, Cheng Chi, Chenguang Huang, Christine Chan, Christopher
Agia, Chuer Pan, Chuyuan Fu, Coline Devin, Danfei Xu, Daniel Morton, Danny Driess, Daphne
Chen, Deepak Pathak, Dhruv Shah, Dieter Biichler, Dinesh Jayaraman, Dmitry Kalashnikov,
Dorsa Sadigh, Edward Johns, Ethan Foster, Fangchen Liu, Federico Ceola, Fei Xia, Feiyu Zhao,
Felipe Vieira Frujeri, Freek Stulp, Gaoyue Zhou, Gaurav S. Sukhatme, Gautam Salhotra, Ge Yan,
Gilbert Feng, Giulio Schiavi, Glen Berseth, Gregory Kahn, Guangwen Yang, Guanzhi Wang, Hao
Su, Hao-Shu Fang, Haochen Shi, Henghui Bao, Heni Ben Amor, Henrik I Christensen, Hiroki
Furuta, Homanga Bharadhwaj, Homer Walke, Hongjie Fang, Huy Ha, Igor Mordatch, Ilija Ra-
dosavovic, Isabel Leal, Jacky Liang, Jad Abou-Chakra, Jaechyung Kim, Jaimyn Drake, Jan Peters,
Jan Schneider, Jasmine Hsu, Jay Vakil, Jeannette Bohg, Jeffrey Bingham, Jeffrey Wu, Jensen
Gao, Jiaheng Hu, Jiajun Wu, Jialin Wu, Jiankai Sun, Jianlan Luo, Jiayuan Gu, Jie Tan, Jihoon
Oh, Jimmy Wu, Jingpei Lu, Jingyun Yang, Jitendra Malik, Jodo Silvério, Joey Hejna, Jonathan
Booher, Jonathan Tompson, Jonathan Yang, Jordi Salvador, Joseph J. Lim, Junhyek Han, Kaiyuan
Wang, Kanishka Rao, Karl Pertsch, Karol Hausman, Keegan Go, Keerthana Gopalakrishnan, Ken
Goldberg, Kendra Byrne, Kenneth Oslund, Kento Kawaharazuka, Kevin Black, Kevin Lin, Kevin
Zhang, Kiana Ehsani, Kiran Lekkala, Kirsty Ellis, Krishan Rana, Krishnan Srinivasan, Kuan
Fang, Kunal Pratap Singh, Kuo-Hao Zeng, Kyle Hatch, Kyle Hsu, Laurent Itti, Lawrence Yun-
liang Chen, Lerrel Pinto, Li Fei-Fei, Liam Tan, Linxi ”Jim” Fan, Lionel Ott, Lisa Lee, Luca
Weihs, Magnum Chen, Marion Lepert, Marius Memmel, Masayoshi Tomizuka, Masha Itkina,
Mateo Guaman Castro, Max Spero, Maximilian Du, Michael Ahn, Michael C. Yip, Mingtong
Zhang, Mingyu Ding, Minho Heo, Mohan Kumar Srirama, Mohit Sharma, Moo Jin Kim, Naoaki
Kanazawa, Nicklas Hansen, Nicolas Heess, Nikhil J Joshi, Niko Suenderhauf, Ning Liu, Nor-
man Di Palo, Nur Muhammad Mahi Shafiullah, Oier Mees, Oliver Kroemer, Osbert Bastani,
Pannag R Sanketi, Patrick “Tree” Miller, Patrick Yin, Paul Wohlhart, Peng Xu, Peter David
Fagan, Peter Mitrano, Pierre Sermanet, Pieter Abbeel, Priya Sundaresan, Qiuyu Chen, Quan
Vuong, Rafael Rafailov, Ran Tian, Ria Doshi, Roberto Mart’in-Mart’in, Rohan Baijal, Rosario
Scalise, Rose Hendrix, Roy Lin, Runjia Qian, Ruohan Zhang, Russell Mendonca, Rutav Shah,
Ryan Hoque, Ryan Julian, Samuel Bustamante, Sean Kirmani, Sergey Levine, Shan Lin, Sherry
Moore, Shikhar Bahl, Shivin Dass, Shubham Sonawani, Shubham Tulsiani, Shuran Song, Sichun
Xu, Siddhant Haldar, Siddharth Karamcheti, Simeon Adebola, Simon Guist, Soroush Nasiriany,
Stefan Schaal, Stefan Welker, Stephen Tian, Subramanian Ramamoorthy, Sudeep Dasari, Suneel
Belkhale, Sungjae Park, Suraj Nair, Suvir Mirchandani, Takayuki Osa, Tanmay Gupta, Tatsuya
Harada, Tatsuya Matsushima, Ted Xiao, Thomas Kollar, Tianhe Yu, Tianli Ding, Todor Davchev,
Tony Z. Zhao, Travis Armstrong, Trevor Darrell, Trinity Chung, Vidhi Jain, Vikash Kumar, Vin-
cent Vanhoucke, Wei Zhan, Wenxuan Zhou, Wolfram Burgard, Xi Chen, Xiangyu Chen, Xiaolong
Wang, Xinghao Zhu, Xinyang Geng, Xiyuan Liu, Xu Liangwei, Xuanlin Li, Yansong Pang, Yao
Lu, Yecheng Jason Ma, Yejin Kim, Yevgen Chebotar, Yifan Zhou, Yifeng Zhu, Yilin Wu, Ying
Xu, Yixuan Wang, Yonatan Bisk, Yongqiang Dou, Yoonyoung Cho, Youngwoon Lee, Yuchen
Cui, Yue Cao, Yueh-Hua Wu, Yujin Tang, Yuke Zhu, Yunchu Zhang, Yunfan Jiang, Yunshuang
Li, Yunzhu Li, Yusuke Iwasawa, Yutaka Matsuo, Zehan Ma, Zhuo Xu, Zichen Jeff Cui, Zichen
Zhang, Zipeng Fu, and Zipeng Lin. Open X-Embodiment: Robotic learning datasets and RT-X
models. https://arxiv.org/abs/2310.08864, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. CoRR, abs/2010.11929, 2020. URL https://arxiv.org/abs/2010.11929,

12

https://arxiv.org/abs/2310.08864
https://arxiv.org/abs/2010.11929

Under review as a conference paper at ICLR 2026

Benjamin Ehret, Christian Henning, Maria R. Cervera, Alexander Meulemans, Johannes von Os-
wald, and Benjamin F. Grewe. Continual learning in recurrent neural networks. In International
Conference on Learning Representations, 2021. URL https://arxiv.org/abs/2006.
121009,

Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid, Laura Downs, Adrian
Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning. In Alek-
sandra Faust, David Hsu, and Gerhard Neumann (eds.), Proceedings of the 5th Conference on
Robot Learning, volume 164 of Proceedings of Machine Learning Research, pp. 158-168. PMLR,
08-11 Nov 2022. URL https://proceedings.mlr.press/vl64/florence22a.
htmll.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2020.

David Ha and Jirgen Schmidhuber. Recurrent world models facilitate policy evo-
lution. In Advances in Neural Information Processing Systems 31, pp. 2451-—
2463. Curran Associates, Inc., 2018. URL https://papers.nips.cc/paper/
7512-recurrent—-world-models—facilitate-policy—-evolution. https://
worldmodels.github.iol

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019a.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. arXiv preprint arXiv:1811.04551,
2019b.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Mastering atari with discrete world models. arXiv preprint arXiv:2010.02193, 2020.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729-9738, 2020.

Shashank Hegde, Sumeet Batra, KR Zentner, and Gaurav Sukhatme. Generating behaviorally di-
verse policies with latent diffusion models. Advances in Neural Information Processing Systems,
36:7541-7554, 2023.

Shashank Hegde, Zhehui Huang, and Gaurav S Sukhatme. Hyperppo: A scalable method for find-
ing small policies for robotic control. In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pp. 10821-10828. IEEE, 2024.

Negin Heravi, Ayzaan Wahid, Corey Lynch, Peter R. Florence, Travis Armstrong, Jonathan Tomp-
son, Pierre Sermanet, Jeannette Bohg, and Debidatta Dwibedi. Visuomotor control in multi-object
scenes using object-aware representations. 2023 IEEE International Conference on Robotics and
Automation (ICRA), pp. 9515-9522,2022. URL |https://api.semanticscholar.org/
CorpusID:248798881.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020, NeurlPS 2020, December 6-12, 2020,
virtual, 2020a. URL https://proceedings.neurips.cc/paper/2020/hash/
4cSbcfec8584af0d967f1abl0179cadb-Abstract.html.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020b.

13

https://arxiv.org/abs/2006.12109
https://arxiv.org/abs/2006.12109
https://proceedings.mlr.press/v164/florence22a.html
https://proceedings.mlr.press/v164/florence22a.html
https://papers.nips.cc/paper/7512-recurrent-world-models-facilitate-policy-evolution
https://papers.nips.cc/paper/7512-recurrent-world-models-facilitate-policy-evolution
https://worldmodels.github.io
https://worldmodels.github.io
https://api.semanticscholar.org/CorpusID:248798881
https://api.semanticscholar.org/CorpusID:248798881
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html

Under review as a conference paper at ICLR 2026

Anthony Hu, Zak Murez, Nikhil Mohan, Sofia Dudas, Jeffrey Hawke, Vijay Badrinarayanan,
Roberto Cipolla, and Alex Kendall. Model-based imitation learning for urban driving. arXiv
preprint arXiv:2210.07729, 2022.

Sigiao Huang, Jialong Wu, Qixing Zhou, Shangchen Miao, and Mingsheng Long. Vid2world: Craft-
ing video diffusion models to interactive world models, 2025. URL https://arxiv.org/
abs/2505.14357.

Xiaoyu Huang, Yufeng Chi, Ruofeng Wang, Zhongyu Li, Xue Bin Peng, Sophia Shao, Borivoje
Nikolic, and Koushil Sreenath. Diffuseloco: Real-time legged locomotion control with diffusion
from offline datasets. arXiv preprint arXiv:2404.19264, 2024.

Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V Gool. @ Dynamic filter net-
works. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 29. Curran Associates, Inc.,
2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/
file/8bfl1211£fd4b7b94528899de0adl3b9fb3-Paper.pdfl

Deqian Kong, Dehong Xu, Minglu Zhao, Bo Pang, Jianwen Xie, Andrew Lizarraga, Yuhao Huang,
Sirui Xie, and Ying Nian Wu. Latent plan transformer for trajectory abstraction: Planning as
latent space inference. Advances in Neural Information Processing Systems, 37:123379-123401,
2024.

Alex X Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent actor-critic:
Deep reinforcement learning with a latent variable model. arXiv preprint arXiv:1907.00953,
2019.

Yongyuan Liang, Tingqiang Xu, Kaizhe Hu, Guangqi Jiang, Furong Huang, and Huazhe Xu. Make-
an-agent: A generalizable policy network generator with behavior-prompted diffusion. arXiv
preprint arXiv:2407.10973, 2024a.

Zhixuan Liang, Yao Mu, Hengbo Ma, Masayoshi Tomizuka, Mingyu Ding, and Ping Luo. Skilldif-
fuser: Interpretable hierarchical planning via skill abstractions in diffusion-based task execution.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
16467-16476, 2024b.

Justin Lovelace, Varsha Kishore, Chao Wan, Eliot Shekhtman, and Kilian Q Weinberger. Latent
diffusion for language generation. Advances in Neural Information Processing Systems, 36, 2024.

Yunhao Luo, Chen Sun, Joshua B Tenenbaum, and Yilun Du. Potential based diffusion motion
planning. arXiv preprint arXiv:2407.06169, 2024.

Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-
Fei, Silvio Savarese, Yuke Zhu, and Roberto Martin-Martin. What matters in learning from offline
human demonstrations for robot manipulation. In arXiv preprint arXiv:2108.03298, 2021.

Vincent Micheli, Eloi Alonso, and Francois Fleuret. Transformers are sample-efficient world mod-
els. In International Conference on Learning Representations, 2023.

Vincent Micheli, Eloi Alonso, and Frangois Fleuret. Storm: Efficient stochastic transformer based
world models for reinforcement learning. arXiv preprint arXiv:2310.09615, 2024.

Utkarsh Aashu Mishra, Shangjie Xue, Yongxin Chen, and Danfei Xu. Generative skill chaining:
Long-horizon skill planning with diffusion models. In Conference on Robot Learning, 2023.
URLhttps://api.semanticscholar.org/CorpusID:261685884.

NVIDIA, :, Niket Agarwal, Arslan Ali, Maciej Bala, Yogesh Balaji, Erik Barker, Tiffany Cai,
Prithvijit Chattopadhyay, Yongxin Chen, Yin Cui, Yifan Ding, Daniel Dworakowski, Jiaojiao
Fan, Michele Fenzi, Francesco Ferroni, Sanja Fidler, Dieter Fox, Songwei Ge, Yunhao Ge, Jin-
wei Gu, Siddharth Gururani, Ethan He, Jiahui Huang, Jacob Huffman, Pooya Jannaty, Jingyi Jin,
Seung Wook Kim, Gergely Kldr, Grace Lam, Shiyi Lan, Laura Leal-Taixe, Anqi Li, Zhaoshuo
Li, Chen-Hsuan Lin, Tsung-Yi Lin, Huan Ling, Ming-Yu Liu, Xian Liu, Alice Luo, Qianli Ma,

14

https://arxiv.org/abs/2505.14357
https://arxiv.org/abs/2505.14357
https://proceedings.neurips.cc/paper_files/paper/2016/file/8bf1211fd4b7b94528899de0a43b9fb3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/8bf1211fd4b7b94528899de0a43b9fb3-Paper.pdf
https://api.semanticscholar.org/CorpusID:261685884

Under review as a conference paper at ICLR 2026

Hanzi Mao, Kaichun Mo, Arsalan Mousavian, Seungjun Nah, Sriharsha Niverty, David Page, De-
spoina Paschalidou, Zeeshan Patel, Lindsey Pavao, Morteza Ramezanali, Fitsum Reda, Xiaowei
Ren, Vasanth Rao Naik Sabavat, Ed Schmerling, Stella Shi, Bartosz Stefaniak, Shitao Tang, Lyne
Tchapmi, Przemek Tredak, Wei-Cheng Tseng, Jibin Varghese, Hao Wang, Haoxiang Wang, Heng
Wang, Ting-Chun Wang, Fangyin Wei, Xinyue Wei, Jay Zhangjie Wu, Jiashu Xu, Wei Yang,
Lin Yen-Chen, Xiaohui Zeng, Yu Zeng, Jing Zhang, Qinsheng Zhang, Yuxuan Zhang, Qingqing
Zhao, and Artur Zolkowski. Cosmos world foundation model platform for physical ai, 2025. URL
https://arxiv.org/abs/2501.03575.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Charles Xu, Jianlan Luo, Tobias Kreiman, You Liang Tan, Lawrence Yunliang
Chen, Pannag Sanketi, Quan Vuong, Ted Xiao, Dorsa Sadigh, Chelsea Finn, and Sergey Levine.
Octo: An open-source generalist robot policy. In Proceedings of Robotics: Science and Systems,
Delft, Netherlands, 2024.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195-4205, 2023.

William Peebles, Ilija Radosavovic, Tim Brooks, Alexei A Efros, and Jitendra Malik. Learning to
learn with generative models of neural network checkpoints. arXiv preprint arXiv:2209.12892,
2022.

Xue Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and Sergey Levine. Learning
agile robotic locomotion skills by imitating animals. 07 2020. doi: 10.15607/RSS.2020.XVI.064.

Alexander Popov, Alperen Degirmenci, David Wehr, Shashank Hegde, Ryan Oldja, Alexey
Kameneyv, Bertrand Douillard, David Nistér, Urs Muller, Ruchi Bhargava, et al. Mitigating co-
variate shift in imitation learning for autonomous vehicles using latent space generative world
models. arXiv preprint arXiv:2409.16663, 2024.

Yuan Pu, Yazhe Niu, Zhenjie Yang, Jiyuan Ren, Hongsheng Li, and Yu Liu. Unizero: Generalized
and efficient planning with scalable latent world models. Transactions on Machine Learning
Research.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning Complex Dexterous Manipulation with Deep Reinforce-
ment Learning and Demonstrations. In Proceedings of Robotics: Science and Systems (RSS),
2018.

Moritz Reuss, Maximilian Li, Xiaogang Jia, and Rudolf Lioutikov. Goal-conditioned imitation
learning using score-based diffusion policies. arXiv preprint arXiv:2304.02532, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp.
10674-10685. IEEE, 2022a. doi: 10.1109/CVPR52688.2022.01042. URL https://doi.
org/10.1109/CVPR52688.2022.01042

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684-10695, 2022b.

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Perceiver-actor: A multi-task transformer for
robotic manipulation. In Proceedings of the 6th Conference on Robot Learning (CoRL), 2022.

Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration networks.
In Advances in Neural Information Processing Systems, pp. 2154-2162, 2016.

Wenhui Tan, Bei Liu, Junbo Zhang, Ruihua Song, and Jianlong Fu. Multi-task manipulation policy

modeling with visuomotor latent diffusion. ArXiv, abs/2403.07312,2024. URL https://api.
semanticscholar.org/CorpusID:268364239.

15

https://arxiv.org/abs/2501.03575
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1109/CVPR52688.2022.01042
https://api.semanticscholar.org/CorpusID:268364239
https://api.semanticscholar.org/CorpusID:268364239

Under review as a conference paper at ICLR 2026

Julen Urain, Niklas Funk, Jan Peters, and Georgia Chalvatzaki. Se(3)-diffusionfields: Learning
smooth cost functions for joint grasp and motion optimization through diffusion. 2023 IEEE
International Conference on Robotics and Automation (ICRA), pp. 5923-5930, 2022. URL
https://api.semanticscholar.org/CorpusID:252367206.

Johannes von Oswald, Christian Henning, Benjamin F. Grewe, and Jodo Sacramento. Continual
learning with hypernetworks. In International Conference on Learning Representations, 2020.
URLhttps://arxiv.org/abs/1906.00695.

Kai Wang, Dongwen Tang, Boya Zeng, Yida Yin, Zhaopan Xu, Yukun Zhou, Zelin Zang, Trevor
Darrell, Zhuang Liu, and Yang You. Neural network diffusion. arXiv preprint arXiv:2402.13144,
2024.

Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control:
A locally linear latent dynamics model for control from raw images. In Advances in Neural
Information Processing Systems, pp. 2746-2754, 2015.

Philipp Wu, Alejandro Escontrela, Danijar Hafner, Ken Goldberg, and Pieter Abbeel. Daydreamer:
World models for physical robot learning. arXiv preprint arXiv:2206.14176, 2022.

Zhou Xian and Nikolaos Gkanatsios. Chaineddiffuser: Unifying trajectory diffusion and keypose
prediction for robotic manipulation. In Conference on Robot Learning/Proceedings of Machine
Learning Research. Proceedings of Machine Learning Research, 2023.

Jiannan Xiang, Guangyi Liu, Yi Gu, Qiyue Gao, Yuting Ning, Yuheng Zha, Zeyu Feng, Tianhua
Tao, Shibo Hao, Yemin Shi, Zhengzhong Liu, Eric P. Xing, and Zhiting Hu. Pandora: Towards
general world model with natural language actions and video states. 2024.

Han Xue, Jieji Ren, Wendi Chen, Gu Zhang, Yuan Fang, Guoying Gu, Huazhe Xu, and Cewu Lu.
Reactive diffusion policy: Slow-fast visual-tactile policy learning for contact-rich manipulation.
In Proceedings of Robotics: Science and Systems (RSS), 2025.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094-1100. PMLR, 2020.

Hao Zhang, Zhihan Xu, Jian Liu, and Qingzhao Wang. Generalized and efficient planning with
scalable latent world models. arXiv preprint arXiv:2406.10667, 2024.

Weidong Zhang, Jian Liu, Lihe Xia, Qingzhao Wang, and Hongming Zhou. Safedreamer: Safe
reinforcement learning with world models. arXiv preprint arXiv:2307.07176, 2023.

Ruijie Zheng, Ching-An Cheng, Hal Daumé Iii, Furong Huang, and Andrey Kolobov. Prise: Llm-
style sequence compression for learning temporal action abstractions in control. In International
Conference on Machine Learning, pp. 61267-61286. PMLR, 2024.

Gaoyue Zhou, Hengkai Pan, Yann LeCun, and Lerrel Pinto. Dino-wm: World models on pre-trained
visual features enable zero-shot planning. arXiv preprint arXiv:2411.04983, 2024.

Chuning Zhu, Raymond Yu, Siyuan Feng, Benjamin Burchfiel, Paarth Shah, and Abhishek Gupta.
Unified world models: Coupling video and action diffusion for pretraining on large robotic
datasets. In Proceedings of Robotics: Science and Systems (RSS), 2025.

16

https://api.semanticscholar.org/CorpusID:252367206
https://arxiv.org/abs/1906.00695

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 VAE LOSS DERIVATION

Since a; ~ N (7(sy,0),0?):

exp (WW) (©6)

plag | s¢,0) = 202

2mo?

Our objective is to maximize the mELBO. The negative log likelihood of trajectory 7, =
{sF,ak}I_, for the given VAE parameters is:

ﬁ (Tk | (benc, ¢deca ¢wm)

T
== ZEq%nc(zm) [Ey..... 002 [ogp (af | 5£,0)]]

Z toone G170) [Epiy_(012) 108 P (55 | 5t 1, af)]

FKL (o, (] 70 | 92))

Consider the second term in the above equation. On maximization a¥ | = 7(s¥_,,), and because

the inner quantity is a constant w.r.t. s; we can add a harmless expectation E, . [.] (i.e., states
visited by the estimated policy, not necessarily those in the dataset), therefore it becomes:

Egyr 1760 [Bpon, 1) oo [108 P, (55 | 51, 7(51,0))]]

k| ok k
p¢wm($t | sf_1,m(st_1,0))
= Bagene elrw) []Epd’d“(ez) {ES”W [log D (SF | 8F_1,ak 1)

+ Ea i) [Broy, 010) [Eserr (1080, (55 | sb1, 08 0)]]] ®

We can now substitute in the KL term, and drop the expectation in the last term (since the inner
terms only depend on sf_l and not s; ~ m, 0, or z). Therefore, the loss now becomes:

L (Tk | ¢enc, ¢dem ¢wm)

T
1
=C+ 55 ZEq%C(zm [Epa,.. 012 [(ak = m(sF,0))?]]

T

+) By, el [po,. 012) KL (P (51 | st_1,m(s81,0)) || P (7 | Sf_l,af_l))]]
t=2
T
- ZIngaﬁwm (s | st_1,at_1)
t=2
+ KL (¢g.... (z | %) || p(2)) 9

For computational stability, we construct our decoder to be a deterministic function fy,, , i.e.,
Dae. (0| z) becomes 6(6 — fy,..(2)). Further, if we have a trained world model, we can ap-
proximate s¥ with s; (i.e., direct model output samples) in the second term. This is done so that we
can optimize the world model and policy correction separately with the teacher forcing and rollout

17

Under review as a conference paper at ICLR 2026

objectives (similar to that followed in|Assran et al.| (2025)). Therefore:

L (Tk | ¢enca ¢deC7 ¢wm)

T
1
SR =D DLER (CEEC N NONE

t=1

T
+ ZEQ%M(ZlTk) [KL(p(bwm(St | sfflvﬂ—(sitlvftﬁdec(z))) H p¢wm(5t ‘ Sitlvaffl))]
t=2
T
— > logps,,. (st | si_1,ai_)
t=2
+ KL (¢¢.,. (2 | 7) || p(2))

Where C'is a constant from the substitution. Enforcing p(z) = N(0, I), and ignoring constants, we
get:

L (Tk' | ¢67L07 Ddec; ¢wm) =Lpc+Lro+ Lrr+ Lik1 (10)
T
Loe =) Eq,. cn) [(@f = 7(sf Fou. (2)))7] (11)
t=1
T
L:RO = Z]Eq¢enc(z‘7—k) [KL(pd’mm (St | 87]&6717 7(-(85717 f¢dec (Z))) || pd)wm(st | 8571; ai{tfl))]
t=2
(12)
T
Lrp = (sf—3f) (13)
t=2
dim(z)
Lxr = Bri Z (02 +p2 —1—logo?) (14)
i=1

where, £ ¢ is the behavior cloning loss to train the policy decoder, £ o is the rollout loss to correct
the decoded policy’s actions using the world model, L1 is the teacher forcing loss to train the world
model, L, is the KL loss to regularize the latent space, (fte, 0c) = fo...(Tk), 2 ~ N(pe,0¢),
85 ~ Py (¥ | sF_1,al_,) and By, is the regularization weight.

18

Under review as a conference paper at ICLR 2026

A.2 ABLATIONS
A.3 DIFFUSION MODEL ARCHITECTURE

Diffusion models typically adopt either UNet-

o8 based |[Ho et al.| (2020b)) or Transformer-based Pee-
07 bles & Xie| (2023) architectures (described as
06 medium “m” in section[A.8.T)). To guide our choice
205 for the WARPD diffusion policy, we performed an
§0.4 ablation study on the PushT task (Chi et al., 2024)
303 using an action horizon of 32. As shown in fig. [8]
02 Tansformer the UNet model demonstrated faster initial learning,
0l — UNet achieving higher average success rates early in train-

5 200 400 600 o 1000 g However, both architectures eventually con-
Diffusion Epoch verged to comparable final success rates. For con-

) . . . sistency, we adopt the UNet architecture for all other
Figure 8: Diffusion Architecture Ablation experiments.

A.4 DECODER SIZE

An interesting experiment was the effect

- " of breaking a large trajectory into sub-
08 0.8 trajectories and how this affects the latent
g 2 space. A key takeaway from that experi-
06 o 0.6 ment was that for halfcheetah locomotion,
g g even small VAE decoders generated accurate
g 04 go4 s policies from trajectory snippets. Whereas,
” 02 @ 02 s for manipulation tasks from Metaworld, the
' ‘ : |m same-sized small decoder was not capable of

0.0 0.0 reconstructing the original policy. See sec-

0 250 500 0 250 500

Epoch Epoch tion [A.6] for this experiment. This finding

‘ . prompted an ablation on the decoder size,
(a) Trajectory length 500 (b) Trajectory length 50 evaluating the average success rate of de-

. . coded policies across all 10 Metaworld tasks.
Figure 9: Effect of VAE decoder size: For long tra- fig. [illustrates the performance of decoders

jectories, even the smallest decoder (zs) yields high iih varying sizes, denoted as zs (3.9M pa-
task performance, whereas short trajectories benefit meters), s (7.8M parameters), m (15.6M

from a larger decoder. parameters), and ! (31.2M parameters). It’s

important to note that despite the substantial parameter count of the hypernetwork decoder, the re-
sulting inferred policy remains relatively small (< 100K parameters, see fig.[6). The results demon-
strate that increasing the decoder size consistently improves the average success rate of the decoded
policies. Refer section[A.8.3]for more details regarding the decoder size characterization.

This contrasts with rollouts from the HalfCheetah environment, where even smaller decoders gen-
erated accurate policies from trajectory snippets. We hypothesize this discrepancy stems from two
key factors. First, the cyclic nature of HalfCheetah provides sufficient information within snippets
to infer the underlying policy. Second, the increased complexity of Metaworld tasks means that
snippets may lack crucial information for inference. For instance, in a pick-and-place task, a snippet
might only capture the “pick” action, leaving the latent without sufficient information to infer the
“place” action.

A.4.1 KL COEFFICIENT

A key hyperparameter in WARPD is the KL regularization term, kp , used during VAE training. In
this section, we analyze its impact on the learned latent space using the PushT task with an action
horizon of 32. We train three VAEs with gy values of 1e—7, 1e—9, and 1e—10. For evaluation, we
sample a trajectory of length 32, encode and decode it via the VAE to generate a policy, and then
execute this policy in the environment starting from the same initial state. We compute the MSE
between the final state reached after 32 steps and the corresponding state in the original trajectory.

19

Under review as a conference paper at ICLR 2026

0.10
0.08 1

0.06 1

0.04 1

VAE Eval Last State MSE

0.02 . ‘ . ; . .
0 200 400 600 800 1000

Step

Figure 10: Effect of KL coefficient

fig. [10]in fig. [L1] shows this metric across 3 seeds during training. Lower [k values result in lower
final-state MSE, indicating better trajectory reconstruction. This is due to a more expressive, multi-
modal latent space made possible by weaker regularization, without compromising sampling, as
diffusion still operates effectively within this space. Visualizations are provided below in fig. [T}
Based on these results, we use Sg;, = 1le—10 in all PushT experiments.

Following the KL ablation experiment above, we analyzed the latent space of the encoded trajec-
tories with PCA, similar to that performed in section [A.6] The three plots in fig. [TT] show that the
trajectory encodings get closer and lose behavioral diversity when the KL coefficient is high.

N N - N
< c A%I. ‘z. ’ c
2 o 2
a 2 a
f=4 c . f=4
o [o
= o =
< c o <
S B S " R
w w w
JEncoazing Dnimen;ion 14 ’ b AEncoazing Daimen;ion 1¢ b 4Enco§ing Dnimen;ion l‘
(a) KL coefficient: le-7 (b) KL coefficient: 1e-9 (c) KL coefficient: le-10

Figure 11: Latent space representation of PushT trajectories at different KL coefficients

A.5 METAWORLD TASK DESCRIPTIONS
A.6 EFFECT OF TRAJECTORY SNIPPING ON LATENT REPRESENTATIONS

For most robotics use cases, it is impossible to train on long trajectories due to the computational
limitations of working with large batches of long trajectories. In some cases, it may also be ben-
eficial to generate locally optimum policies for shorter action horizons (as done for experiments
presented in section [f.1.T). Therefore, we analyze the effect of sampling smaller sections of trajec-
tories from the dataset. After training a VAE for the D4RL half-cheetah dataset on three policies
(expert, medium, and random), we encode all the trajectories in the mixed dataset to the latent space.
We then perform Principal Component Analysis (PCA) on this set of latents and select the first two
principal components. fig.[T2a]shows us a visualization of this latent space. We see that the VAE has

20

Under review as a conference paper at ICLR 2026

Task Description

Window Open Push and open a window. Randomize window positions

Door Open Open a door with a revolving joint. Randomize door positions
Drawer Open Open a drawer. Randomize drawer positions

Dial Turn Rotate a dial 180 degrees. Randomize dial positions

Faucet Close
Button Press
Door Unlock
Handle Press
Plate Slide
Reach

Rotate the faucet clockwise. Randomize faucet positions

Press a button. Randomize button positions

Unlock the door by rotating the lock clockwise. Randomize door positions
Press a handle down. Randomize the handle positions

Slide a plate into a cabinet. Randomize the plate and cabinet positions
Reach a goal position. Randomize the goal positions

Table 4: Metaworld task descriptions and randomization settings

learned to encode the three sets of trajectories to be well separable. Next, we run the same experi-
ment, but now we sample trajectory snippets of length 100 from the dataset instead of the full-length
(1000) trajectories. fig. [I2b] shows us the PCA on the encoded latents of these trajectory snippets.
We see that the separability is now harder in the latent space. Surprisingly, we noticed that after
training our VAE on the snippets, the decoded policies from randomly snipped trajectories were still
faithfully behaving like their original policies. We believe that this is because the halfcheetah env is
a cyclic locomotion task, and all trajectory snippets have enough information to indicate its source
policy. More dimensions of the PCA are shown in fig.[T3]

° o '.
N Ny ®0e é.
: I
9 o
FA 2 u 2
c c
g o medium g ’.l e random
= 00 Vesaliles =
A of expert A e expert
o e random o “d" e medium
5 =
o \ o
O 1)
c c
w4 w4
i Encoc]mg Dlmen5|on 1) Encoc]mg D|men5|on 1
(a) Trajectory Length 1000 (b) Trajectory Length 100

Figure 12: Effect of trajectory snipping in HalfCheetah. Top two principal components of the

latent.

< . < 4
c c
Re] he]
g 2 2 2 O‘ "1% o
2 e random 2 el s random
-g o ﬁ%a:. expert -g 0 '*"’ medium
o e ¢ e medium o o expert
= . ° ER
o o
1%} o
LIC.I -4 uc_, -4

%) 2 4 %)) 2 4

Encodlng Dlmen5|on 3 Encodlng Dimension 3
(a) Trajectory length 1000 (b) Trajectory length 100

Figure 13: Effect of trajectory snipping in HalfCheetah. Top third and fourth principal components

of the latent.

21

Under review as a conference paper at ICLR 2026

To validate this hypothesis, we analyze our method on trajectory snippets for non-cyclic tasks. We
choose the MT10 suite of tasks in Metaworld (note that these are different from the
original 10 tasks discussed in the rest of the paper. We utilize the hand-crafted expert policy for each
of the tasks in MT10 to collect trajectory data. For each task, we collect 1000 trajectories of length

500.
« window-open
« peg-insert-side
« button-press-topdown
e door-open

. ot
o -' e o drawer-close
SR | ey . pun
2 »

’ L

e« window-open

* peg-insert-side

e window-close

e push

* drawer-close

e pick-place

« door-open

« button-press-topdown
drawer-open

* reach

* pick-place

e window-close
reach

« drawer-open

“ o=

Encoding Dimension 2
Encoding Dimension 2

B3 5 3 i i &3 B 5) 3
Encoding Dimension 1 Encoding Dimension 1

(a) Trajectory Length 500 (b) Trajectory Length 50

Figure 14: Effect of trajectory snipping in MT10. Top two principal components of the latent.

o peg-insert-side
« window-open
e door-open

1l e button-press-topdown
J ° O . 4 o drawerclose
- e push

« pick-place
* reach
window-close

o window-open

| o peg-insert-side

e window-close

o push

e door-open

e drawerclose

» pick-place

« drawer-open
button-press-topdown

* reach

Encoding Dimension 4
Encoding Dimension 4

« drawer-open

3 5 3 i i a3 B =) b
Encoding Dimension 3 Encoding Dimension 3

(a) Trajectory length 500 (b) Trajectory length 50

Figure 15: Effect of trajectory snipping in MT10. Top third and fourth principal components of
the latent.

fig. shows the principal components of the latents of the full trajectories in the dataset, and
fig. @shows the same for the split trajectories. We can see that the separability of different tasks
is much harder in this case. More dimensions of the PCA are shown in fig. [I3b] Further, we
noticed that the decoded policies from the trajectory snippets did not perform as well as the original
policies - for the same decoder size as the half cheetah task. This validates our hypothesis that the
snippets are unable to reproduce the original policy for non-cyclic tasks. To have the same degree of
behavior reconstruction as the half-cheetah tasks, we need a larger decoder model. This is discussed

in section[A.4]

A.7 BEHAVIOR RECONSTRUCTION ANALYSIS

Here, we ask — Does WARPD reconstruct the original policies and reproduce diverse behaviors?

A.7.1 LOCOMOTION

First, we analyze the behavior reconstruction capability of different components of WARPD in loco-
motion domains. For this experiment, we use the halfcheetah dataset from D4RL 2020).
The parameters used for this experiment are shown in section[A.8.3] Each trajectory in this dataset
has a length of 1000. We combine trajectory data from three original behavior policies provided in
this dataset: expert, medium, and random. Following 2023), we track the foot contact
timings of each trajectory as a metric for measuring behavior. For each behavior policy, we get 32
trajectories. These timings are normalized to the trajectory length and are shown in fig.[T6] For each
plot, the x-axis denotes the foot contact percentage of the front foot, while the y-axis denotes the
foot contact percentage of the back foot.

We first visualize the foot contact timings of the original policies in fig.[T6a] We see that different
running behaviors of the half cheetah can be differentiated in this plot. Then, we train the VAE
model on this dataset to embed our trajectories into a latent space. We then apply the hypernetwork

22

Under review as a conference paper at ICLR 2026

decoder to generate policies from these latents. These policies are then executed on the halfcheetah
environment, to create trajectories. We plot the foot contact timings of these generated policies
in fig. [I6b] We see that the VAE captures each of the original policy’s foot contact distributions,
therefore empirically showing that the assumption pg, . (0 | 2) = 6(0 — fs,..(2)) is reasonable.
Then, we train a latent diffusion model conditioned on a behavior specifier (i.e., one task ID per
behavior). In fig. we show the distribution of foot contact percentages of the policies generated
by the behavior specifier conditioned diffusion model. We see that the diffusion model can learn
the conditional latent distribution well, and the behavior distribution of the decoded policies of the
sampled latent matches the original distribution. Apart from visual inspection, we also track rewards
obtained by the generated policies and empirically calculated Jensen Shannon Divergence between
the original and obtained foot contact distributions and observe that WARPD maintains behavioral
diversity in this locomotion task. See below for more details.

. Original Policy Foot Contact Times oo VAE Policy Foot Contact Times 1o Diffusion Policy Foot Contact Times
° [expert - VAE ® [
° L4 medium - VAE [] °
0] & 0ss random - VAE 0ss °
o) o A
£ £ £
= A = =
5 eola = = .
é 096 A é 096 é e A @ expert - Diff "
8 A Al S S A medium - Diff A
3 3 3 dom - Diff
o4 A B A W rndom-DIf A A
2 A 2 2)
g A g g y
& A & & A N
0s2{ @ expert-Orig A 092 092 N N
A medium - Orig A 4 AA A A
W random - Orig A A A A A ‘

08) 10 04 05 08) 10 04 05 08) 10

04 o5 0 0 0
Front Foot Contact Time Front Foot Contact Time Front Foot Contact Time

(a) Original policies that provide (b) VAE generated policies from (c) Diffusion generated policies
the trajectory dataset. trajectories. from trajectories.

Figure 16: Foot-contact times shown for various trajectories on the Half Cheetah task. We use
foot contact times as the chosen metric to show different behaviors for the half cheetah run task
by different policies. The first plot on the left shows the distribution of foot contact percentages for
each of the three original policies. The second plot in the center denotes the foot contact percentages
for the policies generated by the trained VAE when provided each original policy’s entire trajectory.
The third plot on the right denotes the foot contact percentages for the policies generated by the
diffusion model, trained without any task conditioning.

We can analyze the behavior reconstruction capability of WARPD by comparing the rewards ob-
tained during a rollout. The VAE parameters used for this experiment are shown in section [A.8.5]
fig.|17|shows us the total objective obtained by the original, VAE-decoded, and diffusion-denoised
policies. We see that the VAE-decoded and diffusion-generated policies achieve similar rewards to
the original policy for each behavior.

Apart from these plots, we use Jensen-Shannon divergence to quantify the difference between two
distributions of foot contact timings. table[5|shows the JS divergence between the empirical distribu-
tion of the foot contact timings of the original policies and those generated by WARPD. The lower
this value is, the better. As a metric to capture the stochasticity in the policy and environment, we get
the JS divergence between two successive sets of trajectories generated by the same original policy,
which we shall denote SOS (Same as source). A policy having a JS divergence score lesser than
this value indicates that that policy is indistinguishable from the original policy by behavior. As a
baseline for this experiment, we train a large (5-layer, 512 neurons each) behavior-conditioned MLP
on the same mixed dataset with MSE loss. We see that policies generated by WARPD consistently
achieve a lower JS divergence score than the MLP baseline for expert and medium behaviors. The
random behavior is difficult to capture as the actions are almost Gaussian noise. Surprisingly, for the
HalfCheetah environment, policies generated by WARPD for expert and medium had lower scores
than SOS, making it behaviorally indistinguishable from the original policy.

A.7.2 MANIPULATION

To verify the behavior reconstruction capabilities of WARPD in manipulation, we also experiment
on the DARL Adroit dataset (Rajeswaran et al., 2018). We choose a tool use task, where the agent

23

Under review as a conference paper at ICLR 2026

‘‘‘‘‘ EEm Original o EEm Original e ' EEm Original
DDDDD VAE 5000 VAE 2000 VAE
mmm Diffusion mmm Diffusion mmm Diffusion
9 a0 0 4000 o)
E E E 3000
© © ©
3 6000 = 3000 =
) i U Q 2000
3 4000 « 2000 o
1000
2000 .
o o ——
3
expert medium random expert medium random expert medium random
Tasks Tasks Tasks
(a) HalfCheetah (b) Ant (c) Walker

Figure 17: Reconstruction Rewards: For each of the 3 environments shown above, the generated
policy from trajectory decoded VAE and task-conditioned diffusion model, achieves similar total
objective as the original policies. Each bar indicates the mean total objective obtained with error
lines denoting the standard deviation.

Environment | Source Policy Target Policy
SOS MLP WARPD

Expert 0.187 £ 0.142 1.272 + 0911 0.510 £ 0.159
Ant Medium 0.624 £ 0.232 1.907 £ 0.202 1.328 + 0.283
Random 1.277 £ 1.708 4.790 £ 0.964 8.859 + 0.792
Expert 0.158 £ 0.146 2.810 = 1.139 0.088 £ 0.050
HalfCheetah Medium 0.275 £ 0.196 0.692 + 0.787 0.194 £ 0.157
Random 0.0467 £ 0.009 0.11 £+ 0.009 0.104 £ 0.0187
Expert 0.342 £ 0.329 2.879 £1.493 1.093 £ 0.310
Walker2D Medium 0.078 £ 0.058 0.165 + 0.126 0.155 £ 0.091
Random 0.080 £ 0.004 | 60.514 +52.461 | 2.776 + 1.260

Table 5: Behavior Reconstruction: JS divergence between foot contact distributions from source
and target policies. The lower the value, the better.

must hammer a nail into a board. We utilize their 5000 expert and 5000 human-cloned trajectories,
to train our WARPD model. The implementation details are in section @ Then, we evaluate
the behavior of the original and generated policy on the following metrics: Mean object height -
Average height of the object during eval; Alignment error (goal distance) - Mean distance between
the target and the final goal position; Max nail impact - Maximum value of the nail impact sensor
during eval; Contact ratio - Fraction of time steps where the nail impact sensor value exceeds 0.8;
Object manipulation score - Proportion of time steps where the object height exceeds 0.04 meters.
From fig. [I8] we can see that the policy generated by WARPD behaves similarly to the original
policy.

A.8 IMPLEMENTATION DETAILS

The following are the hyperparameters we use for our experiments:

A.8.1 BASELINE DIFFUSION POLICY MODEL

To train the diffusion policy baseline model shown in fig. [} we utilize the training script provided
by the authors of DP here:
https://colab.research.google.com/drive/1gxdkgRV{M55zih YOTFLja97cSVZ0OZq2B?usp=sharing,

To set the model size we use the following parameters:

For the ablation described in section[A.3] we use a transformer architecture, the details of which are:

24

https://colab.research.google.com/drive/1gxdkgRVfM55zihY9TFLja97cSVZOZq2B?usp=sharing

Under review as a conference paper at ICLR 2026

Mean Object Height

= Original
= Diffusion

Mean Goal Distance

Max Nail Impact

Contact Ratio

Object Manipulation Score

0.025
0.020
0.015
0.010
0.005
0.000

1.0
0.8
0.6
0.4

0.2

il

0.0

0.04

0.03

0.0

N}

0.0

Pt

0.00

i

0.8

0.6

0.4

0.2

al

cloned expert
Tasks

0.0

+0.005 ~0.01

cloned expert
Tasks

cloned
Tasks

cloned
Tasks

expert expert cloned expert

Tasks

Figure 18: Behavior Reconstruction for Manipulation: We track these metrics on the Adroit ham-
mer task, and the WARPD-generated policy behaves similarly to the original policy. The ‘cloned’
bars represent metrics with respect to a human demonstration behavior cloned policy, and ‘expert’

bars represent metrics from an RL-trained policy.

Size Diffusion Step Embed Dim Down Dims Kernel Size
extra-small: (s) 64 [16, 32, 64] 5
small: (s) 256 [32, 64, 128] 5
large: (m) 256 [128, 256, 256] 5
large: (1) 256 [256, 512, 1024] 5
extra large: (x1) 512 [512, 1024, 2048] 5

Table 6: Architectural configurations for the ConditionUnet1D Diffusion Policy (DP) across differ-

ent model sizes.

Size Diffusion Step Embed Dim | Model Dim | # Layers | # Heads
extra-small: (xs) 64 64 3 2
small: (s) 128 128 4 4
medium: (m) 256 256 6 8
large: (1) 256 512 8 8
extra-large: (x1) 512 768 12 12

Table 7: Architectural configurations for Transformer-based Diffusion models across different

model sizes.

A.8.2 VAE ENCODER DETAILS

For the encoder, we first flatten the trajectory to form a one-dimensional array, which is then fed to
a Multi-Layer Perceptron with three hidden layers of 512 neurons each.

A.8.3 VAE HYPERNETWORK DECODER SIZE CHARACTERIZATION

For the hypernetwork, we utilize an HMLP model
https://hypnettorch.readthedocs.io/en/latest/, package with default parameters.

(a full

Size | No. of parameters | layers

XS 3.9M [50, 50]

S 7.8M [100, 100]
m 15.6 M [200, 200]
1 31.2M [400, 400]

Table 8: VAE size varying parameters

25

hypernetwork) from the

We condition the
HMLP model on the generated latent of dimension 256. To vary the size of the decoder, as ex-
plained in section we set the hyperparameter in the HMLP as shown in table|§]

https://hypnettorch.readthedocs.io/en/latest/

Under review as a conference paper at ICLR 2026

A.8.4 DIFFUSION MODEL PARAMETERS

For all our experiments, we utilize the same ConditionalUnet1D network from |Chi et al.| (2024) as
the diffusion model. This is the same as the DP-medium (m) model described in section

A.8.5 MUJOCO LOCOMOTION TASKS

We use the following hyperparameters to train VAEs for all DARL mujoco tasks shown in the paper.
To show the effect of shorter trajectories in section[A.6] we change the Trajectory Length to 100.

Parameter Value
Trajectory Length 1000
Batch Size 32

VAE Num Epochs 150

VAE Latent Dimension | 256

VAE Decoder Size S
Evaluation MLP Layers | {256, 256}
VAE Learning Rate 3x 1071
KL Coefficient 1x10°°
Diffusion Num Epochs | 200

Table 9: Mujoco locomotion hyperparameters.

A.8.6 ADROIT HAMMER TASK

We use the same hyperparameters as table [0] and override the following hyperparameters to train
VAE:s for the D4RL Adroit hammer task shown in the paper.

Parameter Value
Trajectory Length 128
VAE Num Epochs 20
Diffusion Num Epochs | 10

Table 10: Adroit hammer hyperparameters.

Further, for the experiment where we show the hammer task can be composed of sub-tasks, we
change the Trajectory Length to 32 to enable WARPD to learn the distribution of shorter horizon
policies.

A.8.7 PUSHT AND RoBoOMIMIC WARPD

For all the experiments shown in section f.1.1] we use the same hyper-parameters described in
table[9] and override the following:

Parameter Value
Trajectory Length 256
VAE Num Epochs 1000

Diffusion Num Epochs | 1000
Diffusion Model size 1

VAE Decoder Size 1

VAE KL coefficient le — 10

Table 11: PushT WARPD hyperparameters.

A.8.8 METAWORLD TASKS

For all the experiments shown in section f.1.2] we use the same hyper-parameters described in
table[9] and override the following:

26

Under review as a conference paper at ICLR 2026

Parameter Value
Trajectory Length 500
VAE Num Epochs 100
Diffusion Num Epochs | 100
VAE Decoder Size X5

Table 12: Metaworld hyperparameters.

To show the effect of shorter trajectories in section[A.6] we change the Trajectory Length to 50.

A.9 COMPUTE RESOURCES

Each VAE and diffusion experiment was run on jobs that were allocated 6 cores of a Intel(R)
Xeon(R) Gold 6154 3.00GHz CPU, an NVIDIA GeForce RTX 2080 Ti GPU, and 108 GB of RAM.

Our observations indicate that the training time for each component of WARPD is approximately
equivalent to that of a full DP training run: traintime(DP) ~ traintime(VAEw arpp) =~
traintime(Diffusiony arpp)

Therefore, the total training time for WARPD is approximately 2 * traintime(DP). To provide a
concrete example, for the PushT task with image observations, using a compute configuration of a
Tesla P100-PCIE-16GB GPU, 16 Intel Xeon Gold 6130 CPU cores, and 64GB RAM, we observed
the following wall-clock training times:

* 2000 epochs of DP training: 13 hours 8 minutes
* 1000 epochs of WARPD’s VAE training: 12 hours 32 minutes
* 1000 epochs of WARPD’s diffusion training: 13 hours 37 minutes

27

	Introduction
	Related Work
	Imitation Learning and Diffusion for Robotics
	Hypernetworks and Policy Generation
	World Models

	Method & Problem Formulation
	Latent Policy Representation
	Loss function
	Positioning to Prior Work

	Experiments
	Empirical Evaluation of Contributions
	Longer Action Horizons & Robustness to Perturbations
	Low Inference Cost

	Ablations
	Vision Observation Scaling
	Behavior Analysis

	Limitations and Future Work
	Conclusion
	Appendix
	VAE loss derivation
	Ablations
	Diffusion Model Architecture
	Decoder size
	KL coefficient

	Metaworld task descriptions
	Effect of Trajectory snipping on Latent Representations
	Behavior Reconstruction Analysis
	Locomotion
	Manipulation

	Implementation Details
	Baseline Diffusion Policy model
	VAE Encoder details
	VAE Hypernetwork decoder size characterization
	Diffusion model parameters
	Mujoco locomotion tasks
	Adroit Hammer task
	PushT and Robomimic WARPD
	Metaworld tasks

	Compute Resources

