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君不见，黄河之⽔天上来，奔流到海不复回 
君不见，⾼堂明镜悲⽩发，朝如青丝暮成雪

"Bring in the Wine" - Li Bai 
Do you not see the Yellow River's waters pouring from the heavens?  
They surge into the sea, never to return.  
Do you not see in the bright mirrors of high halls a grief for white hair?  
At dawn, it is like black silk; by dusk, it has turned to snow. 

Calligrapher (Script)

Figure 1: Generated by the UniCalli model, this image displays calligraphy from Li Bai’s poem
”Bring in the Wine”. Each column showcases a different master’s style to demonstrate the model’s
versatility. Notably, especially in the Cursive script, the model generates contextually appropriate
connecting strokes and character sizes based on adjacent characters. An English translation and
the original Chinese text are provided in the lower corners. The complete works by each calligra-
pher are available in the Appendix I. (The calligraphic background has been manually edited for
presentation.)

ABSTRACT

Computational replication of Chinese calligraphy remains challenging. Exist-
ing methods falter, either creating high-quality isolated characters while ignoring
column-level aesthetics like ligatures and spacing, or attempting column synthesis
at the expense of calligraphic correctness. We introduce UniCalli, a unified diffu-
sion framework for column-level recognition and generation. Training both tasks
jointly is deliberate: recognition constrains the generator to preserve character
structure, while generation provides style and layout priors. This synergy fos-
ters concept-level abstractions that improve both tasks, especially in limited-data
regimes. We curated a dataset of over 8,000 digitized pieces, with 4,000 densely
annotated. UniCalli employs asymmetric noising and a rasterized box map for
spatial priors, trained on a mix of synthetic, labeled, and unlabeled data. The
model achieves state-of-the-art generative quality with superior ligature continuity
and layout fidelity, alongside stronger recognition. The framework successfully
extends to other ancient scripts: Oracle bone scripts and Egyptian hieroglyphs.
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1 INTRODUCTION

Chinese calligraphy is a central vehicle of Chinese culture and a world heritage art form, practiced
and studied by millions (Yangbo, 2022; Nihon Shuji, 2025). While recent deep learning has pro-
duced recognition (Luo et al., 2025; Zhou et al., 2025) and generative (Liao et al., 2023; 2024;
Wu et al., 2020) systems, progress is hindered by scarce data and a long-tail distribution of styles.
Consequently, existing generative methods are limited. On one hand, isolated-character synthesis
and font transfer techniques (Zhang et al., 2024; Yang et al., 2024; Xie et al., 2021) can produce
high-quality individual characters but ignore the holistic aesthetics of a finished work: column-level
composition, spatial rhythm, and the crucial inter-character ligatures that convey artistic in-
tent. On the other hand, general image generation models (Labs et al., 2025; Esser et al., 2024) and
VLM-based systems (Bai et al., 2025; OpenAI, 2024; Gong et al., 2025) that attempt column-level
synthesis often fail on correctness, rendering characters with improper forms or styles. This
leaves a critical gap for generating complete calligraphic works that are both structurally sound and
artistically coherent.

To address these challenges, we contribute both a dataset and a model. Dataset. We curate a corpus
of more than 8,000 digitized works spanning 93 classical calligraphers (e.g., Wang Xizhi, Mi Fu,
Ouyang Xun). Over 4,000 works—covering hundreds of thousands of characters—are annotated
with script type (regular/kai, running/xing, cursive/cao), per-character bounding boxes, and modern-
character transcriptions. Method. We introduce UniCalli, a unified diffusion-based framework that
learns jointly from synthetic, labeled, and unlabeled data, improving robustness in long-tail and
limited-label regimes.

Unlike pipelines that separate recognition and generation, UniCalli integrates them in a single model
with shared representations. This coupling is intentional: the recognition objective pressures the
generator to preserve character identity and legibility, while the generative objective supplies strong
style/layout priors and rich augmentations that make recognition more reliable across writers and
scripts. The joint training encourages the model to form transferable, concept-level abstractions of
characters (radicals, strokes, structures) that benefit both tasks and reduce label dependence. Con-
ditioned on text, calligrapher identity, and script, UniCalli composes vertical, column-wise layouts
with inter-character ligatures and deliberate control over character scale and spacing, producing
complete-work outputs rather than isolated glyphs while maintaining stylistic consistency and char-
acter accuracy.

Architecturally, UniCalli builds on a Multimodal Diffusion Transformer (MMDiT) backbone
(Blattmann et al., 2023), departing from causal autoregressive rollouts. During synthesis, the dif-
fusion transformer attends bidirectionally over the full canvas at each step, enabling globally con-
sistent layout decisions that mirror how calligraphers plan a page before committing strokes. To
unify recognition and generation, we apply asymmetric noising to two coupled latents—a clean
“standard-font” rendering of the target text and a calligraphy image. Noising the calligraphy branch
while keeping the standard-font branch clean yields generation; reversing this configuration yields
recognition. To strengthen spatial reasoning (character extents, column alignment, inter-character
spacing), we augment the calligraphy input with a rasterized bounding-box map and jointly denoise
the pair under a shared schedule, helping the model internalize position and scale priors that improve
ligature formation and column rhythm.

Empirically, UniCalli performs strongly on both tasks. On recognition benchmarks, the unified
model attains accuracy comparable to task-specialized recognizers. For generations, quantitative
metrics and human evaluations indicate state-of-the-art results in glyph correctness and stylistic
fidelity. Beyond Chinese calligraphy, we further validate the framework on Oracle bone inscriptions
and Egyptian hieroglyphs, demonstrating adaptability across writing systems and highlighting its
potential for the digitization and study of ancient scripts.

Our main contributions are threefold:

• A Large-Scale Annotated Calligraphy Dataset: We present a new, large-scale corpus of
over 8,000 classical Chinese calligraphy works. More than 4,000 of these are annotated
with script type, per-character bounding boxes, and modern transcriptions, providing a
valuable resource to spur research in column-level analysis and generation.
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• UniCalli, a Unified Recognition and Generation Framework: We propose a novel diffu-
sion transformer model that, for the first time, unifies column-level calligraphy generation
and recognition. Its bidirectional attention mechanism enables globally coherent composi-
tion, moving beyond isolated characters to produce complete, stylistically consistent works.

• Demonstrated State-of-the-Art Performance and Generalizability: We show that Uni-
Calli achieves state-of-the-art results in generative fidelity and competitive performance in
recognition. Furthermore, we validate its adaptability on other complex and ancient writing
systems, including Oracle bone script and Egyptian hieroglyphs, demonstrating the broad
potential of our approach.

2 RELATED WORK

2.1 DIFFUSION MODELS

Diffusion models (Ho et al., 2020; Song et al., 2020; Lipman et al., 2022) have recently emerged
as a powerful class of generative models, achieving state-of-the-art results in high-fidelity image
synthesis. Their core mechanism consists of two processes: a fixed forward process that gradually
adds Gaussian noise to an input image until it becomes pure noise, and a learned reverse process.
In the reverse process, a neural network, typically a U-Net (Rombach et al., 2022) or a Transformer
(Peebles & Xie, 2023; Bao et al., 2023a), is trained to iteratively denoise a random input, step-by-
step, to generate a clean sample.

The Multimodal Diffusion Transformer (MMDiT) (Blattmann et al., 2023) departs from causal, au-
toregressive models (Esser et al., 2021; Yu et al., 2022) by using bidirectional attention, making it
ideal for tasks requiring global compositional planning. This principle of modular control underpins
flexible frameworks like Unidiffuser (Bao et al., 2023b) and Uni-renderer (Chen et al., 2025). By
assigning independent noising and denoising schedules to each modality, these models enable a ver-
satile ”any-to-any” generation paradigm, where any subset of modalities can condition the synthesis
of the rest.

2.2 CHINESE CALLIGRAPHY GENERATION

Early studies in Chinese calligraphy generation, whether based on GANs (Wu et al., 2020; Xie
et al., 2021; Tang & Lian, 2021) or high-fidelity diffusion models (Zhang et al., 2024; Liu & Lian,
2024; He et al., 2024; Dai et al., 2024), have primarily treated the task as one-shot or few-shot font
generation. These methods excel at synthesizing isolated characters with accurate structure (Zeng
et al., 2023) but do not address page-level composition.

More recent efforts have shifted focus to page-level compositional synthesis, but these approaches
exhibit critical limitations. On one hand, general-purpose image generation models and VLM-based
systems can render full compositions but often fail on correctness, producing characters with im-
proper forms or styles (Bai et al., 2025; OpenAI, 2024; Gong et al., 2025). On the other hand,
specialized models like CalliPaint (Liao et al., 2023), Moyun (Liu et al., 2024), and CalliffusionV2
(Liao et al., 2024) generate characters sequentially. This autoregressive or sequential nature prevents
holistic planning, leading to deficiencies in the global layout, rhythm, and inter-character ligatures
that define a finished piece. In contrast, our work employs a non-autoregressive framework that
plans the entire layout jointly, enabling a globally coherent composition that is both stylistically
consistent and structurally accurate.

2.3 CHINESE CALLIGRAPHY RECOGNITION

The field of calligraphy recognition has evolved from analyzing isolated characters to employing
end-to-end sequence-to-sequence models that handle connected and cursive scripts. A classic deep
learning paradigm is the Convolutional Recurrent Neural Network (CRNN) (Shi et al., 2016), which
combines a CNN feature extractor with an RNN decoder. More recently, the domain has been domi-
nated by more powerful Transformer-based architectures (Dosovitskiy et al., 2021). State-of-the-art
models, such as OracleNet (Zhou et al., 2025) and CalliReader (Luo et al., 2025), leverage these
modern backbones to achieve high accuracy on stylistically diverse and irregular layouts. However,
these highly effective methods are task-specialized recognizers. They operate independently of the
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Figure 2: An overview of the UniCalli framework. Abbreviations are as follows: Cond. (Condition),
Pred. (Prediction), Attn. (Attention), and RoPE (Rotary Positional Embedding).

generative process and lack a shared representation, a critical gap our unified framework directly
addresses by integrating both tasks.

3 METHOD

This section details the methodology of our proposed framework, UniCalli, with an overview of the
complete pipeline provided in Figure 2. We begin in Section 3.1 by introducing the core principle
of our approach: a unified framework that treats calligraphy generation and recognition as mutually
enhancing dual tasks. Following this, Section 3.2 delves into the specific architectural innovations
for column-level modeling, including the use of a box map latent and our Duplicate RoPE strategy
to fuse spatial information. Subsequently, Section 3.3 presents our Conditional Dropout technique,
designed to disentangle style and glyph information and mitigate style overfitting. Finally, Sec-
tion 3.4 describes our joint training scheme, which leverages a combination of labeled, unlabeled,
and synthetic data to enhance the model’s overall generalization capabilities.

3.1 UNIFIED FRAMEWORK FOR BIDIRECTIONAL LEARNING

We begin by defining our notation. Let the content image (a standard-font rendering), the calligraphy
image, and its corresponding bounding box map be denoted by Ic ∈ R3×H×W , Ii ∈ R3×H×W , and
Im ∈ R3×H×W , respectively. These images are first projected into a latent space using a pre-
trained Variational Autoencoder (VAE) encoder, denoted as E . This yields the latent representations
zc = E(Ic), zi = E(Ii), and zm = E(Im). We employ two independent timesteps, tc, ti ∈ [0, 1],
where tc controls the noising process for the content latent zc, and ti governs the noising applied
jointly to the calligraphy latent zi and the box map latent zm.

At the heart of UniCalli is the principle that calligraphy generation and recognition are dual tasks that
can mutually enhance one another. A model proficient in generating a character’s visual form from
its abstract identity should inherently possess the features needed to recognize that character from its
image, and vice-versa. By training these two capabilities within a single, unified model, we enable
the sharing of representations, forcing the model to learn a more robust and holistic understanding
of the relationship between text, style, and spatial layout. This synergy is the core motivation for
our unified design.

Our framework actualizes this principle through a training procedure that operates in one of two
modes: generation or recognition, selected randomly at each training step. The entire process is
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built upon the latent representations zc, zi, and zm. We corrupt these latents using the flow-matching
technique (Lipman et al., 2022). For a given latent zk and timestep tk ∈ [0, 1], the noised latent is
zϵk = tk ·ϵk+(1−tk) ·zk, where ϵ ∼ N (0, I). The training mode dictates the timestep assignments.
For generation, we aim to create an image and layout from content, so we set the content timestep
tc = 0 (no noise, used as condition) and sample the image timestep ti uniformly from [0, 1]. For
recognition, the goal is to infer content from an image, so we set ti = 0 and sample tc from [0, 1].

This dual-mode approach is mirrored in our composite loss function. Let Lcond, Limg, and Lbox be
the standard flow-matching losses for the latents. The total loss Ltotal is conditioned on the training
mode. In generation mode, the objective is to reconstruct the image and box map:

Ltotal = Limg + Lbox + λ · Lcond.

Conversely, in recognition mode, the objective is to reconstruct the content:
Ltotal = Lcond + λ · (Limg + Lbox).

Here, λ is a balancing hyperparameter empirically set to 0.02. This dual-objective strategy steers the
unified model to learn the complete bidirectional mapping between content and its visual rendering.

3.2 ARCHITECTURE FOR COLUMN-LEVEL MODELING

While the unified framework provides the learning structure, achieving high-fidelity column-level
calligraphy requires specific architectural designs that can master the intricate spatial relationships
between characters. We introduce two key innovations to address this.

First, to provide the model with explicit guidance on spatial layout, we incorporate a box map
latent (zm). This latent representation encodes the precise bounding box (position and scale) of
each character within the column. By tasking the model with predicting this map during generation,
we force it to learn the core principles of calligraphic composition. This explicit supervision of
the column’s structure is fundamental for rendering complex details accurately, such as realistic
character spacing, size variations, and natural-looking ligatures that connect adjacent characters.

Second, for the model to effectively utilize the box map, the spatial information across all three
modalities—content (zc), image (zi), and box map (zm)—must be seamlessly fused. To achieve
this, we propose a Duplicate RoPE with Modulated Embedding strategy. This technique estab-
lishes a shared spatial coordinate system for all modalities. We first compute the Rotary Position
Embedding (RoPE) (Su et al., 2024) for the calligraphy image latent zi. This RoPE, which con-
tains rich 2D positional information, is then replicated and applied to both the content and box map
latents. To allow each modality to retain its unique identity within this shared system, we add a
distinct, learnable modulation embedding (Emod) to each copy:

RoPEi = CalculateRoPE(zi), (1)
RoPEk = RoPEi + Emod k, for k ∈ {c,m}. (2)

This shared-yet-distinct representation is the key that enables the model to build strong bidirectional
associations, allowing it to, for example, determine a character’s appearance based on its identity
and position, or infer its identity based on its appearance and position.

Finally, these spatially-aware latents are processed using an adapted MMDiT (Blattmann et al.,
2023) block. The input tokens for each modality are modulated by their respective timesteps (Tc =
tc, Ti = Tm = ti) before being concatenated and passed through a shared self-attention layer. This
allows the model to integrate information from all modalities, conditioned on their individual states
in the diffusion process, within a single, powerful block.

3.3 DISENTANGLING STYLE AND GLYPH VIA CONDITIONAL DROPOUT

Standard conditional training often leads to overfitting on long-tail stylistic data, where the model
prioritizes rare style constraints at the expense of correct glyph structure. To mitigate this, we
employ a strategy to disentangle style representation from glyph formation via conditional dropout.
Specifically, we mask the content condition with pure noise at a probability pdrop by setting the
condition timestep tc to 1:

tc =

{
1 with probability pdrop

0 with probability 1− pdrop
. (3)
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Figure 3: Qualitative comparison of our model against state-of-the-art generative models. To fa-
cilitate analysis, we use the following visual annotations: a red cross ✗ marks incorrectly rendered
glyphs, while a red circle ❍ indicates omitted characters. Furthermore, we highlight desirable calli-
graphic features: red boxes ❏ showcase well-formed connecting strokes, and blue boxes ❏ empha-
size appropriate, context-aware character sizing. Beneath each generated image, we provide style
correctness to evaluate its stylistic fidelity.

Empirically, a dropout rate of pdrop = 0.05 proves most effective. We observe that excessive dropout
yields generic, style-agnostic outputs, while insufficient dropout leads to style over-prioritization,
resulting in abstract patterns with incoherent glyph structures.

3.4 JOINT TRAINING ON LABELED, UNLABELED, AND SYNTHETIC DATA

The strategy of stochastically replacing the condition with noise, as detailed in the preceding section,
can be framed as a form of unconditional generation. This perspective offers a natural mechanism
for incorporating unlabeled data into our training paradigm. Specifically, data samples lacking an-
notations are processed by setting the condition timestep tc = 1, which forces the conditional latent
into a pure noise state, zϵc = ϵc. This technique seamlessly integrates unlabeled data by treating its
generation as an unconditional task, thereby enriching the model’s understanding of diverse calli-
graphic styles.

Furthermore, to expand the model’s glyph repertoire and improve its structural understanding of
characters, we incorporate a large corpus of synthetic data. We curated a collection of TrueType Font
(TTF) files for various script styles, including Regular/Kai, Running/Xing, and Cursive/Cao. These
fonts were employed to render extensive content from both ancient and modern Chinese literature.
The joint training on synthetic data significantly broadens the model’s known character set, while
the unlabeled data enhances its grasp of calligraphic styles. Collectively, these heterogeneous data
sources substantially improve the model’s overall generalization capabilities.
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4 EXPERIMENTATION

In this section, we detail our experimental setup, including the dataset and model architecture. We
then present a comprehensive evaluation of our model, UniCalli. In Section 4.1, we benchmark
UniCalli’s generation and recognition capabilities against several state-of-the-art models. To vali-
date our design choices, we conduct a series of ablation studies in Section 4.2. Finally, to assess
the model’s robustness and generalizability, we extend our evaluation to the challenging domains of
ancient scripts in Section 4.3.

Dataset. Our experimental dataset was constructed from multiple sources. We first curated a col-
lection of over 8,000 Chinese calligraphy images (examples can be viewed at Appendix C), fea-
turing the works of 93 calligraphers across five major script styles: Regular/Kai, Running/Xing,
Cursive/Cao, Clerical/Li, and Seal/Zhuan. From this collection, a subset of over 4,000 images was
annotated, yielding more than 150,000 character instances, each with a specified bounding box and
character label.
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Figure 4: Demonstration of UniCalli’s robust multi-style calligraphy generation. The same content
is rendered in the distinct styles of various calligraphers. The top panel showcases the generation of
two Chinese celebrity names, while the bottom panel displays a birthday greeting. This versatility
highlights UniCalli’s robustness in capturing diverse calligraphic styles and its strong potential for a
wide range of downstream applications.

Model. We fine-tune the FLUX (Labs et al., 2025) backbone with our Duplicate RoPE with Mod-
ulated Embedding strategy. The model’s input consists of three images: a standard-font content
image, a calligraphy style reference, and a bounding box map. For each sample, we crop a region
of five consecutive characters and resize both the crop and its box map to 128 × 640. The content
image is formed by horizontally concatenating five 128 × 128 standard-font renderings. All three
128×640 images are then patchified and concatenated before being input to the model. We fine-tune
for 500k iterations on 8×H100 GPUs.

4.1 COMPARISONS

Generation. We benchmark UniCalli’s generation capabilities against one-shot font generation
method: FontDiffuser (Yang et al., 2024), VLM-based models: ChatGPT-5 (OpenAI, 2024), Ernie-
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4.5-Turbo (Research, 2025), and Doubao (Gong et al., 2025) in two settings. For reference-based
synthesis, where a ground-truth image exists, visual comparisons are shown in Figure 3, and quanti-
tative metrics (L1, SSIM, LPIPS, FID) are reported in Table 3. For reference-free synthesis, Figure 4
demonstrates UniCalli’s ability to generate a character in diverse styles given the same content. Fi-
nally, we conducted a user study (details in Appendix H) with 20 calligraphy enthusiasts who ranked
the outputs based on Style Consistency, Glyph Accuracy, Naturalness, and Overall Preference, with
results summarized in Table 1.

Table 1: Unified user study results for reference-free calligraphy generation. We report the (mean,
standard deviation) of user ratings on a 5-point Likert scale (1=Worst, 5=Best) across four key
metrics. The metrics are: Style Fidelity, Glyph Accuracy, Naturalness, and Overall Preference. The
best score in each category is highlighted in bold. The arrow (↑) indicates that higher scores are
better.

Method Style Fidelity↑ Glyph Accuracy↑ Naturalness↑ Overall Preference↑
FontDiffuser 1.680, 1.420 4.950, 0.380 2.120, 1.550 1.890, 1.380
ChatGPT-5 2.987, 1.205 3.853, 1.163 2.373, 1.334 2.373, 1.220
Ernie-4.5 2.000, 1.166 3.560, 1.369 2.533, 1.226 2.507, 1.204
Doubao 2.413, 1.234 4.800, 0.462 3.520, 1.290 3.933, 0.573

UniCalli 4.267, 0.943 4.827, 0.443 4.520, 0.755 4.560, 0.787

Table 2: Character-level recognition accuracy on the held-out test set; bold indicates the best per row.
“Doubao-1.5*”, “Ernie-4.5*”, and “Qwen-2.5*” denote Doubao-1.5-Thinking-Vision-Pro, Ernie-
4.5-Turbo-VL, and Qwen-2.5-VL-7B, respectively.

Category GPT-4o Ernie-4.5* Qwen-2.5* GOT-OCR2.0 PP-OCRv5 Doubao-1.5* CalliReader Ours

Cursive/Cao 0.073 0.255 0.127 0.091 0.091 0.200 0.164 0.109
Regular/Kai 0.502 0.616 0.600 0.314 0.396 0.588 0.600 0.688
Clerical/Li 0.293 0.453 0.453 0.187 0.160 0.507 0.507 0.518
Running/Xing 0.364 0.600 0.473 0.336 0.436 0.545 0.658 0.528
Seal/Zhuan 0.067 0.133 0.067 0.000 0.000 0.133 0.067 0.050

Total 0.380 0.534 0.482 0.266 0.324 0.510 0.533 0.540

Recognition. We benchmark our recognizer against six models, including GPT-4o (OpenAI, 2024)
and others. From the labeled data, we created 100-image validation and test sets. All models were
evaluated on this common test set, and our model was selected based on validation performance. As
shown in Table 2, our method attains the highest overall character-level accuracy across five script
styles. We acknowledge that this advantage may be partly due to the similar distributions of our
training and test data.

4.2 ABLATION STUDIES

Components ablation. We systematically evaluate the impact of the three main components of our
framework (Table 4): (1) the Duplicate RoPE with Modulated Embedding, (2) the Joint Training
Strategy utilizing synthetic, labeled, and unlabeled data, and (3) the Conditional Dropout mecha-
nism. To establish a rigorous comparison, we define the Baseline as a standard FLUX Labs et al.
(2025) model trained exclusively on the generation task. In this baseline setup, the clean condi-
tion, noisy image, and mask are concatenated into a single input sequence processed by a single,
continuous RoPE, without our proposed structural decoupling or joint optimization.

Value of pdrop. The pdrop (Eq. 3) value is the primary hyperparameter in our Conditional Dropout
mechanism. It influences the model’s focus, creating a trade-off between learning the fundamental
glyph structure and capturing the specific calligraphic style. A higher pdrop value encourages the
model to ignore stylistic information and concentrate on the core character shape, while a lower
value allows for more stylistic detail to be preserved, as shown in Figure 5.

4.3 ROBUSTNESS ON ANCIENT CHARACTERS.

Oracle bone script. We trained our model on the HUST-OBC dataset (Wang et al., 2024) and
structured our evaluation into three distinct tasks. First, we assessed the model’s ability to generate
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Ref.

:pdrop 0.200 0.050 0.020 0.0000.002

Figure 5: Ablation study on pdrop. An ex-
cessively low pdrop causes the model to sac-
rifice structural integrity to replicate long-
tail styles, whereas an excessively high
value leads to style-agnostic, canonical
characters due to over-disentanglement.

Table 3: Quantitative comparison with state-of-the-art
methods on reference-based synthesis. The best score
in each category is highlighted in bold.

Method 000000000 L1↓ SSIM↑ LPIPS↓ FID↓
FontDiffuser 0.370 0.425 0.527 80.25
ChatGPT-5 0.201 0.331 0.412 55.50
Ernie-4.5 0.375 0.507 0.475 68.38
Doubao 0.229 0.463 0.456 47.26

UniCalli 0.152 0.602 0.313 37.69

Table 4: Ablation study of our model’s key compo-
nents. Improved LPIPS and FID indicate enhanced di-
versity and realism, avoiding the mode collapse associ-
ated with pixel-wise averaging.

Metric L1↓ SSIM↑ LPIPS↓ FID↓
Baseline 0.200 0.551 0.430 52.90
+ Joint Training 0.160 0.604 0.387 46.42
+ RoPE Duplication 0.148 0.613 0.352 41.78
+ Cond. Dropout 0.152 0.602 0.313 37.69

Table 5: Quantitative comparison of UniCalli and OracleNet on Oracle Bone Script tasks. Genera-
tion accuracy is evaluated by human experts and classified into three categories: Completely Correct,
Largely Correct, and Completely Incorrect (detailed evaluation criteria are shown in Appendix G).
Recognition accuracy is measured against deciphered ground truth. N/A denotes that a method is
not applicable to the task.

Method Generation Accuracy (%) Recognition Acc. (%)
Completely

Correct
Largely
Correct

Completely
Incorrect

OracleNet N/A 73.9%
UniCalli 67% 20% 13% 62.5%

oracle bone script characters from corresponding modern Chinese characters. Second, we evaluated
its performance on supervised oracle bone character recognition, using the Top-K accuracy metric
to quantify precision. For the third task, we applied our model to a set of 100 undeciphered oracle
bone characters to predict their potential modern Chinese character equivalents. The qualitative
aspects of our study—namely, the generative task were evaluated by experts in oracle bone script
from the School of History at Xiamen University, details in Appendix G, visual results are shown
in Figure 10. Furthermore, we benchmarked our model against OracleNet (Zhou et al., 2025) on a
curated set of 100 deciphered characters, as detailed in Table 5. Recognition accuracy was calculated
directly, while generation correctness was assessed by experts.

Egyptian hieroglyphs. We conducted experiments on dataset (Umer, 2023) (see Appendix F for
more details).

5 CONCLUSION

We introduced UniCalli, a unified diffusion framework that advances computational Chinese cal-
ligraphy by unifying isolated character generation with holistic, page-level composition. Our con-
tributions include a large-scale, annotated dataset and a novel Multimodal Diffusion Transformer
that jointly handles generation and recognition with global coherence. Trained on diverse data, Uni-
Calli faithfully captures the stylistic nuances of master calligraphers, including complex ligatures
and spatial rhythms, while maintaining strict glyph accuracy. The framework’s robustness is shown
by its successful extension to other ancient writing systems like Oracle bone script and Egyptian
hieroglyphs, highlighting its potential as a powerful tool for the digital preservation and scholarly
study of global cultural heritage.

9
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6 ETHICS STATEMENT

This research was conducted with the aim of preserving and promoting cultural heritage through
computational methods. The dataset was created from digitized historical works, many of which are
in the public domain, and augmented with synthetically generated data from publicly available fonts
and literature. We believe this work has a positive cultural impact by making the art of calligraphy
more accessible. The code and dataset will be released publicly to encourage further academic
research and creative applications in a responsible manner.

7 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. This paper provides a detailed
description of our framework, UniCalli, the data collection and annotation process, and our exper-
imental setup in Sections 3 and 4. To facilitate the verification of our results and to allow other
researchers to build upon our work, we will make our source code, the curated dataset with an-
notations, and the pre-trained model weights publicly available upon publication, as stated in the
abstract.
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A WRITING ASSISTANCE (LLM USE DISCLOSURE)

We utilized a large language model (LLM), specifically ChatGPT, as a writing assistant to enhance
the quality of this manuscript. The tool’s role was strictly limited to improving language, including
grammar, clarity, and academic tone. All scientific content—including the core ideas, methodology,
analyses, and experimental results—was generated exclusively by the authors. We have carefully
reviewed every modification suggested by the LLM to ensure it aligns with our original intent and
maintains factual accuracy. The authors retain full responsibility for the final content of this paper.

B LIMITATIONS

The limitations of this work are twofold. Firstly, the historical calligraphy data contains considerable
noise from age and poor preservation, which persists in the generated outputs despite our denoising
efforts. Secondly, the severe long-tail distribution of the data, caused by the rarity of works from
some calligraphers, is difficult to optimize algorithmically and results in deviations from the original
artistic styles.

C DATA PRE-PROCESSING AND EXAMPLES

To simplify the learning task, all calligraphy images were preprocessed through denoising and bina-
rization, and subsequently categorized by their background color (black or white). To augment our
dataset, we generated synthetic data using three TrueType Font (TTF) files for Regular, Running,
and Cursive scripts, rendering text from a large corpus of classical and modern Chinese literature
(e.g., Dream of the Red Chamber, Water Margin, and the collected works of Lu Xun). To ensure the
model prioritized learning from authentic works, the sampling probability for synthetic data was set
to 0.2 during training. Our conditioning prompts were structured into four parts: data source (real
or synthetic), background color, calligrapher description, and script style description.

C.1 REAL IMAGE PROCESSING

ImageCondition Box ImageCondition BoxImageCondition Box

Figure 6: Labeled data examples.

This stage processes high-resolution scans of historical calligraphy, which are accompanied by an-
notations detailing the location and identity of each character.

Vertical Text Segment Extraction: Chinese calligraphy is traditionally written in vertical columns.
We first group the annotated characters into columns by clustering them based on their horizontal
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coordinates. To create training samples of a consistent length, we filter for columns containing at
least a minimum number of characters, N (e.g., N = 5). From these valid columns, we randomly
sample a continuous vertical sequence of N characters. This process acts as a form of random
cropping, increasing data diversity.

Image Cropping and Augmentation: A tight bounding box is calculated around the selected char-
acter segment, and the original image is cropped to this region with a small padding margin. As an
optional data augmentation step, we employ an automatic binarization algorithm. This algorithm
determines the image’s polarity (light text on a dark background or vice-versa) by generating two
candidate binary masks and scoring them based on two criteria:

• Foreground Ratio: How well the proportion of foreground pixels falls within a predefined,
typical range for text.

• Edge Contrast: The degree to which Canny edges align with the interior of the foreground
mask, indicating sharp, well-defined strokes. The higher-scoring mask is chosen, normal-
izing the image to white text on a black background. This makes the model robust to
variations in paper and ink.

C.2 SYNTHETIC DATA GENERATION

To augment our dataset and provide the model with a wider variety of styles and characters, we
synthesize additional training samples.

Text and Style Sampling: A text segment of a random length (up to N ) is sampled from a large
corpus of Chinese literature. Concurrently, a TrueType Font (TTF) is randomly selected from a
curated collection of diverse calligraphic fonts.

Image Rendering: The sampled text is rendered onto a blank canvas using the chosen font. The
background and text colors (either black-on-white or white-on-black) are also selected randomly to
ensure variability.

C.3 CONDITIONING SIGNAL FORMULATION

A key aspect of our pipeline is the explicit separation of content and style into distinct conditioning
signals.

Content Conditioning: For every sample, whether real or synthetic, we generate a content image.
This is a standardized representation where the target sequence of N characters is rendered in a sin-
gle, consistent, non-stylized font (e.g., Regular/Kai) at fixed positions on a white background. This
image serves as an unambiguous guide for “what” characters the model should generate, isolating
content from stylistic attributes.

Style Conditioning: A descriptive text prompt is constructed to guide the artistic style. For real
images, this prompt includes metadata such as the script type (e.g., Cursive, Seal), the author’s name,
and pre-defined stylistic descriptions associated with that author or script. For synthetic data, the
prompt includes the name of the source TTF font and its associated style descriptors. All Chinese
terms within the prompt are converted to Pinyin to maintain a consistent vocabulary.

Finally, all images (target, content) are resized to a fixed resolution (e.g., 128×640) and normalized
to a pixel value range of [−1, 1]. The text prompt and the character sequence are tokenized for
model consumption. The final output for each training step is a tuple containing the target image,
the content-conditioning image, the style-conditioning prompt, and the tokenized character IDs.

To prepare our model inputs, we process segments from the original source data through cropping
and labeling. We first crop the data to isolate relevant regions of interest, as shown in the source
examples in Figure 7. Each cropped segment is then annotated with a ground-truth label. This
creates the final curated dataset of labeled inputs, ready for model training. Examples of these final,
labeled inputs are provided in Figure 6.
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Figure 7: Dataset example.

C.4 ARTIFACTS IN GENERATED SAMPLES

Origin of Visual Anomalies. A qualitative examination of certain generated samples (e.g., styles
corresponding to Sun Guoting and Yan Zhenqing) reveals the presence of irregular ”white patches”
or discontinuities within the stroke glyphs. We wish to clarify that these are not generative halluci-
nations or model failures, but rather high-fidelity reproductions of artifacts inherent to the training
dataset.

Physical and Digital Causes. A significant portion of the training corpus is derived from historical
stone stele rubbings (beike). These physical monuments have been subjected to centuries of nat-
ural weathering, erosion, and mechanical damage, resulting in surface pitting and cracks . When
these historical rubbings undergo digital binarization for dataset curation, these physical imperfec-
tions—where the paper could not make contact with the eroded stone surface—are converted into
binary ”noise.” Consequently, the model, which aims to approximate the underlying data distribu-
tion, learns to faithfully reconstruct these weathering artifacts as part of the stylistic texture.
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Future Mitigation. We acknowledge that while historically authentic, these artifacts may detract
from the aesthetic cohesion of the generated calligraphy for certain applications. In future work,
we plan to implement rigorous data-level preprocessing, utilizing dedicated denoising algorithms to
restore the integrity of the glyph strokes before training, thereby separating the calligraphic content
from the historical degradation of the substrate.

D EVALUATION ON PUBLIC BENCHMARKS

To ensure a fair and robust evaluation of our recognizer, we extended our experiments to include
third-party public datasets. However, it is important to note that, to the best of our knowledge,
there are currently no publicly available datasets specifically dedicated to page-level Ancient Chi-
nese Calligraphy. Existing public datasets in this domain primarily focus on isolated, individual
characters Zhao et al. (2025).As the closest available alternative, we selected CalliBench Luo et al.
(2025), a recently released benchmark for page-level calligraphy. It is crucial to emphasize that
while CalliBench supports page-level evaluation, its data distribution differs significantly from our
training objective: it predominantly consists of modern artistic fonts and contemporary calligraphy,
rather than the historical ancient styles (e.g., Yan style, Cursive script) that UniCalli is optimized for.
This introduces a substantial domain gap between the training and testing distributions.Despite this
challenge, we evaluated UniCalli on the CalliBench ”Easy” subset against state-of-the-art general-
purpose Vision-Language Models (VLMs) and specialized OCR systems. The results are reported
in Table 6.

As shown in Table 6, UniCalli achieves a competitive F1 score of 0.498. While specialized OCR
models like GOT-OCR2.0 achieve higher performance—likely due to their extensive training on
broad, modern font datasets—UniCalli notably outperforms powerful general-purpose VLMs such
as GPT-4o (F1: 0.400) and established industrial OCR systems like PP-OCRv5 (F1: 0.205). This
result is encouraging: it demonstrates that although UniCalli was trained strictly on ancient historical
data, it has learned robust, generalized features that allow for effective zero-shot transfer to unseen
modern artistic styles.

Table 6: Quantitative comparison of recognition performance on the CalliBench Luo et al. (2025)
(Easy subset). Note that UniCalli is trained exclusively on ancient historical calligraphy, whereas
CalliBench consists largely of modern artistic fonts, introducing a domain gap.

Model Precision ↑ Recall ↑ F1 ↑ NED ↓
Ernie-4.5-Turbo-VL 0.542 0.481 0.482 0.637
Doubao-1.5-Thinking-Vision-Pro 0.442 0.513 0.462 0.655
PP-OCRv5 0.372 0.291 0.205 0.859
GPT-4o 0.457 0.403 0.400 0.726
Qwen-2.5-VL-7B 0.440 0.736 0.534 0.710
GOT-OCR2.0 0.687 0.550 0.593 0.651
UniCalli 0.480 0.520 0.498 0.680

E IMPLEMENTATION DETAILS OF UNIFIED ARCHITECTURE

E.1 ZERO-SHOT TEXT RECOGNITION VIA FEATURE RETRIEVAL

Unlike traditional OCR systems that rely on autoregressive text decoding or classification heads, our
unified framework performs recognition through a zero-shot, retrieval-based mechanism. This ap-
proach leverages the shared latent space between the generation and recognition tasks. The process
consists of two phases:

1. Reference Library Construction (Offline):
We construct a comprehensive reference feature library L prior to inference. We render
images for all standard characters c present in our vocabulary (derived from the standard
.ttf font file used in training). Each rendered character image Ic is passed through the
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pre-trained VAE encoder E to obtain its latent feature representation zc:

L = {(c, zc) | zc = E(Ic), ∀c ∈ V} (4)

where V is the character vocabulary.
2. Inference and Matching:

During the recognition task, the model outputs a predicted condition feature ẑpred (the tensor
immediately preceding the VAE decoder). To determine the text content, we compute the
cosine similarity between ẑpred and all reference features in L. The recognized character ĉ
is determined by the nearest neighbor in this latent space:

ĉ = argmax
c∈V

(
ẑpred · zc

∥ẑpred∥∥zc∥

)
(5)

This design avoids the need for an auxiliary OCR module and ensures that the recognition
capability is intrinsically aligned with the generative features of the model.

E.2 DUPLICATE ROPE WITH MODULATED EMBEDDING

To process heterogeneous inputs (Image, Condition, and Mask) within a unified spatial context,
we employ a Duplicate RoPE strategy augmented with Learnable Modulated Embeddings. This
design ensures that the model can distinguish between input modalities without disrupting the spatial
geometry defined by Rotary Positional Embeddings (RoPE).

Mechanism. Let X ∈ RL×d represent the input sequence of features for a specific modality
m ∈ {Image,Condition,Mask}. We initialize a unique, learnable embedding vector vm ∈ Rd for
each modality, initialized to zeros. This vector is broadcasted across the sequence length and added
element-wise to the input features before the attention projection:

X′
m = Xm + vm (6)

Subsequently, the transformed features X′
m are projected into Query (Q) and Key (K) states, to

which RoPE is applied.

Preservation of Relative Positioning. It is crucial to note that adding the modality embedding
vm does not interfere with the relative positional encoding properties of RoPE.

• Spatial Structure: RoPE injects positional information via rotation based on the token
index pos.

• Modality Identity: The learnable embedding vm acts as a global, modality-specific “off-
set” or bias in the semantic space.

By superimposing vm, we allow the model to distinguish what the input is (e.g., “this is a condition
token” vs. “this is an image token”) while RoPE simultaneously tells the model where the input
is. Since the two signals operate orthogonally—one as a static semantic bias and the other as a
dynamic frequency-based rotation—the underlying relative positional “grid” remains intact across
all duplicated modalities.

F EGYPTIAN HIEROGLYPHS.

Directly translating from English to Egyptian hieroglyphs is unfeasible due to their fundamentally
different structures. English utilizes a concise alphabetic script, where a small set of abstract sym-
bols represents phonemes (units of sound). In stark contrast, the ancient Egyptian system is vastly
more complex, employing hundreds of signs that function as logograms (signs for words), phono-
grams (signs for sounds), and determinatives (semantic classifiers). A simple one-to-one phonetic
or symbolic mapping between these systems is therefore impossible.

To solve this challenge, our approach uses Chinese script as a semantic bridge in a two-step process.
The rationale is that both Chinese characters and Egyptian hieroglyphs share a logographic founda-
tion, where symbols are often rooted in pictorial representations of concepts. This structural parallel

17



Published as a conference paper at ICLR 2026

allows us to bypass direct phonetic transliteration in favor of a semantic-first approach, mapping
the core meaning of an English word rather than its sound. The complete pipeline is illustrated in
Figure 8.

By leveraging this intermediary, our method transforms an impossible phonetic transliteration into
a feasible conceptual and iconographic mapping. This creates a more logical and meaningful bridge
between the ancient and modern languages, preserving semantic intent.

To validate our framework, we conducted experiments on the Kaggle-Egyptian-Hieroglyphs
dataset (Umer, 2023) to assess its performance both qualitatively and quantitatively. The qualita-
tive results, presented in Figure 9, showcase the high visual fidelity and contextual relevance of the
generated hieroglyphs from English inputs. Concurrently, for a quantitative measure, the model’s
strong recognition accuracy is summarized in Table 7, empirically confirming the method’s effec-
tiveness.

Hieroglyphs
(Pictographic)

Chinese
(Pictographic)

English
(Alphabetic) Soldier One Board  

game Branch

Generation Recognition

Figure 8: An illustration of the mapping process from English to Egyptian hieroglyphs. Direct
mapping is challenging due to the fundamental differences between English, an alphabetic script,
and Egyptian hieroglyphs, a pictographic script. To bridge this gap, our approach first maps English
to Chinese—a script that is also fundamentally pictographic—which then serves as an intermediate
representation for the final mapping to hieroglyphs.

Soldier One Board  
game

BranchMascotEnglish

Ref.

Generation

Bandage Small ring Cooked

SandalEnglish

Ref.

Generation

Eye Brewer Not Corpse Bread Giraffe Folded

Figure 9: Generation results of Egyptian hieroglyphs. The first row shows the input text in English.
The second row is the reference image, and the third row displays the generated output.
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Table 7: Accuracy of Egyptian hieroglyphs recognition.

Accuracy
UniCalli 0.96

Text

Ref.

Gen.

亦 執 匃 乎 戔 屰㚔 弗

Figure 10: Qualitative results of our model for Oracle Bone Script generation. For each example, we
show the input modern Chinese character (top row), a corresponding ground-truth glyph as reference
(middle row), and the Oracle Bone Script generated by our method (bottom row). Our generated
results are highly consistent with the reference images in both structure and style.

G HUMAN EXPERT EVALUATION CRITERIA FOR GENERATION

This section details the criteria used by human experts to evaluate the quality of the generated oracle
bone script characters. Each generated character is assessed and categorized into one of three tiers
based on its structural and stylistic accuracy compared to the ground truth. The scoring guidelines
are as follows:

• Completely Correct: The generated character is structurally identical to the ground truth
character or represents a well-accepted calligraphic variant. All strokes are correctly
formed and placed.

• Largely Correct: The generated character captures the essential structure and is clearly
recognizable, but contains minor inaccuracies. These may include incorrect stroke thick-
ness, slight misplacement of components, or minor stylistic deviations that do not alter the
character’s identity.

• Completely Incorrect: The generated character is structurally flawed, unrecognizable as
the target character, or resembles a different character entirely.

Figure 11 provides visual examples for each of these categories, illustrating the practical application
of our scoring guidelines.

H USER STUDY OF GENERAL CALLIGRAPHY GENERATION

To evaluate the qualitative performance of our model, we designed a user study consisting of 10
questions. We recruited 20 participants, all of whom identified as calligraphy enthusiasts, to com-
plete the survey.

Each question, or evaluation task, presented participants with three components:

• Prompt: A textual prompt specifying the content to be generated, a description of the target
calligrapher’s style, and the desired script style (e.g., Running Script, Clerical Script).

• Reference Image: An image containing an authentic work excerpt from the specified cal-
ligrapher to serve as a ground-truth style example.

• Generated Images: A set of calligraphy images generated by UniCalli and the baseline
models for comparison. To prevent positional bias, the order of these images was random-
ized for each question and each participant.
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Text

Ref.

Gen.

亦 執 匃 安⾄ 妸⽢

Completely Correct: Largely Correct: Completely Incorrect:

㚔

Figure 11: Examples illustrating the evaluation criteria for generated oracle bone script characters.
Each row demonstrates samples categorized as (a) Completely Correct, (b) Largely Correct, and (c)
Completely Incorrect by human experts.

Participants were asked to rate the generated images based on four key metrics: Style Fidelity,
Glyph Accuracy, Naturalness, and Overall Preference. Ratings were provided on a 5-point Likert
scale, where 1 corresponds to ”Worst” and 5 to ”Best”. The aggregated results, reported in the main
paper, represent the mean and standard deviation of these ratings. An example of the user study
interface is shown in Figure 12.
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Q2：天涯共此时-米芾

Reference

Naturalness

Glyph Accuracy

Style Fidelity

Overall Preference

Figure 12: An example from our user study questionnaire.

H.1 QUALITATIVE FEEDBACK

In addition to quantitative ratings, we collected qualitative feedback from the participants. Below
are some representative comments, translated from the original responses:

• Participant 1: “The second option in Q1 (generated by UniCalli) is a very convincing
replica. Huang Tingjian’s style is often described as resembling a ’dead snake hanging
from a tree.’ The other options devolved into an unorthodox and unrefined ’Jianghu’ style
or were simply inaccurate.”
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• Participant 2: “Regarding Q2, the second option exhibits an unrefined ’Jianghu’ style
and incorrectly uses simplified characters, leading to a distorted result. The first option is
similarly unrefined. While the third option shows some resemblance to the style, it lacks
structural accuracy. In comparison, the fourth option (generated by UniCalli) is signif-
icantly better, though for running script, it could still improve the fluid connection and
calligraphic ’echo’ between adjacent characters.”

• Participant 3: “Having practiced Yan Zhenqing’s calligraphy myself, I found that option
2 in Q7 (generated by UniCalli) was a clear and striking match for his style.”

• Participant 4: “In Q8, the ’Slender Gold’ style, characteristic of Emperor Huizong’s cal-
ligraphy (Zhao Ji), was most accurately captured by the third option (generated by Uni-
Calli).”

I MORE GENERATION RESULTS

This appendix provides a more extensive showcase of our model’s capabilities in calligraphic style
generation. It is divided into two main parts. The first part presents the complete poem ”Bring in
the Wine” (Qiang Jin Jiu) by Li Bai, generated in the distinct styles of several master calligraphers.
This expands upon the teaser in the main text, where only a single line from each style was shown
to form the poem collectively (see Figures 17, 18, and 16). The second part features a collection of
names of famous ancient Chinese figures, rendered in various calligraphic styles (see Figures 15, 13,
14). This demonstrates our UniCalli’s generalization ability and its proficiency in handling Chinese
characters of varying complexity.
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）
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（
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）
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）

 

Yan Zhenqing (Regular)
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（
楷
）

 

Zhang Jizhi (Regular)
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Zhao Ji (Regular)
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）

 

Mi Fu (Running)
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(Running)
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Tang Yin (Running)

摩
崖
刻
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 (楷
) 

Cliff Inscriptions  
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Figure 13: Names of historical and mythological figures from Chinese culture, rendered in various
calligraphic styles. From top to bottom: Hua Mulan and Xiang Yu.

J APPLICATIONS IN CULTURAL AND CREATIVE INDUSTRIES

One of the primary motivations behind UniCalli is to bridge the gap between state-of-the-art gener-
ative AI and traditional cultural heritage. Beyond academic metrics, the true value of a calligraphy
foundation model lies in its ability to empower designers and general users to create high-quality,
aesthetically pleasing works for daily use with minimal technical barriers.

In this section, we showcase three specific types of cultural and creative products (Wen-Chuang)
designed using UniCalli. It is important to highlight that the creation process for these works was
remarkably streamlined. The calligraphic content was generated by our model, while the specific
column layouts and ink color conversions were automated using simple post-processing scripts. The
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Figure 14: Names of historical and mythological figures from Chinese culture, rendered in various
calligraphic styles. From top to bottom: Wang Zhaojun and Yang Jian.
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Figure 15: Names of historical and mythological figures from Chinese culture, rendered in various
calligraphic styles. From top to bottom: Tang Sanzang and Wukong.

final compositions were produced by compositing these generated assets onto decorative background
images sourced from the open internet. These examples demonstrate not only the model’s capability
to generate authentic, high-resolution calligraphy but also the ease with which it can be integrated
into practical design workflows.

J.1 CLASSICAL POETRY SCROLLS

The vertical column structure of Chinese calligraphy is most iconic in the presentation of classical
poetry. We utilized UniCalli to generate complete scrolls of famous Tang and Song dynasty po-
ems. The model maintains style consistency across multiple columns, capturing the flow (Qi-Yun)
essential for artistic appreciation. Figure 19 presents a classical example featuring Meng Haoran’s
renowned poem “Spring Dawn,” demonstrating the model’s ability to generate extended vertical
compositions with proper character spacing and rhythmic balance.
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Figure 16: The full text of Li Bai’s ”Bring in the Wine” (Qiang Jin Jiu), generated in the calligraphic
style of Wang Xizhi (Cursive).

J.2 BOOKMARKS AND AUSPICIOUS BLESSINGS

We also designed a series of cultural bookmarks and stationery featuring ”Auspicious Phrases” (Ji-
Li-Hua)—short, lucky idioms used to wish good fortune. Unlike fixed datasets, our text-to-image
capability allows users to generate specific custom blessings in various artistic styles on demand,
making them ideal for personalized gifts and souvenirs. Figures 20–23 showcase diverse calli-
graphic styles applied to popular blessing phrases such as “Good Luck,” “Great Fortune,” “Rolling
Wealth,” and “Pass Every Test.” These examples feature the distinctive styles of master calligraphers
including Mi Fu, Tang Yin, Zhao Ji, Zhao Mengfu, Sun Guoting, Wang Xizhi, and Huang Tingjian,
demonstrating the model’s versatility in style transfer while maintaining authentic character struc-
tures.

J.3 TRADITIONAL MARRIAGE CERTIFICATES (HUN SHU)

In recent years, there has been a resurgence of interest in traditional Chinese marriage certificates
(Hun Shu). These documents require a solemn, dignified, and elegant aesthetic. We applied UniCalli
to generate customized marriage vows in multiple prestigious calligraphic styles. Figures 24–??
present a collection of marriage certificates rendered in the styles of Zhao Ji, Zhao Mengfu, Mi Fu,
Tang Yin, and Zhang Jizhi. The solemn and majestic character structures perfectly suit the formal
nature of the occasion, while the model’s ability to maintain consistency across multiple columns
ensures the ceremonial dignity of the documents.

J.4 SUMMARY OF IMPACT

These applications validate that UniCalli is not merely a style transfer tool but a production-ready
asset generation engine. By open-sourcing this model, we hope to lower the barrier for designers
to incorporate authentic Chinese calligraphy into modern cultural products, thereby fostering the
revitalization of this intangible cultural heritage.
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Figure 17: The full text of Li Bai’s ”Bring in the Wine” (Qiang Jin Jiu), generated in the calligraphic
style of Mi Fu (Running), Ou Yangxun (Regular), and Tang Yin (Running).
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Figure 18: The full text of Li Bai’s ”Bring in the Wine” (Qiang Jin Jiu), generated in the calligraphic
style of Zhang Jizhi (Regular), Yan Zhenqing (Regular), and Zhao Ji (Regular).
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Figure 19: Meng Haoran - “Spring Dawn”. Background images are sourced from the internet.

(a) Mi Fu
Good Luck

(b) Mi Fu
Wealth Coming

(c) Tang Yin
Top Scholar

(d) Tang Yin
Lose Weight

Figure 20: Cultural Creative Works - Group 1. Background images are sourced from the internet.
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(a) Zhao Ji
Great Fortune

(b) Zhao Ji
Peace

(c) Zhao Mengfu
Great Fortune

(d) Zhao Mengfu
Peace

Figure 21: Cultural Creative Works - Group 2. Background images are sourced from the internet.

(a) Sun Guoting
Rolling Wealth

(b) Wang Xizhi
Top the Exam

(c) Zhao Ji
Pass Every Test

(d) Zhao Mengfu
Fortune Turns

Figure 22: Cultural Creative Works - Group 3. Background images are sourced from the internet.

(a) Huang Tingjian
Fortune Turns

(b) Mi Fu
Top the Exam

(c) Mi Fu
Rolling Wealth

(d) Tang Yin
Pass Every Test

Figure 23: Cultural Creative Works - Group 4. Background images are sourced from the internet.
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Figure 24: Zhao Ji - Wedding Certificate - Series 1. Background images are sourced from the
internet.

Figure 25: Zhao Mengfu - Wedding Certificate - Series 1. Background images are sourced from the
internet.

28



Published as a conference paper at ICLR 2026

(a) Mi Fu
Wedding Certificate

(b) Tang Yin
Wedding Certificate

Figure 26: Wedding Certificates. Background images are sourced from the internet.
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