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Abstract
The presence of linear paths in parameter space between two different network solutions in certain
cases, i.e., linear mode connectivity (LMC) [6], has garnered interest from both theoretical and
practical fronts. There has been significant research that either practically designs algorithms catered
for connecting networks by adjusting for the permutation symmetries as well as some others that
more theoretically construct paths through which networks can be connected [11]. Yet, the core
reasons for the occurrence of LMC, when in fact it does occur, in the highly non-convex loss
landscapes of neural networks are far from clear. In this work, we take a step towards understanding
it by providing a model of how the loss landscape needs to behave topographically for LMC (or
the lack thereof) to manifest. Concretely, we present a ‘mountainside and ridge’ perspective that
helps to neatly tie together different geometric features that can be spotted in the loss landscape
along the training runs. We also complement this perspective by providing a theoretical analysis
of the barrier height, for which we provide empirical support, and which additionally extends as a
faithful predictor of layer-wise LMC. We close with a toy example that provides further intuition on
how barriers arise in the first place, all in all, showcasing the larger aim of the work — to provide a
working model of the landscape and its topography for the occurrence of LMC.

1. Introduction

The loss landscape of over-parameterized neural networks, in general, and especially when taken as a
whole, is undoubtedly non-convex. Yet, the confrontation with the still somewhat puzzling success of
a local gradient based method to find generalizing solutions has led to a body of work that explores
inherent regularity within optimization, such as through the lens of implicit bias [9, 12]; or sources of
structure and regularity within the landscape itself, like via its significant degeneracy [13, 17], inherent
symmetries [4, 15], or existence of monotonic paths during training [8] as well as non-linear/linear
paths between solutions [3, 6, 7] — all of which are likened to play a palliative role against the non-
convexity. From this latter category, a particularly striking notion of regularity is that of linear mode
connectivity [6], where it has been observed that if two networks are made to share a common initial
path of sufficient length (usually around 10% of the whole training) and subsequently set apart on
distinct paths from a ‘fork’ (e.g., achieved via enforcing different orderings of the samples), they can
nevertheless be connected with a linear path at convergence, along which the loss remains negligible.

The particular interest of the research community in LMC can be attributed to, amongst other
factors, the sheer simplicity with which a notion of convexity is demonstrated in the landscapes, as
well as the practical implications it raises for model merging/fusion [2, 16]. As a result, there is a lot
of research which tries to theoretically construct sets of paths [5, 11, 14] to demonstrate LMC, as well
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as others which consider its extensions to convex hulls [18], feature [19] and layer connectivity [1],
and increasingly, those that study its wider implications on generalization strategies [10]. However,
amidst all these advances, our broader model of the loss landscape has seen little refinement. Hence,
our objective is to precisely take a step towards this, by providing a model of the landscape that
allows for LMC (or lack thereof) and explicates the various observations in this context.

A metaphor for LMC. Let us momentarily engage in a metaphor that explains our model.

Imagine going down from near the top of a mountain towards the valley with a friend.
With the weather being extremely foggy and windy, your visibility is negligible and you
both chose to descend by locally following the downward slope. However, after a while
into your hike downwards, you can’t spot your friend and realize that you might have lost
them on the way. Confident that you could not have diverged for long, you continue to
march down with the hope that you will find them at the valley floor without strenuous ef-
fort. It takes some walking once you are finally down, but you soon run into them and are
relieved. However, as you both gaze upwards, you realize that thankfully you did not sep-
arate around the top of the mountain itself, for a deviation then would tantamount to you
both being on the different sides of the mountain, with a non-trivial barrier in between.

2. The Topography of Landscapes vis-à-vis LMC

Key Hypothesis. While the above is merely a metaphor, and not free from flaws, the resemblance to
LMC is hard to ignore, and we take some inspiration from it to arrive at a hypothesis. Namely, that
the occurrence of LMC can be explained by models moving down a mountain side with numerous
ridges that are present at varying heights. If one forks on top of a plateau or a wide ridge, the child
models may move to either side of it, effectively resulting in a barrier that completely prevents linear
connectivity. In contrast, if one forks a little later on one side of the higher ridge, models largely
remain on the same side with the mountain slope pulling them downwards, and if separated, are only
divided by a lower ridge implying a small barrier.

Figure 1: The evolution of training error curves, shown in different colors, when forked at different
points. The barrier version (i.e., with the error of endpoints subtracted) is shown in Figure 10.

Empirical observations. Let us directly take a look at the kind of cross-sectional loss landscape
that appears between the child models (‘siblings’) when the parent model is forked at different points
in training, and in particular, how this varies while training the child models. Figure 1 shows a plot of
the training error on the line segment joining the siblings for the case of ResNet20 trained on CIFAR-
10, mimicking the hyperparameter setup of Frankle et al. [6] which is also detailed in Section B.1,
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when forked at epochs 0 (i.e., initialization), 1, 2, 15. The evolution of the training error is shown
by laying them out in different planes, which also evokes how the siblings navigate the landscape.

We observe that when the siblings are forked from the initialization, a wide ridge (i.e., consid-
erable portion of the line segment is at high error) separates them throughout their training just as
if they set out on different sides of the mountain. But when they are forked after a few (parent)
epochs, they seem to be both going downward but are soon (in the span of 10− 20 child epochs)
separated by another ridge. This ridge although lower in height extends all the way until convergence.
Finally, if the children get forked much later, they seem to be simply descending downwards, and
are separated by essentially a bump. These observations align neatly with our ‘mountain-and-ridge
perspective’ hypothesized above, and show most conspicuously, that barriers do not just show up
right at convergence, but can be traced a long way before in the form of a ridge. This is in contrast to
the ‘static’ final view of barriers portrayed in the literature, and as reproduced in Figure 7. Similar
figures for different learning rate or without weight decay can be found in the Appendix B.2.2.

(a) Sibling angles (b) Sibling solution planes

Figure 2: The angle between sibling solutions (in degrees) as well as the determination of sibling
solution planes for different forking epochs.

Figure 3: A sketch of different forks.

Sibling angles and solution planes. To further probe
our hypothesis, we measure, for different forking points,
the angle between the siblings θθθ∗1, θθθ

∗
2 formed at a base point

θθθbase, which is either the origin or the respective forking
point itself. More concretely, this amounts to measuring
arccos(⟨θθθ∗1 − θθθbase, θθθ

∗
2 − θθθbase⟩/∥θθθ∗1 − θθθbase∥∥θθθ∗2 − θθθbase∥)

and is shown in Figure 2(a). We observe that, regardless
of the choice of the base point, the angle between earlier
siblings is larger than that for later siblings, which is in line with our view, as shown pictorially in
Figure 3 that the earlier ridges lead to more lateral or cross-sectional separation than later ridges.

In a similar vein, we check, for different forking points, how early is the sibling solution plane
determined, as measured by cosine similarity between sibling difference at step t of their training,
θθθt1 − θθθt2 and the final sibling difference θθθ∗1 − θθθ∗2. The results are shown in Figure 2(b), where we find
that the siblings forked earlier have their solution plane determined most quickly than the later ones,
which would occur if the former were indeed traversing on different sides of the planes and their
cross-section largely determined rapidly into training.

Lastly, we also carry out a similar experiment when the models are trained with a lower learning
rate, and the results for which we can be found in Figure 13. The angles between siblings are even
less and the sibling solution plane gets determined even faster, further corroborating our hypothesis.
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3. Barrier Analysis

In the previous section, we saw that the various geometrical observations about the sibling solutions,
across various forking points, fit neatly within the prescribed mountain-ridge hypothesis. Now, we
would like to see if we can provide a model for the height of the ridge, and in particular, the eventual
barrier that separates the sibling solutions.

Let us define a notion of barrier curve between the final solutions as, B(α;θθθ1, θθθ2) = L
(
(1−α)θθθ1+

αθθθ2
)
− [(1− α)L(θθθ1) + αL(θθθ1)], parameterized for α ∈ [0, 1]. Usually, what is reported as the

barrier is the maximum value [4] of the barrier curve, and for the theoretical analysis we will consider
the entire barrier curve. Further, the barrier curve is effectively a notion of non-convexity between the
line segment joining two networks, which we refer to as ‘cross-sectional’ non-convexity. If the (max-
imum) barrier comes out as negative, it implies convexity on this line-segment. Below, we provide an
analysis that models the barrier up to the second-order in the distance between them.

Proposition 1. The loss barrier curve when linearly interpolating the final child networks θθθ∗1 and
θθθ∗2 with weights 1− α and α respectively, is given by

B(α;θθθ∗1, θθθ∗2) =
α(1− α)

2
(θθθ∗2−θθθ∗1)⊤

(
α∇2

θθθL(θθθ
∗
1)+(1−α)∇2

θθθL(θθθ
∗
2)
)
(θθθ∗2−θθθ∗1)+O(∥θθθ∗2−θθθ∗1∥3) (1)

The proof is located in the appendix A. From the form of the barrier, we make the following
observations. (a) We see that the barrier increases if the two child networks solutions are more distant,
but more precisely, the metric is with respect to the geometry of the convex-combination of their
Hessians. (b) Since the networks are at convergence, the Hessian will be positive semi-definite by
second-order optimality condition, the predicted barrier will always be non-negative though it might
be small, unless higher-order terms kick in. (c) If we assume that the form of the local curvatures
is similar (this doesn’t mean they have to be the same, but more that the dominant eigenvectors are
aligned), then we can approximate the barrier by B(α;θθθ∗1, θθθ∗2) ≈

α(1−α)
2 (θθθ∗2 − θθθ∗1)

⊤ · ∇2
θθθL(θθθ

∗
1) ·

(θθθ∗2−θθθ∗1) , and from where it is easy to see that it is maximized for α = 1/2, as often seen in practice.

(a) Predicted vs Actual Barriers (b) Sibling Distances

Figure 4: Left: Barrier predictions versus actual barriers for final solutions obtained by forking the
parent trajectory at different epochs in its training. Right: The evolution of the distance between
sibling models for different forking points.

Next, in Figure 4(a) we compare the fidelity of our barrier predictions with what is observed
empirically. We find that these predictions fall in decent ballpark of the actual barriers, even though
the distance between the models under consideration is significant as evident from 4(b), and where
the higher-order terms should come into the picture.
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(a) loss barrier (b) predicted barrier

Figure 5: (Left) The layerwise loss barrier as
per [1]. (Right): Layerwise predicted barrier,
as per Proposition 2, during the course of train-
ing ResNet18 (see Appendix B.4.1 for details).

Extension to layerwise LMC. Adilova et al. [1]
suggested a notion of layerwise LMC, where only
the parameters of single individual layers are lin-
early interpolated. Layerwise LMC can thus provide
a more fine-grained view of (non)convexity and has
also been observed to hold even when the entire net-
works may not be linearly connected. We extend
our barrier analysis to the layerwise case in Proposi-
tion 2, and Figure 5 shows that these predictions pro-
vide a rather faithful match with the true layerwise
barriers. Besides, Appendix B.4.2 contains addi-
tional results, where we find that our barrier predic-
tions capture the magnitude of the actual barriers, and that both the Hessian term in the barrier expres-
sion above as well as the distance between the parameters are important to model the barrier closely.

4. Discussion

(a) two solutions

(b) multiple solutions

Figure 6: Toy examples: loss
landscape cross-section.

Summary. To sum up, we provide a new unified perspective to
think about LMC, inspired by a mountainside-ridge view, that
explains various aspects of LMC such as how early and later
forked solutions are situated in the landscape, and how they can be
disconnected or connected. We also present a theoretical analysis
which indicates that the extent of connectivity depends on the
sibling distance and the local sibling curvature, and demonstrate
that it can empirically provide decent barrier estimates.

A retrospective on barriers. In an alternate way, let us further
consolidate our intuition on how barriers can arise at all. Consider
a 1-dimensional toy example below, with two minima, one at
θ∗1 = −1 and the other at θ∗2 = 1. Locally, since both are valid
local minima, a quadratic approximation explains the loss surface,
i.e., (θ− θ∗1)

2 and (θ− θ∗2)
2 respectively. Then the simplest model

of the landscape that would jointly have both these local minima
is simply the product of the two quadratic approximations, i.e.,
(θ−θ∗1)

2 · (θ−θ∗2)
2. Notice how this joint loss model has a barrier

in between the two minima, as shown in Figure 6(a). In fact, since
we don’t just have two solutions, we can extend the above example
to include two further minima at −1.5, 1.5 as shown in Figure 6(b),
and we can imagine the larger idea of how a hierarchy of barriers might emerge, with the barrier
between distant solutions being higher — something which the Proposition 1 also shows, but which
additionally accounts for the local curvatures.

Future Work. There are still several interesting questions that require further study: (a) Is there
an early geometric indicator which can predict the extent of the final barrier? (b) Can we go beyond
the second-order model of the barrier, while being efficient, and further refine the barrier predictions?
(c) Given the rapidly determined cross-sectional direction, can it be utilized for model fusion without
having to train all the child networks until convergence?
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Appendix A. Omitted Proofs

A.1. LMC barrier proof

Proposition 1. The loss barrier when linearly interpolating the final child networks θθθ∗1 and θθθ∗2,
forked from a common point θθθ0, with weights 1− α and α respectively, is given by

B(α;θθθ∗1, θθθ∗2) =
α(1− α)

2
(θθθ∗2 − θθθ∗1)

⊤ (
α∇2

θθθL(θθθ
∗
1) + (1− α)∇2

θθθL(θθθ
∗
2)
)
(θθθ∗2 − θθθ∗1) +O(∥θθθ∗2 − θθθ∗1∥3)

Proof
Using the Taylor series we have that,

L
(
(1− α)θθθ∗1 + αθθθ∗2

)
= L

(
θθθ∗1 + α(θθθ∗2 − θθθ∗1)

)
(2)

= L(θθθ∗1) + α∇θθθL(θθθ∗1)⊤(θθθ∗2 − θθθ∗1) +
α2

2
(θθθ∗2 − θθθ∗1)

⊤∇2
θθθL(θθθ

∗
1) (θθθ

∗
2 − θθθ∗1) +O(∥θθθ∗2 − θθθ∗1∥3) (3)

= L(θθθ∗1) +
α2

2
(θθθ∗2 − θθθ∗1)

⊤∇2
θθθL(θθθ

∗
1) (θθθ

∗
2 − θθθ∗1) +O(∥θθθ∗2 − θθθ∗1∥3) (4)

The last line follows from the fact that at the optimum, ∇θθθL(θθθ∗1) = 0 and ∇θθθL(θθθ∗2) = 0. Likewise,
we can repeat the above steps with θθθ∗2 as the center of the Taylor series expansion, which results in:

L
(
(1− α)θθθ∗1 + αθθθ∗2

)
= L

(
θθθ∗2 − (1− α)(θθθ∗2 − θθθ∗1)

)
(5)

= L(θθθ∗2) +
(1− α)2

2
(θθθ∗2 − θθθ∗1)

⊤∇2
θθθL(θθθ

∗
2) (θθθ

∗
2 − θθθ∗1) +O(∥θθθ∗2 − θθθ∗1∥3) (6)

Multiplying1 eq. 4 by 1− α and eq. 6 by α, and then adding them yields:

L
(
(1− α)θθθ∗1 + αθθθ∗2

)
= (1− α)L(θθθ∗1) + αL(θθθ∗2) (7)

+
α(1− α)

2
(θθθ∗2 − θθθ∗1)

⊤ (
α∇2

θθθL(θθθ
∗
1) + (1− α)∇2

θθθL(θθθ
∗
2)
)
(θθθ∗2 − θθθ∗1) (8)

+O(∥θθθ∗2 − θθθ∗1∥3) (9)

Rearranging the terms we get that the following expression for the barrier between the two solutions:

B(α) = α(1− α)

2
(θθθ∗2 − θθθ∗1)

⊤ (
α∇2

θθθL(θθθ
∗
1) + (1− α)∇2

θθθL(θθθ
∗
2)
)
(θθθ∗2 − θθθ∗1) +O(∥θθθ∗2 − θθθ∗1∥3) (10)

■

1. Note while the factors with which the equations are multiplied are mathematically convenient to obtain the definition
of the barrier, they also make sense in that when α is small, eq. 4 will be a more accurate model of the loss at the
interpolation and gets a higher weight of 1− α, and likewise when α is large (or 1− α is small) eq. 6 is weighed in
more to yield an accurate model of the loss at the interpolated point.
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A.2. Layerwise LMC barrier proof

Proposition 2. The loss barrier when linearly interpolating only the layer ℓ parameters of the final
child networks θθθ∗1 and θθθ∗2, forked from a common point θθθ0, with weights 1− α and α respectively, is

Bℓ(α) =
α(1− α)

2
∆θθθ∗[ℓ]⊤

(
α∇2

θθθL(θθθ
∗
1[ℓ]) + (1− α)∇2

θθθL(θθθ
∗
2[ℓ])

)
∆θθθ∗[ℓ] +O(∥∆θθθ∗[ℓ]∥3)

Proof
Instead of considering the line-segment between all the network parameters, the work of Adilova

et al. [1] considers the case where only a single layer’s parameters are interpolated into another model.
Let us now repeat the analysis, assuming we interpolate only with the layer ℓ of the second network
into the first. If we designate the layer-wise parameters by the superscript as θθθ[ℓ], this amounts to:

θθθ2→1[ℓ] := (1− α) · θθθ∗1[ℓ] + α · θθθ∗2[ℓ] , and θθθ2→1[ℓ
′] := θθθ∗1[ℓ

′] ∀ ℓ′ ̸= ℓ

Likewise, we can consider the interpolation of the layer ℓ of the first network into the second, yielding
the parameters θθθ1→2 defined as follows:

θθθ1→2[ℓ] := (1− α) · θθθ∗1[ℓ] + α · θθθ∗2[ℓ] , and θθθ1→2[ℓ
′] := θθθ∗2[ℓ

′] ∀ ℓ′ ̸= ℓ

In other words, θθθ2→1 and θθθ1→2 only differ in terms of where to take the parameters for other layers,
whether from θθθ∗1 or from θθθ∗2 respectively.

Furthermore, let Pℓ ∈ Rp×p stand for the diagonal matrix, with ith entry is 1{θθθi ∈ θθθ[ℓ]}, i.e.,
which contains 1 at the index which corresponds to the parameter from layer ℓ, represented by θθθ[ℓ],
and 0 elsewhere. Then we can write the above parameter interpolations more succinctly as:

θθθ
(ℓ)
2→1 = θθθ∗1 + α · Pℓ ·∆θθθ∗ , and θθθ

(ℓ)
1→2 = θθθ∗2 − (1− α) · Pℓ ·∆θθθ∗

where, ∆θθθ∗ := θθθ∗2 − θθθ∗1. Next, we apply a second-order Taylor series to approximate the loss at these
interpolations.

L(θθθ(ℓ)2→1) = L(θθθ∗1) + α∇θθθL(θθθ∗1)⊤Pℓ∆θθθ∗ +
α2

2
∆θθθ∗⊤Pℓ∇2

θθθL(θθθ
∗
1)Pℓ∆θθθ∗ +O(∥Pℓ∆θθθ∗∥3)

(11)

= L(θθθ∗1) +
α2

2
∆θθθ∗⊤Pℓ∇2

θθθL(θθθ
∗
1)Pℓ∆θθθ∗ +O(∥Pℓ∆θθθ∗∥3) (12)

= L(θθθ∗1) +
α2

2
∆θθθ∗[ℓ]⊤∇2

θθθL(θθθ
∗
1[ℓ])∆θθθ∗[ℓ] +O(∥∆θθθ∗[ℓ]∥3) , (13)

where the second term indicates the quadratic form with the Hessian at layer ℓ multiplied by the
difference in parameters on that layer ℓ (i.e., ∆θθθ∗[ℓ]) and the first-order terms go away since θθθ∗1 is a
stationary point. Similarly, we get for the other interpolation:

L(θθθ(ℓ)1→2) = L(θθθ∗2) +
(1− α)2

2
∆θθθ∗[ℓ]⊤∇2

θθθL(θθθ
∗
2[ℓ])∆θθθ∗[ℓ] +O(∥∆θθθ∗[ℓ]∥3) , (14)
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Multiplying eq. 13 by 1− α and eq. 14 by α, we get:

(1− α)L(θθθ2→1) + αL(θθθ1→2) = (1− α)L(θθθ∗1) + αL(θθθ∗2) (15)

+
α(1− α)

2
∆θθθ∗[ℓ]⊤

(
α∇2

θθθL(θθθ
∗
1[ℓ]) + (1− α)∇2

θθθL(θθθ
∗
2[ℓ])

)
∆θθθ∗[ℓ]

(16)

+O(∥∆θθθ∗[ℓ]∥3) , (17)

If we now define the layer-wise barrier as,

Bℓ(α) := (1− α)L(θθθ(ℓ)2→1) + αL(θθθ(ℓ)1→2)− [(1− α)L(θθθ∗1) + αL(θθθ∗2)] ,

the above analysis reduces to the following expression:

Bℓ(α) =
α(1− α)

2
∆θθθ∗[ℓ]⊤

(
α∇2

θθθL(θθθ
∗
1[ℓ]) + (1− α)∇2

θθθL(θθθ
∗
2[ℓ])

)
∆θθθ∗[ℓ] +O(∥∆θθθ∗[ℓ]∥3) (18)

■

Remarks. Now, making the approximation of similar layer-wise Hessians ∇2
θθθL(θθθ

∗
1[ℓ]) ≈ ∇2

θθθL(θθθ
∗
2[ℓ]),

we can further simplify the above expression to:

Bℓ(α) ≈
α(1− α)

2
∆θθθ∗[ℓ]⊤ ∇2

θθθL(θθθ
∗
1[ℓ]) ∆θθθ∗[ℓ] , (19)

which also attains its maximum value for α = 1
2 . The above expression is similar to what we had

before, except our parameter update here concerns only the layer ℓ and the Hessian is also thus for
this layer only. Although, here we only require much weaker assumptions, as our parameter update
is local to layer ℓ and similarity of the Hessian is being considered only with respect to the diagonal
block corresponding to layer ℓ.

Generalization to arbitrary set of layers. Notice that can be rewritten, at α = 1/2, as

B∗ ≈ 1

8

∑
ℓ,ℓ′ ∈ [1,L]

∆θθθ∗[ℓ]⊤ · ∇2
θθθL(θθθ

∗
1[ℓ, ℓ

′]) · ∆θθθ∗[ℓ′] =
∑

ℓ,ℓ′ ∈ [1,L]

B∗
ℓ,ℓ′ , (20)

where ∇2
θθθL(θθθ

∗
1[ℓ, ℓ

′]) denotes the (ℓ, ℓ′)th cross diagonal block of the Hessian and where L denotes
the network depth. So for an arbitrary set of layer indices P , which we will use to analyze the
cumulative barriers considered in [1], we have the expression:

B∗
P ≈ 1

8

∑
ℓ,ℓ′ ∈P

∆θθθ∗[ℓ]⊤ · ∇2
θθθL(θθθ

∗
1[ℓ, ℓ

′]) · ∆θθθ∗[ℓ′] , (21)
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Appendix B. Additional Results and Details

B.1. Hyperparameter Setup

Unless stated otherwise, following Frankle et al. [6], we consider a ResNet20 trained on CIFAR10
with batch normalization enabled for 160 epochs with SGD. The other hyperparameters that were
used are a learning rate 0.1 which is decreased by a factor of 10 at epochs 80 and 120. Besides, other
hyperparameters are weight decay 0.0001, batch size 128, momentum 0.9.

B.2. Topography of LMC

B.2.1. 1D FINAL BARRIER VIEW

(a) The 3 kinds of barriers (b) Bumpy barriers when zoomed in

Figure 7: A one-dimensional summary of the barrier types and their classification.
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B.2.2. TRAINING ERROR EVOLUTION FOR OTHER SETTINGS

Figure 8: LR η = 0.01, Weight decay λ = 0.0001: The evolution of train error curves, with train
error, in 3d when forked at different points.
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Figure 9: Weight decay λ = 0, LR η = 0.1: The evolution of train error curves, with train error, in
3d when forked at different points.
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B.2.3. BARRIER CURVES EVOLUTION

Figure 10: Weight decay λ = 0.0001, LR η = 0.1: The evolution of LMC barrier curves, with train
error, in 3d when forked at different points.
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Figure 11: Weight decay λ = 0.0001, LR η = 0.01: The evolution of LMC barrier curves, with
train error, in 3d when forked at different points.
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Figure 12: Weight decay λ = 0, LR η = 0.1: The evolution of LMC barrier curves, with train error,
in 3d when forked at different points.
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B.2.4. SIBLING GEOMETRY ANALYSIS

(a) Sibling angles, η = 0.01 (b) Sibling solution planes, η = 0.01

Figure 13: The angle between sibling solutions (in degrees) as well as the determination of sibling
solution planes for different forks, for a small learning rate scenario (η = 0.01).

B.3. Barrier Prediction Analysis

(a) Predicted vs Actual Barriers (b) Sibling Distances

Figure 14: Without weight decay. Left: Barrier predictions versus actual barriers over different
forking epochs. Right: The evolution of the distance between spawned models is plotted, and where
the different lines denote different forking points.

B.4. Layer-wise LMC results

B.4.1. EXPERIMENTAL DETAILS FOR EXPERIMENTS IN THE MAIN TEXT

The presented results consider ResNet18 on CIFAR10, without batch normalization layers, with the
training hyperparameters being: learning rate 0.05 and batch size 64. The full Hessian is computed
over the entire training set. While in this experiment Batch Normalization was disabled, in the
experiments below, we also consider Batch Normalization.
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B.4.2. ADDITIONAL RESULTS

For these experiments, we use the hyperparameter detailed in Section B.1.

(a) layer-wise Loss barrier (b) layer-wise Hessian energy (c) deltas

Figure 15: (Left) The layer-wise loss barrier as per [1]. (Middle): Layer-wise Hessian Energy,
computed as per Proposition 2 during the course of training. Forked on epoch 2. (Right): Distance
between layers.
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(a) layer-wise Loss barrier (b) layer-wise Hessian energy (c) deltas

Figure 16: (Left) The layer-wise loss barrier as per [1]. (Middle): Layer-wise Hessian Energy,
computed as per Proposition 2 during the course of training. Forked on epoch 4. (Right): Distance
between layers.
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(a) layer-wise Loss barrier (b) layer-wise Hessian energy (c) deltas

Figure 17: (Left) The layer-wise loss barrier as per [1]. (Middle): Layer-wise Hessian Energy,
computed as per Proposition 2 during the course of training. Forked on epoch 6. (Right): Distance
between layers.
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(a) layer-wise Loss barrier (b) layer-wise Hessian energy (c) deltas

Figure 18: (Left) The layer-wise loss barrier as per [1]. (Middle): Layer-wise Hessian Energy,
computed as per Proposition 2 during the course of training. Forked on epoch 8. (Right): Distance
between layers.
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(a) layer-wise Loss barrier (b) layer-wise Hessian energy (c) deltas

Figure 19: (Left) The layer-wise loss barrier as per [1]. (Middle): Layer-wise Hessian Energy,
computed as per Proposition 2 during the course of training. Forked on epoch 14. (Right): Distance
between layers.
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(a) layer-wise Loss barrier (b) layer-wise Hessian energy (c) deltas

Figure 20: (Left) The layer-wise loss barrier as per [1]. (Middle): Layer-wise Hessian Energy,
computed as per Proposition 2 during the course of training. Forked on epoch 20. (Right): Distance
between layers.
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