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Abstract
Graph Transformers (GTs) like NAGphormer have shown impressive perfor-
mance by encoding graph’s structural information and node features. However,
their self-attention and complex architectures require high computation and mem-
ory, hindering their deployment. Thus, we propose a novel framework called
Graph Transformer Distillation to Multi-Layer Perceptron (GraTeD-MLP).
GraTeD-MLP leverages knowledge distillation (KD) and a novel decomposition
of attentional representation to distill the learned representations from the teacher
GT to a student MLP. During distillation, we incorporate a multi branch MLP
architecture where two branches learn the decomposed attentional representation
for a node while the third predicts node embeddings. Encoding the attentional
representation mitigates the MLP’s over-reliance on node features, enabling
robust performance even in inductive settings. Empirical results demonstrate
that the proposed GraTeD-MLP has significantly faster inference time than the
teacher GT model, with speed-up ranging from 20×−40×. With up to 25% im-
proved performance over vanilla MLP. Furthermore, we empirically show that
the proposed GraTeD-MLP outperforms other GNN distillation methods in seven
datasets in both inductive and transductive settings.

1 Introduction
Graphs are a robust data structure that models real-world relationships and interactions. From
social networks [1] to biological protein interactions [2], graphs provide an intuitive framework to
represent complex interconnected systems. Graph Neural Networks (GNNs) emerged as a significant
advancement, using message-passing mechanisms to aggregate information from neighboring nodes
and learn rich representations. Despite their success, GNNs [3, 4] still face challenges in capturing
long-range dependencies and global graph structure. Subsequently, Graph Transformers (GT) [5–
7] emerged as a groundbreaking approach. GTs use a self-attention mechanism to elevate graph
representation learning with its expressiveness capabilities, which allows them to capture long-range
dependencies and global contexts. Leveraging attention mechanisms also allows GTs to alleviate
the over smoothing problem [8, 9] present in GNNs. Consequently, GTs have demonstrated superior
performance over GNNs across node and graph classification tasks. However, the computational
complexity and memory requirements of GTs pose significant scalability challenges.

The complex architectures and heavy reliance on self-attention mechanisms make GTs computation-
ally demanding and resource-intensive. Furthermore, these GT methods treat all the nodes in the
graph as independent tokens. This results in higher latency, limiting their applicability to large-scale
graphs and resource-constrained environments to a greater extent than GNNs. As a solution, NAG-
phormer [10] treated nodes as independent sequences, which enabled mini-batch training and had the
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potential to handle larger graphs, unlike previous architectures. Despite the advantages in training,
NAGphormer still requires access to the graph and the associated embeddings during inference,
which hinders its deployment in real-world applications.

To mitigate such issues, research efforts have focused on graph knowledge distillation (KD). KD
aims to transfer the expressive power of a teacher GNN into a lightweight surrogate student model
[11]. These student models mimic teacher GNN’s behavior while exhibiting superior computational
efficiency and scalability. The mimicking is performed using hint-based methods [12, 13], which
aims to reduce KL divergence between teacher and student soft-label representation. In graphs, the
student model could be a GNN (or a variant of GNNs, such as Graph Convolutional Networks /
Graph Attention Networks) or a Multi-Layer Perceptron (MLPs). While the former GNN would
be lighter than a teacher, it would still require test-time graphs, making it infeasible in large-scale
applications. On the contrary, the latter MLP student model can be trained to approximate the decision
boundaries of GNNs through KD frameworks without retrieving graph topology and neighborhood
feature information.

GCN-to-GCN and GCN-to-MLP distillation are well-established in the literature and are known
to be effective. Their effectiveness of knowledge "transferability" can be seen by Centered Kernel
Alignment (CKA)3 metric [14]. CKA compares hidden dimension embedding H ∈ Rn×d1 and
Ĥ ∈ Rn×d2 for two heterogeneous models. The metric CKA ∈ [0, 1], with 1 denoting complete
transferability. A higher CKA would imply a more effective alignment between the feature spaces of
the teacher and the student model. As seen in Figure 1, transferability is higher and around 0.8 in the
case of GCN-GCN and a GCN-MLP knowledge distillation.
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Figure 1: Knowledge transferability in distillation across models.

Though the transferability of GT-to-GT distillation is still somewhat higher at 0.61, we observe that
the transferability drops to 0.5 when distilling the GT to a GCN student (we use NAGphormer as a
GT here). It drops to 0.4 when distilling NAGphormer (GT) to an MLP through existing hint-based
distillation methods. While the former GT-to-GCN is a cross-architecture distillation, the latter
(GT-to-MLP) aggravates the problem by being cross-architecture and lacks graph structure. While
GCNs can still somewhat capture the graph structure using a message-passing mechanism, an MLP
lacks a message-passing function and self-attention, which empowers a GT to encode graph structural
knowledge. Thus, we require a specialized GT-to-MLP distillation framework to effectively harness
the power of attention and the node features. This way, we can achieve improved performance due
to attention while utilizing the fast inference capabilities of an MLP. However, no such work exists
in the GT literature due to GTs’ inherent scalability limitations and higher latency than GNNs, as
described in the forthcoming section.

As a solution, this work proposes a novel distillation paradigm that leverages a multi branch MLP
network to distill knowledge from a pre-trained GT. The MLP architecture comprises three distinct
branches: one is dedicated to predicting the output predictions by taking node features as input. In

3details in Appendix A.1
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contrast, the other two branches estimate the attention scores and intermediate layer representations
of the GT. The final prediction is obtained by merging the three branches. By jointly optimizing the
two branches during the distillation, MLP captures the attention. Thus, the main contributions of the
proposed work are as follows:

1. GraTeD-MLP, a novel distillation framework that distills GT into a lightweight, efficient MLP.

2. Extensive evaluation of the GraTeD-MLP on seven datasets for node classification under trans-
ductive and inductive settings.

3. Significant speed-ups ranging from 20× to 40× faster inference times across various datasets,
upto 25% improvement over vanilla MLP, and better knowledge transferability, as illustrated by
CKA score.

2 Literature Review
While graph partitioning and parallel training is widely explore in literature [15–18], it still needs
to keep the graph during inference. Knowledge distillation [11] has been widely used to transfer
knowledge from a large teacher into a smaller student model. In this section, we first summarize
graph transformers and showcase existing methods for KD in a cross-architecture setting, highlighting
the gap in distillation from GT-to-MLP. Subsequently, we review methods of graph KD and how they
have been modified for a fair comparison for this study.

2.1 Graph Transformers and Cross Architecture Distillation

Transformer-based architectures have been successful in various domains [19–21]. However, since
graph data typically contains structural information, it cannot be directly represented as tokens.
Existing works [5, 22] leverage various structural encoding techniques like eigenvectors of graph
laplacian and an invariant aggregation of laplacian eigenvectors of positional encoding. Most existing
GTs treat nodes as independent tokens, creating a quadratic complexity O(n2) during training. Also,
though GTs have shown exceptional ability in graph classification, performance in node classification
is sub-optimal [23]. This is because the attention mechanism focuses on the entire graph, resulting
in an over-globalizing problem. To fix this issue, NAGphormer [10] proposed to treat each node
and its hops as a sequence and construct that sequence by aggregating all node representations for
a particular hop. The NAGphormer can scale up to relatively larger graphs by treating nodes as
individual sequences. Furthermore, by creating specific sequences for nodes, the NAGphormer can
better leverage node-specific local information for node classification tasks.

To further reduce inference time and utilize the power of GTs like NAGphormer, the aim is to
distill NAGphormer to MLP. However, most KD studies [11, 24–30] have focused on distilling
in a homogenous framework, i.e., the teacher and student have similar architecture. In such a
homogeneous setting, student and teacher models have similar feature spaces and methods. Thus,
straightforward methods like mimicking probability distributions and variations of representational
similarity (RSD) loss can achieve feature space alignment. On the other hand, cross-architecture
distillation is relatively unexplored, making it harder to create suitable student models. For instance,
Liu et al. [31] and Hao et al. [14] demonstrated this lack of transferability in vision datasets using the
CKA and cosine similarity metrics. Consequently, they developed novel frameworks to bridge this
gap by aligning the intermediate feature spaces. In the vision domain, various models can access the
entire image view. However, an MLP lacks access to the whole graph structure at inference. Thus,
there is a need to develop a specialized framework for distilling graph transformers to MLP.

2.2 Graph Knowledge Distillation

Graph-based models are inherently complex and rely on complex message-passing structures. Various
studies [32–36] aim to make more efficient student models. These studies have focused on developing
smaller GNNs comparable to the teacher, although the reliance on message passing still results in
latency issues. To alleviate this issue, recent works [12, 13, 37–40] have distilled structural insights
into an MLP. These lightweight MLP models do not require graphs during inference time, resulting
in significant speed improvements with comparable performance. GLNN [12] attempts to mimic
the predictions of GNNs using soft label mechanism [11]. NOSMOG [13] incorporates structural
information through an RSD loss. FF-G2M [39] leverages insights from spectral graph theory to
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account for the loss of high-frequency information during distillation. In contrast, Cold Brew [37]
addresses the cold start problem by learning a latent node embedding.

To the best of our knowledge, this is the first work on distilling a graph transformer into an MLP.
To evaluate our proposed method, we modify existing GNN-to-MLP distillation benchmarks from
GLNN [12] and NOSMOG [13]. While these benchmarks use a GNN as the teacher model, we
replace the teacher with a Graph Transformer and utilize the soft label function from [12]. We also
adopt the RSD loss from [13] for another benchmark. Additionally, distillation methods like Cold
Brew [37] and FF-G2M [39] are based on GNN-specific principles such as message passing and
neighborhood aggregation. They do not align with the global context attention-based architecture of
a GT and are, therefore, not applicable to our setting.

3 Preliminaries
3.1 Notations

Let G = (V,E) be a graph, where V , E, and n are vertices, edges, and size of the node-set,
respectively. Let the d−dimensional feature vector of node v ∈ V be xv ∈ X . Here X ∈ Rn×d is
the feature matrix characterizing the nodes. A ∈ Rn×n represents the adjacency matrix and let D be
the diagonal matrix. For node classification, the task is to predict the probability of every node v ∈ V .
Let Y ∈ Rn×c correspond to the ground truth category, with c being the number of classes. The
labeled nodes are denoted by superscript L, and the unlabelled nodes are denoted by superscript U .

3.2 Transformer Preliminary

The most critical component of the transformer is the multi-head attention layer [41]. Let X ∈ Rn∗d

be the input to the attention layer with n as the number of tokens. For NAGphormer [10], number
of tokens corresponds to (k + 1), which is the number of hops in addition to the node. The Q,
K,V ∈ Rd×d/m correspond to the query, key and value vectors and d is the hidden size and m is the
number of heads. The final attention output matrix is given as:

A = softmax

(
QKT

√
dK

)
V (1)

Z = concat(A1, A2...Am)Wz + bz (2)

4 GraTeD-MLP: Graph Transformer Distillation to MLP
As illustrated in Figure 2, we now propose a novel framework called GraTeD-MLP: Graph
Transformer Distillation to Multi-Layer Perceptron. GraTeD-MLP uses low-rank property and
decomposition of the attention matrix learned by the GT, enabling efficient distillation into a mulit
branch MLP.

4.1 Attention Matrix Decomposition

The attention matrix Ai computed by the GT at the ith attention head has an inherent low-rank
property, with an upper bound on its rank given by d/m, where d is the hidden size and m is the
number of attention heads. This property stems from the rank theory of matrix products, which states
that the rank of a matrix product ≤ is the minimum rank of the individual matrices:

R(Ai) ≤ min(R(Qi), R(Ki), R(V i)) (3)

where R is the rank of the matrix, and Qi, Ki, and V i are the query, key, and value matrices,
respectively, at the ith attention head. The low-rank property of the attention matrix A allows us
to decompose it into its constituent components using Singular Value Decomposition (SVD) as
A = UΣV T . Here U and V are orthogonal matrices representing the left and right singular vectors,
respectively, and Σ is a diagonal matrix containing the singular values. The rank of A is equal to
the number of non-zero singular values in Σ. Using this decomposition, we can distill the complex
attention matrix into simpler components (U and V ), which the student MLP model can learn more
efficiently. This decomposition lets us capture the underlying structural information encoded within
the attention matrix, facilitating efficient knowledge transfer from the GT to the MLP.
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Figure 2: Overview of the proposed Graph Transformer Distillation to Multi-Layer Perceptron
(GraTeD-MLP) framework.

4.2 Dedicated Student for Attention and Features

Due to the inherent differences in the feature spaces between a vanilla MLP and GT, it is crucial to
explicitly align the feature spaces during distillation. We employ a three-branch MLP architecture that
learns to capture the structural and feature-level information separately. Thus, two student branches
focus on KD for structure, while the third focuses on features.

1. Structure Student: The graph’s structural information is encoded in the U and V singular vectors,
as obtained from the SVD decomposition. The U vector represents an eigenbasis for the feature space
of the nodes and the hop embeddings obtained from the Hop2 token algorithm. Each column in U
represents a basis vector that captures a specific pattern of attention across the input space (nodes and
hops). V captures how these patterns (from U) map back to the original attention scores. Each row in
V represents a weight vector for one of the attention dimensions, showing how much each "direction"
or pattern contributes to the original attention matrix. Hence, the V vector captures the relationships
between different hops in the graph, encoding the structural dependencies and interactions. The two
structure student branches of the multi branch MLP take the U and V vectors as input and learn to
predict the corresponding components of the GT’s attention matrix. By explicitly distilling U and V
into separate branches of the MLP, we enable the student model to reconstruct and learn the attention
matrix, thus transferring the structural insights from the GT to the MLP.

Lstructure = λ3LUΣ + λ4LV (4)

Here, the two components of decomposed attention-based loss LUΣ and LV explicitly ensures that
the model learns the structural information.

2. Feature Student: The third branch of GraTeD-MLP takes the node features as input and directly
predicts the output embedding E. This branch is responsible for learning rich representation from the
node’s feature-level information, thus complementing the structural knowledge. With a series of fully
connected layers that operate on the node features, this MLP learns to map the node features to the
desired space. This is sufficient as the feature spaces of both models align as per the CKA metric
shown above. The feature information is implicitly learned using the soft label loss, as explained
below.

3. Traditional Soft Label Distillation Loss: As developed by Hinton et al. [11], the core idea of
distillation is to develop a student model which can perform comparative to the complex teacher
model. Let the ground truth label be yv for any node in the labelled set v ∈ V L and let zv be the soft
target generated by the teacher NAGphormer. The objective function can then be formulated as:

Ldistill = λ1LCE + λ2LSL (5)

where, LCE is the cross-entropy loss computed on the labeled nodes, ensuring that the model’s
predictions align with the ground truth labels. LSL is a soft label based distillation loss for the
structure student and feature student, respectively, encouraging their predictions to match those of the
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GT teacher model. It is formulated using the Kullback-Leibler (KL) divergence between the student
branches’ predictions and the corresponding outputs of the GT teacher model, as elaborate below:

Ldistill = λ1Σv∈V LLCE(ŷv, yv) + λ2Σv∈V KL(ŷv, zv) (6)

4.3 Fusion and Optimization

The outputs of the two structure and one feature students are fused to obtain the final predictions
through a gating mechanism. The gating method adaptively combines the information from all
three branches, allowing the model to adjust the relative importance of structural and feature-level
information based on the input data. Furthermore, the branches of the MLP are jointly optimized
using a combination of supervised cross-entropy loss and consistency losses to align their predictions
with the GT teacher model. The overall optimization objective is formulated as:

L = Ldistill + Lstructure (7)

which translates to:
L = (λ1LCE + λ2LSL) + (λ3LUΣ + λ4LV ) (8)

The hyperparameters λ1 to λ4 control the relative importance of each loss and tune the desired
trade-off between supervised learning and KD. By optimizing this objective function, the proposed
GraTeD-MLP method distills the knowledge from the GT teacher, capturing both structural and
feature-level information. With the student model, we obtain superior computational efficiency
and scalability. The complete summary of the proposed method GraTeD-MLP is summarized in
Algorithm 1 of the Appendix.

5 Experimental Details
Databases: To show the efficacy of the proposed GraTeD-MLP method, we showcase experiments
on seven publically available datasets for node classification task: Cora [42], Pubmed [42], Photo
[43], Computer [43], Citeeser [42], Aminer-CS [44], and OGB-Arxiv [45]. For the five datasets, we
follow the data splits used in [12, 33], and for the large scale, we use the splits used in the respective
paper.

Experimental Setting - Transductive vs. Inductive: The NAGphormer [10] paper was only
evaluated on transductive settings. For the transductive setting, we train the model on the entire Graph
G,XL,Y L and evaluate it on XU and Y U . Similar to [12, 13], all the nodes in the graph are used to
generate soft labels. Furthermore, inductive settings are critical in the real world. From the unlabelled
vertices V U , we select V U

in , which partitions it into two disjoint set of vertices V U = V U
obs ∪ V U

in .
All the nodes belonging to V U

in and its corresponding edges are held out, leading to two disjoint
graphs G = Gobs ∪Gind. Correspondingly, the labels and the node features are partitioned into three
disjoint sets Y = Y L ∪ Y U

obs ∪ Y U
in and X = XL ∪XU

obs ∪XU
in.

Comparative Algorithms: For baselines, we compare GraTeD-MLP with (1) teacher NAGphormer
[10], (2) vanilla MLP, and current hint-based existing distillation methods, including (3) GLNN [12]
inspired soft label (SL) student MLP, and (4) NOSMOG [13] inspired soft label + relational similarity
distillation (SL+RSD) student MLP. We run all the experiments with ten seeds and report the mean
accuracy.

Implementation Details: For the teacher NAGphormer [10], we have used the recommended settings
given in the official Github repository. For all the MLP models, we have kept hidden dimensions as
64 and 2 using an Adam Optimizer with learning rate and weight decay for each dataset based on the
official NAGphormer repository. We have run all experiments on a Tesla T4 GPU.

6 Results and Analysis
We conduct experiments on the downstream task of node classification. Table 1 compares the
performance (%) of the proposed GraTeD-MLP with various KD methods for transductive while
Table 2 showcases results in an inductive setting. We can conclude from the results that the proposed
GraTeD-MLP outperforms the vanilla MLP by at least 20% in transductive settings. Specifically,
the GraTeD-MLP achieves superior performance in almost all datasets in the transductive setting
compared to the teacher model. The performance drop in the OGB-arxiv dataset is primarily due
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Datasets Teacher
NAGphormer [10]

Vanilla
MLP

Student
GLNN [12] NOSMOG [13] GraTeD-MLP

Cora [42] 89.65 63.61 81.55 84.05 90.80
PubMed [42] 89.71 69.65 87.33 86.94 92.30

Photo [43] 94.75 77.19 96.21 95.46 98.21
Computer [43] 91.22 66.87 92.90 92.73 93.40
Citeseer [42] 75.34 57.78 74.38 76.35 80.11

Aminer-CS [44] 52.95 32.34 46.15 41.28 46.25
OGB-Arxiv [45] 68.75 54.84 50.24 40.56 58.17

Table 1: Transductive results (%) for various KD methods, compared against the proposed
GraTeD-MLP.

Datasets Teacher
NAGphormer [10]

Vanilla
MLP

Student
GLNN [12] NOSMOG [13] GraTeD-MLP

Cora [42] 80.89 61.78 69.21 71.10 69.80
PubMed [42] 72.48 68.41 70.82 70.50 71.48

Photo [43] 90.00 78.55 89.45 89.90 90.07
Computer [43] 83.62 64.34 80.38 81.10 81.74
Citeseer [42] 68.43 59.50 68.26 71.07 72.12

Aminer-CS [44] 51.93 32.42 46.61 47.29 48.14
OGB-Arxiv [45] 68.57 54.84 50.24 51.33 55.64

Table 2: Inductive results (%) for various KD methods, compared against the proposed GraTeD-MLP.

to a distribution shift in training and test nodes [12]. The same is inherently more challenging
for a graph-less model to capture. Yet, we still outperform compared to the other distilled MLP
models. Though we outperform for Aminer-CS and OGB-Arxiv compared to other algorithms,
overall performance on these datasets is the lowest. As recommended by Zhang et al. [12], a bigger
MLP has been shown to perform better for large-scale datasets as they require larger models.

The proposed model demonstrates superior performance in inductive settings except for the Cora
dataset. Overall, across distillation algorithms in the inductive setting, we observe a significant drop
in performance in the student MLP from the teacher model (compared to the transductive counterpart).
This is because the NAGphormer model is primarily developed for transductive settings. It focuses on
global attention mechanisms, resulting in a lack of focus on local neighborhood information (pivotal
for inductive settings). This results in a lack of local generalization, leading to lower inductive bias
compared to models like GraphSage. Nevertheless, GraTeD-MLP still outperforms MLPs trained
using other distillation methods. We leave this research direction as future work to be explored.

(a) NAGphormer [10] (b) GLNN [12] (c) NOSMOG [13] (d) GraTeD-MLP

Figure 3: t-SNE plots for the embeddings generated from different algorithm.

How effective is the the proposed GraTeD-MLP in aligning the feature space: As shown by
Figure 3(a-d), MLPs trained on existing distillation frameworks fail to adequately distinguish between
different classes that the teacher model can (Figure 3a). On the contrary, Figure 3d illustrates that the
proposed GraTeD-MLP framework effectively demonstrates strong separation between the classes,
similar to the teacher NAGphormer. Furthermore, Figure 1 shows an increase in transferability by
over 70% through the proposed GraTeD-MLP, compared to other models trained using the current
hint-based methods. These two results effectively demonstrate the GraTeD-MLP’s ability to align
with the teacher’s feature space.
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Figure 4: KDE plots for teacher NAGphormer and reconstructed GraTeD-MLP attention maps for
all 2468/2485 matching instances for Cora.
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Figure 5: KDE plots for teacher NAGphormer and reconstructed GraTeD-MLP attention maps for
all 17/2485 non matching instance for Cora.

For further analysis, we first reconstruct the attention matrix for each node by utilizing the U and
V embeddings.Then, we plotted the Kernel Density Estimate (KDE) plot of average for all heads
and attention dimension for each hop, specifying the importance of each hop. As observed in Figure
4(a-d), the peaks for both GraTeD-MLP and NAGphormer align, showing a positive correlation (and
consequently, prediction matches). On the contrary, Figure 5(a-d) has a prediction mismatch, due to
different attention for different hops.

Figure 6: Accuracy (y axis)-time (x axis) trade-off.

How does the proposed GraTeD-MLP per-
form with respect to inference time: To
demonstrate the efficiency of GraTeD-MLP,
we analyze the tradeoff between prediction ac-
curacy and model inference time on the Cite-
seer dataset in Figure 6. GraTeD-MLP can
achieve high accuracy (80.11%) while main-
taining a fast inference time. Specifically, com-
pared to other models with similar inference
times, GraTeD-MLP performs significantly
better, while vanilla MLP and other baseline
models can only achieve lower accuracy lev-
els. This makes GraTeD-MLP 20×-40x faster
(across databases), specifically 36x for Cite-
seer, than the teacher GT model. Additionally,
GraTeD-MLP shows up to 22.33% improved
performance over vanilla MLP (in Citeseer),
demonstrating the effectiveness of our knowl-
edge distillation approach. Further, as shown in Table 3, GraTeD-MLP outperforms with comparable
inference time with different student models on a large-scale dataset of Ogbn-Products. Details of
time complexity is presented in Appendix A.2.1.

7 Ablation Study

7.1 How consistent is the GraTeD-MLP predictions with graph topology

We leverage the approximate to the min-cut problem [12] to demonstrate how our GraTeD-MLP
framework is superior to other distillation methods in encoding the graph structural information. The
min-cut problem removes the minimum volume of edges by partioning N nodes in V into K disjoint
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subsets. Accordingly, its expressed as [46].

max
1

K

K=1∑
k=1

(CT
k ACk)

(CT
k DCk)

(9)

Bianchi et al. [47] demonstrated that replacing C with the model prediction output, Ŷ , would indicate
consistency between model predictions and graph topology. A higher cut value indicates an increased
capability of the model to capture the structural information. Hence, the cut value is as follows:

max
tr(Ŷ TAŶ )

(Ŷ TDŶ )
(10)

Model Accuracy
(%)

Time/node
(ms)

NAGphormer 77.54% 0.7500
MLP 44.81% 0.0089

GLNN 53.33% 0.0088
NOSMOG 53.35% 0.0090

Grated-MLP 54.81% 0.0160

Table 3: Comparison of model accuracy and
time per node on a large scale dataset of
Ogbn-Products.

Dataset NAG
-phormer MLP GraTeD

-MLP
Cora [42] 0.864 0.740 0.867

Citeseer [42] 0.95 0.770 0.945
Pubmed [42] 0.899 0.862 0.91
A-comp [43] 0.853 0.675 0.851
A-photo [43] 0.877 0.673 0.86

Average 0.8886 0.744 0.8866

Table 4: Cut value for NAGphormer, MLP and
the proposed GraTeD-MLP on five datasets in the
transductive setting.

Based on the above, Table 4 shows that GraTeD-MLP can better capture structural information than a
vanilla MLP. On average, it is as good as the teacher NAGphormer model.

7.2 How does GraTeD-MLP perform with respect to different model components

As our GraTeD-MLP model contains four essential components, we conduct ablation studies to
analyze the importance of each component by removing them independently.

Dataset w/o CE w/o SL w/o U w/o V GraTeD ∆CE ∆SL ∆U ∆V

Cora 90.54% 76.68% 90.16% 90.37% 90.80% ↑0.36% ↑14.12% ↑0.64% ↑0.43%
Citeseer 78.87% 48.43% 76.61% 77.50% 80.11% ↑2.24% ↑31.68% ↑3.50% ↑2.61%

Table 5: Ablation study: Accuracy of distilled model under different settings.

As we can observe from Table 5, the SL loss contributes the most to performance because it is
the most pivotal loss for knowledge distillation frameworks. The structural components U and V
contribute significantly to performance, showing the importance of distilling structure information.
We also notice that the U component contributes more to the performance than V because U encodes
hop encodings while V primarily encodes directions. We also observe that even without the CE loss,
we can still achieve decent performance, demonstrating the effectiveness of U and V losses. Finally,
GraTeD-MLP achieves the best performance, demonstrating the effectiveness of the model.

8 Conclusion
In this paper, we aim to address the challenge of cross-architecture distilling by bridging the gap
between graph-based transformer architecture and MLPs. We propose GraTeD-MLP, which assists in
developing deployable structure-aware graph-independent models by encoding attention. GraTeD-
MLP explicitly addressed the lack of transferability and leveraged the low-rank nature of the attention
matrix for the same. We showcase extensive experimentation over various small-scale and large-scale
datasets that demonstrate the effectiveness of GraTeD-MLP. Using GraTeD-MLP, we observed an
increase in accuracy of up to 25%. Furthermore, t-SNE and CKA plots showcase better-learned
embedding/class separation and transferability, respectively. From an ethical standpoint, while
knowledge distillation aids model deployment of complex high-performing models, it may sometimes
perform lower than the teacher model. Hence, we recommend exercising caution and responsibility
to ensure positive and socially beneficial outcomes of the lightweight distilled GraTeD-MLP.
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A Appendix
A.1 CKA

Let H ∈ Rnxd1 and Ĥ ∈ Rnxd2 correspond to the hidden dimension embedding for two models
whose dimensions are d1 and d2 respectively. The CKA similarity is defined as

CKA(K,L) =
HSIC(K̂, L̂)√

HSIC(K̂, K̂)

√
HSIC(L̂, L̂)

(11)

where K̂ and L̂ correspond to the centered Kernel matrices which is obtained by multipliying both
K and L with a centering matrix Cn = In − 1

n11
T where K = HHT and L = ĤĤT in the case

of a linear kernel and K = exp(−∥Hi−Hj∥
2σ2 ) and L = exp(−∥ ˆ

Hi|−ˆHj[∥
2σ2 ) in the case of RBF kernel,
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Algorithm 1 GraTeD-MLP Training

1: Input: Graph G = (V,E), node features X , labels Y , pre-trained GT teacher model T
2: Output: Trained GraTeD-MLP student model S
3: Initialize multi-branch MLP student model S
4: // Phase 1: Attention Matrix Decomposition
5: for each attention head i in teacher model do
6: Ai ← GetAttentionMatrix(T,G)
7: U i,Σi, V i ← SVD(Ai)
8: end for
9: // Phase 2: Multi-branch Training

10: while not converged do
11: ÛΣ← StructureStudent1(X)

12: V̂ ← StructureStudent2(X)

13: Ê ← FeatureStudent(X)

14: Ŷ ← GatingMechanism(ÛΣ, V̂ , Ê)
15: Compute losses: LCE , LSL, LUΣ, LV

16: Update S using L = λ1LCE + λ2LSL + λ3LUΣ + λ4LV

17: end while
18: return S

where HSIC is the Hilbert-Schmidt interdependence criterion and measures the dependence of two
sets of variables using kernel matrices and is calculated as

HSIC(K,L) =
trace(K̂L̂)

(n− 1)2
(12)

A.2 Theoretical Guarantees and Training Procedure

Algorithm 1 presents the complete training procedure for GraTeD-MLP. Briefly, the algorithm
consists of two main phases: (1) attention matrix decomposition from the teacher GT model, and (2)
multi-branch MLP training with the decomposed components.

The attention matrix present in the Nagphormer is of the form:

A = softmax

(
QKT

√
dK

)
V (13)

Here, for Napghormer according to Chen et al. [10], the attention matrix is computed for each node.
The sequence comprises of the node’s features and the embeddings from the hop2token algorithm,
and would be of the size (K + 1)× d. Here K is the number of hops, and d is the hidden size.

First, we obtain the attention matrices from each head of the pre-trained GT teacher model (lines
1-3 of the Algorithm). For each attention matrix, we perform SVD to decompose it into U , Σ, and
V components (line 4). According to [48], the columns of U and V represent orthonormal basis
of column and row space of A respectively. These components capture the structural information
encoded in the attention mechanism. In this context, the U matrix serves as a singular basis for the
feature space of nodes and their hop embeddings derived from the Hop2 token algorithm. Each
column in U represents a distinct attention pattern across the input node-hop structure, encapsulating
key "directions" in the attention feature space. Meanwhile, each row in V specifies a weight vector for
the attention dimensions, illustrating how much each direction in U influences the original attention
matrix. Thus, V encodes the relationships between hops, capturing the structural dependencies and
interactions among them across the graph.

The multi-branch MLP architecture is then trained using these decomposed components. The first
two branches (Structure Students) are trained to predict the UΣ and V components, respectively
(lines 7-8), while the third branch (Feature Student) learns to map the input node features to the
desired embedding space (line 9). The final prediction is obtained by combining the outputs of all
three branches (line 10). The model is optimized using four different loss terms:

LCE : Cross-entropy loss between predicted labels and ground truth for labeled nodes.
LSL: Soft label loss measuring KL divergence between student and teacher predictions.
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LUΣ: L2 loss between predicted and teacher’s UΣ components.
LV : L2 loss between predicted and teacher’s V components.

These losses are weighted and combined to form the final optimization objective (lines 11-12). The
algorithm terminates when convergence is reached, returning the trained GraTeD-MLP model that
efficiently captures both structural and feature-level information from the teacher GT model while
maintaining significantly lower computational complexity.

A.2.1 Time complexity analysis

According to [10], the time complexity of the teacher Nagphormer is dominated by the self attention
module, which corresponds to O(N(K + 1)2d). Here, N denotes the number of nodes, K denotes
the number of hops, and d represents parameter size dimension.

For the proposed GraTeD-MLP, the first layer transforms the d-dimensional input into an m-
dimensional feature space with complexity O(md). This then branches out into three paths, each with
dimensions H , contributing a complexity of O(3mH). After concatenation, the output is mapped
to p outputs with complexity O(3Hp). Summing up for N nodes, the total time complexity is
O(N(md+ 3mH + 3Hp)). As H and p are generally lesser than the input dimension, hence, it can
be reduced to O(Nmd).

For a Nagphormer [10], the above time complexity applies in a transductive setting where all nodes
are visible during training. However, in real-world applications, where inferencing is performed on
never-before-seen nodes, we would need to compute the attention matrix using the computationally
expensive Hop2Token algorithm. This algorithm has a time complexity of O(N2Kd), which is
quadratic and makes Nagphormer less viable for large-scale applications. In contrast, our algorithm
maintains the same time complexity during inference, regardless of whether it is a transductive or an
inductive setting. This is because it only requires node features as input, while the structural insights
from Nagphormer are already integrated during training.

A.3 Detailed Accuracy-Time-Memory Evaluation

We conducted the experiments with more number of parameters. In this setting, we increased
parameters in GLNN and NOSMOG to same as we have in Grated-MLP. As we observe in the Figure
7, even with similar amount of parameters, Grated-MLP is able to outperform NOSMOG-512 and
GLNN-512.
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Figure 7: Model parameters vs performance
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Further, as indicated in the Table 6, the GraTeD-MLP contains, on average, 3 to 4 times fewer
parameters than the teacher model. Despite fewer parameters, it consistently outperforms the teacher
model, underscoring its robustness and effectiveness.

Dataset NAGphormer Param NAGphormer Acc Grated-MLP Param Grated-MLP Acc
Cora 2,973,705 89.65% 497,287 90.80%

Citeseer 8,341,256 75.34% 2,358,022 80.11%
Pubmed 2,494,981 89.70% 689,667 92.30%

Table 6: Comparison of NAGphormer and Grated-MLP parameters and accuracy across datasets.

A.4 Additional Experiments

To assess the robustness of the proposed paradigm across various graph transformer (GT) architectures,
we conducted additional experiments using two distinct types of GTs: a hybrid GT [49] and a pure GT.
For the pure GTs, which rely solely on attention mechanisms, we adjusted the settings in Graph-BERT
[50] to ensure that the model exclusively utilized attention. Furthermore, it is important to note that
NAGphormer is also classified as a hybrid GT, as it employs attention on hop embeddings, akin to
message passing.

As observed in Table Table 7, GraTeD-MLP can mimic both types of GTs as GraTeD-MLP is a
student based on only MLP layers so it can’t be differentiated between attention with or without
message passing. In a pure GT context, the proposed GraTeD-MLP outperforms by 4.53% for the
Citeseer and 0.30% the Cora dataset, respectively. Hence, this proves that the GraTeD-MLP can
mimick the attention matrix irrespective of where attention is coming from.

Dataset NAGphormer Grated-MLP (NAGphormer) Hybrid GT Grated-MLP (Hybrid GT) Pure GT Grated-MLP (Pure GT)
Cora 89.65% 90.80% 88.72% 88.85% 82.02% 82.32%

Citeseer 75.34% 80.11% 70.98% 76.11% 64.36% 68.89%

Table 7: Comparison of Grated-MLP performance for different types of GTs
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