
Under review as a conference paper at ICLR 2023

HRBP: HARDWARE-FRIENDLY REGROUPING TO-
WARDS BLOCK-WISE PRUNING FOR SPARSE CNN
TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, pruning at initialization and training a sparse network from scratch
(sparse training) become increasingly popular. However, most sparse training lit-
erature addresses only the unstructured sparsity, which in practice brings little ben-
efit to the training acceleration on GPU due to the irregularity of non-zero weights.
In this paper, we work on sparse training with fine-grained structured sparsity, by
extracting a few dense blocks from unstructured sparse weights. For Convolu-
tional Neural networks (CNN), however, the extracted dense blocks will be broken
in backpropagation due to the shape transformation of convolution filters imple-
mented by GEMM. Thus, previous block-wise pruning methods can only be used
to accelerate the forward pass of sparse CNN training. To this end, we propose
Hardware-friendly Regrouping towards Block-based Pruning (HRBP), where the
grouping is conducted on the kernel-wise mask. With HRBP, extracted dense
blocks are preserved in backpropagation. We further propose HRBP++ to reduce
zero kernels by extracting common sparse kernel patterns on all kernels within one
block. Extensive experiments on CIFAR-10, CIFAR-100, and ImageNet demon-
strate that HRBP (HRBP++) can almost match the accuracy of unstructured sparse
training methods while achieving a huge acceleration on hardware.

1 INTRODUCTION

Convolutional Neural Networks (CNN) have accomplished enormous progress on many computer
vision tasks, such as classification, detection, and segmentation. However, most successful models
are overparameterized and computationally extensive. The excessive computation usually requires
tedious training and makes it difficult to deploy cumbersome models into real-world applications.
Network pruning (LeCun et al., 1990; Han et al., 2015a;b; Li et al., 2016), which removes unneces-
sary weights from the heavy dense model, stands as one of the most effective methods to compress
a heavy model into a lightweight counterpart while maintaining its accuracy.

Traditionally, network pruning follows a three-step paradigm: 1) training a dense network to con-
vergence; 2) identifying a subset of weights (sparse network) by pruning unnecessary connections;
3) retraining or finetuning the sparse network to recover accuracy. However, dense training is still
inevitable in this paradigm. The recent Lottery Ticket Hypothesis (LTH) (Frankle & Carbin, 2019)
suggests that sparse network can be trained from scratch (sparse training) to the same accuracy as its
original dense model. Consequently, the tedious dense training is unnecessary. During the training
process, The sparse structure (sparse mask) can either be static (Lee et al., 2019; Wang et al., 2020;
Tanaka et al., 2020) or dynamic (Mocanu et al., 2018; Evci et al., 2020; Liu et al., 2021).

Most sparse training methods (Lee et al., 2019; Wang et al., 2020; Tanaka et al., 2020; Mocanu et al.,
2018; Evci et al., 2020; Liu et al., 2021) explore unstructured sparsity only, where zero weights
distribute irregularly. Although unstructured sparsity can maintain accuracy at a high sparsity ratio,
it brings little training time reduction on modern hardware because the irregular mask leads to poor
data locality and low parallelism (He et al., 2017; Mao et al., 2017; Wen et al., 2016). An alternative
approach, structured sparsity (He et al., 2017; Liu et al., 2017), where the entire filter or channel is
pruned, is more hardware-friendly and computationally efficient. However, it usually leads to more
accuracy drop compared to unstructured pruning.

1



Under review as a conference paper at ICLR 2023

Recently, fine-grained structured pruning becomes popular, which is a trade-off between structured
pruning and unstructured pruning. On the one hand, the N:M sparsity (Zhou et al., 2021; Sun et al.,
2021) defines blocks to meet requirements that only N weights are non-zero for every continu-
ous M weights, which allows acceleration in the inference phase on modern hardware. The N: M
transposable mask (Hubara et al., 2021) further ensures that both the weight matrix W and its trans-
pose WT follow the same sparsity pattern. Thus it can accelerate both forward pass and backward
pass. However, these methods require specialized hardware, i.e., the sparse tensor cores (Zhu et al.,
2019). Moreover, the transpose matrix WT does not describe the backward of CNN accurately. As
shown in Fig. 1, the convolution operation is usually implemented with general matrix multiplica-
tion (GEMM) on hardware. In this case, calculating the gradient w.r.t inputs requires rotating each
kernel first, then conducting kernel-wise transpose, rather than a simple transpose operation (See
Sec. 2.1 for more detail). Thus, the transposable masks may not always achieve the expected ac-
celeration on the backward pass of CNN. On the other hand, the regrouping algorithm (block-wise
pruning) (Rumi et al., 2020; Yuan et al., 2021; Chen et al., 2022) finds dense blocks by grouping
unstructured sparse weights, which can accelerate sparse training on general hardware. However,
as shown in Fig. 2, the extracted blocks in forward pass usually cannot be maintained in backward
pass. Thus, these methods cannot accelerate the backpropagation as well.

In this paper, we propose the Hardware-friendly Regrouping towards Block-wise Pruning (HRBP)
for sparse CNN training. HRBP performs the regrouping algorithm on the kernel-wise mask. Thus,
it has the ability to maintain the same dense blocks at both forward and backward pass. Mean-
while, all blocks extracted by HRBP have the same shape, which can alleviate unbalanced workload
issues in many-core graphics processing units (GPUs) (Chen et al., 2010). Furthermore, we pro-
pose HRBP++ to reduce the number of zero kernels, where all kernels in one group share the same
sparse pattern. Specifically, sparse training with fixed HRBP++ can almost match the accuracy of
unstructured pruning methods such as SNIP (Lee et al., 2019) and GraSP (Wang et al., 2020), but
brings 1.4x and 1.6x overall training acceleration with 90% and 95% sparsity for ResNet. Our main
contributions are summarized as follows:

• We detailed analyze the implementation of CNN’s forward and backward pass with
GEMM, and find that current fine-grained structured pruning methods cannot guarantee
the backward acceleration.

• We propose a novel Hardware-friendly Regrouping Block-wise Pruning (HRBP/HRBP++)
algorithm that extracts dense blocks from the non-zero weights, while maintaining the spa-
tial regularity of the blocks from the weight transformation of the backward propagation,
therefore accelerating both forward and backward of CNN training.

• We conduct extensive experiments on CIFAR-10/100 and ImageNet-1K and demonstrate
that sparse training with HRBP can achieve a better trade-off between accuracy and hard-
ware acceleration.

2 PRELIMINARIES

2.1 CONVOLUTION OPERATION AND ITS IMPLEMENTATION

The weights of a 2D convolutional layer can be defined by K ∈ RCO×CI×Kh×Kw , where CO, CI ,
Kh and Kw are the number of output channels, the number of input channels, kernel height, and
kernel width, respectively. In convolution operation, each filter Kc slides over the input feature
map I ∈ RCI×HI×WI and computes a weighted sum of the mapped input values at a time, which
generates one activation map Oc ∈ RHO×WO . Thus, all CO filters conduct CO times of convolution
operations and produce the output map O ∈ RCO×HO×WO .

Forward pass with GEMM. On hardware, the convolution operation is usually implemented
with general matrix-matrix multiplication (GEMM) (Chetlur et al., 2014), where tensor is laid out in
the memory in the NCHW or the NHWC format (See Appendix A for more details). We take the NCHW
format as an example. As shown in Fig. 1(a), for the input I, the im2col() operation flattens each
convolution window of the input and stacks them as columns in a matrix. Thus, the 2D input feature
map I is unrolled into an input matrix X = im2col(I) ∈ R(CIKhKw)×(HOWO). Meanwhile, K is
reshaped and stored in the weights matrix W ∈ RCO×(CIKhKw). To this end, the forward pass is

2



Under review as a conference paper at ICLR 2023

a3 a2 a1 a0 b3 b2 b1 b0
a3 a2 a1 a0 b3 b2 b1 b0
a3 a2 a1 a0 b3 b2 b1 b0

dO0 dO1

dO2 dO3

dO0 dO1

dO2 dO3

im2col

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

padding

dI0 dI1 dI2 dI3 dI4 dI5 dI6 dI7 dI8

dI0 dI1 dI2 dI3 dI4 dI5 dI6 dI7 dI8

dI0 dI1 dI2 dI3 dI4 dI5 dI6 dI7 dI8

dO

Kernels K

a3 a2
a1 a0

a3 a2
a1 a0

b3 b2
b1 b0

b3 b2
b1 b0

b3 b2
b1 b0

b3 b2
b1 b0

180° 
rotation

dO0 dO1

dO2 dO3

dO0 dO1

dO2 dO3

dO[0, ...]

dO[1, ...]

kernel-
wise


transpose

dY=im2col(dO)

I0 I1 I2
I3 I4 I5
I6 I7 I8

I0 I1 I3 I4
I1 I2 I4 I5
I3 I4 I6 I7
I4 I5 I7 I8
I0 I1 I3 I4
I1 I2 I4 I5
I3 I4 I6 I7
I4 I5 I7 I8
I0 I1 I3 I4
I1 I2 I4 I5
I3 I4 I6 I7
I4 I5 I7 I8

I0 I1 I2
I3 I4 I5
I6 I7 I8

I0 I1 I2
I3 I4 I5
I6 I7 I8

a0 a1
a2 a3

a0 a1
a2 a3

a0 a1
a2 a3

b0 b1
b2 b3

b0 b1
b2 b3

b0 b1
b2 b3

a0 a1 a2 a3 b0 b1 b2 b3 b0 b1 b2 b3
b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3

O0 O1 O2 O3

O0 O1 O2 O3

X[0, ...] X[1, ...] X[2, ...]

Input I
im2col

X=im2col (I)

K0

K1

W

Y = W Xreshape

Kernels K
dX = W' dY

W'

(a) Forward (b) Backward 

a0 b0
a1 b1
a2 b2
a3 b3
a0 b0
a1 b1
a2 b2
a3 b3
a0 b0
a1 b1
a2 b2
a3 b3

(c)  WT

W' ≠ WT

a3 a2
a1 a0

a3 a2
a1 a0

b3 b2
b1 b0

b3 b2
b1 b0

b3 b2
b1 b0

b3 b2
b1 b0

reshape

reshape

O0 O1

O2 O3

O0 O1

O2 O3

dI0 dI1 dI2

dI3 dI4 dI5

dI6 dI7 dI8

dI0 dI1 dI2

dI3 dI4 dI5

dI6 dI7 dI8

dI0 dI1 dI2

dI3 dI4 dI5

dI6 dI7 dI8

a0 a1
a2 a3

a0 a1
a2 a3

a0 a1
a2 a3

b0 b1
b2 b3

b0 b1
b2 b3

b0 b1
b2 b3

reshape

dI

Figure 1: Implementation of forward and backward pass of convolution operation with GEMM in NCHW
layout. Different color represents different channels. In the forward pass, the kernels K are reshaped to matrix
W. In the backward pass, each filter is rotated 180◦ firstly, then the kernel-wise transpose is conducted to
obtain the new kernel layout K′. Then K′ is reshaped to matrix W′, which is different from the transpose
WT .

calculated by Y = WX ∈ RCo×(HOWO). Then the 2D output map O is obtained by reshaping Y.
See Appendix D for a summary of all notations in this paper.

Backward pass with GEMM. Given the gradients of the 2D output map dO ∈ RCO×HO×WO ,
the backpropagation involves two matrix multiplications. 1) Calculate the gradients w.r.t. the filters
dK, which is implemented by dW = dY ·XT following dK = reshape(dW). 2) Calculate the
gradients w.r.t the input dI, which can be obtained by a full convolution between the kernel K and
dO (LeCun et al., 1989). In detail, as in Fig. 1(b), we conduct padding and im2col operation on
dO, and obtain dY = im2col(dO) ∈ R(COKhKw)×(HIWI). Meanwhile, we flip each kernel first
vertically and then horizontally (i.e., 180◦ rotation) and perform the kernel-wise transpose to get the
new kernel layout K′. Then we reshape K′ to matrix W′ ∈ RCI×(COKhKw). Thus, the gradient is
calculated by dX = W′dY. Finally, we reshape dX to obtain dI.

Discussion. For the gradient w.r.t the input, previous works (Hubara et al., 2021) calculate it
with dX = WTdY for simplicity, where WT ∈ R(CIKhKw)×CO . This simple form is applicable
in linear layers. However, it cannot describe CNN accurately in general. As in Fig. 1(c), WT is
different from the matrix W′. If and only if Kh = Kw = 1, they are the same, which downgrades
the CNN to a linear layer. Consequently, sparse patterns based on WT may not always obtain the
expected acceleration on arbitrary CNN backpropagation. Besides, this algorithm has additional
requirements on the shape of CNN and the layout in the memory. See Appendix B for more details.

1 2 3
4 5 6

7 8 9 10
11 12 13

14 15

, , CI = 2 CO = 5 Kh = Kw = 2

1 2 3
4 5

11 12

7 10
13

14 15

2 1 5 4 8 7 11 14
3 6 10 9 13 12 15

(a) a pruned convolutional layer

CO × Kh × Kw

CI

CO

CI × Kh × Kw

W W'

(c) mask after transformation for backward 

6
8 9

(b) weight regrouping

K0

K1

K2

K3

K4

0  1  2  3  4  5  6  7 
K0

K1

K3

K2

K3

K4

0  2  5

1  7

0

1

K0 K1 K2 K3 K4
0  1  2  3  4  5  6  7 

K0

K1

K2

K3

K4

grouping
grouping

Figure 2: Example of weight regrouping on convolutional layer. Indexed cells are non-zeros. Different color
represents different block groups. The extracted dense blocks cannot be kept in the backward pass.

2.2 WEIGHT REGROUPING ON UNSTRUCTURED SPARSITY

Given a CNN fθ(·) with weights θ, a sparse subnetwork is defined by fθ⊙m̃(·), where m̃ ∈ {0, 1}|θ|
is the binary mask and ⊙ is the element-wise product. In unstructured pruning, zeros distribute
irregularly in m̃. Thus, the convolution operation still needs to maintain the entire weight matrix

3



Under review as a conference paper at ICLR 2023

as a dense network, making it difficult to reduce the computation of unstructured sparse weights on
hardware. Even with the help of the dedicated sparse matrix representation technique such as CSR
format (Buluç et al., 2009), the unstructured sparsity still expects to have over 85% sparsity ratio
to acquire limited acceleration since the irregular weight distribution causes significant computation
overhead due to poor data locality (Yuan et al., 2021). The recent weight regrouping (reorganization)
(Rumi et al., 2020) can accelerate the unstructured sparse weights on hardware by extracting multiple
smaller dense blocks in a large sparse matrix, which can improve the throughput with GEMM.

Implementation. Denote the binary mask of the weights of a CNN layer as m ∈ {0, 1}|W|. The
regrouping algorithm (Rumi et al., 2020) finds similar rows and columns from the sparse weights
matrix W ⊙m and brings them together into several dense blocks. In detail, it firstly clusters CO

rows of m into several groups based on the Jaccard similarity among non-zeros columns. For each
group, it then picks out columns with the most non-zeros weights from all CIKhKw columns and
generates one dense block. For example, in Fig. 2(a), we can group filter K0, K1, and K3 together,
and select columns with at least two non-zero (i.e., 0th, 2th, and 5th columns), which leads to the
dense block with orange color in Fig. 2(b). The remaining sparse weights (cells with green color)
are usually discarded (Chen et al., 2022).

Limitations. However, the regrouping algorithm cannot be applied to the training directly. Firstly,
the extracted dense blocks are fragmentary in backward pass due to the transformation from W to
W′, making the backward acceleration unfeasible. For example, in Fig. 2(c), the cells of the block
with orange color in W⊙m are scattered irregularly in W′. One naive solution is extracting blocks
separately in forward and backward passes. However, it is possible that specific weights in the
blocks of forward are removed in the blocks of backward, which obstructs the backpropagation of
the weight. Besides, the shapes of different dense blocks are arbitrary, which introduces imbalanced
memory access and data locality. Thus, it makes the GPU suffer a great workload imbalance.

3 METHODOLOGY

3.1 HARDWARE-FRIENDLY REGROUPING FOR BLOCK-WISE PRUNING (HRBP)

Motivation. The reason for fragmentary blocks in the backward of CNN is that all CIKhKw

columns are considered independently. Thus, one dense block can select arbitrary locations on the
kernel of different input channels. Ideally, the grouping algorithm should locate identical elements
for different input channels within one block. When Kh = Kw = 1, the CNN reduces to a linear
layer, and the issue of the fragmentary block can be solved naturally. Inspired by this, we propose
the HRBP, which extracts dense blocks that can also be kept in CNN backpropagation.

HRBP. Different from (Rumi et al., 2020) that conducts regrouping on the mask of weights matrix
m ∈ {0, 1}CO×(CIKhKw), HRBP conducts regrouping on the kernel-wise mask m′ ∈ {0, 1}CO×CI .
Thus, the entire weights of one kernel Ki

c ∈ RKhKw are kept or discarded based on m′. In detail, we
count the number of non-zero cells within each kernel based on m, and we keep rCICO kernels with
the most number of non-zero cells and discard the remaining kernels, which generates the kernel-
wise mask m′. Here r is the density ratio of the sparse weights. We then cluster Co rows of m′ into
t groups with equal size. For each group, we select r · CI columns with the most non-zero weights
to generate one dense block. Lastly, we discard the remaining elements and refill zero slots in dense
blocks. To this end, we have t dense blocks with identical shape Co

t × (rCIKhKw). As in Fig. 3(a),
the same dense blocks are preserved in backpropagation, making the sparse training with dense
blocks applicable in forward and backward passes. See Appendix C for detailed implementation.

HRBP++. The vanilla HRBP inevitably introduces too many zero kernels, which may result in
layer collapse and a heavy accuracy drop (Tanaka et al., 2020). Thus, we further propose HRBP++
to reduce the number of zero kernels. We define s as the density ratio of each kernel Ki

c. In practice,
s needs to satisfy s ≥ r ∩ s ∈ {i/(Kh ∗ Kw)}Kh∗Kw

i=1 . Similarly, we select r
sCICO kernels with

the most number of non-zero cells to generate m′. For each group, we extract a common sparse
pattern from all kernels within the group based on m. In detail, for each group, we count the number
of non-zero weights in each cell of the kernel and choose sKhKw cells with the most non-zero
weights as a common pattern for the dense block. For example, in Fig. 3(b), one kernel has 4
cells. Given the 6 kernels from the blue group, the number of non-zero weights is 5, 4, 5, 2 for the 4
cells, respectively. Thus, we select the 1, 2, 3-th cell as a common pattern and apply it to all kernels

4



Under review as a conference paper at ICLR 2023

(a) HRBP

Grouping

Grouping

Pattern Finding

Apply

(b) HRBP++

Forward

Backward

Apply

Forward

Backward

CO

CI

CO

CO

CI

CO

CO × (Kh ⋅ Kw)

Kh ⋅ Kw

Kh ⋅ Kw

CO × (Kh ⋅ Kw)

CI

CI

CO

CO

m

m

m'

m'

CI

CO

CI

CO

5 4 5 2

Figure 3: Illustration of HRBP and HRBP++. White cell means zero weights. Given the unstructured mask
(matrix with yellow cell), HRBP(++) firstly extracts the kernel-wise mask (matrix with lavender cell) by count-
ing non-zero weights of each kernel. We then group the kernel-wise mask into several equal shape blocks (we
have three groups marked with blue, orange, and green). In HRBP, the entire weights of a kernel are kept or
discarded. In HRBP++, we extract common patterns of each block and apply it to all kernels within the group.

within the blue group. To this end, HRBP++ allows for zero values within kernels, resulting in fewer
entirely discarded kernels for the same overall sparsity ratio.

3.2 SPARSE TRAINING WITH HRBP (++)

HRBP(++)-based Random Mask. With HRBP(++), we can extract dense blocks from sparse
weights and accelerate both forward and backward of sparse training. For simplicity, we apply
HRBP(++) to a random pruning mask, which randomly chooses connections to satisfy the sparsity
ratio requirements. To this end, we design a strategy to create a random pruning mask in HRBP (++)
style, named HRBP(++)-based Random Mask. For the sparse ratio of each layer, we follow the
Erdős–Rényi-Kernel (ERK) (Evci et al., 2020) where larger layers are allocated with higher sparsity
than smaller layers within a network. For HRBP, we randomly split the CO rows into t equal groups.
For each group, we randomly keep rCI channels and zero out the rest. For HRBP++, we start from
a random unstructured mask m and apply the proposed HRBP++ algorithms to slightly modify m.
Thus, based on the HRBP(++)-based random mask, we can replace the sparse weights matrix with
several dense blocks on GPU.

x x
x x

x x
x x x

x x x
x

Block-wise Prune Block-wise Grow Block-wise HRBP

Pruned weights Grown weights

Figure 4: Illustration of Block-wise updating for Dynamic Sparse Training.

Block-wise updating for Dynamic Sparse Training (DST) DST starts from a random sparse
network. After optimizing several iterations, it prunes a portion of weights based on the pruning
criterion and grows new connections according to the grow criterion. Then the new sparse network
is trained until the next update. Typically, any location of the entire weight can be pruned or activated

5



Under review as a conference paper at ICLR 2023

(i.e., grown). However, this default setting is not aligned with HRBP, since updating connections
at arbitrary locations destroys the extracted blocks. To this end, we propose block-wise updating
for DST with HRBP++, which follows the prune-grow-regroup scheme. As shown in Fig. 4, we
maintain the cluster of rows (filters). For each row, we prune d% weights based on the magnitude
and grow back new d% weights based on its gradient. Then we perform the HRBP++ on the new
weights to group the new mask into several dense blocks.

3.3 HRBP HARDWARE IMPLEMENTATION

We implement our method with CUDA and measure the acceleration rate on GPU. In detail, we
rewrite the nn.Conv2d module of Pytorch with CUDA to run CNN with sparse weights. The thread
is the basic programmable unit that allows GPU programmers to use massive numbers of CUDA
cores. CUDA threads are grouped at different levels such as warp, block, and grid. Given the dense
blocks found by HRBP/HRBP++, the original convolution computation will be decomposed into
several computations corresponding to dense blocks, and these computations will be performed in
parallel by threads. The extracted dense blocks from HRBP(++) have the same shape. To this end,
in our kernel design, a thread block only processes the output channels of the same group which
enables us to have better reuse of the input data (e.g., the input data can be loaded to shared memory
which can be access by all the threads inside a thread block). Inside a thread block, each thread
is responsible for one portion of the output on (X,Y ) dimension which further helps us to achieve
good data reuse of the kernel weight (kernel weight can also be put into shared memory).

We also applied tiling across both height and width dimension of the input channel to increase the
number of launched thread blocks, which further increases the parallelism level. The tiling size
plays a significant role of the performance. A small tiling size can increase the parallelism level,
while a big tiling size will provide better reuse of the weight data. Thus, finding a good tile size for
a given problem is non-trivial. A simple but powerful method is brute force search, it guarantees
to find out the best tiling size for specific hardware. In our design, input data are put into shared
memory and can be accessed by all thread block to improve the data reuse. In the meantime, the
cost by using brute force search is very low because most of the undesired tiling size candidates are
discarded in order to satisfy the usage requirement of the shared memory.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Dataset & Networks. We follow the experimental settings in (Wang et al., 2020; Yuan et al.,
2021) and conduct experiments on CIFAR-10, CIFAR-100 and ImageNet-1K (Deng et al., 2009).
As the common setting in sparse training, we apply the WideResNet-32-2 and VGG-19 (Simonyan
& Zisserman, 2014) for CIFAR-10/100 and ResNet-50 (He et al., 2016) for ImageNet.

Training. For CIFAR-10/100, we use a batch size of 128 and train networks with SGD optimizer
for 160 epochs by default. The learning rate is set to 0.1 initially and is decayed by a factor of
0.1 at the 80th and 120th. Moreover, we run each experiment 3 times and report the mean value
and standard derivation. For ImageNet, we adopt the Pytorch official implementation and train the
networks for 100 epoch as (Wang et al., 2020). The learning rate is 0.1 initially and is decayed at
30-th, 60-th, and 90-th epoch with factor 0.1. For sparse training, we set the number of dense blocks
t to 8 (Rumi et al., 2020) and the dense ratio of kernel s in HRBP++ to 4

9 for all 3× 3 kernels. The
minimum size of a block B1 is set to 8 (Rumi et al., 2020).

Hardware We evaluate our method on NVIDIA Ampere A100 (108 SMs, 40GB). The versions
of CUDA and cuDNN are 11.0.0 and 8.0.4, respectively. For baseline implementations of convo-
lution operations for full sparse weights, we adopt the widely used GEMM-based convolution, i.e.,
CUDNN CONVOLUTION FWD ALGO GEMM (Chetlur et al., 2014). We report the overall training
time acceleration rate compared with the dense baselines, which includes both forward and back-
ward calculations on hardware.

4.2 SPARSE TRAINING WITH HRBP(++)-BASED RANDOM MASK

Settings. We compare HRBP(++) on static sparse training against random unstructured pruning
(RU), random channel-wise pruning (RC) with an ERK ratio, and unstructured pruning with well-
defined criteria such as SNIP (Lee et al., 2019) and GraSP (Wang et al., 2020). We also evaluate the

6



Under review as a conference paper at ICLR 2023

Table 1: Comparison of static sparse training methods on CIFAR-10 and CIFAR-100. The number in brackets
is the relative training time speedup compared to a dense model.

Dataset CIFAR-10 CIFAR-100

Pruning ratio 90% 95% 90% 95%

ResNet-32 Dense: 94.80 Dense: 74.64

RU 92.81±0.19 (1.0×) 91.38 ±0.04 (1.0×) 69.48±0.21 (1.0×) 67.03±0.66 (1.0×)
LTH (Frankle & Carbin, 2019) 92.31 (1.0×) 91.06 (1.0×) 68.99 (1.0×) 65.02 (1.0×)
SNIP (Lee et al., 2019) 92.59 (1.0×) 91.01 (1.0×) 68.89 (1.0×) 65.22 (1.0×)
GraSP (Wang et al., 2020) 92.38 (1.0×) 91.39 (1.0×) 69.24 (1.0×) 66.50 (1.0×)

RC 90.27±0.24 (1.5×) 87.19±0.48 (1.6×) 62.71±0.22 (1.5×) 56.33 ±0.37 (1.6×)

Regrouping (Rumi et al., 2020) 91.63±0.11 (1.1×) 90.77±0.07 (1.2×) 66.97±0.18 (1.1×) 64.35±0.45 (1.2×)
HRBP 91.76±0.17 (1.4×) 89.80±0.02 (1.6×) 67.20±0.22 (1.4×) 63.19±0.73 (1.6×)
HRBP++ 92.30±0.20 (1.4×) 90.84±0.41 (1.6×) 69.22±0.50 (1.4×) 65.94±0.25 (1.6×)

VGG-19 Dense: 94.23 Dense: 74.16

RU 92.91±0.10 (1.0×) 91.91±0.13 (1.0×) 70.39±0.43(1.0×) 68.63±0.40 (1.0×)
LTH (Frankle & Carbin, 2019) 93.51 (1.0×) 92.92 (1.0×) 72.78 (1.0×) 71.44 (1.0×)
SNIP (Lee et al., 2019) 93.63 (1.0×) 93.43 (1.0×) 72.84 (1.0×) 71.83 (1.0×)
GraSP (Wang et al., 2020) 93.30 (1.0×) 93.04 (1.0×) 71.95 (1.0×) 71.23 (1.0×)

RC 90.84±0.38 (1.7×) 87.12±0.18 (1.8×) 59.61±0.52 (1.7×) 49.31±1.17 (1.8×)

Regrouping (Rumi et al., 2020) 92.81±0.25 (1.2×) 91.86±0.24 (1.2×) 70.52±0.36 (1.2×) 68.60±0.08 (1.2×)
HRBP 92.48±0.19 (1.4×) 90.81±0.16 (1.9×) 68.42±0.17 (1.4×) 64.98±0.47 (1.9×)
HRBP++ 92.88±0.12 (1.4×) 91.66±0.14 (1.9×) 70.25±0.29 (1.4×) 67.89±0.49 (1.9×)

conventional regrouping method (Rumi et al., 2020) as a baseline, even if it fails to accelerate the
backpropagation. Following (Wang et al., 2020), we set the sparsity ratio to 90% and 95%.

Results. The results are summarized in Table 1. From the accuracy perspective, HRBP++
achieves similar performance to unstructured pruning methods and much better performance than
channel-wise pruning. For example, on CIFAR-10 with ResNet-32, HRBP++ achieves an accuracy
of 90.84% at 95% sparsity, which is 3.65% higher than the RC and just 0.17% negligible drop to
SNIP (Lee et al., 2019). HRBP, as our baseline with more zero kernels, usually suffers 1% accu-
racy drop compared to HRBP++, but it still performs much better than RC. From the training time
acceleration perspective, unstructured pruning cannot be accelerated due to its irregularity of non-
zero weights. However, our HRBP can almost match the acceleration of channel-wise pruning, with
the benefit of our optimized convolution implementation. Moreover, HRBP obtains more acceler-
ation compared to the convention regrouping (Rumi et al., 2020), as the latter can only accelerate
the forward pass. In summary, our HRBP(++) can successfully achieve comparable accuracy as
unstructured pruning and bring training time acceleration on hardware.

Layer-wise speedup. We also explore the overall training time acceleration of each convolutional
layer. We take VGG-19 with 90% overall sparsity on CIFAR-10 as an example and report the
speedup of each layer in Figure 5. At shallow layers with a small sparsity ratio, channel-wise pruning
achieves a slightly better acceleration. However, at deeper layers, HRBP achieves comparable or
even better results, with at most 7.5x acceleration on Conv14. This is consistent with the conclusion
in (Rumi et al., 2020) that the grouping algorithm prefers large kernels and large sparsity. Noticeably,
cuDNN is only optimized for kernel matrices with a multiple of 32 rows, thus structured pruning
with an arbitrary number of channels does not guarantee better acceleration (Rumi et al., 2020).

4.3 DYNAMIC SPARSE TRAINING WITH HRBP++

We further explore the dynamic sparse training with HRBP++, which prunes and grows the con-
nections based on the proposed block-wise updating during the training time. We compare DST
with HRBP++ to several unstructured DST methods, including DeepR (Bellec et al., 2018), DSR
(Mostafa & Wang, 2019), SET (Mocanu et al., 2018), and RigL (Evci et al., 2020). We follow all
sparse training hyperparameters in (Evci et al., 2020). As the speedup is similar to static sparse
training, we only show the accuracy comparison in Table 2 for simplicity. Noticeably, our HRBP++
can still match the accuracy of unstructured DST methods. Nevertheless, when comparing Table 1
and 2, the advantage of DST from static training in HRBP is not as much as that in unstructured
pruning. One potential reason is that the mask updating mechanism of HRBP++ has a smaller mask
diversity (Hubara et al., 2021) than the unstructured pruning.

7



Under review as a conference paper at ICLR 2023

Table 2: Comparison of dynamic sparse training methods on CIFAR-10 and CIFAR-100.
Network ResNet-32 VGG-19

Dataset CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

Pruning ratio 90% 95% 90% 95% 90% 95% 90% 95%

Deep-R (Bellec et al., 2018) 91.62 89.84 66.78 63.90 90.81 89.59 66.83 63.46
DSR (Mostafa & Wang, 2019) 92.97 91.61 69.63 68.20 93.75 93.86 72.31 71.98
SET (Mocanu et al., 2018) 92.30 90.76 69.66 67.41 92.46 91.73 72.36 69.81
RigL (Evci et al., 2020) 92.84±0.13 92.02±0.29 70.98±0.30 68.50±0.15 93.15±0.09 92.30±0.43 71.63±0.28 69.13±0.46

DST-HRBP++ 92.72±0.23 91.25±0.12 69.51±0.52 66.41±0.30 93.07±0.12 91.79±0.18 70.49±0.19 68.04±0.37

Table 3: Static sparse training on ImageNet. The dense ResNet-50 has 75.70% top-1 accuracy.
Pruning ratio 60% 80%

Accuracy top-1 top-5 top-1 top-5

SNIP Lee et al. (2019) 73.95 (1.0×) 91.97 69.67 (1.0×) 89.24
GraSP Wang et al. (2020) 74.02 (1.0×) 91.86 72.06 (1.0×) 90.82

HRBP++ 74.84 (1.17×) 92.35 70.90 (1.26×) 89.93

Conv 2 (51%) Conv 3 (33%) Conv 7 (16%) Conv 12 (8%) Conv 14 (8%)
0

1

2

3

4

5

6

7

Sp
ee

du
p

Channel-wise
HRBP
Dense

Figure 5: The layer-wise speedup of VGG-19.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Kernel Sparse Ratio

89.0

89.5

90.0

90.5

91.0

91.5

92.0

92.5

93.0

A
cc

ur
ac

y

Network Sparsity: 10%
Network Sparsity: 5%

Figure 6: Different kernel dense ra-
tio for HRBP++ with ResNet-32.

4.4 RESULTS ON IMAGENET

We evaluate the static sparse training with HRBP(++) on ImageNet. Follow Lee et al. (2019);
Wang et al. (2020), we set the sparse ratio to 60% and 80%. As shown in Table 3, HRBP++ can
also achieve similar performance as well-designed unstructured pruning methods. Meanwhile, it
provides 1.26× and 1.44× training time acceleration on hardware when the pruning ratio is 80%
and 90% respectively. To this end, our HRBP++ is still effective on complicated tasks like ImageNet.

50 60 70 80 90
Sparsity

86

88

90

92

94

96

A
cc

ur
ac

y

VGG-19

Dense
SNIP
GraSP
Random Unsructured Pruning
Random Structured Pruning
HRBP
HRBP++

(a) VGG-19

50 60 70 80 90
Sparsity

86

88

90

92

94

96

A
cc

ur
ac

y

ResNet-32

Dense
SNIP
GraSP
Random Unsructured Pruning
Random Structured Pruning
HRBP
HRBP++

(b) ResNet-32

50 60 70 80 90
Sparsity

86

88

90

92

94

96

A
cc

ur
ac

y

ResNet-56

Dense
SNIP
GraSP
Random Unsructured Pruning
Random Structured Pruning
HRBP
HRBP++

(c) ResNet-56

Figure 7: The trade-off between sparsity and accuracy. All models are evaluated on CIFAR-10.

4.5 ABLATION STUDIES

Dense Ratio of Kernel Pattern s. We take the ResNet-32 on CIFAR-10 as an example to explore
the effect of the kernel sparse ratio s in HRBP++. Typically, a smaller s introduces more non-zero
kernels but inevitably reduces the number of non-zero weights within each kernel. As the shape
of most kernels is 3 × 3, we explore s from 1

9 to 9
9 . As shown in Fig. 6, a smaller s usually

brings slightly better accuracy, especially for networks with large sparsity. This is reasonable since

8



Under review as a conference paper at ICLR 2023

a smaller s can reduce the number of zero kernels, while many zero kernels can render a network
untrainable (Tanaka et al., 2020).

Sparsity r and deeper nets. We also vary the sparsity from 50% to 95% to explore the trade-off
between sparsity and accuracy. Besides, we also add experiments with deeper nets such as ResNet-
56. As in Figure 7, our method can achieve comparable accuracy as unstructured pruning methods at
all sparsity levels and all kinds of networks. This suggests the generalization ability of our method.
For the acceleration rate on both training and inference, please see Figure 14 in Appendix.

5 RELATED WORK

5.1 NETWORK PRUNING

Pruning aims to compress overparameterized networks into lightweight ones. Based on the dis-
tribution of zero weights, it can be divided into three types: 1) Unstructured pruning, where zero
weights are distributed at arbitrary locations based on the importance score of each weight. The
score can be obtained from magnitude (LeCun et al., 1990; Han et al., 2015a;b; Xu et al., 2021;
Zhu & Gupta, 2017), gradient (Molchanov et al., 2017; 2019) or Hessian (LeCun et al., 1990). The
unstructured pruning can match the accuracy of dense networks at a high sparsity ratio (more than
90%). However, it is difficult to achieve better hardware speedup due to irregularity. 2) Struc-
tured pruning, where the weights of entire channels are pruned. Earlier works (Li et al., 2016; He
et al., 2017; Wen et al., 2016; Liu et al., 2017) adopt mathematics-oriented regularization-based al-
gorithms to generate sparsity. Other works such as HRank (Lin et al., 2020), SCOP (Tang et al.,
2020), DMCP (Guo et al., 2020), MetaPruning (Liu et al., 2019) use complicated rules to generate
the sparsity distribution in the channel level. As the sparse model preserves the spatial regularity,
the pruned convolution layers can be transformed to a full matrix multiplication with reduced matrix
size and accelerate computation on the hardware level. However, structured pruning suffers from
significant accuracy loss as one entire activation map can be zero. 3) fine-grained structured prun-
ing, which includes block-based pruning and pattern-based pruning. In block-based pruning (Rumi
et al., 2020), the unstructured weights are partitioned into several dense blocks. However, all the
above works aim to accelerate the inference stage, our work differs substantially from them such
that we do not rely on a pre-trained dense model.

5.2 SPARSE TRAINING

Sparse training aims to train a sparse network from scratch. Based on the mask updating schemes, it
is usually divided into two categories: 1) Static sparse training, where the sparse mask is obtained
at the early stage of training and is fixed during the course of training. Previous works obtain the
sparse mask by random pruning or utilizing some saliency criteria. The SNIP (Lee et al., 2019)
uses the gradients of the training loss as connection sensitivity to prune the network at initialization.
Later on, many criteria have been proposed, such as gradient flow in GraSP (Wang et al., 2020),
synaptic strengths in SynFlow (Tanaka et al., 2020), Fisher information (Sung et al., 2021), etc.
2) Dynamic sparse training, which starts from a random sparse mask and dynamically updates
connections during training. DST avoids the pruning-at-initialization process that usually involves
the full dense model computation. Specifically, SET (Mocanu et al., 2018) update sparse masks by
pruning weights that have the least magnitude and grow back the same amount of inactivated weights
in a random fashion. RigL (Evci et al., 2020) proposes to update sparse mask by magnitude-based
pruning and grow back inactivated weights by their gradients. DSR (Mostafa & Wang, 2019) and
STR (Kusupati et al., 2020) design a dynamic reparameterization method that allows weights to be
re-distributed across layers by providing a global sparsity allocation dynamics. DeepR (Bellec et al.,
2018) combines dynamic sparse parameterization with stochastic parameter updates for training, but
it primarily targets small and shallow fully-connected networks. However, these works focus on
unstructured sparsity.

6 CONCLUSION

We analyze the implementation of CNN with GEMM and point out that current fine-grained struc-
tured pruning methods cannot promise backward acceleration. We then propose the HRBP, aiming to
accelerate the sparse training at both forward and backward passes by extracting dense blocks from
the unstructured mask. Extensive results suggest that sparse training with HRBP(++) can achieve
comparable accuracy with unstructured pruning methods. Meanwhile, it brings significant training
acceleration. We believe our method can integrate the advantage of both unstructured pruning and
structured pruning and make sparse training more hardware-friendly.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein. Deep rewiring: Training
very sparse deep net-works. In International Conference on Learning Representations (ICLR),
2018.

Aydin Buluç, Jeremy T Fineman, Matteo Frigo, John R Gilbert, and Charles E Leiserson. Parallel
sparse matrix-vector and matrix-transpose-vector multiplication using compressed sparse blocks.
In Proceedings of the twenty-first annual symposium on Parallelism in algorithms and architec-
tures, pp. 233–244, 2009.

Long Chen, Oreste Villa, Sriram Krishnamoorthy, and Guang R Gao. Dynamic load balancing on
single-and multi-gpu systems. In 2010 IEEE International Symposium on Parallel & Distributed
Processing (IPDPS), pp. 1–12. IEEE, 2010.

Tianlong Chen, Xuxi Chen, Xiaolong Ma, Yanzhi Wang, and Zhangyang Wang. Coarsening the
granularity: Towards structurally sparse lottery tickets. ICML, 2022.

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catan-
zaro, and Evan Shelhamer. cudnn: Efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759, 2014.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. ICLR, 2021.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In International Conference on Machine Learning, pp. 2943–2952.
PMLR, 2020.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019.

Yanwei Fu, Chen Liu, Donghao Li, Xinwei Sun, Jinshan Zeng, and Yuan Yao. Dessilbi: Exploring
structural sparsity of deep networks via differential inclusion paths. In International Conference
on Machine Learning, pp. 3315–3326. PMLR, 2020.

Yanwei Fu, Chen Liu, Donghao Li, Zuyuan Zhong, Xinwei Sun, Jinshan Zeng, and Yuan Yao.
Exploring structural sparsity of deep networks via inverse scale spaces. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2022.

Shaopeng Guo, Yujie Wang, Quanquan Li, and Junjie Yan. DMCP: Differentiable Markov channel
pruning for neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 1539–1547, 2020.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015a.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in neural information processing systems, pp. 1135–1143,
2015b.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. In Proceedings of the IEEE International Conference on Computer Vision, pp. 1389–1397,
2017.

10



Under review as a conference paper at ICLR 2023

Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Joseph Naor, and Daniel Soudry. Accel-
erated sparse neural training: A provable and efficient method to find n: m transposable masks.
Advances in Neural Information Processing Systems, 34:21099–21111, 2021.

Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham
Kakade, and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity. In
Proceedings of the International Conference on Machine Learning (ICML), pp. 5544–5555, 2020.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hub-
bard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural
information processing systems, pp. 598–605, 1990.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. Snip: Single-shot network pruning based
on connection sensitivity. In International Conference on Learning Representations, 2019.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian, and Ling
Shao. Hrank: Filter pruning using high-rank feature map. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1529–1538, 2020.

Shiwei Liu, Lu Yin, Decebal Constantin Mocanu, and Mykola Pechenizkiy. Do we actually need
dense over-parameterization? in-time over-parameterization in sparse training. In International
Conference on Machine Learning, pp. 6989–7000. PMLR, 2021.

Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Kwang-Ting Cheng, and Jian
Sun. Metapruning: Meta learning for automatic neural network channel pruning. In Proceedings
of the IEEE International Conference on Computer Vision, pp. 3296–3305, 2019.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In Proceedings of the IEEE
international conference on computer vision, pp. 2736–2744, 2017.

Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, and William J Dally.
Exploring the regularity of sparse structure in convolutional neural networks. arXiv preprint
arXiv:1705.08922, 2017.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connec-
tivity inspired by network science. Nature communications, 9(1):1–12, 2018.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout sparsifies deep neural
networks. In International Conference on Machine Learning, pp. 2498–2507. PMLR, 2017.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
for neural network pruning. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 11264–11272, 2019.

Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural networks
by dynamic sparse reparameterization. In Proceedings of the International Conference on Ma-
chine Learning (ICML), pp. 4646–4655, 2019.

Masuma Akter Rumi, Xiaolong Ma, Yanzhi Wang, and Peng Jiang. Accelerating sparse cnn infer-
ence on gpus with performance-aware weight pruning. In Proceedings of the ACM International
Conference on Parallel Architectures and Compilation Techniques, pp. 267–278, 2020.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

11



Under review as a conference paper at ICLR 2023

Wei Sun, Aojun Zhou, Sander Stuijk, Rob Wijnhoven, Andrew O Nelson, Henk Corporaal, et al.
Dominosearch: Find layer-wise fine-grained n: M sparse schemes from dense neural networks.
Advances in Neural Information Processing Systems, 34:20721–20732, 2021.

Yi-Lin Sung, Varun Nair, and Colin Raffel. Training neural networks with fixed sparse masks.
In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neu-
ral Information Processing Systems, 2021. URL https://openreview.net/forum?id=
Uwh-v1HSw-x.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. Advances in Neural Information Pro-
cessing Systems, 33:6377–6389, 2020.

Yehui Tang, Yunhe Wang, Yixing Xu, Dacheng Tao, Chunjing Xu, Chao Xu, and Chang Xu. Scop:
Scientific control for reliable neural network pruning. In Proceedings of the Advances in Neural
Information Processing Systems (NeurIPS), 2020.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International Conference on Machine Learning, pp. 10347–10357. PMLR, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. arXiv preprint arXiv:2002.07376, 2020.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In Advances in neural information processing systems, pp. 2074–2082,
2016.

Dongkuan Xu, Ian EH Yen, Jinxi Zhao, and Zhibin Xiao. Rethinking network pruning–under the
pre-train and fine-tune paradigm. NAACL, 2021.

Geng Yuan, Xiaolong Ma, Wei Niu, Zhengang Li, Zhenglun Kong, Ning Liu, Yifan Gong, Zheng
Zhan, Chaoyang He, Qing Jin, et al. Mest: Accurate and fast memory-economic sparse training
framework on the edge. Advances in Neural Information Processing Systems, 34, 2021.

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and Hong-
sheng Li. Learning n:m fine-grained structured sparse neural networks from scratch. In Interna-
tional Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=K9bw7vqp_s.

Maohua Zhu, Tao Zhang, Zhenyu Gu, and Yuan Xie. Sparse tensor core: Algorithm and hardware
co-design for vector-wise sparse neural networks on modern gpus. In Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture, pp. 359–371, 2019.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for
model compression. arXiv preprint arXiv:1710.01878, 2017.

12

https://openreview.net/forum?id=Uwh-v1HSw-x
https://openreview.net/forum?id=Uwh-v1HSw-x
https://openreview.net/forum?id=K9bw7vqp_s
https://openreview.net/forum?id=K9bw7vqp_s


Under review as a conference paper at ICLR 2023

A FORWARD AND BACKWARD PASS IN NCHW AND NHWC LAYOUT

NCHW and NHWC data layout formats are two common types of cuDNN tensors arrangement in
memory (Chetlur et al., 2014). These two layouts produce the same shape matrix and the same
outputs. The only difference is the order of element in the flattened tensor, as shown below:

NCHW layout As shown in Fig. 8(a), in forward pass, the flattened tensor W begins with the
first input channel (green color), the elements are arranged contiguously in row-major order (i.e.,
a0, a1, a2, a3 with green color for the kernel K in forward). Then, it continues with second (orange
color) and subsequent channels until the elements of all the channels are laid out.

NHWC layout As shown in Fig. 8(c), in forward pass, the flattened tensor W begins with the first
element of the first input channel (i.e., a0 with green color for K), then proceed to the first element
of the second input channel (i.e., a0 with orange color for K), and so on, until the first elements of
all the C channels are laid out. Next, select the second element of the first input channel (i.e., a1
with green color for K), then proceed to the second element of the second input channel (i.e., a1
with orange color for K), and so on, until the second element of all the channels are laid out.

a3 a2 a1 a0 b3 b2 b1 b0
a3 a2 a1 a0 b3 b2 b1 b0
a3 a2 a1 a0 b3 b2 b1 b0

im2col
dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dI0 dI1 dI2 dI3 dI4 dI5 dI6 dI7 dI8

dI0 dI1 dI2 dI3 dI4 dI5 dI6 dI7 dI8

dI0 dI1 dI2 dI3 dI4 dI5 dI6 dI7 dI8

Kernels K'

(after rotation 
& transpose)

dO0 dO1

dO2 dO3

dO0 dO1

dO2 dO3

dO[0, ...] dO[1, ...]

dY=im2col(dO)

I0 I1 I2
I3 I4 I5
I6 I7 I8

I0 I1 I3 I4
I1 I2 I4 I5
I3 I4 I6 I7
I4 I5 I7 I8
I0 I1 I3 I4
I1 I2 I4 I5
I3 I4 I6 I7
I4 I5 I7 I8
I0 I1 I3 I4
I1 I2 I4 I5
I3 I4 I6 I7
I4 I5 I7 I8

I0 I1 I2
I3 I4 I5
I6 I7 I8

I0 I1 I2
I3 I4 I5
I6 I7 I8

a0 a1
a2 a3

a0 a1
a2 a3

a0 a1
a2 a3

b0 b1
b2 b3

b0 b1
b2 b3

b0 b1
b2 b3

O0 O1 O2 O3

O0 O1 O2 O3

X[0, ...] X[1, ...] X[2, ...]

Input I
im2col

X=im2col (I)

K0

K1

W Y = W Xreshape

Kernels K

dX = W' dY

W'

(a) Forward pass with NCHW layout

a3 a2
a1 a0

a3 a2
a1 a0

b3 b2
b1 b0

b3 b2
b1 b0

b3 b2
b1 b0

b3 b2
b1 b0

dO

I0 I1 I2
I3 I4 I5
I6 I7 I8

I0 I1 I3 I4
I0 I1 I3 I4
I0 I1 I3 I4
I1 I2 I4 I5
I1 I2 I4 I5
I1 I2 I4 I5
I3 I4 I6 I7
I3 I4 I6 I7
I3 I4 I6 I7
I4 I5 I7 I8
I4 I5 I7 I8
I4 I5 I7 I8

I0 I1 I2
I3 I4 I5
I6 I7 I8

I0 I1 I2
I3 I4 I5
I6 I7 I8

a0 a1
a2 a3

a0 a1
a2 a3

a0 a1
a2 a3

b0 b1
b2 b3

b0 b1
b2 b3

b0 b1
b2 b3

O0 O1 O2 O3

O0 O1 O2 O3

X[0, ...] X[1, ...] X[2, ...]

Input I
im2col

X=im2col (I)

K0

K1

Y = W Xreshape

Kernels K

a0 a0 a0 a1 a1 a1 a2 a2 a2 a3 a3 a3
b0 b0 b0 b1 b1 b1 b2 b2 b2 b3 b3 b3

a0 a1 a2 a3 a0 a1 a2 a3 a0 a1 a2 a3
b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3

reshape

a3 b3 a2 b2 a1 b1 a0 b0
a3 b3 a2 b2 a1 b1 a0 b0
a3 b3 a2 b2 a1 b1 a0 b0

im2col
dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dO0 dO1 dO2 dO3

dI0 dI1 dI2 dI3 dI4 dI5 dI6 dI7 dI8

dI0 dI1 dI2 dI3 dI4 dI5 dI6 dI7 dI8

dI0 dI1 dI2 dI3 dI4 dI5 dI6 dI7 dI8

dX = W' dY

W'

reshape

Kernels K'

(after rotation 
& transpose)

dO0 dO1

dO2 dO3

dO0 dO1

dO2 dO3

dO[0, ...] dO[1, ...]

a3 a2
a1 a0

a3 a2
a1 a0

b3 b2
b1 b0

b3 b2
b1 b0

b3 b2
b1 b0

b3 b2
b1 b0

dO

W

(b) Backward pass with NCHW layout

(c) Forward pass with NHWC layout (d) Backward pass with NHWC layout

Figure 8: Illustration of GeMM with NCHW and NHWC format. Different colors represent different channels.

B N:M TRANSPOSABLE MASK IN THE BACKWARD OF CNN

As suggested in (Zhou et al., 2021), the N:M sparsity The N:M transposable mask (Hubara et al.,
2021) guarantees that both the weights matrix W and its transpose WT follow the same sparsity

13



Under review as a conference paper at ICLR 2023

pattern. This design works well for linear layer, whose forward pass is calculated with Y = WX
and backward pass is calculated with dX = WT dY . However, the implementation of CNN with
GEMM is different. Specifically, we have W ∈ RCO×(CIKhKw) for the weights matrix of CNN.
In the backward pass, CNN flips each kernel first vertically and then horizontally and performs
the kernel-wise transpose. Thus, as in Fig. 1(c), WT ∈ R(CIKhKw)×CO is different from the
matrix W′ ∈ RCI×(COKhKw) in the backward pass of CNN in most cases. Nevertheless, this N:M
transposable mask can still accelerate the CNN backward under some conditions.

A

B

C

D

A B C D

reshape

a0 a1 a2
a3 a4 a5
a6 a7 a8

Rotation & 

kernel-wise transpose

reshape

, , CI = 4 CO = 4 Kh = Kw = 3

K'

b0 b1 b2
b3 b4 b5
b6 b7 b8

c0 c1 c2
c3 c4 c5
c6 c7 c8

d0 d1 d2
d3 d4 d5
d6 d7 d8

a0 a1 a2
a3 a4 a5
a6 a7 a8

b0 b1 b2
b3 b4 b5
b6 b7 b8

c0 c1 c2
c3 c4 c5
c6 c7 c8

d0 d1 d2
d3 d4 d5
d6 d7 d8

a0 a1 a2
a3 a4 a5
a6 a7 a8

b0 b1 b2
b3 b4 b5
b6 b7 b8

c0 c1 c2
c3 c4 c5
c6 c7 c8

d0 d1 d2
d3 d4 d5
d6 d7 d8

a0 a1 a2
a3 a4 a5
a6 a7 a8

b0 b1 b2
b3 b4 b5
b6 b7 b8

c0 c1 c2
c3 c4 c5
c6 c7 c8

d0 d1 d2
d3 d4 d5
d6 d7 d8

a8 a7 a6
a5 a4 a3
a2 a1 a0

b8 b7 b6
b5 b4 b3
b2 b2 b0

c8 c7 c6
c5 c4 c3
c2 c2 c0

d8 d7 d6
d5 d4 d3
d2 d1 d0

a8 a7 a6
a5 a4 a3
a2 a1 a0

b8 b7 b6
b5 b4 b3
b2 b2 b0

c8 c7 c6
c5 c4 c3
c2 c2 c0

d8 d7 d6
d5 d4 d3
d2 d1 d0

a8 a7 a6
a5 a4 a3
a2 a1 a0

b8 b7 b6
b5 b4 b3
b2 b2 b0

c8 c7 c6
c5 c4 c3
c2 c2 c0

d8 d7 d6
d5 d4 d3
d2 d1 d0

a8 a7 a6
a5 a4 a3
a2 a1 a0

b8 b7 b6
b5 b4 b3
b2 b2 b0

c8 c7 c6
c5 c4 c3
c2 c2 c0

d8 d7 d6
d5 d4 d3
d2 d1 d0

a0 a0 a0 a0 a1 a1 a1 a1 ...... a8 a8 a8 a8
b0 b0 b0 b0 b1 b1 b1 b1 ...... b8 b8 b8 b8
c0 c0 c0 c0 c1 c1 c1 c1 ...... c8 c8 c8 c8
d0 d0 d0 d0 d1 d1 d1 d1 ...... d8 d8 d8 d8

(a) NHWC layout forward

A

B

C

D

a8
8

b8 c8 d8 ...... a1 b1 c1 d1 a0 b0 c0 d0
a8 b8 c8 d8 ...... a1 b1 c1 d1 a0 b0 c0 d0
a8 b8 c8 d8 ...... a1 b1 c1 d1 a0 b0 c0 d0
a8 b8 c8 d8 ...... a1 b1 c1 d1 a0 b0 c0 d0

A  B  C  D A  B  C  D A  B  C  D A  B  C  D

A

B

C

D

a0 a1 a2 a3

b

a4 a5 a6 a7 a8 a0 ... a8 a0 ... a8 a0 ... a8
b0 b1 b2 b3 b4 b5 b6 b7 b8 b0 ... b8 b0 ... b8 b0 ... b8
c0 c1 c2 c3 c4 c5 c6 c7 c8 c0 ... c8 c0 ... c8 c0 ... c8
d0 d1 d2 d3 d4 d5 d6 d7 d8 d0 ... d8 d0 ... d8 d0 ... d8

a8 a7 a6 a5 a4 a3 a2 a1 a0 b8 ... b0 c8 ... c0 d8 ... d0
a8 a7 a6 a5 a4 a3 a2 a1 a0 b8 ... b0 c8 ... c0 d8 ... d0
a8 a7 a6 a5 a4 a3 a2 a1 a0 b8 ... b0 c8 ... c0 d8 ... d0
a8 a7 a6 a5 a4 a3 a2 a1 a0 b8 ... b0 c8 ... c0 d8 ... d0

CI CO

A B C D

KhKwKhKw

CO CI

CICO

K

(b) NHWC layout backward

(c) NCHW layout forward (d) NCHW layout backward

Figure 9: Comparison ofNHWC and NCHW layouts of N:M mask in both forward and backward pass.

Layout. The first requirement is the layout of the weights in the memory. For example, suppose
N = 2, M = 4, the size of the input channel is CI = 4 and the size of the output channel is
CO = 4. Thus, we can divide the kernel matrix W ∈ R4×(4×3×3) into several 4 × 4 blocks. As
shown in Fig. 9(a)(b), when we store kernels with NHWC format, we collect a0 with green color,
a0 with orange color, a0 with blue color, and a0 with red color into a row of a block (i.e., the blue
box) for the forward pass, and this row meets the N:M constraint. Based on the N:M transposable
mask, the column of a0, b0, c0, and d0 with green color also satisfies the N:M constraint. In the
backward pass, this blue block can still be kept. Meanwhile, a0, b0, c0, and d0 with green color
is collected as a row. Thus, the same sparse pattern can be maintained in the backward with N:M
transposable design. When the weights is stored with NCHW format, as shown in Fig. 9(c)(d), the
green cell a0, a1, a2, and a3 form a row of the blue block. Again, the column of a0, b0, c0, and
d0 with green color also satisfies the N:M constraint. However, in the backward pass, the same
block cannot be kept. Thus, the sparse pattern may not meet the N:M constraint. For example,
in forward pass, green cells a2 and a3 are kept, and the green cells a4 and a7 are kept. In the
backward, the green cell a1, a2, a3, and a4 form a new vector with the size M = 4, but this vector
has three cells a2, a3, and a4 with mask ”1”. To this end, additional operations such as re-indexing
and regrouping are required to make the weight matrix in the backward meet the N:M constraint.
In summary, the N:M transposable mask can accelerate the CNN backward pass with NHWC layout
GEMM implementation, but it cannot be directly applied to the NCHW layout.

14



Under review as a conference paper at ICLR 2023

a0 a0 a0 a0 a1 a1 a1 a1 a2 a2 a2 a2 a3 a3 a3 a3
b0 b0 b0 b0 b1 b1 b1 b1 b2 b2 b2 b2 b3 b3 b3 b3
c0 c0 c0 c0 c1 c1 c1 c1 c2 c2 c2 c2 c3 c3 c3 c3

a3 b3 c3 a2 b2 c2 a1 b1 c1 a0 b0 c0
a3 b3 c3 a2 b2 c2 a1 b1 c1 a0 b0 c0
a3 b3 c3 a2 b2 c2 a1 b1 c1 a0 b0 c0
a3 b3 c3 a2 b2 c2 a1 b1 c1 a0 b0 c0

A

B

C

a3 a2
a1 a0

b3 b2
b1 b0

c3 c2
c1 c0

A B C

reshape

W'

a0 a1
a2 a3

b0 b1
b2 b3

c0 c1
c2 c3

a0 a1
a2 a3

b0 b1
b2 b3

c0 c1
c2 c3

a0 a1
a2 a3

b0 b1
b2 b3

c0 c1
c2 c3

a0 a1
a2 a3

b0 b1
b2 b3

c0 c1
c2 c3

a3 a2
a1 a0

b3 b2
b1 b0

c3 c2
c1 c0

a3 a2
a1 a0

b3 b2
b1 b0

c3 c2
c1 c0

a3 a2
a1 a0

b3 b2
b1 b0

c3 c2
c1 c0

A

B

C

Rotation & 

kernel-wise transpose

A  B  C 

reshape

, , CI = 4 CO = 3 Kh = Kw = 2

W

K
K'

A  B  C A  B  C A  B  C 

(a) NHWC layout forward (b) NHWC layout backward

Figure 10: Example of N:M transposable mask when CO mod M ̸= 0.

Shape. Moreover, even if the weights are arranged in NHWC layout, we show some cases that
the N:M transposable mask may not bring the acceleration on backward as well. Considering the
example with CO = 3 and M = 2, as shown in Fig. 10, we collect a0 with green color, a0 with
orange color into a row of a 2× 2 block (i.e., the blue box) for the forward pass, and this row meets
the N:M constraint. Based on the N:M transposable mask, the column of a0, b0 with green color
also satisfies the N:M constraint. However, in the backward, the a0 is grouped with c1, and the b0
is grouped with c0. Thus, the same sparsity pattern cannot be guaranteed. To this end, the output
channel CO should be divisible by M , i.e., CO mod M = 0.

15



Under review as a conference paper at ICLR 2023

C ALGORITHM SUMMARY OF HRBP/HRBP++

In this section, we summarize the detailed implementation of HRBP/HRBP++ below:

Algorithm 1: HRBP/ HRBP++
Input: unstructured mask m, density ratio of mask r, number of clusters t, density ratio of
kernel s, number of input channel CI , the number of output channel CO, the width of the kernel
Kw, the height of the kernel Kh, and the minimum number of rows of each group B1

Output: Dense groups
Obtain kernel-wise mask m′ based on the number of non-zero cells within each kernel of m;
Divide the rows in m′ into t equal-shape groups {g1, g2, ..., gt} with hypergraph partitioning;
for gi ∈ {g1, g2, ..., gt} do

if gi has no less than B1 rows then
Sort columns of gi from high to low based on the number of non-zero cells of each column;
Select the r

sCI columns with the most number of non-zero;
Extract the corresponding kernels K based on selected columns in gi;
if s < 1 then

Count the non-zero weights of each cell based on all kernels in K; // HRBP++
Select sKhKw cells with the most number of non-zero weights as the pattern P ;
Apply pattern P to all kernels K and output them as a dense group;

else
Output all kernels K with all KhKw cells as a dense group; // HRBP

end if
end if

end for

16



Under review as a conference paper at ICLR 2023

D NOTATIONS

In this section, we summarize all mathematical notations in this paper to help understand the moti-
vation and the operation clearly.

Table 4: Summary of notations in this paper.
Notation Range Definition Equation

CI N+ Number of input channels
CO N+ Number of output channels
Kh N+ Kernel height
Kw N+ Kernel width
HI N+ Height of input 2D feature map
WI N+ Width of input 2D feature map
HO N+ Height of output 2D feature map
WO N+ Width of output 2D feature map
C′

I N+ Number of input channels in simplicity form C′
I = CI ×Kh ×Kw

K RCO×CI×Kh×Kw Weights of a 2D convolutional layer
Kc RCI×Kh×Kw One filter
K′ RCI×CO×Kw×Kh 2D convolutional weights in backward pass
I RCI×HI×WI 2D input feature map
O RCO×HO×WO 2D output feature map
dI RCI×HI×WI Gradients w.r.t. the 2D input feature map
dO RCO×HO×WO Gradients w.r.t. the 2D output feature map
dK RCO×CI×Kh×Kw Gradients w.r.t. the kernels

W RCO×(CIKhKw) Convolutional weights in GeMM (weights matrix) W = reshape(K)

WT R(CIKhKw)×CO Transpose of weights matrix
W′ RCI×(COKhKw) Convolutional weights of backward pass in GeMM W′ = reshape(K′)

X R(CIKhKw)×(HOWO) Input feature map in GeMM X = im2col(I)
Y RCO×(HOWO) Output feature map in GeMM Y = WX

dY R(COKhKw)×(HIWI ) Gradients w.r.t. the output feature map in GeMM dY = im2col(dO)
dW RCO×HO×WO Gradients w.r.t. the Convolutional weights in GeMM dW = dY ·XT

dX RCI×(HIWI ) Gradients w.r.t. the input feature map in GeMM dX = W′ · dY

m RCO×(CIKhKw) the binary mask of weights matrix W
m′ RCO×CI kernel-wise mask
r [0, 1] dense ratio of one convolutional kernels
t N+ number of groups (dense blocks)
s [r, 1] ∩ {i/(KhKw)}KhKw

i=1 dense ratio of each kernel with size KhKw

E MATHEMATICAL ANALYSIS OF CNN BACKWARD PROPAGATION

In this section, we give a detailed mathematical analysis of the CNN backward pass to show the
reason for the transformation in the calculation of gradient w.r.t. the input. For simplicity, we
assume that the number of input channels CI is 1, the number of output channels CO is 1, the stride
is 1, and there is no padding operation in the forward pass. Thus, given the input X ∈ RHI×WI and
the filter K ∈ RKh×Kw , in the forward pass of CNN, the output O ∈ RHO×WO is calculated by:

Oi,j =

Kh∑
m=1

Kw∑
n=1

Km,nXi+m,j+n, (1)

where 1 ≤ i ≤ HO and 1 ≤ j ≤ WO. As there is no padding operation and the stride is 1, we have
HO = HI −Kh + 1 and WO = WI −Kw + 1. In the backward pass, given the gradients of the

output
∂L

∂O
, based on the chain rule, the gradient w.r.t. each input pixel is calculated by:

∂L

∂Xa,b
=

HO∑
i=1

WO∑
j=1

∂L

∂Oi,j

∂Oi,j

∂Xa,b
, (2)

17



Under review as a conference paper at ICLR 2023

where 1 ≤ a ≤ HI and 1 ≤ b ≤ WI , and
∂Oi,j

∂Xa,b
can be obtained by taking the difference on

both sides of Equation 1. Thus, when input pixel Xa,b contributes to the output pixel Oi,j ,
∂L

∂Oi,j

contributes to the gradient of
∂L

∂Xa,b
. In practice, Equation 2 can be represented as a full convolution

between a 180-degree rotated filter K′ and the gradient on the output.

Considering a specific example where the input has shape HI = WI = 3, and the kernel has size
Kh = Kw = 2, as shown in Figure 11. For simplicity, we set CI = CO = 1. In the forward, based
on Equation 1, we have:

O0 = I0 ∗ a0 + I1 ∗ a1 + I3 ∗ a2 + I4 ∗ a3

O1 = I1 ∗ a0 + I2 ∗ a1 + I4 ∗ a2 + I5 ∗ a3
O2 = I3 ∗ a0 + I4 ∗ a1 + I6 ∗ a2 + I7 ∗ a3
O3 = I4 ∗ a0 + I5 ∗ a1 + I7 ∗ a2 + I8 ∗ a3

Take O0 as an example, the gradient w.r.t. I0, I1, I3, and I4 are
∂O0

∂I0
= a0,

∂O0

∂I1
= a1,

∂O0

∂I3
= a2,

and
∂O0

∂I3
= a3 respectively. Based on Equation 2, we can obtain the gradient of each input pixel:

∂L

∂I0
=

∂L

∂O0
∗ a0

∂L

∂I1
=

∂L

∂O0
∗ a1 +

∂L

∂O1
∗ a0

∂L

∂I2
=

∂L

∂O1
∗ a1

∂L

∂I3
=

∂L

∂O0
∗ a2 +

∂L

∂O2
∗ a0

∂L

∂I4
=

∂L

∂O0
∗ a3 +

∂L

∂O1
∗ a2 +

∂L

∂O2
∗ a1 +

∂L

∂O3
∗ a0

∂L

∂I5
=

∂L

∂O1
∗ a3 +

∂L

∂O3
∗ a1

∂L

∂I6
=

∂L

∂O2
∗ a2

∂L

∂I7
=

∂L

∂O2
∗ a3 +

∂L

∂O3
∗ a2

∂L

∂I8
=

∂L

∂O3
∗ a3

As in Figure 11, we can perform a convolution operation between the 180-degree rotated kernels and

the gradient w.r.t output
∂L

∂O
with zero padding. Note that, zero padding on the output is necessary

as we need to ensure the product of this full convolution has the same shape as the input.

F RESULTS ON TRANSFORMERS

Recently, the ViT (Dosovitskiy et al., 2021) shows that transformers (Vaswani et al., 2017) also play
an important role in computer vision tasks. The transformer encoder contains a self-attention module
and an MLP layer. Given an input sequence X̃, the self-attention applies three linear transformations

18



Under review as a conference paper at ICLR 2023

I0 I1 I2
I3 I4 I5
I6 I7 I8

a0 a1
a2 a3

Input X Kernels K

O0 O1

O2 O3

Output O

dO0 dO1

dO2 dO3
a3 a2
a1 a0

dI0 dI1 dI2

dI3 dI4 dI5

dI6 dI7 dI8

dO0 dO1

dO2 dO3

Kernels K' 

(  rotation)180o

Gradient w.r.t output

a3 a2

a1 a0

Gradient w.r.t. input

dO0 dO1

dO2 dO3

a3 a2

a1 a0

dO0 dO1

dO2 dO3

dO0 dO1

dO2 dO3

a3 a2

a1 a0

padding

Figure 11: Illustration of the full convolution between the rotated kernels K′. For simplicity, we use dO to

represent
∂L

∂O
.

to obtain the query Q̃ = W̃qX̃, the key K̃ = W̃kX̃, and the value Ṽ = W̃vX̃, respectively. Then

the output is obtained by Ỹ = Softmax(
Q̃K̃T

√
d

)Ṽ, where d is the embedding dimension. Thus, all

calculations of transformers with learnable weights are linear projections. To this end, the general
form dX = WTdY for the gradient w.r.t. the input is suitable for transformers in the backward
pass and we can keep the same dense blocks at both forward and backward pass for sparse training
of transformers.
Although the transformer does not encoder the shape transformation issues like CNN, we further
apply our method on DeiT-Tiny (Dosovitskiy et al., 2021; Touvron et al., 2021) to show that the
dense-block-based method is also effective in the training of transformers. The dense model of
DeiT-Tiny can achieve 72.2% accuracy on ImageNet. With HRBP, we can achieve 72.7% accuracy
with 60% sparsity.

G COMPARISON WITH THE GROUP LASSO PENALTY

The DessiLBI (Fu et al., 2020; 2022) proposes to use the group lasso penalty on each convolutional
filter to prune less important filters. When first training a dense network, DessiLBI can find effective
subnetworks (i.e., “winning tickets” Frankle & Carbin (2019)) at different epochs of the dense train-
ing (i.e., early stopping). By retraining from scratch, the structural sparsity can achieve comparable
performance as dense networks. We follow the setting in DessiLBI and apply HRBP++ to VGG-16
on CIFAR-10. We compare DessiLBI with Lasso since baseline DessiLBI with group lasso penalty
is ineffective at extreme sparsity level. The results are shown in Figure 12. Our method can also
achieve comparable or even better accuracy than DessiLBl at the same sparsity level. Note that,
DessiLBI follows the LTH setting which still needs dense training at the first step, while our method
directly trains the sparse subnetwork from scratch without dense training.

H ABLATION STUDIES ON INITIALIZATIONS.

We by default apply our method to random unstructured sparse mask with ERK sparse ratio distri-
bution (Evci et al., 2020) of each layer. In this ablation study, we explore the effect of different types
of unstructured sparse mask initialization. In detail, we compare the default setting with 1) Random
unstructured sparse mask with uniform sparse ratio distribution. 2) Unstructured mask from SNIP
(Lee et al., 2019). 3) Unstructured mask from GraSP (Wang et al., 2020). We then apply HRBP++
to these unstructured masks and show the results in Figure 13. Noticeably, with SNIP and GraSP
masks, HRBP++ can also achieve comparable accuracy at the same sparsity level. With uniform
sparsity, the accuracy is slightly lower. This is consistent with the conclusion in (Evci et al., 2020)
that ERK sparsity is beneficial. Thus, HRBP++ is robust with different types of mask initialization.

19



Under review as a conference paper at ICLR 2023

50 60 70 80 90
Sparsity

91.0

91.5

92.0

92.5

93.0

93.5

94.0

94.5

A
cc

ur
ac

y

Comparison between HRBP++ and DessiLBI(Lasso)

HRBP++(Static)
DessiLBI Epoch 2
DessiLBI Epoch 4
DessiLBI Epoch 8
DessiLBI Epoch 16
DessiLBI Epoch 32
DessiLBI Epoch 64
DessiLBI Epoch 128

Figure 12: Comparison between HRBP and DessiLBI.

50 60 70 80 90
Sparsity

86

88

90

92

94

96

A
cc

ur
ac

y

Ablation study on the initialization of mask

Dense
HRBP++ with SNIP mask
HRBP++ with uniform random mask
HRBP++ with GraSP mask
HRBP++ with ERK random mask (default)

Figure 13: Ablation study with different types of mask initialization of ResNet-32 on CIFAR-10.

50 60 70 80 90
Sparsity

0.5

1.0

1.5

2.0

2.5

3.0

A
cc

el
er

at
io

n 
ra

te

Acceleration rate on training and inference with different sparsity ratios
Training
Testing

Figure 14: Training and inference acceleration on hardware of ResNet-32 on CIFAR-10.

20


	Introduction
	Preliminaries
	Convolution Operation and Its Implementation 
	Weight Regrouping on Unstructured Sparsity

	Methodology
	Hardware-friendly Regrouping for Block-wise Pruning (HRBP)
	Sparse Training with HRBP (++)
	HRBP Hardware Implementation

	Experiments
	Experimental Setups
	Sparse Training with HRBP(++)-based Random Mask
	Dynamic Sparse Training with HRBP++ 
	Results on ImageNet
	Ablation Studies

	Related work
	Network Pruning 
	Sparse Training

	Conclusion
	Forward and Backward pass in NCHW and NHWC layout
	N:M Transposable Mask in the Backward of CNN 
	Algorithm summary of HRBP/HRBP++
	Notations
	Mathematical Analysis of CNN backward propagation
	Results on transformers
	Comparison with the Group Lasso Penalty 
	Ablation studies on initializations.

