
GRENA: GPU-aided Abstract Refinement for
Neural Network Verification

Yuyi Zhong1†, Shaun Tan Zong Zhi1, Hanping Xu1, and Siau-Cheng Khoo2

1 National University of Singapore
{yuyizhong,shauntanzongzhi,xuhanping}@u.nus.edu

2 National University of Singapore
khoosc@nus.edu.sg

Abstract. Since neural network verification problems can be formu-
lated as optimization problems, linear programming (LP) solvers have
been deployed as off-the-shelf tools in such processes. However, existing
LP solvers running on CPU scale poorly on large networks. To expedite
the process, we propose an LP-solving theorem tailored to neural network
verification. In practice, we transform the constrained solving problem
into an unconstrained problem that can be executed on GPUs, signifi-
cantly speeding up the solving process. We explicitly include constraints
on layers that take more than one predecessor instead of handling mul-
tiple predecessors by inefficient concatenation. Our theorem applies to
widely used networks, such as fully connected, convolutional, and resid-
ual networks. From our evaluation, our GPU-aided solver achieves com-
parable precision to the state-of-the-art (SOTA) solver GUROBI with
significant speed improvements and helps acquire competitive verifica-
tion precision compared to advanced verification methods.

Keywords: Abstract Refinement · Linear Programming · Neural Net-
work Verification.

1 Introduction

Researchers have investigated the verification of neural networks due to their
wide application [25,18,28]. Throughout the evolution of verification techniques,
abstract interpretation-based techniques [20,6,22,24,23,27,32,15] continue to play
an important role. However, due to the nature of over-approximation, the meth-
ods could suffer from severe precision loss for deeper networks. Theoretically,
such abstraction can be refined with the help of (mixed integer) linear program-
ming (MILP or LP) [21,31,34] where GUROBI [11] solver is commonly used
despite the scalability concern that it executes on the CPU.

Therefore, we propose a tailored theorem to accelerate LP solving for abstract-
refinement-based methods. Notably, our theorem could handle three types of
constraints: output constraints, intermediate neuron constraints and constraints
of layers that take more than one predecessor, which enhances the scientific rigor
† Corresponding author

2 Yuyi Zhong et al.

of the verification of residual networks. Our paper offers a methodical transfor-
mation from the stage of verification specification to the stage of effective im-
plementation as an analyzer named GRENA (GPU-aided abstract REfinement
for Neural network verificAtion), and we assess it against the state-of-the-art
tools to empirically support its strong solving and verification capacities. Our
dockerized system, data, usage documentation and experiment scripts are avail-
able at https://github.com/Grena-verifier/Grena-verifier. We summa-
rize our contributions below:

– We propose a novel, formal and rigorous theorem to solve constrained
optimization problems that include output constraints, multi-ReLU con-
straints, and complex constraints of residual network layers. Specifically, to
the best of our knowledge, this is the first work that uses Lagrangian dual
on spurious-adversarial-label guided refinement process to enhance the sci-
entific rigor of the verification of residual networks.

– We utilize the multi-ReLU abstraction in WraLU [12] to further tighten our
constraint set for precision improvement.

– We provide strong and effective implementations and demonstrate the veri-
fication efficiency of our system through empirical experiments, and deliver
a video showcase 3 of our analyzer.

2 Overview

To provide an intuitive understanding, we use an example in Figure 1 to show
how the approach works given the network and the input space I = [−1, 1] ×
[−1, 1] of 2 input neurons x1, x2. This network has 2 output neurons y1, y2,
corresponding to two labels L1, L2 that an input can be classified as, and we
aim to verify that y1 − y2 > 0 for all inputs in I.

input

linear1 linear2

add

relu

(a) The network with an add layer

x1 x2

x4x3 x5 x6

x7 x8

y1 y2

x1 + 2.8 x1 x2 −x2

x3 + x5 x4 + x6

max(0, x7) max(0, x8)

(b) Neuron connections

Fig. 1: The example network to be verified with y1 − y2 > 0 with input space
I = [−1, 1]× [−1, 1]

3 https://drive.google.com/file/d/17v1WnabNrzC-ZwJzJ4dLTQmm9JvDYfj5/view?usp=sharing

https://github.com/Grena-verifier/Grena-verifier
https://drive.google.com/file/d/17v1WnabNrzC-ZwJzJ4dLTQmm9JvDYfj5/view?usp=sharing

GRENA: GPU-aided Abstract Refinement for Neural Network Verification 3

We first apply the abstract interpretation technique, as deployed by Deep-
Poly [20], to compute the reachable statuses for each neuron at Figure 1b and
represent them by four elements (li, ui, l

s
i , u

s
i). The concrete lower and upper

bounds li, ui form an interval [li, ui] that over-approximates all the values that
neuron xi could take. The symbolic constraints lsi , u

s
i are linear expressions of

xi defined over preceding neurons while satisfying lsi ≤ xi ≤ us
i . The abstract

values are displayed near the corresponding nodes at Figure 2.

x1

[−1, 1]

x2

[−1, 1]

x4x3 x5 x6

x7 x8

y1 y2

x3 ∈ [−1.8, 3.8]
x3 ≤ x1 + 2.8
x3 ≥ x1 + 2.8

x6 ∈ [−1, 1]
x6 ≤ −x2

x6 ≥ −x2

x4 ∈ [−1, 1]
x4 ≤ x1
x4 ≥ x1

x5 ∈ [−1, 1]
x5 ≤ x2
x5 ≥ x2

x7 ∈ [0.8, 4.8]

x7 ≤ x3 + x5

x7 ≥ x3 + x5

x7 ∈ [−2, 2]

x7 ≤ x4 + x6

x7 ≥ x4 + x6

y1 ∈ [0.8, 4.8]
y1 ≤ x7

y1 ≥ x7

y2 ∈ [0, 2]
y2 ≤ 0.5x8 + 1

y2 ≥ 0

Fig. 2: The network to perform abstract interpretation

Based on the abstraction, the computed value for the lower bound of y1 − y2
is −0.2 (y1 − y2 will be treated as an auxiliary neuron in order to compute its
lower bound, the details can be found in [20]), failing to assert that y1 − y2 > 0.
However, this failure is due to the over-approximation error, and there is no such
instance that leads to y1 − y2 < 0. To prove y1 − y2 < 0 to be infeasible, we will
construct a constraint set that encodes the existence of spurious counterexam-
ples together with the network constraints (conjunction of all linear inequities
including the concrete bounds and symbolic constraints of all neurons). Based
on the constraint set, we send it to our tailored LP solver (details of our solv-
ing theorem at subsection 3.1) to resolve the concrete bounds of input neurons
(x1, x2) and those linear neurons (x8) that are followed by ReLU and take both
negative and positive values. The returned bounds will be tighter, as shown in
Figure 3, and diminish the inconclusiveness produced by the previous abstract
interpretation.

Based on the updated bounds, we rerun abstract interpretation and update
the abstract values of all neurons accordingly, as shown in Figure 4. Based on the
new abstraction, the lower bound of y1 − y2 is 0.7, making y1 − y2 ≤ 0 actually
infeasible, which means that y1 dominates over y2 and we could conclude that
y1 − y2 > 0.

In summary, our system uses LP solving and abstract interpretation to
eliminate adversarial labels that are actually infeasible. Note that in our con-

4 Yuyi Zhong et al.

x1

[−1,−0.867∗]

x2

[−1,−0.6∗]

x4x3 x5 x6

x7 x8

y1 y2

x3 ∈ [−1.8, 3.8]
x3 ≤ x1 + 2.8
x3 ≥ x1 + 2.8

x6 ∈ [−1, 1]
x6 ≤ −x2

x6 ≥ −x2

x4 ∈ [−1, 1]
x4 ≤ x1
x4 ≥ x1

x5 ∈ [−1, 1]
x5 ≤ x2
x5 ≥ x2

x7 ∈ [0.8, 4.8]

x7 ≤ x3 + x5

x7 ≥ x3 + x5

x7 ∈ [−0.4∗, 0.133∗]
x7 ≤ x4 + x6

x7 ≥ x4 + x6

y1 ∈ [0.8, 4.8]
y1 ≤ x7

y1 ≥ x7

y2 ∈ [0, 2]
y2 ≤ 0.5x8 + 1

y2 ≥ 0

Fig. 3: The result of resolving bounds (in red marked by ∗)

x1

[−1,−0.867∗]

x2

[−1,−0.6∗]

x4x3 x5 x6

x7 x8

y1 y2

x3 ∈ [−1.8,1.933†]
x3 ≤ x1 + 2.8
x3 ≥ x1 + 2.8

x6 ∈ [0.6†, 1]
x6 ≤ −x2

x6 ≥ −x2

[−1,−0.867†]
x4 ≤ x1
x4 ≥ x1

[−1,−0.6†]
x5 ≤ x2
x5 ≥ x2

x7 ∈ [0.8,1.333†]

x7 ≤ x3 + x5

x7 ≥ x3 + x5

x7 ∈ [−0.4∗, 0.133∗]
x7 ≤ x4 + x6

x7 ≥ x4 + x6

y1 ∈ [0.8,1.333†]
y1 ≤ x7

y1 ≥ x7

y2 ∈ [0, 2]
y2 ≤0.25x8 + 0.1†

y2 ≥ 0

Fig. 4: The updated abstract values (in blue marked by †)

straint set, we explicitly encode an Add layer that takes two predecessors as
[x7, x8] = [x3, x4] + [x5, x6], and we will elaborate on how our theorem handles
two predecessors at Theorem 1 instead of simply concatenating two predecessors
into one in an engineering manner.

3 Methodologies

We provide a simplified case that only contains one adversarial label y2 in the pre-
vious section. But in general, the verification process repeatedly selects multiple
adversarial labels and attempts to eliminate them through iterations of refine-
ments as illustrated in Figure 5. In each iteration, we take the encoding of mul-
tiple adversarial labels (the disjunction is handled by following the convention
in [34]), the current network abstraction, plus the SOTA WraLU multi-neuron

GRENA: GPU-aided Abstract Refinement for Neural Network Verification 5

The Constraint Set Π:
adv1 ∨ · · · ∨ advδ

∧
network abstraction

∧
WraLU constraints

Eliminated

Tailored LP Solver:
max/min inputs or

unstable ReLUs
based on set Π

⟲

Inconclusive

Violation Checker:
check the batch of

solutions of LP solving
Falsified

Refined Abstraction:
tighter bounds

↓
update network abstraction

feasible

return

return

convey

counterexample found

infeasible

exceed time/iteration thresholds

Fig. 5: The iterative process of abstract refinement

constraints as the constraint set. We eliminate δ spurious adversarial labels if the
constraint set is infeasible, and eliminating all adversarial labels results in suc-
cessful verification. If the constraint set is feasible, we send it to our tailored LP
solver on GPU (details deferred till subsection 3.1) and resolve neuron bounds
to obtain a refined abstraction, where the refined abstraction is used in the next
iteration. Furthermore, as a feasible constraint set indicates the possibility of
a property violation, we collect the batch of input neuron assignments during
each solving substep and pass them to the model to check if they constitute an
adversarial example which falsifies the property. We repeat this process until a
conclusive result is obtained; or until the time/iteration threshold has exceeded,
indicating inconclusive result.

3.1 GPU-aided Linear Programming Solver

This subsection presents our theorem of transforming a constrained linear pro-
gramming problem into an unconstrained solving problem amenable to GPU
acceleration.

Preliminaries. Given a network with L+1 layers and each layer corresponds
to a layer index, the input layer is at index 0 and the output layer is at index
L. We denote the set of all ReLU layer indexes as [R], the set of all linear layer
indexes with one connected preceding layer as [L1], the set of all indexes of linear
layers that take two preceding layers as [L2]. We assume that [R]∪ [L1]∪ [L2] =
[1, . . . , L] and both 1, L ∈ [L1]. The output and input/preceding layer of a ReLU
layer are respectively represented by x̂(i) and x̂

(i)
p , for i ∈ [R]. Given a neuron

index j and a layer index i, x̂(i)j represents the j-th neuron at i-th layer and x̂
(i)j
p

refers to its input neuron. Symbol x(i), i ∈ [L1]∪ [L2] represents the output of a

6 Yuyi Zhong et al.

linear layer; symbols x̂(0), x(0) both denote the input layer. Symbol x(i)
p , i ∈ [L1]

refers to the predecessor of layer x(i) for i ∈ [L1]; whereas x
(i)
p1 , x

(i)
p2 are the two

preceding layers of layer x(i) for i ∈ [L2]. Finally, we designate S(i) as a set that
includes the indexes of all connected succeeding layers of layer i and is ∈ S(i); the
set S2(i) = ∪is∈S(i)S(is), which includes the successors’ indexes of succeeding
layers of layer i and is2 ∈ S2(i).

Theorem 1. The constrained optimization problem in neural network verifica-
tion (as shown in Equation 1) can be transformed into an unconstrained problem
in Equation 2 by using Lagrangian dual.

Proof. The derivation can be found at this appendix 4.

In detail, the constrained problem formulation is given as:

min
x,x̂

c(0)x̂(0) +
∑
i∈[R]

c(i)T x̂(i)
p

s.t. l(0) ≤ x̂(0) ≤ u(0);Hx(L) + d ≤ 0

x(i) = W (i)x(i)
p + b(i), for i ∈ [L1]

x(i) = x(i)
p1

+ x(i)
p2
, for i ∈ [L2]

x̂(i)j = x̂(i)j
p , for i ∈ [R], j ∈ I+(i)

x̂(i)j = 0, for i ∈ [R], j ∈ I−(i)

x̂(i)j ≥ 0, x̂(i)j ≥ x̂(i)j
p , for i ∈ [R], j ∈ I±(i)

x̂(i)j ≤ u(i)j

u(i)j − l(i)j
(x̂(i)j

p − l(i)j), for i ∈ [R], j ∈ I±(i)

P (i)x̂(i)
p + P̂ (i)x̂(i) − p(i) ≤ 0, for i ∈ [R]

(1)

In detail, l(0), u(0) record the lower and upper bounds of input neurons; Hx(L)+
d ≤ 0 represents the output constraints that encode the existence of multiple
adversarial examples. For ReLU neurons, their functionalities depend on the sta-
bility statuses. For example, suppose a linear layer i is followed by a ReLU layer
is. A ReLU neuron is stably activated if it takes a non-negative input interval, in
which case it equals the input neuron, and we collect the indexes of those non-
negative input neurons at layer i as I+(i). Stably deactivated ReLU neurons have
non-positive inputs, with outputs that are always evaluated to 0, and we denote
the indexes of those non-positive input neurons as a set I−(i). Unstable ReLU
neurons take both positive and negative input values, their corresponding input
neuron indexes are recorded in I±(i). In particular, the unstable ReLU neuron is
approximated by an orange-colored triangle shape as Figure 6 illustrates, where
l(i)j , u(i)j record its input interval and u(i)j

u(i)j−l(i)j
is abbreviated as s(i)j .

Constraints P (i)x̂
(i)
p + P̂ (i)x̂(i)−p(i) ≤ 0 capture the dependencies of multiple

ReLU neurons in the same layer, which is obtained from the WraLU[12] method
4 https://github.com/Grena-verifier/misc-files/blob/master/theorem_proof.pdf

https://github.com/Grena-verifier/misc-files/blob/master/theorem_proof.pdf

GRENA: GPU-aided Abstract Refinement for Neural Network Verification 7

to improve solving precision. The coefficients c(0) and c(i), i ∈ [R] are used to
control the objective function. As we aim to resolve the input neurons as well
as the input lower and upper bounds of unstable ReLU neurons to refine the
abstraction, we only set one element among c(0), c(i), i ∈ [R] as 1 (for lower
bound computation) or -1 (for upper bound) for the respective neuron, the rest
of the elements are set as 0.

Eventually, we transform the constrained solving problem into an uncon-
strained one using Lagrangian variables as shown below, where we annotate
[x]+ = max (x, 0), [x]− = −min (x, 0):

max
γ,v,π,α

l(0)[c(0)T − v(1)Tw(1)]+ − u(0)[v(1)Tw(1) − c(0)T]+ + γT d

+
∑
i∈[R]

∑
j∈I±(i)

[v̂(i)j]+ · s(i)j · l(i)j −
∑
i∈[R]

π(i)T p(i) −
∑

i∈[L1]

v(i)T b(i)

s.t. v(L) = −HT γ; γ, π ≥ 0; α ∈ [0, 1]

for i ∈ [L1] ∪ [L2], is ∈ [R] ∩ S(i), is /∈ [L2] :

v(i)j = −c(is)j , j ∈ I−(i)

v(i)j =
∑

is2∈S(is)∩[L1]

v(is2)TW
(is2)
:,j − c(is)j , j ∈ I+(i)

for j ∈ I±(i) : v(i)j = s(is)j [v̂(is)j]+ − c(is)j − π(is)TP
(is)
:,j − α(is)j [v̂(is)j]−

v̂(i)j =
∑

is2∈S(is)∩[L1]

v(is2)TW
(is2)
:,j − π(is)T P̂

(is)
:,j

for i ∈ [L1] and is ∈ [L2] ∩ S(i) and is /∈ [R] :

v(i) = v(is)

(2)

Any valid setting of γ, π ≥ 0;α ∈ [0, 1] leads to a safe lower bound of the
original problem. Based on the values of γ, π, α, we compute the values of v(i)
and v̂(i) in reverse order from v(L) to v(0). Using all assignments of variables, we
could compute the objective value. In practice, the solving process starts with
a valid initialization of γ, π, α, then we optimize these variables using gradient
information.

x̂(i)j

x̂
(i)j
p

x̂(i)j = max(0, x̂(i)j
p)

l(i)j u(i)j

Fig. 6: The approximation of a ReLU neuron

8 Yuyi Zhong et al.

Algorithm 1 Bounds tightening procedure
Input:
– M : neural network model
– LL: list of old lower bounds for all ReLU and input layers
– LU : list of old upper bounds for all ReLU and input layers
– Π: output constraints
– Θ: WraLU constraints

Output: improved lower and upper bounds

1: S ← create_solver_model(M,LL,LU , Π,Θ)
2: list_new_L, list_new_U ← [], [] ▷ initialization
3: for i in range(len(LL)) do ▷ solve for each layer
4: S.set_layer(i) ▷ reset to solve for this layer
5: S.initalize_lagrangian_vars()
6: max_obj ← train_until_convergence(S)
7: NL, NU ← get_new_bounds(LL[i],LU [i],max_obj)

▷ improve old bounds based on solved values
8: list_new_L.append(NL) ▷ record updated bounds
9: list_new_U.append(NU)

10: return list_new_L, list_new_U

Algorithm 1 shows the process of solving tighter bounds for each layer by
training Lagrangian variables. While Lagrangian multipliers are commonly used
in prior works [28,30,5,9], to the best of our knowledge, our method is the first to
apply them to spurious-adversarial-label-guided refinement. Furthermore, we in-
corporate multi-neuron constraints, output constraints and L2 layer constraints
that explicitly consider two preceding layers, which enhances the theoretical rigor
of residual network verification.

4 Experiments

We compare the performance of our prototypical verifier GRENA with SOTA
verifiers including the incomplete tool WraLU [12] and the complete tool α, β-
CROWN [3] - the winner of VNNCOMP (International Verification of Neural
Networks Competition). In addition, we compare our tailored LP solver with
SOTA GUROBI with respect to returned bound tightness and execution time.

4.1 Experiment Setup

The dataset includes MNIST (denoted as ‘M’) [2] and CIFAR10 (shortened as
‘C’) [10]. We test fully-connected (denoted as ‘FC’), convolutional (‘Conv’) and
residual (’Res’) networks with various sizes, that are obtained from the ERAN
system [4] and VNNCOMP [1]. The number of intermediate layers (#Layers),
the number of intermediate neurons (#Neurons), and the trained defense are

GRENA: GPU-aided Abstract Refinement for Neural Network Verification 9

enumerated in Table 1 (a trained defense is a defense method against adversarial
examples to improve robustness of networks).

Table 1: Detailed information of the experimental networks
Network Type ϵ #Layers #Neurons Defense

M_6x256 FC 0.033 6 1,010 None

M_ConvSmall Conv 0.11 3 3,604 None

M_ConvMed Conv 0.1 3 5,704 None

M_ConvBig Conv 0.313 6 48,064 DiffAI[14]

C_ConvMed Conv 0.006 3 7,144 PGD[13]

C_ConvBig Conv 0.0078 6 62,464 DiffAI

C_Resnet4b Res 0.0042 10 14,436 None

C_ResnetA Res 0.0033 8 11,364 None

C_ResnetB Res 0.012 8 11,364 None

4.2 Comparison with SoTA Verifiers

To test the verification performance of GRENA, we select 30 images from the
datasets for each network to verify robustness and compare the results and time
costs. To verify robustness, we choose a perturbation parameter ϵ for each tested
network as indicated in Table 1 and apply the perturbation to each image. We
check if all the “perturbed” images within ϵ will be classified the same as the
original image by the networks as the perturbation is imperceptible to human
eyes. If so, we conclude the robustness to be verified. Otherwise, if a counterex-
ample with a different label is detected, we falsify the robustness property. If
the analysis is inconclusive, we return unknown (abbreviated as ‘#Unk’) to the
user.

The verification results of each tool and average execution time per image are
shown in Table 2. We can observe that we outperforms both WraLU and α, β-
CROWN with respect to precision as we return more conclusive results (either
verified or falsified). In particular, we return 50.7% more conclusive images than
WraLU while WraLU fails to handle two residual networks. Even compared with
the complete tool α, β-CROWN, our tool produces 13 more conclusive images in
total and achieve better or the same verification/falsification precision on most
networks. The empirical results demonstrate the strong verification efficiency of
our system.

4.3 Comparision with GUROBI

We now compare the bound-solving abilities of our tailored solver to those of
GUROBI in the context of neural network encoding. We select one image for

10 Yuyi Zhong et al.

Table 2: The verification results of WraLU, α, β-CROWN and our system
GRENA with average execution time per image

Network Methods
Verification results

#Unk #Verify #Falsify Time(s)

M_6x256
WraLU 27 3 0 26.6

α, β-CROWN 8 12 10 87.9
GRENA 15 7 8 195.5

M_ConvSmall
WraLU 17 13 0 7.2

α, β-CROWN 0 26 4 5.8
GRENA 0 26 4 35.7

M_ConvMed
WraLU 15 15 0 18.0

α, β-CROWN 2 22 6 28.6
GRENA 0 24 6 42.9

M_ConvBig
WraLU 10 20 0 35.6

α, β-CROWN 3 20 7 31.8
GRENA 2 20 8 77.0

C_ConvMed
WraLU 19 11 0 60.8

α, β-CROWN 8 17 5 84.8
GRENA 0 23 7 119.9

C_ConvBig
WraLU 0 30 0 32.7

α, β-CROWN 2 28 0 25.1
GRENA 0 30 0 58.0

C_Resnet4b
WraLU 7 23 0 49.7

α, β-CROWN 0 26 4 6.3
GRENA 0 26 4 87.8

C_ResnetA
WraLU - - - -

α, β-CROWN 0 27 3 10.2
GRENA 0 27 3 77.6

C_ResnetB
WraLU - - - -

α, β-CROWN 8 16 6 100.2
GRENA 1 23 6 191.5

each network and collect all the constraints where we use the constraint set to
solve all unstable neuron bounds and input bounds by our solver and GUROBI,
later we compare the tightness of the solved bounds as visualized in Figure 7.

Figure 7 depicts log-scale histograms of bound improvements for both GUROBI
and our tailored solver, where "improvement" is defined as the original neuron
bound minus the new neuron interval returned by the two solvers. The bar
heights represent the number of neurons with improvements at the magnitude
indicated on the x-axis. Figure 7a, 7d, 7e and 7f show significant overlap be-
tween the orange and blue bars, meaning our tailored solver achieved compa-
rable improvements to GUROBI. It is noteworthy that the average solving time

GRENA: GPU-aided Abstract Refinement for Neural Network Verification 11

for GUROBI was 35503.32 seconds, while our GPU-accelerated solver took only
47.38 seconds, achieving an impressive 749× speedup. More results and details
can be found in our Github repo.

(a) (b)

(c) (d)

(e) (f)

Fig. 7: Bound improvement comparison between our solver and GUROBI

In conclusion, our tailored LP solver obtained comparable bound improve-
ments compared to GUROBI while significantly reducing the solving time.

https://github.com/Grena-verifier/Grena-verifier

12 Yuyi Zhong et al.

5 Related Works

Generally speaking, verification of deep neural networks is an NP-hard problem
[8]. Therefore, there are a series of incomplete verification methods that sacrifice
completeness. Representative works include those abstract interpretation based
[6,19,20,14] or bound propagation based [16,7,29,33,26], etc. To mitigate the
precision loss of incomplete methods, researchers have been relying on LP or
MILP to encode the network more tightly. For example, DeepSRGR [31] or
ARENA [34] or PRIMA [17] systems would invoke the GUROBI solver to resolve
LP and obtain tighter neuron intervals. However, the usage of an off-the-shelf
solver on the CPU fails to leverage the nature of neural network encoding.

Inspired by works aiming to migrate the verification of neural networks to
GPUs with the help of Lagrangian dual problems [28,5,9], we propose our tai-
lored LP solver on GPU that benefits our LP formulation. Note that previous
works [28,5,9] only encode one-predecessor cases where the multiple predecessors
would be concatenated into one. Although this could be handled by other engi-
neering approaches, it lacks rigorous theoretical derivation. On the contrary, we
explicitly encode multi-predecessor cases in our formulation. Furthermore, [28,5]
only considers intermediate neuron constraints and [9] only includes output con-
straints in their constraint set, while our formulation captures both intermediate
and output constraints. Lastly, to our knowledge, our method is the first to effec-
tively deploy the Lagrangian dual problem to spurious-adversarial-label-guided
refinement process.

6 Conclusion

In this paper, we propose a theorem to solve LP problem on GPU in the context
of neural network verification. To the best of our knowledge, our work is the first
to use Lagrangian dual on spurious-adversarial-label guided refinement process
and encode complex network constraints that take more than one predecessor,
which enhances the scientific rigor of the verification of residual networks. We
implemented our solving theorem in a GPU-based tailored solver; our empirical
study strongly indicates that our tailored solver could return comparable solved
values compared to GUROBI while obtaining significant speed gains. Further-
more, it enables our verifier GRENA to return more conclusive results than
SOTA verifiers within a reasonable amount of time, demonstrating the strong
efficacy of our system.

Acknowledgments. This research is supported by a Singapore Ministry of Education
Academic Research Fund Tier 1 T1-251RES2103.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

GRENA: GPU-aided Abstract Refinement for Neural Network Verification 13

References

1. 3rd International Verification of Neural Networks Competition (VNN-COMP’22)
(2022), https://sites.google.com/view/vnn2022.

2. Deng, L.: The MNIST database of handwritten digit images for machine learn-
ing research [best of the web]. IEEE Signal Process. Mag. 29(6), 141–142 (2012).
https://doi.org/10.1109/MSP.2012.2211477, https://doi.org/10.1109/MSP.
2012.2211477

3. etc, H.Z.: Alpha-beta-crown: A fast and scalable neural network veri-
fier using the bound propagation framework (2025), https://github.com/
Verified-Intelligence/alpha-beta-CROWN. Retrieved on Jan 4th, 2025

4. ETH: ETH Robustness Analyzer for Neural Networks (ERAN) (2025), https:
//github.com/eth-sri/eran. Retrieved on Jan 2nd, 2025

5. Ferrari, C., Müller, M.N., Jovanovic, N., Vechev, M.T.: Complete verification via
multi-neuron relaxation guided branch-and-bound. In: The Tenth International
Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29,
2022. OpenReview.net (2022), https://openreview.net/forum?id=l_amHf1oaK

6. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: safety and robustness certification of neural networks with abstract
interpretation. In: 2018 IEEE Symposium on Security and Privacy, SP 2018, Pro-
ceedings, 21-23 May 2018, San Francisco, California, USA. pp. 3–18. IEEE Com-
puter Society (2018). https://doi.org/10.1109/SP.2018.00058, https://doi.
org/10.1109/SP.2018.00058

7. Gowal, S., Dvijotham, K., Stanforth, R., Bunel, R., Qin, C., Uesato, J., Arand-
jelovic, R., Mann, T.A., Kohli, P.: Scalable verified training for provably robust
image classification. In: 2019 IEEE/CVF International Conference on Computer
Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019. pp.
4841–4850. IEEE (2019). https://doi.org/10.1109/ICCV.2019.00494, https:
//doi.org/10.1109/ICCV.2019.00494

8. Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
efficient SMT solver for verifying deep neural networks. CoRR abs/1702.01135
(2017), http://arxiv.org/abs/1702.01135

9. Kotha, S., Brix, C., Kolter, J.Z., Dvijotham, K., Zhang, H.: Provably
bounding neural network preimages. In: Oh, A., Naumann, T., Globerson,
A., Saenko, K., Hardt, M., Levine, S. (eds.) Advances in Neural Informa-
tion Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023 (2023), http://papers.nips.cc/paper_files/paper/2023/hash/
fe061ec0ae03c5cf5b5323a2b9121bfd-Abstract-Conference.html

10. Krizhevsky, A., Nair, V., Hinton, G.: Cifar-10/100 (canadian institute for advanced
research) http://www.cs.toronto.edu/~kriz/cifar.html

11. LLC., G.O.: GUROBI OPTIMIZER (2025), https://www.gurobi.com/. Retrieved
on Jan 1st, 2025

12. Ma, Z., Li, J., Bai, G.: Relu hull approximation. Proc. ACM Program. Lang.
8(POPL), 2260–2287 (2024). https://doi.org/10.1145/3632917, https://doi.
org/10.1145/3632917

13. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep
learning models resistant to adversarial attacks. In: 6th International Confer-
ence on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30
- May 3, 2018, Conference Track Proceedings. OpenReview.net (2018), https:
//openreview.net/forum?id=rJzIBfZAb

https://sites.google.com/view/vnn2022
https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.1109/MSP.2012.2211477
https://github.com/Verified-Intelligence/alpha-beta-CROWN
https://github.com/Verified-Intelligence/alpha-beta-CROWN
https://github.com/eth-sri/eran
https://github.com/eth-sri/eran
https://openreview.net/forum?id=l_amHf1oaK
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1109/ICCV.2019.00494
https://doi.org/10.1109/ICCV.2019.00494
https://doi.org/10.1109/ICCV.2019.00494
https://doi.org/10.1109/ICCV.2019.00494
http://arxiv.org/abs/1702.01135
http://papers.nips.cc/paper_files/paper/2023/hash/fe061ec0ae03c5cf5b5323a2b9121bfd-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/fe061ec0ae03c5cf5b5323a2b9121bfd-Abstract-Conference.html
http://www.cs.toronto.edu/~kriz/cifar.html
https://www.gurobi.com/
https://doi.org/10.1145/3632917
https://doi.org/10.1145/3632917
https://doi.org/10.1145/3632917
https://doi.org/10.1145/3632917
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb

14 Yuyi Zhong et al.

14. Mirman, M., Gehr, T., Vechev, M.T.: Differentiable abstract interpretation for
provably robust neural networks. In: Dy, J.G., Krause, A. (eds.) Proceedings of the
35th International Conference on Machine Learning, ICML 2018, Stockholmsmäs-
san, Stockholm, Sweden, July 10-15, 2018. Proceedings of Machine Learning Re-
search, vol. 80, pp. 3575–3583. PMLR (2018), http://proceedings.mlr.press/
v80/mirman18b.html

15. Müller, C., Serre, F., Singh, G., Püschel, M., Vechev, M.T.: Scaling polyhedral
neural network verification on gpus. In: MLSys. mlsys.org (2021)

16. Müller, C., Singh, G., Püschel, M., Vechev, M.T.: Neural network robustness veri-
fication on gpus. CoRR abs/2007.10868 (2020), https://arxiv.org/abs/2007.
10868

17. Müller, M.N., Makarchuk, G., Singh, G., Püschel, M., Vechev, M.T.: PRIMA:
general and precise neural network certification via scalable convex hull approxi-
mations. Proc. ACM Program. Lang. 6(POPL), 1–33 (2022). https://doi.org/
10.1145/3498704, https://doi.org/10.1145/3498704

18. Paulsen, B., Wang, J., Wang, C.: Reludiff: differential verification of deep neu-
ral networks. In: Rothermel, G., Bae, D. (eds.) ICSE ’20: 42nd International
Conference on Software Engineering, Seoul, South Korea, 2020. pp. 714–726.
ACM (2020). https://doi.org/10.1145/3377811.3380337, https://doi.org/
10.1145/3377811.3380337

19. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.T.: Fast and ef-
fective robustness certification. In: Bengio, S., Wallach, H.M., Larochelle, H.,
Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Infor-
mation Processing Systems 31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada.
pp. 10825–10836 (2018), https://proceedings.neurips.cc/paper/2018/hash/
f2f446980d8e971ef3da97af089481c3-Abstract.html

20. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying
neural networks. Proc. ACM Program. Lang. 3(POPL), 41:1–41:30 (2019). https:
//doi.org/10.1145/3290354, https://doi.org/10.1145/3290354

21. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: Boosting robustness certifica-
tion of neural networks. In: 7th International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net (2019),
https://openreview.net/forum?id=HJgeEh09KQ

22. Tjandraatmadja, C., Anderson, R., Huchette, J., Ma, W., Patel, K.K., Vielma, J.P.:
The convex relaxation barrier, revisited: Tightened single-neuron relaxations for
neural network verification. Advances in Neural Information Processing Systems
33, 21675–21686 (2020)

23. Ugare, S., Banerjee, D., Misailovic, S., Singh, G.: Incremental verification of neural
networks. Proc. ACM Program. Lang. 7(PLDI), 1920–1945 (2023). https://doi.
org/10.1145/3591299, https://doi.org/10.1145/3591299

24. Ugare, S., Singh, G., Misailovic, S.: Proof transfer for fast certification of multiple
approximate neural networks. Proc. ACM Program. Lang. 6(OOPSLA1), 1–29
(2022). https://doi.org/10.1145/3527319, https://doi.org/10.1145/3527319

25. Urban, C., Christakis, M., Wüstholz, V., Zhang, F.: Perfectly parallel fairness certi-
fication of neural networks. Proc. ACM Program. Lang. 4(OOPSLA), 185:1–185:30
(2020). https://doi.org/10.1145/3428253, https://doi.org/10.1145/3428253

26. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety
analysis of neural networks. In: Bengio, S., Wallach, H.M., Larochelle, H.,

http://proceedings.mlr.press/v80/mirman18b.html
http://proceedings.mlr.press/v80/mirman18b.html
https://arxiv.org/abs/2007.10868
https://arxiv.org/abs/2007.10868
https://doi.org/10.1145/3498704
https://doi.org/10.1145/3498704
https://doi.org/10.1145/3498704
https://doi.org/10.1145/3498704
https://doi.org/10.1145/3498704
https://doi.org/10.1145/3377811.3380337
https://doi.org/10.1145/3377811.3380337
https://doi.org/10.1145/3377811.3380337
https://doi.org/10.1145/3377811.3380337
https://proceedings.neurips.cc/paper/2018/hash/f2f446980d8e971ef3da97af089481c3-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/f2f446980d8e971ef3da97af089481c3-Abstract.html
https://doi.org/10.1145/3290354
https://doi.org/10.1145/3290354
https://doi.org/10.1145/3290354
https://doi.org/10.1145/3290354
https://doi.org/10.1145/3290354
https://openreview.net/forum?id=HJgeEh09KQ
https://doi.org/10.1145/3591299
https://doi.org/10.1145/3591299
https://doi.org/10.1145/3591299
https://doi.org/10.1145/3591299
https://doi.org/10.1145/3591299
https://doi.org/10.1145/3527319
https://doi.org/10.1145/3527319
https://doi.org/10.1145/3527319
https://doi.org/10.1145/3428253
https://doi.org/10.1145/3428253
https://doi.org/10.1145/3428253

GRENA: GPU-aided Abstract Refinement for Neural Network Verification 15

Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural In-
formation Processing Systems 31: Annual Conference on Neural Informa-
tion Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada. pp. 6369–6379 (2018), https://proceedings.neurips.cc/paper/2018/
hash/2ecd2bd94734e5dd392d8678bc64cdab-Abstract.html

27. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analy-
sis of neural networks using symbolic intervals. In: Enck, W., Felt, A.P. (eds.)
27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD,
USA, August 15-17, 2018. USENIX Association (2018), https://www.usenix.org/
conference/usenixsecurity18/presentation/wang-shiqi

28. Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C., Kolter, J.Z.: Beta-crown:
Efficient bound propagation with per-neuron split constraints for complete and
incomplete neural network verification. CoRR abs/2103.06624 (2021), https:
//arxiv.org/abs/2103.06624

29. Weng, T., Zhang, H., Chen, H., Song, Z., Hsieh, C., Daniel, L., Boning, D.S.,
Dhillon, I.S.: Towards fast computation of certified robustness for relu networks.
In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July
10-15, 2018. Proceedings of Machine Learning Research, vol. 80, pp. 5273–5282.
PMLR (2018), http://proceedings.mlr.press/v80/weng18a.html

30. Xu, K., Shi, Z., Zhang, H., Wang, Y., Chang, K., Huang, M., Kailkhura, B., Lin,
X., Hsieh, C.: Automatic perturbation analysis for scalable certified robustness
and beyond. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H.
(eds.) Advances in Neural Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual (2020), https://proceedings.neurips.cc/paper/2020/hash/
0cbc5671ae26f67871cb914d81ef8fc1-Abstract.html

31. Yang, P., Li, R., Li, J., Huang, C., Wang, J., Sun, J., Xue, B., Zhang, L.: Im-
proving neural network verification through spurious region guided refinement.
In: Groote, J.F., Larsen, K.G. (eds.) Tools and Algorithms for the Construc-
tion and Analysis of Systems - 27th International Conference, TACAS 2021,
Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 12651, pp. 389–
408. Springer (2021). https://doi.org/10.1007/978-3-030-72016-2_21, https:
//doi.org/10.1007/978-3-030-72016-2_21

32. Zelazny, T., Wu, H., Barrett, C.W., Katz, G.: On optimizing back-substitution
methods for neural network verification. In: Griggio, A., Rungta, N. (eds.)
22nd Formal Methods in Computer-Aided Design, FMCAD 2022, Trento,
Italy, October 17-21, 2022. pp. 17–26. IEEE (2022). https://doi.org/
10.34727/2022/ISBN.978-3-85448-053-2_7, https://doi.org/10.34727/2022/
isbn.978-3-85448-053-2_7

33. Zhang, H., Weng, T., Chen, P., Hsieh, C., Daniel, L.: Efficient neural network ro-
bustness certification with general activation functions. In: Bengio, S., Wallach,
H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances
in Neural Information Processing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada. pp. 4944–4953 (2018), https://proceedings.neurips.cc/paper/2018/
hash/d04863f100d59b3eb688a11f95b0ae60-Abstract.html

https://proceedings.neurips.cc/paper/2018/hash/2ecd2bd94734e5dd392d8678bc64cdab-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/2ecd2bd94734e5dd392d8678bc64cdab-Abstract.html
https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi
https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi
https://arxiv.org/abs/2103.06624
https://arxiv.org/abs/2103.06624
http://proceedings.mlr.press/v80/weng18a.html
https://proceedings.neurips.cc/paper/2020/hash/0cbc5671ae26f67871cb914d81ef8fc1-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0cbc5671ae26f67871cb914d81ef8fc1-Abstract.html
https://doi.org/10.1007/978-3-030-72016-2_21
https://doi.org/10.1007/978-3-030-72016-2_21
https://doi.org/10.1007/978-3-030-72016-2_21
https://doi.org/10.1007/978-3-030-72016-2_21
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_7
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_7
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_7
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_7
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_7
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_7
https://proceedings.neurips.cc/paper/2018/hash/d04863f100d59b3eb688a11f95b0ae60-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/d04863f100d59b3eb688a11f95b0ae60-Abstract.html

16 Yuyi Zhong et al.

34. Zhong, Y., Ta, Q., Khoo, S.: ARENA: enhancing abstract refinement for neu-
ral network verification. In: Dragoi, C., Emmi, M., Wang, J. (eds.) Verifica-
tion, Model Checking, and Abstract Interpretation - 24th International Con-
ference, VMCAI 2023, Boston, MA, USA, January 16-17, 2023, Proceedings.
Lecture Notes in Computer Science, vol. 13881, pp. 366–388. Springer (2023).
https://doi.org/10.1007/978-3-031-24950-1_17, https://doi.org/10.1007/
978-3-031-24950-1_17

https://doi.org/10.1007/978-3-031-24950-1_17
https://doi.org/10.1007/978-3-031-24950-1_17
https://doi.org/10.1007/978-3-031-24950-1_17
https://doi.org/10.1007/978-3-031-24950-1_17

	GRENA: GPU-aided Abstract Refinement for Neural Network Verification

