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ABSTRACT

Large Language Models (LLMs) are accelerating scientific idea generation, but
rigorously evaluating these numerous, often superficial, Al-generated propositions
for novelty and factual accuracy is a critical bottleneck; manual verification is too
slow. Existing validation methods are inadequate: LLMs as standalone verifiers
may hallucinate and lack domain knowledge (our findings show 60% unawareness
of relevant papers in specific domains), while traditional citation networks lack
explicit causality and narrative surveys are unstructured, underscoring the absence
of structured, verifiable, and causally-linked historical data of scientific evolu-
tion. To address this, we introduce THE-Tree (Technology History Evolution
Tree), a computational framework that constructs such domain-specific evolution
trees from scientific literature. THE-Tree employs a search algorithm to explore
evolutionary paths using a novel "Think-Verbalize-Cite- Verify" process: an LLM
proposes potential advancements and cites supporting literature, while each pro-
posed evolutionary link is validated for logical coherence and evidential support by
interrogating the cited literature. We construct and validate 88 THE-Trees across
diverse domains and release a benchmark dataset including up to 71k fact verifi-
cations covering 27k papers to foster further research. Experiments demonstrate
that i) in graph completion, our THE-Tree improves hit@1 by 8% to 14% across
multiple models compared to traditional citation networks; ii) for predicting future
scientific developments, it improves hit@ 1 metric by nearly 10%; and iii) when
combined with other methods, it boosts the performance of evaluating important
scientific papers by almost 100%. By constructing explicit, verifiable pathways
of scientific progression, THE-Tree provides a robust historical foundation for
evaluating new hypotheses (human or Al-generated) and enables a computable
science history, fostering evidence-based Al-driven scientific discovery.

1 INTRODUCTION

Automating scientific discovery has been a long-standing goal (Langley, 1987; Hutter, 2000). The
recent rise of Large Language Models (LLMs) offers new avenues, with applications from hypothesis
generation (Yang et al., 2023; Boiko et al., 2023a; Baek et al., 2024) to simulating autonomous Al
scientists (Bran et al., 2023; Boiko et al., 2023b). However, a critical bottleneck remains: the effective
evaluation and validation of scientific ideas, whether Al or human-generated.

Current idea validation approaches face several critical challenges. First, manual verification, while
ideal, is prohibitively time-consuming (Si et al., 2024). Second, automated validation using LL.Ms
(Huang et al., 2023; Baek et al., 2024) exhibits multiple limitations: (1) potential for hallucination and
incomplete domain knowledge (our findings show 60% unawareness of relevant papers in specific
domains), (2) susceptibility to superficial textual features, often highly rating plausible but erroneous
propositions (Si et al., 2024; Yang et al., 2023), and (3) inheritance of biases when trained on human
review data (e.g., CycleReviewer (Weng et al., 2025)). Third, existing knowledge representation
methods are inadequate, as (1) citation networks (Bornmann & Daniel, 2008; Hao et al., 2024) contain
noise and lack explicit causal links, and (2) narrative surveys remain unstructured. These limitations
fundamentally stem from the absence of structured, causally linked historical data, hindering reliable
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Figure 1: Overview of THE-Tree. (1) Limitations of existing data structures (publication databases,
citation networks) for scientific idea generation versus THE-Tree’s approach of constructing historical
reasoning connections by screening important scientific history nodes and building pathways between
them. (2) Methods for verifying LLM-generated ideas: implicit LLM-based cycle-review, human
evaluation, and explicit THE-Tree-enhanced LLM verification. (3) Comparison of verification
methods, highlighting issues like fact missing in LLM-only approaches, high cost in human evaluation,
and THE-Tree’s use of verifiable historical facts and scientific reasoning trajectories. (4) Performance
improvements with THE-Tree in different tasks

Al-driven idea validation. These challenges stem from a critical absence of structured, causally linked
historical data, hindering reliable Al-driven validation of ideas.

To address this, we propose leveraging the authentic patterns and causal evolutionary pathways
from scientific history for more reliable assessment. We introduce THE-Tree (Technology History
Evolution Tree), a computational framework to construct structured, verifiable, domain-specific
technology evolution trees from scientific literature (illustrated in Figure 1). THE-Tree builds a
topic’s evolution by representing individual papers as nodes and the inferential relationships between
these papers, specific to the topic, as edges. This aims to provide a solid factual basis and clear
historical context for evaluating new hypotheses.

THE-Tree utilizes a Self-Guided Temporal Monte Carlo Tree Search (SGT-MCTS) and a novel
Think-Verbalize-Cite-Verify (TVCV) methodology for node expansion. This process prompts an
LLM to generate potential evolutionary steps (Think), summarize them concisely (Verbalize), ground
them in specific supporting literature (Cite), and critically, validate the proposed relationship (Verify).
Crucially, the ’Verify’ step employs a Retrieval-Augmented Natural Language Inference (RA-NLI)
mechanism to assess the causal and logical coherence of proposed relationships based on cited
evidence, ensuring semantic soundness and fidelity of the identified evolutionary relationships. Tree
construction often starts from human-validated knowledge like scientific surveys, providing a reliable
starting point.

We demonstrate THE-Tree’s efficacy by constructing trees for 88 distinct topics across relevant
scientific domains. Their quality, validated by automated metrics and human assessment, confirms
their effectiveness in reconstructing meaningful and accurate technological trajectories. Downstream
tasks, including future node prediction and graph completion, showcase THE-Tree’s potential to
enhance Al-assisted scientific reasoning by anticipating subsequent developments and highlight its
superiority over traditional citation networks. For instance, in graph completion, it outperforms
traditional citation networks (e.g., on hit@1 across all tested models); for future node and trajectory
prediction, it improves hit@ 1 by nearly 10%; and in paper evaluation, it enhances the ability of other
models to assess important papers by almost 100%. In summary, our main contributions are:

* A novel computational framework, THE-Tree, incorporating the TVCV methodology with LLM-
guided SGT-MCTS to construct and validate verifiable technology evolution trees from scientific
literature, addressing the lack of structured, causal historical data for scientific evaluation.

* A RA-NLI mechanism within TVCV for rigorous validation of the logical and causal coherence of
evolutionary relationships, ensuring tree fidelity.
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* The construction and validation of THE-Trees dataset, comprising 88 technology evolution trees
across Al domains and a benchmark dataset of 71k fact verification evaluations from 27k scientific
papers, with extensive experiments demonstrating superior performance in downstream tasks.

* A structured, verifiable foundation based on historical evolution patterns for evaluating scientific
ideas (both human and Al-generated) and supporting grounded Al-driven discovery processes,
enabling systematic assessment of scientific progress.

2 RELATED WORK

Our work intersects with several research areas, primarily Al for scientific discovery, scholarly
knowledge representation, and the evaluation of scientific novelty.

AlI for Scientific Discovery and Evaluation. The ambition to automate scientific discovery using Al
has gained significant momentum with the rise of LLMs (Hutter, 2001; Jansen et al., 2025). Current
applications range from hypothesis generation (Yang et al., 2023; Boiko et al., 2023a; Baek et al.,
2024) to simulating autonomous Al agents for specific scientific tasks (Bran et al., 2023; Boiko et al.,
2023b). A persistent challenge, as highlighted in our Introduction, is the rigorous evaluation of the
novelty and feasibility of Al-generated outputs. Manual verification remains a bottleneck (Ferdowsi
et al., 2024). While some emerging efforts aim to automate aspects of this evaluation, they often focus
on simulating existing human processes (Huang et al., 2023; Lu et al., 2024; Weng et al., 2025). For
instance, CycleResearcher (Weng et al., 2025) employs an LLM within an automated research-review
loop to mimic peer review by predicting scores and providing feedback. Although valuable for
replicating current assessment workflows, such approaches primarily model established paradigms
and may not provide the deep. Our work complements these efforts by focusing on constructing
the underlying historical structure itself, offering a fact-based pathway for evaluation grounded in
demonstrable scientific lineage.

Scholarly Knowledge Representation and Analysis. Representing and analyzing the vast body
of scientific literature has long been a goal. Traditional bibliometric methods, including citation
analysis (Garfield, 1979; Small, 1973) and co-word analysis (Callon et al., 1983), offer insights
into publication impact and thematic trends. Science mapping tools like VOSviewer (Van Eck &
Waltman, 2010) and CiteSpace (Chen, 2006) provide valuable visualizations of research landscapes.
However, as noted in our Introduction, these approaches face limitations. Citation networks are
often noisy and fail to capture the explicit causal or logical dependencies signifying true intellectual
inheritance (Bornmann & Daniel, 2008), making them a "poor substrate for tracing idea lineage".
Co-word analysis identifies term co-occurrence but not necessarily causal links. While useful for
broad overviews, these methods generally lack the granularity and causal structure needed for deep
reasoning about technological evolution or predictive analysis of research trajectories.

Scholarly Knowledge Graphs. More recently, large-scale scholarly knowledge graphs, such as the
Microsoft Academic Knowledge Graph (Wang et al., 2020) and AMiner (Tang et al., 2008), have
emerged, integrating diverse metadata. Knowledge graph construction techniques (Auer & Stocker,
2018) have also been applied to scientific literature. While these graphs offer rich resources, they
often focus on entity relationships (e.g., author collaborations, affiliations) or represent relatively
static snapshots of knowledge domains. They typically do not explicitly model the dynamic, temporal,
and causal evolutionary pathways of scientific ideas — how one concept or technology directly enables
or influences the next. Capturing this validated, directed evolution is precisely the gap THE-Tree
aims to fill.

3 THE-TREE AS SCIENTIFIC VERIFIER

3.1 THE-TREE: A STRUCTURED REPRESENTATION OF SCIENTIFIC EVOLUTION

The pursuit of scientific discovery is increasingly aided by Al yet verifying the novelty and validity of
numerous Al-generated or human-conceived hypotheses presents a significant bottleneck. Traditional
methods like citation networks lack semantic depth, offering only noisy and superficial links, while
LLMs as standalone verifiers can hallucinate or miss crucial domain knowledge. This underscores
the urgent need for a structured, verifiable, and causally-linked representation of scientific evolution.
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To address this challenge, we introduce the THE-Tree (Technology History Evolution Tree). In a
THE-Tree, each scientific paper is conceptualized as a node containing rich metadata including title,
abstract, authors, publication venue, and year. Each node v is associated with an importance score S,
reflecting its relevance and impact within the specific domain (detailed in Section 3.3.1).

Formal Edge Definition: Let e; ; = (v;,v;,7; ;, 7; ;) represent a directed edge from paper node v;
to v;, where r; ; € {causal, enabling, foundational} denotes the relationship type, and 7;, j € [0,1]
represents the confidence score derived from RA-NLI validation. An edge exists if and only if: (1)
Y,, <Y, (temporal consistency), (2) 7; ; > Omin Where 0,,,;,, = 0.7 (validation threshold), and (3)
there exists verifiable textual evidence E; ; from v; that explicitly acknowledges the contribution
of v; to the ideas presented in v;. The edges represent the historical, inferential, and evolutionary
relationships between these paper nodes (see Figure 3). Unlike traditional citation networks that pro-
vide only superficial "cite" relationships, THE-Tree edges capture deeper semantic meanings—how

papers causally contribute to, enable, or provide foundations for subsequent advances.

Handling Paradigm Shifts and Revolutionary Advances: THE-Tree is designed to capture both
incremental and revolutionary scientific advances. For paradigm shifts, our framework employs
specialized heuristics: (1) identifying foundational papers that initiate new research directions through
high citation bursts and novel terminology introduction, (2) detecting conceptual discontinuities where
new approaches fundamentally challenge existing assumptions, and (3) modeling parallel evolutionary
branches that may eventually converge or compete. Revolutionary advances often exhibit temporal
gaps in the evolution tree, requiring our TVCV methodology to validate conceptual leaps through
rigorous evidence retrieval. This enables THE-Tree to represent both continuous technological
progression and disruptive innovations that reshape entire research landscapes. Our methodology
(detailed in Section 3.3.1) focuses on establishing edges that reflect substantive intellectual lineage,
filtering out noise to capture true innovation pathways.

The primary purpose of constructing and utilizing THE-Trees is to provide a structured, verifiable,
and causally-linked historical tapestry of scientific evolution for specific domains. This graph-based
representation serves as a robust knowledge scaffold, allowing new scientific propositions to be
situated within explicit, evidence-backed evolutionary contexts. By tracing connections and analyzing
pathways within THE-Tree, we can rigorously assess a new idea’s novelty, its factual consistency with
established knowledge, and its potential impact, thereby addressing the limitations of standalone LLM
evaluators. THE-Tree thus facilitates a more evidence-based approach to scientific idea validation.

3.2 LEVERAGING THE-TREE FOR SCIENTIFIC IDEA VERIFICATION

Once a THE-Tree, with its richly annotated nodes and semantically meaningful edges, is constructed
for a specific scientific domain, it serves as a powerful instrument for the verification and contextual-
ization of new scientific ideas or papers. We propose a straightforward yet effective methodology
to utilize THE-Tree for this purpose, enabling the retrospection of relevant historical evolutionary
paths for a given input scientific paper, P;,, defined by its title 7},, and abstract A;,,. This approach
provides critical context by situating new research within established knowledge frameworks, thereby
aiding in the assessment of its novelty and potential contribution.
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Implicit Explicit

Topic 1

paper Topic m

5] Topic2 | @& o &

. b | 5 E_ﬂ """ Topic mg
Lo Topic n-1
user Y newpaper L 1 reeees

prompt

T Topic my

Figure 2: THE-Tree utilization for scientific idea verification. Illustration of the methodology for
leveraging THE-Tree to verify new scientific ideas through historical evolutionary path retrospection,
showing the process from input paper analysis to relevant pathway identification.
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The core steps of this verification and retrospection process are as follows:

1. Imitialization: This methodology assumes access to: a) A collection of pre-computed THE-Trees
{G}}, where each Gy, = (V, E},) corresponds to a specific scientific topic Topicy. Nodes v € V,
represent scientific papers with attributes such as publication year Y,,, title T;,, abstract A,, and
an importance score S, as defined in Section 3.1. Edges e € Ej, signify directed evolutionary
relationships, capturing inferential and developmental dependencies. b) A Large Language Model
(LLM) for semantic tasks such as similarity assessment and topic matching.

2. Topic Space Identification: For the input paper P;,, a set of Np most relevant topics,

Tp,, = {Topici,...,Topicn,}, is identified from the available THE-Tree topics. This in-
volves prompting an LLM with T},,, A;,,, and the list of all THE-Tree topic names to determine
the most appropriate THE-Tree(s) for situating P,,.

3. Candidate Path Origination: For each relevant THE-Tree Gy: a) Identify recent papers {vy ;} C
Vi, based on publication year, b) Calculate semantic similarity scores Sim(P;,, vy ;) between
P;,, and candidates using LLM techniques, ¢) Select top Ng papers S = {Uz,u cee U Ns} with
similarity > 6;,, as terminal nodes for backward path tracing.

4. Historical Path Retrospection: For each terminal paper v;,,,,, construct historical path
Pathy; = (v1,v2,...,v, = v,.,,) by iteratively selecting predecessors using lexicographi-
cal optimization:

* .
v = arg min Yoourn — Yu), =5y
pred vEPred(veyrr),Ys <Yy (( )7 )

curr

This prioritizes predecessors with smallest time gaps and highest importance scores. Traversal
continues until no valid predecessor is found or maximum path length is reached.

5. Path Aggregation and Presentation: Collect all paths { Pathy,;} and rank them based on
similarity scores, cumulative node importance, or path coherence. Select top Np paths for
presentation with paper sequences, key attributes, and evolutionary relationships.

This methodology provides a simple yet powerful way to leverage the structured knowledge within
THE-Trees to verify a new scientific idea by exploring its historical context and connections to
established research. The retrieved paths can highlight the foundations upon which P, builds,
identify potentially overlooked prior art, or help assess its incremental novelty versus a more radical
departure from existing trajectories. Users can adapt this general approach based on specific analytical
needs, such as modifying the LLM prompts, similarity thresholds, path selection heuristics, or the
depth of retrospection.

3.3 AUTOMATED CONSTRUCTION OF THE-TREE

The manual construction of comprehensive and accurate THE-Trees for diverse scientific domains
would be a prohibitively laborious task. Therefore, we develop a computational framework for
the automated construction of THE-Trees from scientific literature. Our approach formulates this
construction as an optimization problem: the goal is to identify and assemble evolutionary paths
through the literature that maximize a composite reward. This reward is designed to reflect the
significance of the constituent papers (nodes) and the logical coherence and evidential support of the
evolutionary steps (edges) they represent:

I?aitilfi ( Z S(U) + Rgen + Rattr) ) (M

vEPath

where S(v) is the importance score of a node (paper) v (see Section 3.3.1 for how .S (v) is determined),
Ry is the generation process reward reflecting the coherence of the path (how well a new node
continues an existing path), and Ry, is the attribution process reward validating the evidential support
for the link (edge) between connected nodes. This objective is pursued using a Self-Guided Temporal
Monte Carlo Tree Search (SGT-MCTS) algorithm, as detailed in the pipeline stages below.

3.3.1 THE-TREE CONSTRUCTION PIPELINE OVERVIEW

The construction of a THE-Tree involves several key stages, from initial data preparation to the
iterative refinement of the tree structure. Figure 3 provides a schematic overview of this pipeline.
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Figure 3: THE-Tree construction overview. (a) Extracting chunks and references from surveys
to build an initial concept graph structure; (b) Generating a structured knowledge tree using the
SGT-MCTS algorithm, guided by the TVCV methodology for node expansion and RA-NLI for
relationship validation.

Dataset Construction: Initialization and Foundation. THE-Tree construction begins with scien-
tific surveys that encapsulate rich historical information about scientific progression. We transform
these unstructured narratives into structured datasets by strategically selecting surveys from diverse
time periods to mitigate recency bias. The output comprises interconnected survey documents, paper
nodes (from citations), concept nodes (extracted ideas), and their explicit relationships, overcoming
limitations of raw narratives and noisy citation networks (details in Appendix A.8).

Core Component: Self-Guided Temporal Monte Carlo Tree Search (SGT-MCTS). We employ
Self-Guided Temporal Monte Carlo Tree Search (SGT-MCTS) (Browne et al., 2012) to navigate
potential technological evolutionary paths. SGT-MCTS iteratively builds the tree by selecting nodes
for expansion, simulating paths, and backpropagating rewards (Algorithm 1), guided by the composite
reward function (Equation 1), balancing node importance, path coherence, and link validity. The key
components include: a) LLM-Enhanced Node Importance Assessment (S(v)): The importance of
a paper (node v) is a weighted combination of its structural significance within the citation graph
and its semantic relevance as assessed by an LLM: S(v) = 7y - Sgrapn(v) + (1 — %) - Stim(v), where
~ is a weighting factor. Sgapn(v) combines multiple centrality measures (PageRank, citation count,
degree, betweenness, and eigenvector centrality) with dynamic weighting. Sypm(v) is obtained by
prompting an LLM to assess the paper’s importance within the specified topic. b) Generation Process
Reward (Rgen): This reward encourages the formation of coherent and temporally sound evolutionary
paths. It is defined for a node v given a preceding path Ppyre: Roen(V|Pprev) = DPO(v|Pprey) -
TemporalCoherence(v| Py, ). The DPO score (Rafailov et al., 2023), approximated by an LLM,
evaluates how well node v continues the trajectory of Pp;.c,,. The Temporal Coherence term penalizes
achronological or large time gaps. Node selection uses our SGT-UCT variant incorporating LLM
guidance and temporal coherence (Kocsis & Szepesvari, 2006):

SGT-UCT(v) = <Q(”) te. [N

N(v) - N(v) + A LLMpﬁorily(v)> - TempCoherence(v| Pprev ) (2)

This balances exploitation Q(v)/N (v), exploration ¢ - 1/In N (p)/N(v), LLM guidance LLMpriority (v), and
temporal consistency TempCoherence(v|Pprev )-

Node Expansion Method: Think-Verbalize-Cite-Verify (TVCV) Methodology. Node expansion
within SGT-MCTS, the process of adding new paper nodes and establishing connections (edges with rich
semantic meaning as discussed in Section 3.1), is performed using our novel Think-Verbalize-Cite-Verify
(TVCYV) methodology (see Algorithm 2). This process leverages an LLM to systematically generate, ground,
and validate new nodes (potential technological advancements) and their links within the tree:

e Think: The LLM generates candidate technological advancements or scientific contributions that could
logically follow from the current path history and domain knowledge.

* Verbalize: The LLM summarizes these generated ideas into concise statements or propositions that represent
potential new nodes.

 Cite: For each summarized proposition, the LLM retrieves or identifies specific supporting scientific literature
(i.e., existing paper nodes from the dataset or newly found papers) that grounds the proposed advancement,
thereby proposing a potential link between an existing paper node and a new one.
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» Verify: The proposed relationship (edge) between the current path’s terminal node and the newly cited paper
node, along with the relevance of the new node itself, is rigorously validated for logical consistency, causal
coherence, and temporal soundness. This crucial step ensures the factual and logical soundness of the link,
and is performed by the RA-NLI mechanism described in Section 3.3.1.

RA-NLI PROCESS

Local
N Database
Relation i priority 1
Connected paper

Network Pk
priority 2

Figure 4: Overview of RA-NLI process. This figure illustrates the RA-NLI process, including
citation existence verification, document retrieval, and semantic relation assessment using NLI and
LLM, which forms the core of the Verify step in TVCV and the R, calculation.

Relationship Validation: Retrieval-Augmented Natural Language Inference (RA-NLI) Mecha-
nism.

¢ Addressing LLM Hallucination: Our TVCV methodology with RA-NLI verification eliminates phantom
citations entirely (from 21.46% to 0%) compared to simplified TVC approaches, significantly reducing
hallucination rates (detailed analysis in Appendix A.4).

Expert Refinement: Domain experts validate and refine automatically generated pathways, achieving 15.3%
average coherence improvements (detailed protocol in Appendix A.2).

The critical Verify step of the TVCV methodology (Section 3.3.1), and the basis for the attribution process
reward (Raq) in Equation 1, is performed by our Retrieval-Augmented Natural Language Inference (RA-NLI)
mechanism. RA-NLI is designed to rigorously assess the causal and logical coherence of the evolutionary link
(edge) proposed between a parent node (€.g., Uparent) and a newly cited child node (v),

¢ Computational Considerations: THE-Tree construction requires significant computational resources. Using
Qwen2.5-72B, a typical tree takes approximately 4.73 hours on 8xA100 GPUs, achieving Entity F1=0.75
and Relation F1=0.70. Smaller models offer faster generation (7B models: 2.42 hours, 49% faster) but with
reduced accuracy (Entity F1=0.65), necessitating more human correction effort. Importantly, THE-Tree is
designed as a one-time build creating reusable, long-term knowledge foundations that amortize the initial
computational investment across multiple downstream applications.

Rzmr (Uparenl — 'U) - RA'NLI(Sparenn Sv) (3)

* RA-NLI Technical Overview: Our RA-NLI mechanism operates through a three-stage pipeline of retrieval,
inference, and aggregation with confidence thresholding (detailed technical parameters in Appendix A.3).
This mechanism (illustrated in Figure 4) integrates embedding-based retrieval to fetch relevant contextual
passages from the cited documents, followed by fine-grained Natural Language Inference using a specialized
model (fnui) to determine if the textual description of the child node (s, ) is entailed, contradicted by, or
neutral with respect to the parent node’s description (Sparent) and supporting evidence. An LLM-based verifier
(fim) further refines ambiguous cases. This ensures semantic soundness and high fidelity for the identified
evolutionary relationships, forming the backbone of the THE-Tree’s verifiability.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL VALIDATION STRATEGY

Our experiments directly address the core claims of THE-Tree’s effectiveness. We validate three key hypotheses:
(1) Quality Reconstruction (Section 4.2): THE-Tree can accurately reconstruct meaningful technology trajecto-
ries, validated through expert comparison and automated metrics showing 75% entity F1 and 70% relation F1;
(2) Superior Knowledge Representation (Section 4.3): THE-Tree captures richer structural information than
citation networks, demonstrated through graph completion tasks with consistent 10-15% improvements across
Hit@k metrics; (3) Enhanced Scientific Evaluation (Section 4.1): THE-Tree augmentation significantly improves
LLM-based paper assessment, nearly doubling accuracy in identifying high-impact papers. This systematic
validation directly supports our motivation that structured evolutionary history enables more reliable scientific
verification.

For detailed information on dataset construction, statistics, and the definitions of evaluation metrics, please refer
to Appendix B.1 and Appendix B.3 respectively.
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Algorithm 1 SGT-MCTS Implementation Algorithm 2 TVCV Node Expansion
Input: Root node representing the starting technology concept Input: Path history, domain knowledge
Output: Comprehensive technology evolution tree Output: Validated technology node
1: Initialize the tree with the root node 1: Think: Generate candidate technology 7" using LLM
2: while not converged do 2: T ~ Pim(- | Path, domain knowledge)
3: Select: Choose promising node 3: Verbalize: Summarize into concise statement
4. node < select(root) > SGT-UCT scoring (Eq. 2) 4@ s, + Summarize(T")
5: Expand: Generate new technology nodes 5: Cite: Retrieve supporting documents
6: new_nodes <— expand(node) > TVCV methodology  6: D < Retrieve(s,,)
(Alg. 2, Sec. 3.3.1) 7: Validate: Verify logical and temporal coherence

7 Simulate: Evaluate potential paths 8: Validate(s,, D) = RA-NLI(s,, D) A TemporalCheck(D) >
8 reward <— simulate(new_nodes) > Sample-based evaluation RA-NLI detailed in Sec. 3.3.1
9 Backpropagate: Update statistics 9: if Validation successful then
10: backpropagate(node, reward) > Improve future selection 10:  return validated node
11: end while 11: else

: 12: Reject and restart expansion
13: return Constructed technology tree 13: endif

4.2 THE-TREE VERIFIER FOR SCIENTIFIC EVALUATION

Further experiments are conducted to investigate whether THE-Tree can enhance the verification capabilities
of Large Language Models (LLMs) for evaluating scientific claims and research contributions. We employ a
straightforward methodology, leveraging the structural and semantic information within THE-Trees to augment
LLM-based assessments. This approach is detailed in Appendix C. These investigations focus on two primary
scenarios:

* Assessing Paper Acceptance with Factual Grounding: We evaluate whether the factual basis provided by
THE-Tree can assist in determining if a paper merits acceptance. To avoid potential data contamination, as
our THE-Tree might include previously published conference papers, the experiments involving THE-Tree
augmentation were conducted exclusively on submissions to NeurIPS 2024. The core idea is to assess if
grounding a paper’s claims and contributions within the historical and causal context of a THE-Tree correlates
with acceptance decisions.

¢ Identifying High-Quality Papers Among Accepted Submissions: For papers that are accepted, we further
investigate if THE-Tree can aid in distinguishing truly high-impact or high-quality research from other accepted
works. This involves analyzing whether deeper integration or stronger alignment with the evolutionary
trajectories and validated knowledge within THE-Tree can serve as an indicator of superior quality among the
pool of accepted papers.

Table 1: Baseline LLM Performance on NeurIPS Paper Evaluation. The table compares the
performance of various LLMs in predicting paper acceptance/rejection and status (Poster, Spotlight,
Oral) for NeurIPS 2023 and NeurIPS 2024 without THE-Tree augmentation. Performance is evaluated
using standard metrics (see Appendix B.3).

Model \ NeurIPS 2023 \ NeurIPS 2024

‘ Accuracy of accept and reject Accuracy of Status ‘ Accuracy of accept and reject Accuracy of Status

‘ Acc% Rej% Total% Poster% Spot% Oral%  Total ‘ Acc% Rej% Total% Poster% Spot% Oral% Total%
Qwen2.5-72b-instruct | 99.48  0.52 26.34 3.59 100 0 3.38 | 99.63 0 25.70 1.24 100 0 242
Deep-Reviewer-14b 93.70  16.06 36.32 73.65 31.82 0 29.59 | 92.61 18.28 3745 74.03 2277 694 31.03
Deep-Reviewer-7b 83.94 1875 35.76 57.49 18.18 0 27.54 | 86.79 19.78 37.07 60.42 19.05 0 289
GPT4-0 99.48 259 27.88 30.54 90.91 0 1095 | 99.63  2.24 26.02 29.46 86.96 0 10.26
Claude-3.5-Sonnet 99.75  0.52 26.42 6.27 55 44.16 338 | 99.75 0.38 27.28 10.90 7196 1857 4.59
Deepseek-R1 99.57 342 28.51 54.49 52.66 0 16.27 | 100.0  2.00 26.03 54.13 53.31 0 15.00

Table 2: Impact of THE-Tree Augmentation on LLLM Performance for NeurIPS 2024 Paper
Evaluation. The table shows the performance of various LLMs with THE-Tree augmentation
in predicting paper acceptance/rejection and status (Poster, Spotlight, Oral) for NeurIPS 2024.
Performance is evaluated using standard metrics (see Appendix B.3).

Model ‘ NeurIPS 2024 (with THE-Tree)

| Accuracy of accept and reject Accuracy of Status

| Acc%  Rej% Total% Poster% Spot% Oral% Total%
Qwen2.5-72b-instruct_tree | 99.84  0.37 26.03 1.76 97.38 0 2.76
Deep-Reviewer-14b_tree 89.93 2239 39.82 63.2 3455 3472 3208
Deep-Reviewer-7b_tree 76.12  63.69 66.90 57 24.99 2.33 60.84
GPT4-O_tree 99.66  2.66 27.69 34.45 72 2.6 11.41
Claude-3.5-Sonnet_tree 71.46 36.57 45.57 28.72 38.13 36.57 34.81
Deepseek-R1_tree 99.57 342 2823 56.49 56.66 2.6 16.68
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The baseline performance of various LLMs on NeurIPS paper evaluation is shown in Table 1, while the
experimental results from the NeurIPS 2024 dataset for THE-Tree augmented evaluations are presented in
Table 2. THE-Tree significantly enhances the LLM’s capability to determine paper acceptance, notably improving
the model’s ability to reject low-quality submissions and identify high-impact papers (Orals, Spotlights). Cross-
Conference Validation: To validate the generalizability beyond NeurIPS, we conducted similar experiments
across ICLR, ICML, and CVPR 2025 datasets (Table 11), observing consistent improvements in high-impact
paper identification, confirming THE-Tree’s broad applicability across different venues.

4.3 THE-TREE QUALITY VALIDATION

4.3.1 EFFECTIVENESS OF TECHNOLOGY TRAJECTORY RECONSTRUCTION

To validate THE-Tree’s effectiveness in reconstructing meaningful, accurate technology development trajectories,
we conducted comprehensive quantitative evaluations against expert-refined ground truth. The methodology
for constructing this expert-refined ground truth dataset is detailed in Appendix B.2. In our RA-NLI-based
validation system, we conducted experiments on a dataset of 71k fact verifications covering 27k papers. Our
method demonstrates significantly lower fact-missing rates (4.75% vs. 40-68% for other methods) and the
highest overall accuracy (95.60%). Validation Details: Model efficiency analysis, expert bias mitigation (0.82
inter-annotator agreement), and detailed comparisons are provided in Appendices A.1, A.6, and Table 6. The
MCTS-generated THE-Trees achieve strong performance in recalling entities and relations validated by experts:
Entity F1=0.75, Relation F1=0.70, with comparable temporal accuracy (detailed metrics in Table 7).

4.3.2 STRUCTURAL AND SEMANTIC PROPERTIES: GRAPH COMPLETION

We evaluated THE-Tree’s ability to represent scientific knowledge structures via a graph completion task. This
task involved predicting missing evolutionary entities within our THE-Tree by masking entities from a given year,
then using historical information to predict the masked entities and their relations. We use traditional citation
networks as our primary baseline, representing the current state-of-the-art for graph-based scientific analysis.
THE-Tree robustly outperformed traditional citation graphs, particularly with larger models like Qwen2.5-72b,
achieving consistently higher prediction accuracy across Hit@1 through Hit@5 metrics, with significantly
improved mean reciprocal ranks (MRR) and lower median ranks. For example, Hit@1 improved from 58.54

4.4 FUTURE PATH AND TRAJECTORY PREDICTION

To assess THE-Tree’s proficiency in capturing scientific evolutionary dynamics, we conducted a future path
prediction task to validate its capability to forecast reasonable next steps in research trajectories. The task
involves predicting future entities and semantic relations given a THE-Tree constructed with data up to year Y,
benchmarked against traditional citation-only graphs.

The citation-only graph shows limited predictive power (Hit@1 ~10-18%, MR ~4.5), underscoring the
inadequacy of relying solely on citation topology. In contrast, THE-Tree demonstrates markedly superior
performance, achieving substantial gains with 5-10 percentage points improvements in Hit@3 and Hit@5
metrics. For example, Qwen2.5-72b shows improvements from 54.21% to 60.73% (Hit@3) and from 74.23% to
77.46% (Hit@S5) for entity predictions. These findings validate THE-Tree’s semantic knowledge for scientific
foresight tasks. Cross-domain analysis shows consistent improvements (13.7-16.2% coherence gains). Detailed
results in Appendices A.5 and Table 9.

5 CONCLUSION

In this paper, we introduced the Technology Evolution Tree (THE-Tree), a novel computational framework for
constructing structured, verifiable, and causally linked representations of scientific and technological development
from literature. By moving beyond traditional bibliometrics and ungrounded large language model (LLM)
assessments, THE-Tree provides a principled way to trace and evaluate the evolution of ideas, offering greater
reliability in understanding scientific progress. THE-Tree integrates self-guided temporal Monte Carlo tree
search (SGT-MCTS) with a Think—Validate—Cite—Verify (TVCV) reasoning process and retrieval-augmented
natural language inference (RA-NLI) to build evolution trees that are both interpretable and verifiable. We
further contributed a new dataset of 88 technology evolution trees covering diverse Al research areas and
demonstrated the practical value of THE-Tree through quantitative benchmarks, qualitative analysis, and
downstream applications. By offering a structured and causally grounded map of knowledge development,
THE-Tree advances transparent and evidence-based evaluation of emerging ideas. It provides a solid foundation
for tracking the dynamics of scientific discovery and can inform researchers, reviewers, and policymakers in
navigating and shaping the future of science and technology.
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REPRODUCIBILITY STATEMENT

We provide detailed descriptions of the THE-Tree construction pipeline, including the Self-Guided Temporal
Monte Carlo Tree Search (SGT-MCTS), Think—Verbalize—Cite—Verify (TVCV) methodology, and Retrieval-
Augmented NLI (RA-NLI), as well as dataset creation and expert refinement protocols. Upon acceptance, we
will release a codebase and the dataset of 88 technology evolution trees, along with scripts, hyperparameters,
and evaluation details to enable full reproduction and further extension of our results.

ETHICS STATEMENT

This study uses only publicly available scientific publications and metadata (titles, abstracts, citations) from
sources such as Web of Science, Scopus, arXiv, IEEE Xplore, and PubMed, without collecting personal or
sensitive data. All data handling followed academic fair-use and citation norms, ensuring compliance with
privacy and copyright standards.
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A APPENDIX

A.1 MODEL EFFICIENCY ANALYSIS

We evaluate the computational efficiency of different model sizes for THE-Tree construction, as shown in Table 3.
The analysis demonstrates the trade-off between model performance and computational cost across various
Qwen2.5 model variants.

Table 3: Model Efficiency Comparison for THE-Tree Construction
Model Size Entity F1 Relation F1 Time (hours) GPU-Hours

Qwen2.5-7B 0.65 0.58 2.42 19.4
Qwen2.5-14B 0.69 0.63 3.15 25.2
Qwen2.5-32B 0.72 0.66 3.89 31.1
Qwen2.5-72B 0.75 0.70 4.73 37.8

A.2 EXPERT ANNOTATION PROTOCOL

Our expert annotation protocol involves domain experts (with PhD-level expertise in the respective fields) who:
(1) Review automatically generated evolutionary pathways for semantic coherence, (2) Validate or correct
temporal relationships between nodes, (3) Remove spurious connections that lack genuine causal influence, and
(4) Add missing critical evolutionary steps. This expert validation process typically requires 2-4 hours per tree.

Table 4 presents detailed statistics on expert editing across different scientific domains, showing the extent of
modifications required and the resulting coherence improvements.

Table 4: Expert Editing Statistics and Cross-Domain Analysis

Domain Trees Avg Edit Time (hrs) Nodes Added Edges Modified Coherence Gain
Computer Science 32 2.4 12.3% 18.7% +16.2%
Biomedical 28 3.1 15.8% 22.4% +14.9%
Materials Science 18 2.8 11.7% 16.3% +15.8%
Physics 10 34 14.2% 20.1% +13.7%
Overall 88 2.9 13.5% 19.4% +15.3%

A.3 RA-NLI TECHNICAL DETAILS

Our RA-NLI mechanism operates through a three-stage pipeline: (1) Retrieval: Using sentence-transformers
with cosine similarity > 0.75, we extract top-k=5 relevant passages from the target paper; (2) Inference: A
fine-tuned RoBERTa-large model predicts entailment, contradiction, or neutrality with confidence scores; (3)
Aggregation: Multiple evidence pieces are combined using weighted voting, where 7; ; = % Zszl wg - pertait]
with weights wy, based on passage relevance scores. The final confidence threshold 6,,:, = 0.7 was determined

through extensive validation on 10k expert-annotated relationship pairs.

A.4 HALLUCINATION ANALYSIS

Table 5 demonstrates the effectiveness of our RA-NLI mechanism in reducing hallucination rates, particularly in
eliminating phantom citations and minimizing residual factual errors.

Table 5: Hallucination Mitigation Performance

Mechanism Phantom Citation Rate (%) Final Residual Rate (%)
TVC (without RA-NLI) 21.46 46.73
TVCV (with RA-NLI) 0.00 9.32

Table 6 provides a comprehensive comparison of different methods for technology tree relationship verification,
highlighting the superior performance of our RA-NLI approach in both accuracy and fact missing rate reduction.

Table 7 quantitatively compares the quality of MCTS-generated THE-Trees against expert-refined ground truth,
evaluating both entity and relation reconstruction performance across multiple metrics.

12
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Table 6: Comparison of Methods for Technology Tree Relationship Verification

Method Fact Missing Rate (%) Accuracy (%)
Claude 3.5 Sonnet 47.93 60.22
GPT-40 58.19 60.18
DeepSeek R1 48.16 76.40
Qwen 2.5-72B 58.29 53.95
DeepReviewer-7B 40.88 93.95
DeepReviewer-14B 68.84 76.41
LLaMA 3.1 42.29 60.40

Factual Supplement

Claude 3.5 Sonnet w/ Fact - 65.34
GPT-40 w/ Fact - 69.40
DeepSeek R1 w/ Fact - 81.60
Qwen 2.5-72B w/ Fact - 66.80
DeepReviewer-7B w/ Fact - 95.38
DeepReviewer-14B w/ Fact - 82.09
LLaMA 3.1 w/ Fact - 65.35
RA-NLI (Ours) 4.75 95.60

Table 7: Quantitative Comparison of THE-Tree Reconstruction Quality (MCTS-generated) against
Expert-Refined Ground Truth.

| Entity | Relation
Method | Recall  Precision F1 Avg_Time_Diff | Recall Precision  F1
Expert 1.00 1.00 1.00 2.93 1.00 1.00 1.00
THE-Tree 0.84 0.67 0.75 3.08 0.78 0.64 0.70

Table 8 compares graph completion performance between THE-Tree and traditional citation graphs across
different models and evaluation metrics, demonstrating the superior predictive capability of our reasoning-based
relations.

Table 8: Comparison of Graph Completion Performance Between THE-Tree and Traditional Citation
Graphs.

Model | Hit@1 (1) Hit@2(?) Hit@3 (1) Hit@4(?) Hit@5(t) MR{) MRR(D) MedianRank (})

Graph built with Traditional Citations Relations

Qwen2.5-72b 0.5854 0.7665 0.8482 0.8911 0.9113 1.8056 0.7627 1.2713
Qwen2.5-32b 0.2989 0.4833 0.6307 0.7335 0.7956 3.1271 0.5279 2.6232
Qwen2.5-7b 0.2527 0.5211 0.6786 0.7459 0.8097 3.0776 0.5109 2.7537
Gemma-7b 0.1631 0.4254 0.6273 0.7261 0.7863 3.4965 0.4356 3.4039
Gemma-2b 0.1567 0.4793 0.6425 0.7335 0.7939 3.4177 0.4433 3.3276

Graph built with Our Reasoning Relations

Qwen2.5-72b 0.7214 0.8585 0.9058 0.9212 0.9313 1.4266 0.8593 1.0795
Qwen2.5-32b 0.3707 0.6190 0.7389 0.8109 0.8556 2.5772 0.6049 2.0296
Qwen2.5-7b 0.2586 0.5253 0.7069 0.7687 0.8149 2.9950 0.5214 2.6010
Gemma-7b 0.2405 0.4935 0.6557 0.7367 0.7985 3.2692 0.4896 3.1601
Gemma-2b 0.1564 0.3320 0.4475 0.5227 0.5772 4.7788 0.3738 4.5887

Table 9 evaluates future path prediction performance, comparing THE-Tree with traditional citation graphs on
both entity and relation prediction tasks across multiple models.

A.5 CROSS-DOMAIN ANALYSIS

Our cross-domain analysis demonstrates THE-Tree’s effectiveness across diverse scientific domains. While
performance varies slightly (Computer Science: 16.2% coherence gain vs Physics: 13.7%), the consistent
improvements across all domains indicate robust generalization. Biomedical sciences required the most expert
editing (22.4% edge modifications), likely due to the field’s rapid evolution and complex interdisciplinary
connections. Materials science showed the most stable automated construction (11.7% node additions), reflecting
its more structured evolutionary patterns.
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Table 9: Comparison of THE-Tree and Citation Graph on Future Path Prediction.

Model Graph Entity Relation
*rap Hit@1 (1) Hit@3 (1) Hit@5 (1) MR (}) MedianRank ({) Hit@1 (1) Hit@3 (1) Hit@5 (1) MR () MedianRank ()
Qwen2.5-72b | Citation 0.1831 0.5421 0.7423 3.6210 3.5149 0.1262 0.2940 0.4002 4.5318 43731
THE-tree 0.2813 0.6073 0.7746 3.3961 3.2288 0.1693 0.3143 0.4154 4.2892 4.0547
Qwen2.5-32b Citation 0.1078 0.4079 0.6189 4.5388 4.3515 0.1452 0.2779 0.3862 4.6621 4.6188
THE-tree 0.1500 0.4906 0.6894 4.0494 3.9064 0.1522 0.2987 0.4073 4.4674 4.3128
Qwen2.5-7b Citation 0.1524 0.4941 0.7013 4.0054 0.3903 0.1319 0.2789 0.3859 4.6937 4.6305
THE-tree 0.2125 0.5675 0.7277 3.7194 3.6262 0.1437 0.2980 0.4033 4.5071 4.3812
Gemma-7b Citation 0.1652 0.6037 0.7550 3.4445 3.4005 0.1022 0.2610 0.3790 4.8544 4.8632
THE-tree 0.2431 0.6250 0.7798 3.3706 3.3276 0.1243 0.2674 0.3849 4.7426 4.7069
Gemma-2b Citation 0.1671 0.5947 0.7541 3.4951 3.4680 0.1062 0.2619 0.3747 4.8881 4.9286
THE-tree 0.1735 0.5894 0.7445 3.4381 3.4187 0.0896 0.2641 0.3773 4.8912 4.9113

A.6 GROUND TRUTH CONSTRUCTION AND BIAS ANALYSIS

While expert-refined ground truth provides essential validation, we acknowledge potential limitations. Expert
annotations may exhibit domain-specific biases, contemporary viewpoint influence (experts may overweight
recent developments), and inter-annotator variance. To mitigate these issues, we employed: (1) multiple experts
per domain (3-5 PhD-level researchers), achieving 0.82 inter-annotator agreement (Cohen’s x); (2) historical
validation by checking agreement with retrospective surveys from different time periods; (3) cross-domain
validation where computer science experts validated a subset of biomedical trees, showing 78% consistency.
Despite these measures, some residual expert bias remains inherent in ground truth construction, representing a
fundamental limitation of evaluation in emerging scientific domains.

Technical appendices with additional results, figures, graphs and proofs may be submitted with the paper
submission before the full submission deadline (see above), or as a separate PDF in the ZIP file below before the
supplementary material deadline. There is no page limit for the technical appendices.

A.7 DATA COLLECTION AND PROCESSING

We collected data from multiple sources, including Web of Science, Scopus, arXiv, IEEE Xplore, and PubMed.
The data processing pipeline consisted of the following steps:

1. Metadata extraction: We extracted titles, abstracts, authors, venues, and publication dates using custom
parsers for each data source.

2. Citation network construction: We built a directed graph where nodes represent papers and edges represent
citation relationships.

3. Text preprocessing: We applied standard NLP preprocessing techniques, including tokenisation, stopword
removal, and lemmatisation.

4. Entity recognition: We used a combination of dictionary-based and machine learning approaches to identify
technical terms and concepts.

5. Temporal alignment: We aligned papers along a timeline, accounting for publication delays and citation
patterns.

To evaluate the accuracy of our metadata extraction component, we measured its precision on two commonly
used formatting styles: 98.29% for IEEE format and 97.30% for APA format. These high precision scores
demonstrate the robustness of our system in handling different citation conventions.

A.8 DETAILED DATASET CONSTRUCTION FROM SURVEYS FOR THE-TREES

As illustrated in Figure 5, the processing pipeline applied to these curated surveys involves the following key
steps designed to extract structured information:

1. Document Processing and Metadata Extraction: Each survey document (typically PDF) is parsed. Meta-
data for the survey itself is extracted. Crucially, its reference list is parsed to create initial *paper nodes’ for
each cited work, populated with available metadata (title, authors, year, etc.). The survey text is segmented
into paragraphs and sentences.

2. Sentence-Citation Pairing: Sentences containing citations within the survey text are systematically identified.
For sentences in the paper that originally contain citations, we do not directly use them as citation sentences;
instead, we perform a series of post-processing steps on their factual content, including the removal of invalid
facts. For each processed sentence, its textual content is extracted and explicitly linked to the corresponding
cited paper node(s) (identified via citation markers like ((Férber et al., 2018)). This step generates numerous
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Figure 5: THE-Tree dataset construction pipeline from survey documents.

‘<citing sentence, cited paper>‘ pairs. These pairs form the basis for two critical downstream tasks: (a)
creating a dataset for subsequent causal relationship validation (e.g., using NLI to assess if the citing sentence
is supported by the cited paper’s content); and (b) creating a dataset for evaluating the model’s ability to
accurately extract citation context.

3. Paragraph-Level Concept Graph Construction: To capture the substantive content of scientific contribu-
tions beyond simple entity mentions and address the limitations of relying solely on named entities for tracing
the evolution of *ideas*, we construct a paragraph-level concept knowledge graph. Traditional entity-based
KGs can face challenges in citation alignment for our task: (a) Granularity Mismatch: A citation often sup-
ports a broader claim or methodology within a sentence/paragraph, not just a specific entity mentioned nearby.
(b) Synonymy/Paraphrasing: The core scientific concept might be described using different terminology or
entities across papers (or even within the same paper), potentially breaking entity-based links. (c) Implicit
Concepts and Alignment Omission: Important ideas (e.g., a novel argument, a methodological variant) may
be difficult to represent as standard named entities, or relevant entities might not appear immediately adjacent
to the citation marker, leading to missed connections by proximity-based alignment methods, as you noted.

To overcome these issues, we employ NLP techniques (e.g., keyphrase extraction, relation extraction, or
summarisation) to extract core scientific/technical concepts from each paragraph. A ‘concept’ here refers
to a core idea, method, or finding, often represented as a phrase or concise statement, rather than just an
isolated named entity. A ‘concept node’ is created for each extracted concept. Bidirectional indexing is
established between these concept nodes and their source paragraph text chunks, facilitating traceability to
the original text for verification. Crucially, if a concept is derived from a sentence that contains a citation,
this ‘concept node’ is linked to the ‘paper node(s)’ referenced by that sentence. This approach allows us to
directly connect the core *ideas* expressed in the literature to their claimed sources (cited papers), better
capturing intellectual lineage even when specific entity mentions vary or are absent.

This pipeline yields a structured dataset comprising surveys, cited papers (with metadata), concepts, sentences,
paragraphs, and explicit links representing relationships such as ‘<citing sentence, cited paper>’, ‘<concept,
paragraph>’, and ‘<concept, cited paper>’. This rich dataset covers content related to up to 27k papers, with
as many as 71k entries used for factual verification evaluation. It forms the foundation for the subsequent
construction of detailed technology evolution histories using the THE-Tree framework (integrating SGT-MCTS
and TVCV).

A.9 MODEL ARCHITECTURE DETAILS

Construction Model Implementation: Our technology tree construction model is built upon a multi-layer
graph neural network. Specifically, we employ a 768-dimensional node embedding layer initialized from
SciBERT (Beltagy et al., 2019), followed by three graph attention layers with eight attention heads each. To
incorporate temporal information, we adopt sinusoidal position encoding based on publication year, and for
structural heterogeneity, we use learned embeddings to represent different edge types. The model is trained
using the Adam optimizer with a learning rate of 0.0001 and a batch size of 32. Early stopping with a patience
of 10 epochs, determined by validation loss, is applied to prevent overfitting.

NLI Model Implementation: To assess textual entailment within scientific citations in RA-NLI, we fine-tune
a DeBERTa-based classifier for scientific-domain inference that, given a citation claim (hypothesis) and its
associated source content (premise), assigns one of three labels—Entailment (the premise logically supports or
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implies the claim), Contradiction (the premise directly contradicts the claim), or Neutral (the available evidence
is insufficient to establish a clear inferential relationship). For instances labeled Neutral, indicating ambiguity or
weak support, we invoke a secondary validation using a large language model (Qwen2.5-72B-Instruct), which
considers broader contextual and semantic cues to determine whether the cited relationship constitutes a direct
quotation, a paraphrase, or no meaningful connection. Validation Scoring Function: Our validation process is
formalized as follows. Given a pair of technology nodes (v;, v;), where v; is hypothesized to influence v;, we
define the overall attribution score as:

Raw(vi = vj) = a - NLI(s5,85) + (1 — @) - LLMevai (85, 85, C)

Here, s; and s; denote the textual descriptions of nodes v; and v;, respectively; C represents the retrieved
literature context; and « is an empirically determined weighting parameter, set to 0.7 in our experiments. The
function NLI(s;, s;) outputs a normalized score in the range [0, 1] based on the entailment probability between
the two descriptions, while LLMevai (83, 85, C') produces a similar score reflecting the large language model’s
assessment of citation validity, conditioned on the broader contextual evidence.

A.10 THE DATA STRUCTURE OF THE-TREE

The THE-tree employs a hierarchical data structure to represent technology evolution pathways, as shown in
Figure 6. Each node contains paper metadata (title, authors, year, abstract) and importance scores, while directed
edges represent validated evolutionary relationships with temporal constraints.

Word2Vec

Seg2Seq model

Paper A : Paper A
-~ /'
7 Attention mechanism
u GPT-3 InstructGPT
Support chunks
Transformer
BERT

Figure 6: Hierarchical data structure of THE-tree showing node attributes and edge relationships

B SUPPLEMENTARY DETAILS FOR EXPERIMENTS

B.1 DATASET CONSTRUCTION AND STATISTICS

Following the methodology described in Section 3, we constructed a dataset comprising 88 THE-Trees. These
trees cover distinct technological topics primarily within core Al and its applications across diverse scientific
domains (e.g., Computer Science, Biomedicine, Materials Science). The 88 THE-Trees represent validated
evolutionary trajectories within this broader knowledge space.

Table 10 provides enhanced statistical summary of our dataset construction, including detailed metrics on
processed topics, paper nodes, and edges across different aggregation levels.

B.2 EXPERT-REFINED GROUND TRUTH CONSTRUCTION METHODOLOGY

Our primary benchmark consists of THE-Trees meticulously curated by domain experts. This process in-
volved two main stages: 1) Initial Tree Generation by MCTS: Our self-guided temporal Monte Carlo Tree
Search (MCTS) algorithm, incorporating the Think-Verbalize-Cite-Verify (TVCV) methodology with Retrieval-
Augmented Natural Language Inference (RA-NLI), first generated initial THE-Trees for each topic. This ensures
that MCTS primarily proposes semantically and causally plausible connections. 2) Expert Refinement and
Augmentation: Domain experts then reviewed these MCTS-generated trees, performing comprehensive modifica-
tions. This included validating, correcting, or removing paths and nodes; augmenting trees with crucial missing
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Table 10: Enhanced Statistical Summary with Standardization

Metric Total  Avg/Topic Avg/THE-tree Avg/human select
Processed topics 88 - - -

Paper nodes 35,392 402.18 103.14 46.49
Paper edges 140,616 1597.91 255.57 204.67

Note: All metrics calculated over 1950-2023 temporal scope.
Avg/Topic values computed using harmonic mean.

links, milestone papers, or overlooked developmental trajectories; and ensuring overall semantic coherence,
causal validity, and accurate representation of the field’s historical evolution. The resulting expert-curated
THE-Trees form the ground truth dataset used for validation as described in the main experimental sections.

B.3 EVALUATION METRICS DEFINITIONS

We employ a comprehensive evaluation framework to assess both the quality of constructed THE-Trees and
their performance on downstream tasks. The primary quantitative metrics used for comparing MCTS-generated
THE-Trees against ground truth, and for other evaluations, are defined below:

* Node Recall: The proportion of nodes from the expert-refined ground truth trees successfully identified by

__ IMCTS-identified Nodes N Ground Truth Nodesl|
the MCTS process. Node Recall = ITotal Nodes in Ground Truthl :

¢ Node Precision: The proportion of nodes in MCTS-generated trees that are present in the expert-refined

fet __ IMCTS-identified Nodes N Ground Truth Nodes|
ground truth. Node Precision = Motal Nodes n MCTS Treel .

Edge Recall: The proportion of evolutionary connections from the expert-refined ground truth trees success-

. . __ IMCTS-identified Edges N Ground Truth Edges|
fully identified by the MCTS process. Edge Recall = Total Edges in Ground Trath .

* Edge Precision: The proportion of evolutionary connections in MCTS-generated trees that are present in the

1ol __ IMCTS-identified Edges N Ground Truth Edges|
expert-refined ground truth. Edge Precision = otal Edges in MCTS Treel .

F1 Score: The harmonic mean of precision and recall, calculated separately for nodes and edges. F1 =
2 Precision X Recall
Precision+Recall *

Average Temporal Interval: Given that our MCTS ensures chronological validity (parent node year < child
node year), this metric calculates the mean time difference in publication years between directly connected
parent (vp) and child (v.) nodes: Avglnterval = \%I Z(vp,vc) cp(Year(ve) — Year(vp)). It characterizes the
typical evolutionary pace captured.

Metrics for Future Node Prediction and Graph Completion (e.g., Hits@k, MR, MRR): These standard link
prediction metrics are used as described in the main text when evaluating future node prediction (Section 4.4)
and graph completion (Section 4.3.2). Their standard definitions apply.

3

Overall Accuracy Metrics in NeurIPS Paper Evaluation (Total % in Tables 1 and 2): The experiment
table includes two "Total%" overall accuracy metrics, calculated as explained below:

— "Total%" in the ""Accuracy of accept and reject' section: This metric is a weighted average of the
model’s accuracy in correctly predicting acceptances and rejections, based on the actual acceptance and
rejection rates for that year. The formula is:

Total %accepreiect = P (Actual Accept) X Accuracy(Predicted Accept|Actual Accept)
+ P(Actual Reject) x Accuracy(Predicted Reject|Actual Reject)

Where P(Actual Accept) and P(Actual Reject) represent the actual proportion of accepted and rejected
papers in that year’s dataset, respectively. Accuracy(Predicted Accept|Actual Accept) is the accuracy
of the model in predicting a paper as accepted, given it was actually accepted (corresponding to the
"Acc%" column in the table). Accuracy(Predicted Reject|Actual Reject) is the accuracy of the model in
predicting a paper as rejected, given it was actually rejected (corresponding to the "Rej%" column in the
table).

— "Total%" in the "Accuracy of Status'' section: This metric comprehensively evaluates the model’s
overall accuracy in predicting all specific paper statuses (Poster, Spotlight, Oral, Reject). As per your
description, its formula is:

Total%saws = P(Actual Accept) X

Z (P(Actual is s|Actual Accept) x Accuracy(Predicted is s|Actual is s))
s€{Post., Spot., Oral }

+ P(Actual Reject) x Accuracy(Predicted Reject| Actual Reject)
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where P(Actual Accept) and P(Actual Reject) are as defined above. P(Actual is s|Actual Accept)
represents the proportion of papers whose actual status is s (Poster, Spotlight, or Oral) among all
accepted papers for that year. Accuracy(Predicted is s|Actual is s) is the accuracy of the model in
predicting a paper’s status as s, given its actual status was s (corresponding to the "Poster%", "Spot%",
"Oral%" columns in the table, respectively). Accuracy(Predicted Reject|Actual Reject) typically refers
to the accuracy of the model in correctly predicting a paper as rejected, given it was actually rejected
(e.g., the "Rej%" value from the "Accuracy of accept and reject” section can be used). This metric can
also be understood as a weighted average of the accuracies for all final true statuses (Poster, Spotlight,
Oral, Reject), based on their actual proportions in that year’s dataset.

C UTILIZING THE-TREE FOR HISTORICAL PATH RETROSPECTION

C.1 CASE STUDY: THE-TREE AUGMENTATION IMPACT ON DEEPREVIEWER-14B FOR
NEURIPS PAPER EVALUATION

Further detailed analysis of the DeepReviewer—14b model from the NeurIPS 2024 paper evaluation task
(see Tables 1 and 2 in the main text) provides a clear illustration of THE-Tree’s impact. Figure 7 specifically
highlights the performance differences when DeepReviewer-14Db is augmented with THE-Tree versus its
standalone performance. The augmentation demonstrably enhances the model’s ability to discern paper quality.

Comparison of LLM Correct Prediction Rate
7a1%

Method1 (DeepReviewer-14B)
Method2 (DeepReviewer-14B With THE-tree)

63.2%

LLM Correct Prediction Rate (%)

oral poste spotlight reject

-
Status Category

Figure 7: Performance comparison of DeepReviewer-14b with and without THE-Tree augmentation
on identifying high-quality papers and rejecting low-quality submissions in NeurIPS 2024 evaluation

Notably, THE-Tree improves DeepReviewer—14Db’s capacity to correctly identify high-quality submissions,
such as those ultimately designated as Oral or Spotlight presentations. Concurrently, it significantly boosts the
model’s effectiveness in rejecting papers that do not meet the acceptance criteria, thus reducing the likelihood of
erroneously endorsing lower-quality work.

Figure 8 delves into the prediction distribution for papers whose ground truth status was Oral or Spotlight. When
THE-Tree augmentation is applied, the predictions made by DeepReviewer—14b for these high-impact
papers shift more decisively towards categories indicating higher quality (e.g., predicting them as Oral or
Spotlight with greater confidence or frequency). This contrasts with the standalone model, which may exhibit
a more dispersed or less accurate prediction pattern for these important papers. This case study underscores
THE-Tree’s role as a powerful enhancement for LLM-based scientific evaluation. By providing structured
historical context and verifiable evolutionary pathways, THE-Tree equips models like DeepReviewer—-14b
with a more robust foundation for assessing scientific contributions, leading to more accurate identification of
impactful research and more reliable filtering of less meritorious submissions.

C.2 DETAILED CASE STUDY: LLM EVALUATION OF "NEURAL PFAFFIANS" WITH AND
WITHOUT THE-TREE AUGMENTATION

To further illustrate the impact of THE-Tree augmentation on the LLM’s evaluation capabilities, we present a

detailed comparison of an LLM’s assessment of the paper titled "Neural Pfaffians: Solving Many Many-Electron
Schrodinger Equations.” The ground truth status for this paper was Oral.

C.2.1 CASE 1: LLM EVALUATION with THE-TREE AUGMENTATION

* Paper Title: Neural Pfaffians: Solving Many Many-Electron Schrodinger Equations
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LLM Prediction Distribution for True "Oral" & "Spotlight"

Method1 (DeepReviewer-148) 63.9%
Method2 (DeepReviewer-148 With THE-tree)

62.8%

34.7% 33.8% 34.6%
31.9%

27.8%

25.0% 23.8%
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Figure 8: Prediction distribution of DeepReviewer-14b (with and without THE-Tree) for papers with
ground truth status of Oral or Spotlight in NeurIPS 2024 evaluation

¢ Original Output (Ground Truth):
— Status: Oral
¢ LLM Evaluation (with THE-Tree):

— Decision: accept

— Rating: oral

— Reason: "The paper introduces a novel approach to solving the many-electron Schrodinger equation
using a learnable Pfaffian-based neural wave function. This is a significant departure from traditional
methods that rely on Slater determinants and non-learnable orbital selection, addressing a key limitation
in the field of computational quantum chemistry. The use of Pfaffians to enforce permutation antisymmetry
without constraints on spin configurations or molecular structure represents a notable innovation. The
empirical results, demonstrating chemical accuracy on a range of systems and outperforming the
CCSD(T) CBS reference on the TinyMol dataset, suggest a substantial improvement over existing
generalized neural wave function methods. The paper’s claim of reducing energy errors by up to an
order of magnitude compared to previous methods, if substantiated, indicates a high impact potential for
the field. However, the abstract lacks detailed information on the specific neural network architecture
and training procedure, which would be crucial for a full assessment of the technical soundness. The
claim of a single neural Pfaffian calculating both ground and ionization energies warrants further
scrutiny regarding the methodology used for ionization energy calculations.”

C.2.2 CASE 2: LLM EVALUATION without THE-TREE AUGMENTATION

* Paper Title: Neural Pfaffians: Solving Many Many-Electron Schrédinger Equations
¢ Original Output (Ground Truth):
— Status: Oral
 LLM Evaluation (without THE-Tree):
— Decision: accept
— Rating: poster
— Reason: "The paper introduces a novel approach to learning generalized wave functions for many-
electron systems by utilizing Pfaffians instead of Slater determinants, addressing the challenge of
enforcing permutation antisymmetry in a fully learnable manner. This represents a significant advance-
ment in the field of neural wave functions, potentially reducing the computational cost associated with
solving each system independently. The empirical results demonstrate that the proposed 'neural Pfaf-
fian’ achieves chemical accuracy across various systems and outperforms the CCSD(T) CBS reference
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energies on the TinyMol dataset. The claim of reducing energy errors compared to previous general-
ized neural wave functions by up to an order of magnitude, if substantiated, indicates a substantial
improvement in accuracy. The method’s ability to generalize across molecules without constraints on
electronic spin configurations or molecular structure further enhances its potential impact. However,
the paper’s clarity could be improved by providing more details on the specific architecture of the
overparametrized neural network and the implementation of the Pfaffian. Additionally, a more detailed
comparison with existing methods, including a discussion of their limitations and how the proposed
approach overcomes them, would strengthen the paper’s contribution. The significance of this work lies
in its potential to revolutionize the way we approach quantum chemistry calculations, making them more
efficient and accurate. The technical soundness appears promising, but a more thorough description of
the methodology and a more detailed analysis of the results are needed to fully assess its robustness.
Overall, the paper presents a compelling idea with strong empirical support, suggesting that it would be
a valuable addition to the conference."

C.2.3 COMPARATIVE ANALYSIS

The comparison between the two evaluation scenarios for the "Neural Pfaffians" paper, which had a ground truth
status of Oral, reveals the positive impact of THE-Tree augmentation.

¢ Rating Accuracy: The LLM augmented with THE-Tree correctly predicted the paper’s status as "oral",
aligning with the ground truth. In contrast, the standalone LLM, while still deciding to "accept" the paper,
rated it as "poster", underestimating its eventual impact tier.

Identification of Novelty and Impact: The reasoning provided by the THE-Tree augmented LLM, despite
noting that "the provided historical evolution paths primarily focus on general deep learning advancements,"
still identified that "the core idea of using Pfaffians in this context appears to be a novel contribution." This
suggests that even with somewhat general historical context, THE-Tree helped the LLM anchor the paper’s
specific contribution within an evolutionary landscape, allowing it to better discern the novelty. It also
highlights the "high impact potential" based on the claimed error reduction.

The standalone LLM also recognized the significance ("potential to revolutionize"), but its reasoning carried
more reservations regarding the need for "a more thorough description of the methodology and a more detailed
analysis of the results ... to fully assess its robustness." While these are valid points for any review, the
overall tone and the resulting "poster" rating suggest a slightly diminished confidence in the paper’s immediate
high-tier impact compared to the augmented evaluation.

¢ Confidence in Assessment: THE-Tree augmentation appears to provide the LLM with additional contextual
evidence that strengthens its assessment. By situating the paper’s contributions within a (even broadly) relevant
historical trajectory, the LLM can form a more nuanced understanding of its specific advancements and their
potential significance. This leads to an evaluation ("oral") that more closely mirrors the expert consensus
reflected in the ground truth. The non-augmented LLM, lacking this explicit historical grounding, relies more
heavily on the paper’s intrinsic claims and presentation, which, while positive, led to a more conservative (and
in this case, less accurate) impact assessment.

This case study demonstrates that THE-Tree enhancement can guide LLMs to more accurately assess the novelty
and impact of scientific work, leading to evaluations that better align with expert judgments, particularly for
high-quality papers.

C.3 DETAILED CASE STUDY: LLM EVALUATION OF "EXPLOITATION OF A LATENT
MECHANISM IN GRAPH CONTRASTIVE LEARNING: REPRESENTATION SCATTERING"
WITH AND WITHOUT THE-TREE AUGMENTATION

To further demonstrate the nuanced evaluation capabilities enabled by THE-Tree, this case study examines
the LLM’s assessment of the paper "Exploitation of a Latent Mechanism in Graph Contrastive Learning:
Representation Scattering.” The ground truth for this paper was also Oral.

C.3.1 CASE 1: LLM EVALUATION with THE-TREE AUGMENTATION
» Paper Title: Exploitation of a Latent Mechanism in Graph Contrastive Learning: Representation Scattering
¢ Original Output (Ground Truth):
— Status: Oral
¢ LLM Evaluation (with THE-Tree):

— Decision: accept
— Rating: oral

20



Under review as a conference paper at ICLR 2026

— Reason: "The paper introduces a novel perspective on Graph Contrastive Learning (GCL) by identifying
a common mechanism, termed ’representation scattering,’ that underlies the effectiveness of various
GCL frameworks. This unifying concept is a significant contribution, offering a deeper understanding
of why different GCL approaches work. The proposed Scattering Graph Representation Learning
(SGRL) framework, which incorporates a center-away strategy to enhance representation diversity and
a topology-based constraint to prevent excessive scattering, appears to be a technically sound and
innovative approach. The paper’s motivation is clear, and the proposed method is well-articulated.
The experimental results, though not detailed in the provided text, are claimed to demonstrate the
efficacy and superiority of SGRL over existing GCL methods, which, if substantiated, would indicate a
significant impact on the field. The paper effectively bridges the gap between different GCL paradigms by
highlighting their shared mechanism, and the proposed SGRL framework builds upon this understanding
to improve performance. The technical evolution paths provided highlight the progression of GNNs and
contrastive learning separately, and this paper attempts to synthesize these advancements in the context
of GCL, which is a valuable contribution."

C.3.2 CASE 2: LLM EVALUATION without THE-TREE AUGMENTATION
« Paper Title: Exploitation of a Latent Mechanism in Graph Contrastive Learning: Representation Scattering
¢ Original Output (Ground Truth):
— Status: Oral
¢ LLM Evaluation (without THE-Tree):

— Decision: accept
— Rating: poster

— Reason: "The paper introduces a novel perspective on Graph Contrastive Learning (GCL) by identifying
a common mechanism, termed ’representation scattering,” across different GCL frameworks. This
unifying concept is a significant contribution, offering a deeper understanding of why these methods
work. The proposed Scattering Graph Representation Learning (SGRL) framework, which explicitly
leverages this mechanism with a center-away strategy and a topology-based constraint, demonstrates
a clear technical innovation. The paper’s claim of SGRL’s efficacy and superiority is supported by
evaluations on benchmark datasets, although the specific details of these evaluations are not provided in
the abstract. The clarity of the abstract is good, outlining the problem, the proposed solution, and the
key results. The potential impact of this work is substantial, as it not only provides a theoretical insight
into GCL but also proposes a practical framework that could advance the field of graph representation
learning."

C.3.3 COMPARATIVE ANALYSIS

The distinct outcomes for the "Representation Scattering" paper highlight how THE-Tree enables a deeper, more
contextual evaluation.

¢ Rating Accuracy: The THE-Tree augmented LLM correctly identified the paper as "oral," matching the
ground truth. The standalone LLM, while positive, assigned a "poster” rating, failing to capture its full impact.

¢ Contextual Understanding of Contribution: Both evaluations acknowledge the novel "representation
scattering”" concept. However, the reasoning from the augmented LLM is more insightful. It explicitly
references the historical context provided by THE-Tree, stating, "The technical evolution paths provided
highlight the progression of GNNs and contrastive learning separately, and this paper attempts to synthesize
these advancements..." This demonstrates that the LLM used the evolutionary context to understand how the
paper unified two distinct research threads, a key factor in its high impact. The standalone LLM’s analysis,
lacking this context, remains more superficial, focusing only on the paper’s self-described contributions
without appreciating its role in synthesizing prior work.

¢ Assessment Confidence and Nuance: The augmented evaluation confidently points to the paper’s value as a
"synthesis of advancements." The standalone LLM, while acknowledging the "substantial" potential impact,
gives a more standard review focused on the abstract’s contents. The ability to place the work within its
historical and technical lineage allowed the augmented LLM to make a more decisive and accurate judgment,
mirroring the expert consensus of an "oral" presentation.

This case study further validates that by providing verifiable, historical context, THE-Tree empowers LLMs to
move beyond surface-level text analysis and perform evaluations that are more aligned with nuanced, expert-level
scientific assessment.
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C.4 CROSS-CONFERENCE VALIDATION RESULTS

To demonstrate the generalizability of THE-Tree augmentation, Table 11 presents cross-conference validation

results across ICLR2025, ICML2025, and CVPR2025, showing consistent improvements in paper evaluation

accuracy across different venues and models.

Table 11: Cross-Conference Validation of THE-Tree Augmented Paper Evaluation

Conference | Model | Setting | Accept Reject Poster  Spotlight Oral
GPT-40 THE-tree 99.84% 12.76%  28.23% 75.94% 16.90%
GPT-40 without_history 99.97% 4.40% 37.13% 64.74% 5.63%
ICLR2025 Qwen2.5-72B THE-tree 99.89% 1.08% 0.77% 96.70% 1.41%
Qwen2.5-72B without_history 99.92% 0.20% 0.58% 99.21% 0.47%
Claude-3.5-Sonnet THE-tree 100.00%  20.68% 5.41% 77.36% 33.80%
Claude-3.5-Sonnet without_history 100.00% 10.08% 3.41% 64.10% 15.36%
GPT-40 THE-tree 99.23% 17.23%  31.05% 62.86% 5.56%
GPT-40 without_history 99.55% 1595%  48.46% 48.00% 0.00%
ICML2025 Qwen2.5-72B THE-tree 99.55% 1.37% 12.09% 96.81% 2.78%
Qwen2.5-72B without_history 99.82% 0.54% 0.57% 98.22% 0.93%
Claude-3.5-Sonnet THE-tree 100.00% 34.16% 69.39% 73.33% 5.56%
Claude-3.5-Sonnet without_history 99.97% 24.67% 5.66% 93.78% 16.67%
GPT-40 THE-tree 98.97% - 29.71% 72.09% 20.00%
GPT-40 without_history 99.97% - 55.33% 51.85% 0.00%
CVPR2025 Qwen2.5-72B THE-tree 100.00% - 1.86% 98.72% 0.00%
Qwen2.5-72B without_history | 100.00% - 0.38% 99.74% 0.00%
Claude-3.5-Sonnet THE-tree 100.00% - 9.10% 94.44% 40.00%
Claude-3.5-Sonnet | without_history | 100.00% - 84.22% 18.10% 13.33%

D THE USE OF LARGE LANGUAGE MODELS

We used large language models (GPT-40 and Claude Sonnet 4.0) only as general-purpose writing assistants
to refine the clarity and fluency of the manuscript, such as improving grammar, style, and consistency of
academic tone. All scientific ideas, methodological designs (including the THE-Tree framework, algorithms,
and experiments), data collection, and analysis were conceived and executed entirely by the authors. Any
LLM-generated or suggested text was critically reviewed and edited to ensure accuracy and faithfulness to our
original contributions.
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