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ABSTRACT

Analyzing the intricate geometry of the cerebral cortex is fundamental to under-
standing the neuroanatomical basis of individual traits. However, the fundamental
conflict between powerful, grid-dependent architectures like Transformers and the
irregular cortical mesh has forced a compromise: the distortive practice of spher-
ical projection. This act of simplification discards the geometric subtleties we
aim to study. To resolve this foundational data-architecture mismatch, we pro-
pose the Native Cortical Surface Representation Learning Model (NCS-RL), an
end-to-end framework that reshapes the data to fit the model, not the other way
around. Its first component, the Canonical Surface Generator, creates a shared,
regular topological grid across all subjects. Onto this grid, it precisely maps each
individual’s unique geometric details via diffeomorphic deformation. This single
process achieves three critical goals simultaneously: it establishes a principled to-
kenization for Transformers, resolves inter-subject correspondence, and yields a
spectrum of anatomically faithful variations for data augmentation. With the cor-
tical surface now represented as a structured and geometrically rich sequence of
tokens, the second component, the Cortical Transformer, is designed to interpret
it. Its dual-pathway architecture is built to leverage this new data structure: one
pathway uses our novel Adjacency Self-Attention to learn fine-grained local ge-
ometric patterns directly from the native surface priors, while the other captures
global context. A gated mechanism then fuses these pathways, forging a holistic
representation that understands not just what a cortical region is, but precisely how
it is shaped. Moreover, to ensure geometric fidelity, our model was pre-trained on
over 5, 000 subjects from the ABCD, HCP, and ABIDE datasets. Our method
demonstrates state-of-the-art performance in experiments and ablation studies, in-
cluding phenotype prediction and functional map regression. Our implementation
is available in the supplementary material and will be released.

1 INTRODUCTION

The geometric form of the cerebral cortex, characterized by its intricate folding patterns, serves as
a ‘morphological fingerprint’ linking neuro-anatomy to individual traits (e.g. behavioral character-
istics, cognitive abilities, or functional MRI signal variations) Dale et al. (1999). However, deci-
phering this link is complex, hindered by the challenge of analyzing high-dimensional, noisy, and
topologically irregular cortical surface meshes. This irregularity complicates the establishment of
meaningful correspondence across subjects, and crucially poses a major challenge to the application
of powerful deep learning architectures like Transformers Han et al. (2022), which thrive on struc-
tured, grid-like data. Developing a framework that can operate directly on cortical surfaces while
resolving this irregularity is paramount for unlocking the information implicit in brain anatomy.

A major line of research prioritizes geometric fidelity by operating directly on native cortical meshes.
While existing methods in this vein, such as Yang et al. (2024) convolutions, successfully extract lo-
cal geometric features, their local receptive fields prevent them from capturing the holistic patterns of
the cortex. However, deploying powerful global architectures, the natural solution, needs a universal
topological blueprint that yields tokens comparable both within and across subjects. And the sheer
diversity of cortical geometry makes tokenization on raw surface impossible Fawaz et al. (2021).
For instance, the fundamentally incompatible structures of different anatomical regions within the
same brain—like the elongated precentral gyrus and the complexly folded calcarine sulcus, cannot
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Figure 1: An illustration of the deep-learning based cortical analysis method workflow.

be reconciled into a uniform patch topology Lohmann et al. (2008). This reveals the limitation of
existing native-space methods: while anatomically precise, their nature as local feature aggregators
precludes the extraction of higher-level semantic information. Overcoming this is our motivation.

To circumvent these tokenization and correspondence challenges, sphere-based methods became the
dominant paradigm Zhao et al. (2023); Dahan et al. (2022b;a). By mapping cortices onto a common
spherical domain, they establish a standardized topology that allows cortical data to be processed
by architectures originally designed for images and grids, such as Vision Transformers. However,
this solution is a critical compromise. The projection introduces non-linear geometric distortions,
forcing models to learn from a surrogate, rather than the true, anatomy Bazinet et al. (2025). Cru-
cially, this process decouples morphological features from their native geometric context. Critical
measures like sulcal depth is preserved as a scalar value, but it loses its meaning as a descriptor
of a real three-dimensional shape. Therefore, this work is dedicated to creating a Transformer that
operates on the native cortical surface, free from the distortions of spherical projections.

To resolve this compromise between geometric fidelity and architectural power, we propose the Na-
tive Cortical Surface Representation Learning Model (NCS-RL). Our model operates directly on
the native cortical surface, aiming to achieve high geometric fidelity and cross-subject comparability
through a novel two-stage process, as illustrated in Fig. 1(b). The cornerstone of our model is the
Canonical Surface Generator, a module designed to resolve the tokenization challenge. Adopting
a template-first, personalization-second strategy, it first establishes a canonical topological founda-
tion. Next, it precisely maps the fine-grained geometric details of each subject onto this regularized
mesh. This process achieves two critical goals: it ensures high geometric fidelity while simulta-
neously yielding anatomically plausible samples for data augmentation. With the cortical surface
now represented as a geometrically-rich sequence of tokens, the challenge is to interpret this data.
Standard Transformer is geometry-agnostic. To overcome this, our Cortical Transformer employs
a dual-pathway architecture. It runs our proposed Adjacency Self-Attention in parallel with standard
self-attention to capture local geometric patterns and global semantic relationships, respectively. To
ensure these pathways remain complementary, a mechanism for feature disentanglement and a sub-
sequent gated fusion adaptively merge them to specialize the representation for the downstream task.
Ultimately, this architecture learns not just what a cortical region is, but how it is intricately shaped.

In summary, our main contributions are as follows:

• We propose the Native Cortical Surface Representation Learning Model, an end-to-end
framework that overcomes the core challenges of inter-subject comparability and geometric
fidelity, paving the way for a new paradigm of large-scale, hypothesis-free discovery on
cortical surfaces.

• We propose the Canonical Surface Generator, which decouples topological standardization
from geometric personalization to simultaneously achieve robust inter-subject comparabil-
ity and provide a principled source of anatomically plausible augmentation.

• We introduce the Cortical Transformer, whose expert-guided, dual-pathway architecture si-
multaneously learns geometric and semantic features to forge a link between neuroanatomy
and cognitive or behavioral traits.

• Our method demonstrates state-of-the-art performance in experiments across phenotype
prediction and functional activation map regression tasks.
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Figure 2: An overview of our framework.

2 METHOD

2.1 PRELIMINARIES AND OVERVIEW

Our NCS-RL employs a Masked Auto-Encoder (MAE) framework for brain mesh analysis (Fig.
2). Its Canonical Surface Generator (CSG) first normalizes each input mesh into a canonical form
and creates augmentations. During pre-training, our Transformer learns to reconstruct the canonical
mesh from masked patches, leveraging these augmentations for feature learning. For downstream
tasks, we discard the decoder and use the pre-trained encoder to extract features from the canonical
mesh for a final MLP predictor.

2.2 CANONICAL SURFACE GENERATOR

As illustrated in Fig. 3, our Canonical Surface Generator generates training samples through a
three-stage pipeline that enforces a common topology while preserving subject-specific geometry.

2.2.1 SIMPLIFICATION

We begin by simplifying a group-average surface to create a base mesh with a standardized topology.
This base mesh acts as the uniform topological foundation for all subjects.

The process starts with a cohort of white matter surfaces, C = {Ii = (Pi, F )}, which are registered
by Glasser et al. (2013), defined by the common face set F and the vertex coordinate set Pi. From
this cohort, we compute a group-average template, IT = {PT , F}, by averaging Pi. To preserve
the points with significant anatomical features de Vareilles et al. (2023), we employ Fernández-Pena
et al. (2023) to extract its cortical skeleton. This skeleton is represented by a vertex set, Pable, which
corresponds to the sulcal fundi and gyral crowns. Based on these anatomical landmarks, we then
construct a continuous field that quantifies the anatomical importance across the mesh surface.

To guide the simplification process, we introduce an adaptive cost function, Cost(v), which balances
geometric stability and anatomical importance of a vertex v:

Cost(v) = 0.5 · C ′
geom(v) + 0.5 · C ′

anat(v) (1)
where C ′

geom and C ′
anat are the geometric and anatomical cost components, respectively. Each cost

term is normalized with percentile ranking. The anatomical cost, Canat(v), is defined based on the
geodesic distance of v to the cortical skeleton Pable. We invert the ranking so that vertices closer to
the skeleton receive a higher cost:

Canat(v) = 1− PercentileRank(distgeo(v, Pable)) (2)
Here, distgeo(v, Pable) is the shortest geodesic distance from v to any vertex in the skeleton.

The geometric cost, Cgeom(v), ensures topological stability by penalizing distortion Lee et al.
(1998). It is the ratio of the 1-ring neighborhood area after and before the removal of vertex v:

Cgeom(v) =
Anew(v)

Aold(v)
(3)
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Figure 3: Illustration of Canonical Surface Generator.

To combine these two, before their summation, the raw Canat and Cgeom values are independently
converted to their percentile ranks (C ′

anat and C ′
geom), mapping them to a uniform [0, 1] interval.

With the cost function, we employ an iterative simplification algorithm described in Lee et al. (1998).
Each iteration removes a vertex with the minimum cost. To re-triangulate the resulting hole, the
vertex’s neighborhood is projected onto a 2-D plane using a conformal map, and the new faces
are generated with a constrained Delaunay triangulation. Concurrently, the global parameterization
map Π is updated by storing the barycentric coordinates of the removed vertex relative to these new
faces, thus preserving a continuous mapping to the base mesh. The iterative algorithm is repeated
until a target of Np = 1024 faces is reached, which is chosen to balance geometric fidelity with the
computational demands of model training. After that, we can get the base mesh BT .

2.2.2 SUBDIVISION

Next, for each subject, we reconstruct a high-resolution surface I ′i = (P ′
i , F

′) that shares a common
topology derived from the base mesh BT while preserving the subject’s unique geometry.

To ensure the reconstructed topology is capable to represent the geometric details of IT , we deter-
mine the subdivision level d as the smallest integer satisfying |Psub(d)| ≥ |PT |. Here, |Psub(d)| is
the vertex count resulting from d iterations of 1-to-4 Loop subdivision on the base mesh topology,
and |PT | is the vertex count of the template IT . With the subdivision level d established, we gen-
erate a common high-resolution connectivity graph F ′. This is achieved by applying d iterations of
a 1-to-4 Loop subdivision scheme to the connectivity of BT . This operation is topological, refining
the graph without computing new 3-D vertex positions. The result is a uniform face set F ′ that is
shared by all reconstructed surfaces, guaranteeing their topological equivalence.

For recovering each subject i’s detail, we individualize the base mesh, Bi = (PB,i, FT ), where
the vertex set PB,i is populated by extracting the corresponding vertices from the subject’s original
surface Ii via IB,i = {vk ∈ Pi | k ∈ Kbase}, with Kbase being the vertex indices from the original
template preserved in BT . This individualized base mesh Bi establishes the direct correspondence
between the 2-D parameter domain and the vertex indices of the subject’s original mesh Ii. Fol-
lowing Lee et al. (1998), we determine the spatial coordinates of the interpolated vertices in F ′.
Specifically, for each interpolated vertex, we first compute its 2-D coordinate, qs, as the midpoint of
its parents’ coordinates. We then locate its enclosing triangle within the 2-D parameterization estab-
lished by Π, which allows us to identify the corresponding three vertices ,{vj,i, vk,i, vl,i} ⊂ Vi, on
the subject’s original mesh. Next, we calculate the barycentric weights (α, β, γ) of qs with respect
to this triangle’s vertices. These weights are then used to interpolate the 3-D position:

v′s,i = αvj,i + βvk,i + γvl,i (4)

The resulting collection of vertices forms the subject-specific vertex set P ′
i . Finally, we assemble

the reconstructed mesh I ′i = (P ′
i , F

′) by combining P ′
i with the common face set F ′.

2.2.3 DEFORMATION

The subdivision, while establishing topological consistency, yields a surface I ′i that filters the high-
frequency geometric details of Ii. To address this, We model the deformation from I ′i to Ii as a
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geodesic flow within Ceritoglu et al. (2013), implemented using Bône et al. (2018). This deformation
is driven by optimizing a time-varying velocity field that minimizes the energy functional:

O[υ] =

∫ 1

0

∥υ(t)∥2L dt+
1

σ2
d

Dist(ϕυ(1, I
′
i), Ii) (5)

To capture complex cortical features, we employ the Varifold distance for the data attachment term,
Dist(·, ·). Unlike point-based metrics, the Varifold distance is sensitive to both face position and
orientation, which is critical for aligning the sharp crests of gyri and the deep fundi of sulci.

To ensure convergence, we implemented a two-stage optimization strategy. Specifically, the process
begins with a small deformation kernel, σv,1 = Lavg(I

′
i), where Lavg(I

′
i) is the average mesh

edge length, and then transitions to a larger kernel (σv,2 = 10 × Lavg(I
′
i)) for local refinement. A

constant data fidelity was used throughout both stages, with the noise standard deviation term in the
energy functional set to σd = 0.001. The optimization is performed using L-BFGS and terminates
on energy convergence (ϵ = 10−4) or after 200 iterations. The output for each subject is I ′′i that
serves as a high-fidelity approximation of the original Ii. We sample ϱ = 20 time-points along the
deformation path to generate a sequence of topologically-identical surfaces {augi}. This sequence,
capturing a plausible anatomical evolution, constitutes our augmented dataset for pre-training.

2.3 CORTICAL TRANSFORMER

2.3.1 SURFACE EMBEDDING

Constrained by GPU memory and the computational complexity of the self-attention mechanism,
we use the base faces of the template surface BT (from Section 2.2.1) to form our encoding units,
which we refer to as patches. This design ensures that each patch consistently contains a fixed set
of Nv = 45 vertices and Nf = 64 faces. Each patch is then encoded via two components: a feature
embedding and a positional embedding. For the feature embedding, to enrich the representation and
enhance its resolution, we define features at the face level. Specifically, for each face within the
j-th patch, we compute a 10-dimensional feature vector, zj,i (face area, face normal vector, three
internal angles, and three inner products between the face normal and the normals of its vertices).
For the positional embedding, we use the centroid of the patch, cj , to uniquely identify its spatial lo-
cation. Finally, the feature and positional embeddings for the j-th patch are generated by multilayer
perceptrons (MLP), formulated as Ef = MLP({zj,i}

Nf

i=1) and Ep = MLP(cj).

2.3.2 ADJACENCY UNIT

The Adjacency Unit is designed to generate a hop bias matrix, denoted as Mb ∈ RNp×Np , from the
spatial coordinates of visible patches. This process begins with a given batch of center centroids
{cj}

Np

j=1 for visible patches, where a pre-trained and frozen Locator layer is first used to determine
an ID for each patch. This can be understood as the locator mapping each patch to a predefined
standard location. Following this, the pairwise hop counts between the input patches are retrieved
from a hop look-up table, which stores the hop counts between any two standard locations. Finally,
a parameterized Gaussian function, a · exp(−x2/(2δ2)) + b, is used to map these hop counts (x) to
their final values, which constitute the attention bias matrix Mb. The amplitude a, standard deviation
δ, and offset b are learnable parameters. For cases with a hop count of −1, this value is replaced by
a large number, causing the resulting bias to approach b and thus applying a strong negative bias.

2.3.3 CORTICAL TRANSFORMER BLOCK

We introduce the Cortical Transformer Block to collaboratively process both global semantic corre-
lations and local geometric structures. Its architecture (Fig. 2(a)) integrates standard and Adjacency
Self-Attention, a Perspective Transform Layer, a Channel Modulation Layer, and an MLP.

Let the input embedding be X ∈ RNp×Nd , representing a set of Np tokens. Initially, the input X
undergoes a first Layer Normalization, yielding X ′. This normalized feature is then fed into the
Perspective Transform Layer, which decouples the representation into two specialized perspectives
using two learnable weight matrices: X ′

s = X ′WT
sem and X ′

g = X ′WT
geo (Fig. 2(d)). Here, X ′

s

is the semantic perspective, optimized for capturing high-level content, while X ′
g is the geometric
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perspective, optimized for perceiving spatial structures. Subsequently, X ′
s and X ′

g are channeled
into their respective customized attention pathways. The standard self-attention takes X ′

s as input to
compute global, content-based dependencies among all tokens, producing X ′′

s .

The Adjacency Self-Attention receives X ′
g and incorporates the bias matrix Mb to compute attention

with a geometric prior. As shown in Fig. 2(c), X ′
g is linearly transformed into Query, Key, and

Value matrices, which are then reshaped to form h attention heads: {Qi}hi=1, {Ki}hi=1, {Vi}hi=1.
Incorporating Mb, the attention output for the i-th head is calculated as:

Attentioni = softmax
(
QiK

T
i√

dk
+B

)
Vi (6)

The outputs from all heads are concatenated and passed through a linear projection layer to yield
the final output, X ′′

g . For the outputs of the two pathways, X ′′
s and X ′′

g , we employ a learnable gate
parameter, wgate, to dynamically compute their fusion weights: wgeo = ς ·Sigmoid(wgate), wstd =
1−wgeo where ς is a hyperparameter controlling the maximum influence of the geometric pathway.
The fused feature representation is then Xmix = wstdX

′′
s +wgeoX

′′
g . Notably, this fusion is applied

to patch tokens; the cls token’s output is derived solely from X ′′
s to preserve the purity of its global

perspective. The fused attention result, Xmix, is added to the block’s input X via a first residual
connection, followed by a second Layer Normalization, resulting in Y = LayerNorm(X +Xmix).

The tensor Y is fed into Channel Modulation layer for feature recalibration. As illustrated in
Fig. 2(e), each token passes through a two-layer MLP with a bottleneck structure and a Sigmoid
function to generate the modulation weights Wmod. The calibrated output Ycal is computed via
element-wise multiplication as: Ycal = Y ⊙Wmod. To dynamically transform each token, the refined
tensor Ycal is passed through an MLP. Finally, the output of the MLP is added to the sub-layer’s initial
input, Y , via a residual connection to produce the block’s final output, Xout = Y + MLP(Ycal).

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

3.1.1 DATASETS AND METRICS.

Adolescent Brain Cognitive Development (ABCD) consists of MRI scans from over 11,500 chil-
dren aged 9-10 years across the USA. From this dataset, we utilized 4,000 subjects for pre-training.

Human Connectome Project (HCP) contains brain MRI scans from 1,200 healthy young adults,
preprocessed using the Glasser et al. (2013). On this dataset, we organized two experiments:
phenotype prediction and functional activation map prediction. For phenotype prediction, we
selected four phenotypes: VSPLOT TC (VTC), PercStress Unadj (PS), AngAggr Unadj (AA),
Strength Unadj (STR) from 805 subjects, randomly split into training (n = 643) and testing
(n = 162) sets; following He et al. (2024), predictions were evaluated using the Pearson Corre-
lation Coefficient (PCC) and Root Mean Square Error (RMSE). For functional activation map
regression, we targeted the Work Memory (WM) task, averaged the fMRI signal across time to
create a 3D activation map, and projected it onto the surface; following Ellis & Aizenberg (2022),
we evaluated spatial similarity using PCC and prediction error using Mean Absolute Error (MAE).

Autism Brain Imaging Data Exchange (ABIDE) is a dataset of 1,112 individuals, from which
we selected subjects with available Autism Diagnostic Observation Schedule (ADOS) scores. Our
preprocessing involved feature extraction and feature harmonization to mitigate batch effects. The
dataset was partitioned into training and validation sets by acquisition site. Following Moradi et al.
(2017), we evaluated model performance via Leave-One-Site-Out, using the PCC, MAE, and Q2.

3.1.2 IMPLEMENTATION DETAILS.

In both pre-training and downstream tasks, we employ the AdamW optimizer with a weight decay
of 0.05 and a batch size of 20. We utilized a cosine learning rate schedule with a 10-epoch warmup
period. The implementation is available in supplement, and we will release the codebase on GitHub.
While hemispheres were analyzed independently for most tasks, their features were concatenated
for ADOS prediction to capture the integrated neurological signatures of Autism. In our effort to
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Table 1: Phenotype prediction results. Best and Second best results are highlighted and underlined.
B, L, and R denote predict with the bilateral, left, and right cortical surfaces, respectively.

METHOD Side VTC PS AA STR
RMSE

Dahan et al. (2022a) B 0.169±0.028 0.157±0.025 0.232±0.016 0.116±0.015
Li et al. (2021) B 0.201±0.360 0.195±0.028 0.309±0.034 0.133±0.026
Chen et al. (2022) B 0.204±0.290 0.197±0.034 0.303±0.025 0.129±0.021
Ooi et al. (2022) B 0.187±0.031 0.208±0.039 0.311±0.027 0.125±0.025
He et al. (2022) B 0.195±0.033 0.193±0.031 0.291±0.038 0.136±0.029
He et al. (2024) B 0.183±0.025 0.171±0.029 0.228±0.021 0.117±0.017

Yang et al. (2024) R 0.184±0.032 0.195±0.051 0.255±0.048 0.115±0.029
L 0.197±0.040 0.183±0.038 0.289±0.044 0.106±0.037

Liang et al. (2022) R 0.176±0.051 0.165±0.029 0.259±0.055 0.110±0.018
L 0.163± 0.047 0.159±0.030 0.240±0.027 0.113±0.021

ours R 0.166±0.023 0.147±0.036 0.225± 0.019 0.094±0.021
L 0.159±0.014 0.150± 0.031 0.218±0.018 0.101± 0.017

PCC

Dahan et al. (2022a) B 0.091±0.206 0.067±0.128 0.101±0.122 0.130±0.162
Li et al. (2021) B 0.102±0.241 0.056±0.307 0.071±0.255 0.113±0.227
Chen et al. (2022) B 0.098±0.315 0.061±0.324 0.088±0.262 0.131±0.274
Ooi et al. (2022) B 0.111±0.372 0.053±0.333 0.086±0.349 0.122±0.305
He et al. (2022) B 0.096±0.262 0.068±0.250 0.092±0.242 0.109±0.259
He et al. (2024) B 0.122±0.227 0.073±0.291 0.105±0.273 0.133±0.264

Yang et al. (2024) R 0.009±0.329 0.071±0.325 0.103±0.325 0.070±0.328
L 0.011±0.320 0.081±0.320 0.054±0.328 0.082±0.327

Liang et al. (2022) R 0.172±0.320 0.068±0.327 -0.079±0.326 0.098±0.182
L 0.118±0.324 -0.238±0.312 0.108±0.325 0.088±0.328

ours R 0.125±0.122 0.076±0.171 0.105±0.126 0.119±0.209
L 0.113±0.209 0.081±0.207 0.101±0.152 0.135±0.197

establish a fair comparison, we faced a challenge: a scarcity of methods from the last three years that
are open-source, relevant to our task, and verifiable with available data. Therefore, we feature only
three comparable methods in our experiments on surface fMRI regression and ADOS prediction.

3.2 PHENOTYPE PREDICTION

For phenotype prediction, our method was benchmarked against state-of-the-art approaches (Table
1 Upper for RMSE, Lower for PCC). In terms of RMSE, our model achieves top-tier performance,
ranking first or second in 7 of 8 hemisphere-based predictions. For instance, on the Strength (STR)
task, our model achieves an RMSE of 0.094 (R), outperforming the Liang et al. (2022) baseline
(0.110). Regarding PCC, our model’s primary advantage is its robustness. Unlike Liang et al.
(2022), which exhibits high volatility and learns erroneous negative correlations on certain tasks
(e.g., PS, AA), our model consistently maintains positive correlations across all phenotypes. This
avoidance of directionally incorrect predictions underscores its stability and reliability. We attribute
this enhanced performance to two core architectural advantages. First, by outperforming Dahan et al.
(2022a), our model confirms the importance of operating on the native cortical mesh, which avoids
the geometric distortions of spherical projections. Second, its superiority over Liang et al. (2022)
demonstrates that our bi-path attention design, by integrating multi-scale geometric information, is
crucial for preventing overfitting to spurious correlations and thus enhancing prediction stability.

3.3 FMRI ACTIVATION REGRESSION

As shown in Table 2, our method achieves the highest spatial similarity, with a PCC of 0.562 (R).
Furthermore, our method yields the lowest prediction error, with an MAE of 0.075 (R). To visualize
the result, we randomly select a subject and display their ground truth and predicted fMRI signal
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Figure 4: Visualizations of (a) FMRI activation map regression, (b) ADOS prediction model’s at-
tention map, and (c) the surface reconstruction results.

Table 2: Results of FMRI activation map regression. Best results are highlighted. B, L, and R denote
predictions made using the bilateral, left, and right cortical surfaces, respectively.

Method Side PCC MAE
Ellis & Aizenberg (2022) B 0.550 -

Yang et al. (2024) R 0.533± 0.009 0.078± 0.04
L 0.527± 0.007 0.079± 0.03

Liang et al. (2022) R 0.523± 0.012 0.079± 0.06
L 0.514± 0.013 0.081± 0.04

ours R 0.562± 0.007 0.075± 0.003
L 0.537± 0.005 0.078± 0.001

intensities in Fig. 4(a) (left and right, respectively). We also point eight regions with notably similar
signal intensity distributions using light green circles: 1-the left middle frontal gyrus, 2-the left
superior and lateral occipital gyri, 3-the right superior and lateral occipital gyri, 4-the right middle
frontal gyrus, 5-the left paracentral lobule, 6-the right paracentral lobule, 7-the left lingual gyrus,
and 8-the right lateral occipitotemporal gyrus. And these regions are components of the networks
responsible for working memoryYee et al. (2010).

3.4 ADOS PREDICTION

As shown in Table. 3, our proposed method achieves a superior performance on ADOS prediction
task, yielding PCC scores of 0.59 on the PITT site and 0.42 on the NYU site. A key comparison
is with the linear model of Moradi et al. (2017), which reveals a classic bias-variance trade-off.
While their method achieves a lower MAE by using smoothed, low-dimensional features, our end-
to-end model attains a significantly higher PCC by leveraging rich, high-dimensional geometric
features directly from the cortical surface to capture more complex biological patterns. The positive
Q2 scores (0.18 and 0.26) decisively show the superiority of our low-bias strategy, indicating that
the model has genuine predictive power, unlike other baselines which fail to generalize (Q2 <
0). This confirms that the significant gains in capturing the correct biological trend outweigh the
moderately higher prediction variance. To investigate the neurobiological basis of these predictions,
we visualized the attention map from the final layer of the fine-tuned model (shown in Fig. 4(b)).
We also point out five important regions (colored in red, 1-left orbital gyrus, 2-left inferior frontal
gyrus, 3-left superior temporal gyrus, 4-Right superior frontal gyrus, 5-Central anterior gyrus) with
dark green circle, which are consistent with well-established Autism Spectrum Disorder-related
biomarkersJacobson et al. (1988); Bauman (1991); Barnea-Goraly et al. (2004).

3.5 VALIDATE THE ANATOMICAL VALIDITY OF CSG.

Results in Table 4 highlight the trade-offs between accuracy and detail fidelity among methods.
Our simplification&subdivision pipeline, S&S, significantly improves upon the baseline Lee et al.
(1998), reducing Average Surface Distance (ASD) from 1.520 to 0.773 and increasing Curvature
Correlation (CC) over fourfold from 0.159 to 0.652. Other methods show limitations. While Sorkine
et al. (2004) achieves the lowest ASD (0.766), its high Hausdorff Distance (HD) (10.128) indicates
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Table 3: Results of ADOS prediction. Best results are highlighted.

Method Site PCC MAE Q2

Moradi et al. (2017) NYU 0.22 1.57 -0.04
PITT 0.56 1.08 0.22

Yang et al. (2024) NYU 0.06 3.62 -0.38
PITT 0.12 3.25 -0.25

Liang et al. (2022) NYU 0.18 3.45 -0.15
PITT 0.29 2.89 -0.05

ours NYU 0.42 2.81 0.18
PITT 0.59 2.05 0.26

large local errors, a flaw our method mitigates (HD: 8.190). Conversely, while Lee et al. (1998)
attains the best HD (7.791), it fails to capture geometric detail (CC: 0.159). In contrast, our method
achieves the highest CC (0.676) while maintaining competitive HD and ASD values. This demon-
strates an balance between local detail and overall accuracy, as visualized in Fig. 4(c).

Table 4: Results of surface reconstruction. The best results are highlighted.

Method HD ASD CC
Lee et al. (1998) 7.791± 0.052 1.520± 0.011 0.159± 0.003
S&S 10.207± 0.061 0.773± 0.005 0.652± 0.002
Sorkine et al. (2004) 10.128± 0.068 0.766± 0.004 0.658± 0.003
ours 8.190± 0.049 0.813± 0.005 0.676± 0.001

3.6 DECONSTRUCTION OF THE CORTICAL TRANSFORMER.

To validate our design, we conducted an ablation study for the left hemisphere WM-task prediction,
with results presented in the right sub-table of Table 5. The results show a incremental benefit for
each added component. Starting from the Liang et al. (2022) baseline (PCC: 0.514), adding the
BA module boosts performance to 0.526, which is further improved to 0.532 with the PT module.
Our model integrates these components to achieve the highest PCC of 0.537 and the lowest variance
(±0.005), confirming that each part of our architecture is essential to its superior performance.

4 CONCLUSION

We propose the NCS-RL, a framework for cortical analysis. Its Canonical Surface Generator es-
tablishes cross-subject correspondence and augment surface, while its Cortical Transformer uses a
dual-pathway attention to fuse local geometric details with global context. Experiments validate our
approach, demonstrating superior performance across multiple tasks. However, a limitation emerged
in our ADOS prediction experiment: the right hemisphere’s attention map lacked the clear hotspots
seen on the left (Fig. 4(b)). We attribute this to the lack of an inter-hemispheric communication
mechanism in our model. Future work will therefore prioritize developing a cross-hemispheric at-
tention to capture the complex signatures of neuro-developmental disorders.

Table 5: Results of deconstruction of Cortical Transformer. Best results are highlighted. MM is
baseline Liang et al. (2022). BA is the Bi-Path Attenation. PT is the Persperctive Transform Layer.
CM is the Channel Modulation Layer.

Method PCC
MM 0.514± 0.013
MM+BA 0.526± 0.008
MM+BA+PT 0.532± 0.005
MM+BA+CM 0.527± 0.007
ours 0.537± 0.005
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5 THE USE OF LARGE LANGUAGE MODELS STATEMENT

We use it on 2 ways: correct the code, polish the writing.

6 ETHICS STATEMENT

This work utilizes publicly available, de-identified data from the ABCD, HCP, and ABIDE datasets.
Data collection for these original studies was conducted with appropriate institutional review board
(IRB) approval and informed consent from all participants. Our research is foundational and in-
tended for methodological advancement, not for clinical diagnosis.

7 REPRODICIBLITY STATEMENT

Our code is provided in the supplementary material and will be made publicly available on GitHub
upon publication. The data used are publicly available from the ABCD, HCP, and ABIDE por-
tals. All hyperparameters and training details required to reproduce our main results are detailed in
Method section and the Experimental Setup subsection.

REFERENCES

Naama Barnea-Goraly, Hower Kwon, Vinod Menon, Stephan Eliez, Linda Lotspeich, and Allan L
Reiss. White matter structure in autism: preliminary evidence from diffusion tensor imaging.
Biological psychiatry, 55(3):323–326, 2004.

Margaret L Bauman. Microscopic neuroanatomic abnormalities in autism. Pediatrics, 87(5):791–
796, 1991.

Vincent Bazinet, Zhen-Qi Liu, and Bratislav Misic. The effect of spherical projection on spin tests
for brain maps. Imaging Neuroscience, 3:IMAG–a, 2025.
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