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Abstract
We study pseudo-labeling for the semi-supervised
training of ResNet, Time-Depth Separable Con-
vNets, and Transformers for speech recogni-
tion, with either CTC or Seq2Seq loss functions.
We perform experiments on the standard LIB-
RISPEECH dataset, and leverage additional un-
labeled data from LIBRIVOX through pseudo-
labeling. We show that while Transformer-based
acoustic models have superior performance with
the supervised dataset alone, semi-supervision im-
proves all models across architectures and loss
functions and bridges much of the performance
gaps between them. In doing so, we reach a new
state-of-the-art for end-to-end acoustic models de-
coded with an external language model in the stan-
dard supervised learning setting, and a new abso-
lute state-of-the-art with semi-supervised training.
Finally, we study the effect of leveraging different
amounts of unlabeled audio, propose several ways
of evaluating the characteristics of unlabeled au-
dio which improve acoustic modeling, and show
that acoustic models trained with more audio rely
less on external language models.

1. Introduction
End-to-end speech recognition models are simpler to im-
plement and train than bootstrapped systems. Even given
recent promising results from these systems, best-results for
common benchmarks are still dominated by classical ASR
models; systems requiring force alignment may leave some
performance aside for each training step. We set out to study
end-to-end systems on LIBRISPEECH (Panayotov et al.,
2015) and, without any algorithmic contribution, see if they
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Figure 1. WERs on dev-other across AM architectures and
loss functions. Left: WERs of different models trained on LIB-
RISPEECH with and without beam-search decoding (”no LM”
refers to the greedy decoding). Transformer AM architectures
outperform others by a large margin. Right: WERs of models
trained on LIBRIVOX. All models trained on LIBRIVOX signif-
icantly outperform their LIBRISPEECH counterparts. The gap
between Transformer AMs and other models is much smaller with
LIBRIVOX data.

can be made to perform as well as more complex training
pipelines. The difficulties involved in properly optimizing
acoustic models with Connectionist Temporal Classifica-
tion (CTC) (Graves et al., 2006) or sequence-to-sequence
(Seq2Seq) (Sutskever et al., 2014) (v.s. cross-entropy, for
instance) combined with more readily-available regulariza-
tion techniques for classical pipelines make this comparison
challenging. Our best acoustic models nonetheless reach
5.17% WER on test-other, showing that end-to-end
models can compete with traditional pipelines.

As in other domains, self and semi-supervised learning in
ASR, where a pretrained network generates and trains on
its own labels, yields improvements (Veselỳ et al., 2017).
In end-to-end ASR, pseudo-labeling and self-training can
be quite effective, and its effectiveness is further improved
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when more data is available (Kahn et al., 2019a). In this
setting, we train a model on LIBRISPEECH, then use that
model in conjunction with a language model to generate
pseudo-labels from unlabeled audio. We show that with this
training scheme, our results without an external language
model (LM) reach state-of-the-art results that use an exter-
nal language model, with 2.28% and 4.88% Word Error
Rate (WER) on test-clean and test-other respec-
tively. With LM beam-search decoding and rescoring, we
reach 2.09% and 4.11% WER on the test set.

While many advances in end-to-end ASR come as the re-
sult of neural architecture search (Prabhavalkar et al., 2017;
Zhou et al., 2018; Chiu et al., 2018b), we additionally show
that simple semi-supervision via pseudo-labeling signifi-
cantly bridges the performance gap between a variety of
different model architectures and loss functions, as shown in
Figure 1. In particular, with enough unlabeled audio, Trans-
former, ResNet, and depthwise-separable convolution-based
acoustic models give similar performance with both CTC
and Seq2Seq loss functions, suggesting that new techniques
in semi-supervision may facilitate equally-significant gains
in ASR performance while being applicable to a multitude
of end-to-end setups.

2. Models
2.1. Acoustic Models

In this section, we present the three families of acoustic mod-
els (AMs) studied. All AMs output probability distributions
over tokens. In particular, we use a set of 10k word pieces
(Schuster & Nakajima, 2012; Kudo & Richardson, 2018)
generated from the SentencePiece toolkit1. The choice to
use a fixed set of 10k word pieces is made for the simplic-
ity of the comparative study, not the result of a limitation.
Similarly, all AMs take 80-channel log-mel filterbanks as
input, with STFTs computed on Hamming windows strided
by 10ms. This window size is 25ms for Transformer models
and 30ms for TDS and ResNet models. All models are
trained end-to-end with either CTC or Seq2Seq loss. Given
the huge difference between the amounts of data, we prepare
two sets of architectures: one for training only on labeled
LIBRISPEECH and one for unlabeled LIBRIVOX.

ResNet Acoustic Model ResNets were first introduced
in the domain of computer vision (He et al., 2016) and
have since been successfully applied to speech recogni-
tion (Xiong et al., 2017; Saon et al., 2017; Li et al., 2019b;
Wang et al., 2017). ResNets are composed of several blocks
of convolutions (in our case only 1-D convolutions), with
skip connections. In particular, our ResNet encoder includes
42 convolutional layers each with a kernel size of 3. The
encoder first maps the input to an embedding space of size

1https://github.com/google/sentencepiece

1024 using a single convolutional layer with stride 2; 12
blocks of three 1-D convolutions each follow. Each of the
convolutional layers is followed by ReLU, dropout and Lay-
erNorm (Ba et al., 2016). Both the dropout and the number
of hidden units increases with the depth of the network. Spe-
cific convolution layers are inserted between ResNet blocks
in order to upsample when the hidden representation size
increases. Our architecture performs significant pooling
with respect to the input (16 frames in total, equating to
160 milliseconds) – in addition to the first strided convolu-
tional layer, 3 max pooling layers (each with stride 2) are
distributed across the depth of the network (after blocks 3,
7 and 10). Nearly identical encoder architectures are used
in front of CTC and Seq2Seq loss functions; the Seq2Seq
encoder has its last bottleneck layer removed and lower
dropout in deeper layers. The Seq2Seq self-attention de-
coder for the ResNet architecture is the same as that used
with the TDS convolutional AM described below. To better
fit the unlabeled data, we increase the model size by increas-
ing the number of channels in each convolution layer.

Time-Depth Separable (TDS) Convolution Acoustic
Model We extend the TDS block (Hannun et al., 2019)
(which is composed of one 2-D convolution layer and two
fully-connected layers with ReLU, LayerNorm and resid-
ual connections in between), by increasing the number of
channels in the feature maps spanning the two internal fully-
connected layers by a factor F > 1, so as to increase model
capacity. Following (Hannun et al., 2019), 3 sub-sampling
layers, i.e. 1-D convolution layers with stride 2, are adopted
to ensure an optimal context size for the encoder. For train-
ing with only labeled data, we have three groups of TDS
blocks with F = 3 after each sub-sampling layers. There
are 5, 6, and 10 blocks in each group, containing 10, 14,
and 18 channels, respectively. To increase model capacity
for unlabeled data, the three groups of TDS blocks, having
fewer 4, 5, and 6 blocks and F = 2 in each, are equipped
with much larger 16, 32, and 48 channels. All convolutions
in both TDS and sub-sampling layers have kernel size of
21× 1. Identical encoders are used for CTC and Seq2Seq.

Our Seq2Seq self-attention decoder performs R rounds of
attention through the same N -layers of RNN-GRU each
with a hidden unit size of 512 in conjunction with the same
efficient key-value attention as in (Hannun et al., 2019;
Vaswani et al., 2017):

Sr
t = SOFTMAX

(
1√
d
K>Qr−1

t

)
V, (1)

where [K,V] is 512-dimensional encoder activation and
Qr

t = g(Qr
t−1,Q

r−1
t ) + Sr

t is the query vector at time t
in round r, generated by the GRU g(·). The initial Q0

t is
a 512-dimensional token embedding, and the final QR

t is
linearly projected to output classes for token classification.
In our experiments, N and R are both set to either 2 or 3

https://github.com/google/sentencepiece
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based on validation performance. We use dropout in all
TDS blocks and GRUs to prevent overfitting.

Transformer-Based Acoustic Model Our transformer-
based acoustic models have a small front-end: 3
(LIBRISPEECH AMs) or 6 (LIBRIVOX AM) layers of 1-
D convolutions each of kernel width 3 and respective in-
put and output sizes (80, Dc), (Dc/2, Dc), [(Dc/2, Dc),
(Dc/2, Dc), (Dc/2, Dc),] (Dc/2, Dtr × 2), with Dc =
1024 or 2048. Each convolution is followed by a GLU
activation function (Dauphin et al., 2017) and are striding
by 2 each (for 3 consecutive layers), or every other layer
(for 6 layers). The output of the front-end for all models
is thus strided by 8 frames (80 ms). After the front-end,
each Transformer block has 4 attention heads followed by
a feedforward network (FFN) with one hidden layer and a
ReLU non-linearity. There are two configurations of Trans-
former blocks: one 24 layer configuration (only for the LIB-
RISPEECH CTC AM) with dimension Dtr = 1024 for the
self-attention and 4096 for the FFN, and one 36 layer config-
uration with dimensionDtr = 768 for the self-attention and
3072 for the FFN. Specifically, given a sequence of T vec-
tors of dimension d, the input is represented by the matrix
H0 ∈ Rd×T , following exactly (Vaswani et al., 2017):

Zi = NORM(SELFATTENTION(Hi−1) +Hi−1),

Hi = NORM(FFN(Zi) + Zi),

where Z is the output of the self-attention layer, with a skip
connection, and H is the output of the FFN layer, with a skip
connection. As is standard: our NORM is LayerNorm, and
self-attention is defined as in Eq. 1, but with K = WKH,
Q = WQH, and V = WV H. For CTC-trained mod-
els, the output of the encoder HLe is followed by a linear
layer to the output classes. For Seq2Seq models, we have
an additional decoder, which is a stack of 6 Transformers
with encoding dimension 256 and 4 attention heads. The
probability distribution of the transcription is factorized as:

p(y1, ..., yn) =

n∏
i=1

p(yi | y0, ..., yi−1,HLe), (2)

where y0 is a special symbol indicating the beginning of the
transcription. For all layers (encoder and decoder – when
present), we use dropout on the self-attention and layer drop
(Fan et al., 2019), dropping entire layers at the FFN level.

2.2. Language Models

In this section, we present external language models (LMs)
used in beam-search decoding. We consider n-gram LMs
as well as convolutional (Dauphin et al., 2017) (GCNN)
and Transformer-based LMs. For n-gram and GCNN LMs,
we train both word-level and word-piece models, and only
a word-level Transformer LM. All word-piece LMs are

trained on the set of 10k word pieces as outlined in Sec-
tion 2.1. This ensures that the set of word pieces is consis-
tent across both of the output distributions of the AMs and
the candidates the LM scores during beam-search decoding.

For the word-piece and word-level GCNN models, we use
the GCNN-14B architecture from (Dauphin et al., 2017)
with embedding size 1024 and dropout 0.1. The word-level
Transformer LM has the same architecture as (Baevski &
Auli, 2019)’s Google Billion Words model; we use 16 at-
tention heads and 20 decoder layers with embedding, input
and output dimensions of 1280 and 6144 for the FFN with
dropout of 0.1.

3. Unlabeled Audio Dataset Preparation
LIBRIVOX2 is a large collection of freely-available audio-
books. Using tools provided with the LIBRILIGHT dataset
(Kahn et al., 2019b), we select 72K hours of read speech
from English book listings and run several preprocessing
steps. After filtering samples to remove readings of dupli-
cate text and corrupted audio, we remove all audio for which
the speaker has overlap with a sample in LIBRISPEECH. We
run voice activity detection (VAD) using the wav2letter++
framework (Pratap et al., 2018) on the resulting collection of
audio with a CTC model trained on LIBRISPEECH, and seg-
ment the result into chunks no greater than 36s; the resulting
audio corpus contains 53.8K hours of read speech.

We then generate pseudo-labels for this audio using the
recipe described in (Kahn et al., 2019a). To generate the
pseudo-labels, we use a Transformer AM trained on LIB-
RISPEECH with CTC loss that achieves a 6.20% WER on
dev-other when decoded with a 4-gram word LM – the same
model as is listed in Table 3 in the Appendix. We pseudo-
label all audio using this AM and run beam-search decoding
with a 4-gram word LM described in Appendix A.

4. Decoding
Decoding is designed to select the best transcription by lever-
aging both the posteriors of an acoustic model (AM) and the
perplexity of a language model (LM). We perform one-pass
beam-search decoding with a single external LM. Option-
ally, to further improve performance, we use stronger NN-
based LMs to rescore the beam. Details on our beam-search
decoder algorithm and rescoring are given in Appendix B.

5. Experiments
5.1. Technical Details

We use the standard splits for LIBRISPEECH (all the avail-
able training data was used for training, and two config-

2https://librivox.org

https://librivox.org
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urations, clean and other, for validation and test) and the
standard LIBRISPEECH LM corpus for LM training. Mod-
els are trained using the wav2letter++ toolkit (Pratap et al.,
2018); reproduction steps and pre-trained models are open-
sourced3.

Acoustic Model Training All hyper-parameters including
model architecture are cross-validated on dev-clean and
dev-other. Given that we have a large family of models,
for simplicity and clarity, we only report hyper-parameters
ranges in which we search their best values.

Plain SGD with momentum is used to train ResNet and TDS
models, and Adagrad (Duchi et al., 2011) to train Transform-
ers. Models are trained on 64 GPUs each with an overall
batch size of 256 for ResNet and TDS and 320 for Trans-
former. With only LIBRISPEECH, all models converged in
under a week; with pseudo-labels from LIBRIVOX, training
required 2-3 weeks. The initial learning rate for ResNet
models is chosen from [0.05, 0.5] , while for TDS and
Transformer models, the range decreases to [0.01, 0.03].
Specifically, for Transformers, we apply a linear learning
rate warm-up schedule for either 32k or 64k updates. For
fully-supervised training with LIBRISPEECH, the learning
rate is halved every 90 epochs for Transformer models,
and 150 epochs for ResNet and TDS models. With LIB-
RIVOX, however, we only halve the learning rate once in
the middle of the training. For TDS and ResNet models,
we use momentum in the range [0.1, 0.6]. With respect to
regularization, we use 0.2 dropout everywhere (front-end,
encoder, decoder), and layer drop for all Transformer blocks.
Dropout in TDS blocks and ResNet convolutions is in the
range [0.05, 0.2] and increases with depth. For Seq2Seq
training, we run 3 epochs of attention-window pretraining,
and use 99% of teacher forcing (1% of uniform output sam-
pling). We also use 10% dropout in the decoder for TDS
(and 0.1 dropout and 0.1 layer drop in the decoder for Trans-
formers), together with 5% label smoothing, 1% random
sampling and 1% word piece sampling. All models use
SpecAugment (Park et al., 2019) with an LD policy.

Language Model Training All LMs in this section are
trained on the standard LIBRISPEECH LM corpus. All word-
level LMs use the same vocabulary for training. n-gram
LMs are trained with the KenLM toolkit (Heafield, 2011),
while the GCNN and Transformer LMs are trained with
fairseq4 toolkit (Ott et al., 2019). The word-level 4-gram
and GCNN are trained in the same way as (Likhomanenko
et al., 2019). We also train a 6-gram word-piece LM, which
has a similar context size to a word-level 4-gram LM, and
prunes 5-grams appearing once and 6-gram appearing twice
or fewer. The word-piece and word-level GCNN models

3https://github.com/facebookresearch/
wav2letter

4https://github.com/pytorch/fairseq

are trained with Nesterov accelerated gradient descent (Nes-
terov, 1983) on 8 GPUs for 22 epochs with a step-wise
learning rate schedule starting from 1 and decreasing by a
factor of 5 when the loss is on the plateau. Gradient clip-
ping and weight normalization are used following (Dauphin
et al., 2017). The word-level Transformer LM is trained
with Nesterov accelerated gradient descent on 128 GPUs
for 100 epochs with an inverse square root learning rate
schedule. During the first 16k iterations, a warm-up sched-
ule that linearly increases the learning rate from 1e-7 to 1 is
used. Word-level perplexities of all LM variants are listed
in Table 1.

Table 1. Word-level perplexities of LMs on LIBRISPEECH. Per-
plexity is computed without unknown words.

LANGUAGE MODEL DEV-CLEAN DEV-OTHER

WORD 4-GRAM 148.0 136.6
NO LIBRIVOX OVERLAP 152.8 140.0

WP 6-GRAM 145.4 133.7
WP GCNN (188M) 61.7 61.9
WORD GCNN (319M) 57.0 57.9
WORD TRANSF. (562M) 48.2 50.2

5.2. Results

LIBRISPEECH Results All our results for LIB-
RISPEECH are listed in the top of Table 3 in Appendix.
We present results under three scenarios: without any de-
coding nor external LM (greedy decoding), with one-pass
decoding only, and with decoding followed by beam rescor-
ing. The decoding beam size is usually 50 and 500 for
Seq2Seq and CTC respectively. We use a beam size of 250
for CTC decoding with a GCNN LM. We train strong base-
lines on simple ResNet architectures and improve the TDS
models significantly compared to past results (Hannun et al.,
2019). These convolutional models outperform end-to-end
biLSTM models from (Lüscher et al., 2019). Our best acous-
tic models are Transformers-based and reach 6.98% without
any decoding on test-other and 5.17% with decoding
and rescoring, demonstrating that end-to-end training can
perform as well as traditional bootstrapped systems.

LIBRIVOX Results Assuming all pseudo-labels are
ground-truth, we train acoustic models on a combination
of the 960 hours of labeled audio from LIBRISPEECH in
conjunction the pseudo-labeled audio from LIBRIVOX,
where batches are uniformly sampled (without weight-
ing) from both LIBRISPEECH and LIBRIVOX datasets.
Transformer AMs with both CTC and Seq2Seq loss were
trained for 5 days on this combined dataset, achiev-
ing WERs on test-other of 4.88% and 2.28% on
test-clean without decoding or use of an LM, which
is state-of-the-art even amongst pipelines that use an LM.

https://github.com/facebookresearch/wav2letter
https://github.com/facebookresearch/wav2letter
https://github.com/pytorch/fairseq
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Table 2. WERs on LIBRISPEECH development and test sets. Our best results are shown in the bottom section (with the number of
parameters), and are both trained with Seq2Seq loss. Full results can be found in Appendix Table 3.

AM LM DEV TEST

TYPE LEXICON TYPE LEXICON CLEAN OTHER CLEAN OTHER

LAS (PARK ET AL., 2019) 16K WP - - 2.8 6.8
DECODING 16K WP RNN 16K WP 2.5 5.8

HMM/BILSTM 12K CDP 4GRAM+LSTM WORD 2.2 5.1 2.6 5.5
+ TRANSF. RESCORING 12K CDP + TRANSF. WORD 1.9 4.5 2.3 5.0

(LÜSCHER ET AL., 2019)
TRANSFORMERS BPE RNN WORD 2.2 5.6 2.6 5.7

(KARITA ET AL., 2019)
CONV. TRANSF. 6K TRIPHONES 3GRAM, RESCORED WORD 1.8 5.8 2.2 5.7

(HAN ET AL., 2019) + TDNN + LSTM
CONV. TRANSF. CHENONES 4GRAM WORD 2.60 5.59

+ TRANSF. RESCORING CHENONES TRANSF. WORD 2.26 4.85
(WANG ET AL., 2019)

TRANSF. (270M) – LIBRISPEECH 10K WP - - 2.54 6.67 2.89 6.98
+ DECODING/RESCORING 10K WP GCNN + TRANSF. WORD 2.07 4.79 2.37 5.17

TRANSF. (296M) – LIBRIVOX 10K WP - - 2.12 4.59 2.28 4.88
+ DECODING/RESCORING 10K WP GCNN + TRANSF. WORD 2.00 3.65 2.09 4.11

Results with decoding/rescoring are shown in Table 2,
where we reach 2.09% and 4.11% on test-clean and
test-other , respectively, and are further improvements
on the state-of-the-art. From ablations study, Appendix C
and D, we found interesting outcomes: i) increasing the
amount of pseudo-labels strictly improves performance, ii)
models trained on LIBRIVOX pseudo-labels alone outper-
form models trained on LIBRISPEECH, iii) a large collection
of pseudo-labeled audio helps to learn better acoustic repre-
sentation and transfer LM knowledge so there is no longer
benefit much from decoding with an external LM.

6. Related Work
Deep neural networks were reintroduced in ASR with
HMMs (Hinton et al., 2012), and many of state-of-the-
art models still rely on force alignment (Han et al., 2017;
Lüscher et al., 2019; Karita et al., 2019). Nonetheless,
there have been increasingly competitive end-to-end results
trained with CTC (Graves & Jaitly, 2014; Amodei et al.,
2016), ASG (Collobert et al., 2016; Zeghidour et al., 2018),
LF-MMI (Hadian et al., 2018), sequence-to-sequence (Chan
et al., 2016; Chiu et al., 2018a), transduction (Prabhavalkar
et al., 2017; He et al., 2019), and differentiable decoding
(Collobert et al., 2019a). Listen Attend and Spell (Chan
et al., 2016) is a family of end-to-end models based on biL-
STMs which achieved state-of-the-art results with improved
regularization through data augmentation (Park et al., 2019);
we consequently use SpecAugment in all of our experiments.
Seq2Seq models are not limited to RNNs; time-depth sep-
arable convolutions also give strong results (Hannun et al.,
2019). Our best models are transformer-based, as (Lüscher
et al., 2019; Karita et al., 2019), which give good results

in Seq2Seq settings even without external LMs (Mohamed
et al., 2019). In ASR, semi-supervised pseudo-label-style
self-training has been explored generally in end-to-end set-
tings in (Soltau et al., 2016; Li et al., 2019a; Kahn et al.,
2019a) for both low-resource (Veselỳ et al., 2017; Cui et al.,
2017) and large-scale (Parthasarathi & Strom, 2019) setups.

7. Discussion
We presented state-of-the-art results on LIBRISPEECH with
end-to-end methods. While allowing for lexicon-free decod-
ing, the 10k word-piece tokens used during training limit the
amount of striding we can use in our model architectures and
can be replaced by AMs outputting words with an arbitrary
lexicon (Collobert et al., 2019b). As relative WER gains
due to language models shrink (from ≈20% relative-WER
without LIBRIVOX to ≈10% with, for GCNN decoding),
and as we showed that AMs learn LM-level information,
differentiable decoding (Collobert et al., 2019a) is a possible
avenue for single-stage AM + LM joint training.

We show the effectiveness of a simple pipeline that does not
require many training steps. In light of our semi-supervised
results without decoding or an LM, we think Seq2Seq/CTC
losses, transducers, and differentiable decoding are viable
methods to achieve end-to-end state-of-the-art results, with-
out external LMs, through semi-supervised learning.

8. Acknowledgements
We would like to thank Steven Garan for audio recordings
of shuffled sentences from LIBRISPEECH dev-other.



End-to-End ASR: from Supervised to Semi-Supervised Learning

References
Amodei, D., Ananthanarayanan, S., Anubhai, R., et al. Deep

speech 2: End-to-end speech recognition in english and
mandarin. In International conference on machine learn-
ing, pp. 173–182, 2016.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

Baevski, A. and Auli, M. Adaptive input representations for
neural language modeling. In International Conference
on Learning Representations, 2019. URL https://
openreview.net/forum?id=ByxZX20qFQ.

Chan, W., Jaitly, N., Le, Q. V., and Vinyals, O. Listen,
attend and spell: A neural network for large vocabulary
conversational speech recognition. In ICASSP, 2016.

Chiu, C.-C., Sainath, T., Wu, Y., et al. State-of-the-art
speech recognition with sequence-to-sequence models.
ICASSP, 2018a.

Chiu, C.-C., Sainath, T. N., Wu, Y., Prabhavalkar, R.,
Nguyen, P., Chen, Z., Kannan, A., Weiss, R. J., Rao,
K., Gonina, E., et al. State-of-the-art speech recognition
with sequence-to-sequence models. In 2018 IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 4774–4778. IEEE, 2018b.

Chorowski, J. and Jaitly, N. Towards better decoding and
language model integration in sequence to sequence mod-
els. arXiv preprint arXiv:1612.02695, 2016.

Collobert, R., Puhrsch, C., and Synnaeve, G. Wav2letter:
an end-to-end convnet-based speech recognition system.
arXiv preprint arXiv:1609.03193, 2016.

Collobert, R., Hannun, A., and Synnaeve, G. A fully differ-
entiable beam search decoder. In ICML, pp. 1341–1350,
2019a. URL http://proceedings.mlr.press/
v97/collobert19a.html.

Collobert, R., Hannun, A., and Synnaeve, G. Word-
level speech recognition with a dynamic lexicon. arXiv
preprint arXiv:1906.04323, 2019b.

Cui, J., Kingsbury, B., Ramabhadran, B., Saon, G., Sercu,
T., Audhkhasi, K., Sethy, A., Nussbaum-Thom, M., and
Rosenberg, A. Knowledge distillation across ensembles
of multilingual models for low-resource languages. 2017.

Dauphin, Y. N., Fan, A., Auli, M., and Grangier, D. Lan-
guage modeling with gated convolutional networks. In
Proceedings of the 34th International Conference on Ma-
chine Learning - Volume 70, ICML’17, pp. 933–941.
JMLR.org, 2017.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradi-
ent methods for online learning and stochastic optimiza-
tion. Journal of machine learning research, 12(Jul):2121–
2159, 2011.

Fan, A., Grave, E., and Joulin, A. Reducing transformer
depth on demand with structured dropout. arXiv preprint
arXiv:1909.11556, 2019.

Graves, A. and Jaitly, N. Towards end-to-end speech
recognition with recurrent neural networks. In Pro-
ceedings of the 31st International Conference on In-
ternational Conference on Machine Learning - Vol-
ume 32, ICML’14, pp. II–1764–II–1772. JMLR.org,
2014. URL http://dl.acm.org/citation.
cfm?id=3044805.3045089.

Graves, A., Fernández, S., Gomez, F., and Schmidhuber,
J. Connectionist temporal classification: labelling un-
segmented sequence data with recurrent neural networks.
In Proceedings of the 23rd international conference on
Machine learning, pp. 369–376, 2006.

Hadian, H., Sameti, H., Povey, D., and Khudanpur, S. End-
to-end speech recognition using lattice-free mmi. In In-
terspeech, pp. 12–16, 2018.

Han, K. J., Chandrashekaran, A., et al. The capio 2017
conversational speech recognition system, 2017.

Han, K. J., Prieto, R., Wu, K., and Ma, T. State-of-the-art
speech recognition using multi-stream self-attention with
dilated 1d convolutions, 2019.

Hannun, A., Lee, A., Xu, Q., and Collobert, R. Sequence-to-
sequence speech recognition with time-depth separable
convolutions. Interspeech 2019, Sep 2019. doi: 10.21437/
interspeech.2019-2460.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In Computer Vision and
Pattern Recognition (CVPR), 2016.

He, Y., Sainath, T. N., Prabhavalkar, R., et al. Streaming end-
to-end speech recognition for mobile devices. ICASSP
2019 - 2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), May 2019. doi:
10.1109/icassp.2019.8682336.

Heafield, K. Kenlm: Faster and smaller language model
queries. In Proceedings of the sixth workshop on statis-
tical machine translation, pp. 187–197. Association for
Computational Linguistics, 2011.

Hinton, G., Deng, L., Yu, D., Dahl, G., rahman Mohamed,
A., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P.,
Sainath, T., and Kingsbury, B. Deep neural networks for
acoustic modeling in speech recognition. Signal Process-
ing Magazine, 2012.

https://openreview.net/forum?id=ByxZX20qFQ
https://openreview.net/forum?id=ByxZX20qFQ
http://proceedings.mlr.press/v97/collobert19a.html
http://proceedings.mlr.press/v97/collobert19a.html
http://dl.acm.org/citation.cfm?id=3044805.3045089
http://dl.acm.org/citation.cfm?id=3044805.3045089


End-to-End ASR: from Supervised to Semi-Supervised Learning

Kahn, J., Lee, A., and Hannun, A. Self-training for end-to-
end speech recognition. arXiv preprint arXiv:1909.09116,
2019a.

Kahn, J., Rivière, M., Zheng, W., Kharitonov, E., Xu, Q.,
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Table 3. Word error rates on LIBRISPEECH’s development and test sets. Our models listed in the top and bottom blocks are trained with
CTC and Seq2seq losses respectively.

AM LM DEV TEST

TYPE LEXICON TYPE LEXICON CLEAN OTHER CLEAN OTHER

CTC
RESNET (306M) 10K WP - - 3.93 10.13 4.08 10.03

DECODING ZEROLM LEX 3.76 9.7 4.07 9.77
DECODING 4GRAM WORD 3.29 8.56 3.68 8.69
DECODING GCNN WORD 2.99 7.50 3.28 7.53

RESNET (500M) LIBRIVOX 10K WP - - 2.34 5.54 2.55 5.99
DECODING ZEROLM LEX 2.37 5.45 2.73 5.96
DECODING 4GRAM WORD 2.34 5.23 2.68 5.75
DECODING GCNN WORD 2.19 4.64 2.45 5.13

TDS (200M) 10K WP - - 4.22 11.16 4.63 11.16
DECODING ZEROLM LEX 3.93 10.61 4.44 10.67
DECODING 4GRAM WORD 3.49 9.18 3.98 9.53
DECODING GCNN WORD 2.92 7.52 3.40 8.05

TDS (500M) LIBRIVOX 10K WP - - 2.44 5.70 2.66 6.11
DECODING ZEROLM LEX 2.47 5.61 2.86 6.18
DECODING 4GRAM WORD 2.44 5.33 2.81 5.91
DECODING GCNN WORD 2.26 4.71 2.55 5.24

TRANSF. (322M) 10K WP - - 2.99 7.31 3.09 7.40
DECODING ZEROLM LEX 2.85 6.98 3.14 7.23
DECODING 4GRAM WORD 2.63 6.20 2.86 6.72

+ RESCORING GCNN + TRANSF. WORD 2.18 4.90 2.44 5.36
DECODING GCNN WORD 2.35 5.29 2.57 5.85

+ RESCORING GCNN + TRANSF. WORD 2.20 4.94 2.47 5.45
TRANSF. (299M) LIBRIVOX 10K WP - - 2.28 5.00 2.39 5.35

DECODING ZEROLM LEX 2.31 4.94 2.58 5.42
DECODING 4GRAM WORD 2.24 4.59 2.52 5.22

+ RESCORING GCNN + TRANSF. WORD 1.99 3.91 2.28 4.50
DECODING GCNN WORD 2.09 4.27 2.41 4.79

+ RESCORING GCNN + TRANSF. WORD 2.01 3.95 2.31 4.54

SEQ2SEQ
RESNET (389M) 10K WP - - 3.51 9.89 4.92 10.33

DECODING ZEROLM LEXFREE 3.42 9.60 4.31 9.59
DECODING 6GRAM 10K WP 3.05 8.69 3.88 8.88
DECODING GCNN 10K WP 2.78 7.86 3.79 8.21

RESNET (500M) LIBRIVOX 10K WP - - 2.27 5.29 2.86 5.88
DECODING ZEROLM LEXFREE 2.26 5.28 2.67 5.54
DECODING 6GRAM 10K WP 2.29 5.25 2.69 5.62
DECODING GCNN 10K WP 2.26 4.91 2.66 5.31

TDS (190M) 10K WP - - 3.20 8.20 3.43 8.30
DECODING ZEROLM LEXFREE 2.89 8.00 3.24 7.99
DECODING 6GRAM 10K WP 2.76 7.01 3.18 7.16
DECODING GCNN 10K WP 2.54 6.30 2.93 6.43

TDS (500M) LIBRIVOX 10K WP - - 2.17 4.78 2.37 5.15
DECODING ZEROLM LEXFREE 2.20 4.80 2.38 5.11
DECODING 6GRAM 10K WP 2.18 4.61 2.35 5.02
DECODING GCNN 10K WP 2.08 4.21 2.24 4.61

TRANSF. (270M) 10K WP - - 2.54 6.67 2.89 6.98
DECODING ZEROLM LEXFREE 2.49 6.32 2.75 6.58
DECODING 6GRAM 10K WP 2.29 5.81 2.72 6.23

+ RESCORING GCNN + TRANSF. WORD 2.13 5.00 2.51 5.47
DECODING GCNN 10K WP 2.12 5.20 2.40 5.70

+ RESCORING GCNN + TRANSF. WORD 2.10 4.79 2.33 5.17
TRANSF. (296M) LIBRIVOX 10K WP - - 2.12 4.59 2.28 4.88

DECODING ZEROLM LEXFREE 2.10 4.53 2.27 4.80
DECODING 6GRAM 10K WP 2.06 4.32 2.25 4.70

+ RESCORING GCNN + TRANSF. WORD 1.91 3.76 2.10 4.20
DECODING GCNN 10K WP 1.97 3.95 2.17 4.37

+ RESCORING GCNN + TRANSF. WORD 2.00 3.65 2.09 4.11
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A. Pseudo-Labeling: Text Corpus
Preparation and n-gram LM Training

The LIBRISPEECH language model corpus5 contains text
from 14500 public domain books taken from the Gutenberg
project6. Given that pseudo-labels are generated with a
beam-search decoding procedure that integrates a language
model, it is important that the corpus used to train the lan-
guage model does not have overlap with the unlabeled audio,
else information about the ground truth labels for that un-
labeled audio may be explicitly embedded in the LM. We
remove all text from the LIBRISPEECH language model
training corpus that is ground truth for any of the unlabeled
audio from the subset of LIBRIVOX.

To do so, we follow several steps. Firstly, we filter out all
books from the LIBRISPEECH LM corpus with IDs present
in LIBRIVOX. Secondly, after normalizing all titles (remov-
ing punctuation, casing, and non-alphanumeric tokens), we
remove all titles with zero Levenshtein distance between
titles from the LIBRIVOX and the LIBRISPEECH LM cor-
puses. We use a Levenshtein metric over words rather than
tokens for improved performance. We then find titles with
nonzero but low similarity scores isolated via the follow-
ing conditions. Given two book title strings s1 and s2, and
constants α and β:

max{|s1|, |s2|}−min{|s1|, |s2|} < α ·min{|s1|, |s2|} &

Levenshtein(s1, s2) ≤ β ·max{|s1|, |s2|}

where notation |s| refers to the number of words in the
string |s|, and 0.75 and 0.3 were used as values for α and
β, respectively. These constants are found empirically to
remove obviously different titles and to have reasonable
number of pairs ( 10k) for further manual check. Titles that
are manually matched are removed to create the final corpus;
13% of the original LIBRISPEECH-LM corpus was filtered
with the aforementioned steps.

Before training LMs, we normalize the filtered corpus so
as to mimic the original normalization procedure found
in LIBRISPEECH. 88% of our normalized/filtered corpus
has identical normalized text compared to the original LIB-
RISPEECH LM corpus. As a result of our using a different
tokenizer, sentence boundaries may differ across corpuses,
as may abbreviations (e.g. we map ‘&c’ to ‘et cetera’).

A 4-gram language model is trained with the resulting cor-
pus using the KenLM toolkit (Heafield, 2011) and the top
200k words as vocabulary. The model is trained without
pruning (183k of the top 200k words are the same as the orig-
inal LIBRISPEECH LM corpus). This model is then used at
beam-search decoding time in conjunction with an acoustic

5http://www.openslr.org/11/
6https://www.gutenberg.org/

model trained on LIBRISPEECH to generate pseudo-labels
on the subset of LIBRIVOX detailed in Section 3. During
beam-search decoding we use a lexicon which is constructed
from the LIBRISPEECH train sets only.

The perplexity difference between the 4-gram LM trained
on the filtered corpus and the 4-gram LM trained on original
LIBRISPEECH LM corpus is small. The word perplexity of
each model is shown in Table 1. Beam-search decoding of
a Transformer AM trained on LIBRISPEECH with an LM
trained on the filtered corpus results in only a 0.05% absolute
WER increase on dev-other compared to decoding with
an n-gram trained on the full corpus.

B. Decoding
B.1. Beam-search Decoder

In our experiments, we use lexicon-based and lexicon-free
beam-search decoders following (Collobert et al., 2016;
Likhomanenko et al., 2019) with either n-gram or GCNN
LMs. The lexicon-based decoder, whose search space is
limited to the words in the lexicon, is used for CTC models
with a word-level LM. The lexicon-free decoder is capable
of generating words with arbitrary spelling and is used for
S2S models with a word-piece LM. The decoder takes as
input posteriors from an acoustic model, a prefix trie built on
a lexicon, and an external LM. We tune the language model
weight α and the word insertion penalty β on validation sets
(dev-clean and dev-other). The decoder outputs a
transcription ŷ that maximizes

logPAM (ŷ|x) + α logPLM (ŷ) + β|ŷ|.

To stabilize the Seq2Seq beam search, we introduce an
EOS-penalty γ to hypothesis that have finished in an end-
of-sentence token. γ is tuned together with other hyper-
parameters and our experiments show that this strategy effec-
tively prevents the decoder from early-stopping. To improve
decoding efficiency, we also incorporate the thresholding
technique in (Hannun et al., 2019) and strategies mentioned
in (Zeghidour et al., 2018) including hypothesis merging,
score caching, and batched LM forwarding. For CTC de-
coding, following (Park et al., 2018), only the blank token
is considered if its posterior probability is greater than 0.95.

B.2. Rescoring

After acquiring the transcriptions of the N -best hypotheses
from the one-pass beam-search decoder, we use an external
word-level GCNN LM and a Transformer LM to evaluate
their log-probabilities, denoted as logP1(ŷ) and logP2(ŷ)
respectively. We then perform rescoring to reorder the hy-
potheses according to the following score:

logPAM (ŷ|x) + α1 logP1(ŷ) + α2 logP2(ŷ) + β|ŷ|,

http://www.openslr.org/11/
https://www.gutenberg.org/
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where α1, α2, β are hyper-parameters of the rescoring al-
gorithm optimized on the validation set and |ŷ| is the tran-
scription length in characters (including the spaces between
words). In order to diversify the hypotheses in the beam,
to increase the probability that the correct transcription is
included, we usually relax the threshold in the decoder and
increase beam size when dumping beam candidates.

C. Ablations
C.1. Varying the amount of unlabeled audio

In this study, we train on several different randomly-selected
subsets of pseudo-labels from the original collection gener-
ated as described in Section 3. Results are given in Table 4.
Increasing the amount of pseudo-labels strictly improves
performance. The listed 53.8k hour result is using the fully-
prepared dataset as outlined in Section 3. WERs given are
without decoding after 800k iterations of training.

Table 4. WERs of a Transformer AM architecture outlined in sec-
tion 2.1 trained with Seq2Seq loss on LIBRISPEECH with different
amounts of pseudo-labeled audio from LIBRIVOX.

TRAINING DATASET
(HOURS) DEV-CLEAN DEV-OTHER

LS ONLY 2.54 6.67
LS + 1K LV 2.35 5.56
LS + 3K LV 2.21 5.16
LS + 10K LV 2.11 4.95
LS + 53.8K LV 2.11 4.59

Table 5. WERs of a Transformer AM when trained with pseudo-
labels generated with a decoder integrating an LM that contains
overlapping text with unlabeled audio versus an LM with no over-
lap. Results are shown after decoding with the word 4-gram lan-
guage model described in Section 2.2.

MODEL OVERLAP DEV-OTHER TEST-OTHER

TRANS. S2S NO 4.58 4.90
YES 4.51 4.87

TRANS. CTC NO 4.92 5.47
YES 4.80 5.33

C.2. Generating pseudo-labels with an LM containing
overlapping text

As discussed in Appendix A, using an LM to generate
pseudo-labels that was trained with a corpus that includes
ground truth text from unlabeled audio introduces an overlap
that may unrealistically improve the quality of pseudo-labels.
We show that the effect of using an LM trained with a small
amount of overlapping text to generate pseudo-labels has

only a small effect on the performance of models trained on
those pseudo-labels.

Table 5 contains results for Transformer AMs with both
CTC and Seq2Seq loss as described in 2.1 trained on
pseudo-labels generated with a decoding step that uses
an LM trained on an overlapping versus non-overlapping
corpus. The models used are of the same architecture as
described in Section 2.1. There is a small improvement
in dev-other performance for pseudo-labels generated
from an overlapping LM, but both models generalize very
similarly.

C.3. Training on pseudo-labels only

Models trained on LIBRIVOX pseudo-labels alone outper-
form models trained on LIBRISPEECH. As outlined in Sec-
tion 5, all acoustic models are trained on a combination of
LIBRISPEECH and pseudo-labeled LIBRIVOX audio. In
this setup, it is difficult to disambiguate the importance of
the pseudo-labeled audio compared to supervised data from
LIBRISPEECH. To test the quality of pseudo-labels in isola-
tion, we trained a CTC-based Transformer model similar to
that described in Section 2.1 to compare directly with the
CTC-based transformer AM used to generate the pseudo-
labels described in Section 3. We compare the resulting
AM-only performance on the LIBRISPEECH development
sets. Without decoding, the resulting LIBRIVOX pseudo-
label-only model achieves WERs of 2.38% and 5.43%
on dev-clean and dev-other respectively, which im-
proves over the LIBRISPEECH-only baseline’s 2.99% and
7.31%, respectively. The volume, quality, and diversity of
the generated pseudo-labels alone are sufficient to generate
superior results as compared to a model trained only on
LIBRISPEECH. The model trained on LIBRISPEECH and
LIBRIVOX pseudo-labels achieves an improved 2.28% and
4.99% on dev-clean and dev-other, respectively.

D. End-to-End Acoustic Models Learn a
Language Model: Removing the LM from
ASR

In the sections that follow, we show two results. We first
give a simple experimental framework to demonstrate that
acoustic models trained on speech learn nontrivial language
models, and that training on additional audio facilitates
learning better acoustic representations. We then show that
with a large collection of pseudo-labeled audio, well-trained
acoustic models no longer benefit much from decoding with
an external language model in most cases.

D.1. AMs learning LM: transcribing shuffled audio

The language modeling properties of end-to-end acoustic
models are briefly discussed in (Chan et al., 2016), where
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Figure 2. dev-other WERs without decoding across acoustic models and loss functions for original and shuffled versions of
dev-other across three settings. Each plot uses the following original and shuffled audio: Left: original and shuffled dev-other audio
segmented using ASG. Middle: audio generated by TTS vocoder for the original and shuffled transcriptions from dev-other. Right:
original and shuffled audio for a subset of dev-other recorded by the paper’s authors.

an AM trained with CTC is shown to learn an implicit lan-
guage model based on its predicted posteriors for words
with multiple spelling variants. Still other results show that
fusing an LM with an AM during training can improve per-
formance (Sriram et al., 2017; Chorowski & Jaitly, 2016;
Wu et al., 2016). These previous works use RNN-based
acoustic models, which possess infinite receptive fields and
processes most or all of an input utterance during a single
forward pass. We show that modern convolutional architec-
tures have large receptive fields and likely also learn word
representations directly from audio.

If an AM learns a robust LM, the acoustic model will
less effectively predict utterances of high underlying word-
perplexity; the model will rely on its acoustic representa-
tions to predict words without context, providing a good
proxy for the quality of its learned acoustic representations.
In the experiments that follow, we introduce a simple “shuf-
fled transcription” task in which models transcribe LIB-
RISPEECH dev-other with utterances corresponding to
both unshuffled and shuffled transcriptions. Experiments
are performed in three audio settings to eliminate bias when
scrambling words. First, with a TTS model, unshuffled
and shuffled sentences are forwarded through a WaveRNN
vocoder (Kalchbrenner et al., 2018) trained on the LJSpeech
dataset7 using the Mozilla TTS toolkit8. In the second set-
ting, audio is segmented at the word level using a convo-
lutional stride 2 letter-based AM trained with ASG loss
(Collobert et al., 2016), then re-spliced together in the given
shuffled order. Finally, the paper’s authors recorded unshuf-
fled and shuffled utterances from a subset of dev-other.

Figure 2 contains the WERs across audio settings on

7https://keithito.com/LJ-Speech-Dataset/
8https://github.com/mozilla/TTS

dev-other without decoding. Both CTC and Seq2Seq
models perform poorly across the board on shuffled audio
which is expected. As soon as we are interested not in the
absolute WER values but in the relative WER values across
models / losses / datasets, the main outcome from Figure 2
is that AMs trained with LIBRIVOX pseudo-labels are able
to learn better acoustic representations which improve per-
formance on shuffled inputs for which their internal LMs is
not predictive.

D.2. With enough unlabeled audio, decoding with an
LM doesn’t improve performance

The importance of the language model to the success of the
pseudo-labeling is known; (Kahn et al., 2019a) show that in
the end-to-end setting, as the quality of the language model
used to generate the pseudo-label decreases even marginally,
the quality of the model trained on the resulting pseudo-
labels decreases. In what follows, we show that through the
self-training procedure, decoding an acoustic model trained
on LIBRIVOX pseudo-labels generated with the help of a
language model gives very small improvements compared
to models trained only on LIBRISPEECH.

Results are shown in Figure 3. We use a beam-search de-
coding procedure without an LM (“Zero-LM”) to disam-
biguate the effect of beam search on WER, and evaluate
on dev-other to provide a better lower bound for how
much decoding with the LM can improve performance (de-
coder parameters are also optimized on dev-other ). The
models for which results are shown are trained on pseudo-
labels from LIBRIVOX generated with an n-gram language
model without an overlapping text corpus (see the ablation
in Appendix C and Section 2.2). Decoding with the LM
gives little to no gain for models trained on LIBRISPEECH +

https://keithito.com/LJ-Speech-Dataset/
https://github.com/mozilla/TTS
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Figure 3. WER on dev-other for models trained on LIB-
RISPEECH and LIBRISPEECH + LIBRIVOX after decoding with
and without the 4-gram LM described in Section 2.2. The
gain from LM beam-search decoding for models trained on LIB-
RIVOX is much smaller compared to that for models trained on
LIBRISPEECH.

LIBRIVOX and a much more significant gain for those mod-
els trained only on LIBRISPEECH, suggesting information
from the 4-gram LM used to generate pseudo-labels on LIB-
RIVOX has thoroughly diffused into AMs trained with those
labels. Full results can be found in Table 3.

E. Experiment Details
Comprehensive WER results for LIBRISPEECH and LIB-
RIVOX acoustic models, including with greedy and beam-
search decoding with different LMs and beam rescoring can
be found in Table 3. This section mainly focus on providing
details of how we optimize the beam-search decoding and
rescoring procedures for our acoustic models.

E.1. Beam-Search Decoding

When beam-search decoding, we use the dev-clean and
dev-other sets as validation sets and use random search
to optimize decoding hyper-parameters. The search ranges
of those hyper-parameters are listed in Table 6. We use
between 64 and 128 runs in each random search with hyper-
parameter values uniformly sampled from the given ranges.
It is worth noting that the optimal ranges for language model
weight for models trained on LIBRISPEECH are higher than
ones found for LIBRIVOX models as shown in Table 7. This
is conceivably additional evidence that models trained with
additional audio rely less on language models.

E.2. Rescoring

To perform rescoring, we first dump all hypotheses pro-
posed during beam-search decoding using the optimal hyper-
parameters found with random search. When dumping can-
didates, beam size, token beam size, and beam threshold
are increased so as to increase the number of proposed hy-

Table 6. Hyper-parameter values and ranges used in a random
search for beam-search decoding with n-gram (top block) and
GCNN (bottom block) LMs.

LIBRISPEECH LIBRIVOX
PARAMETERS CTC S2S CTC S2S

BEAM 500 50, 100 500 20, 50, 100
TOKEN BEAM 100 10, 50 100 3, 5, 10
LM WEIGHT [0, 3] [0, 2] [0, 1.5] [0, 1]
THRESHOLD 100 10, 50 100 5, 10, 50
WORD INSERT. [−3, 3] - [−3, 3] -
EOS-PENALTY - [−10, 0] - [−10, 0]

BEAM 250 50 250 20, 50, 100
TOKEN BEAM 100 10, 18 100 3, 5, 10
LM WEIGHT [0, 3] [0, 2] [0, 1.5] [0, 0.8]
THRESHOLD 20 10, 15 20 5, 10, 50
WORD INSERT. [−3, 3] - [−3, 3] -
EOS-PENALTY - [−10, 0] - [−10, 0]

Table 7. Optimal LM weight ranges (based on WER) for beam-
search decoding with n-gram (top block) and GCNN (bottom
block) LMs found via random search.

LIBRISPEECH LIBRIVOX
DATA CTC S2S CTC S2S

CLEAN [0.8, 1.4] [0.6, 1.1] [0.2, 0.4] [0.0, 0.2]
OTHER [1.1, 1.9] [0.6, 1.2] [0.5, 0.7] [0.1, 0.5]

CLEAN [0.4, 0.8] [0.2, 0.5] [0.2, 0.5] [0.0, 0.4]
OTHER [0.5, 1.1] [0.3, 0.7] [0.3, 0.6] [0.2, 0.4]

Table 8. Parameters values used when dumping beam candidates
for rescoring with n-gram (top block) and GCNN (bottom block)
LMs.

PARAMETERS CTC S2S

BEAM 2500 250
TOKEN BEAM 1500 150
THRESHOLD 5000 150

BEAM 250 250
TOKEN BEAM 100 100
THRESHOLD 20 100

potheses on which to run rescoring. Further details are
listed in Table 8. We find optimal values of rescoring hyper-
parameters α1, α2 and β (see Appendix B.2) via a grid
search for CTC models (α1, β ∈ [0, 1] and α2 ∈ [−0.3, 0.3]
where the grid step is set to 0.1), and a random search for
sequence-to-sequence models (α1,∈ [0, 2.5], α2 ∈ [−1, 1],
β ∈ [−3, 3] with 1000 attempts).
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F. Generating Shuffled Audio
This section provides details of how we generated shuffled
utterances used in the experiments in Section D.1. Each
experiment could introduce systematic error. Therefore, we
propose several experiments to conclude. For the two meth-
ods generating existing or using new audio (TTS and Seg-
mentation), we shuffle dev-other five times and report
the mean and standard deviation (as error bars) in Figure 2.

F.1. TTS

For each sentence in dev-other, we randomly shuffle its
words to form a new sentence. We run the resulting text
through a TTS model as outlined in Section C to create
synthetic audio for the scrambled sentences. While simple
and easy to implement, this method introduces and ampli-
fies intrinsic errors in the TTS model into the ablation. In
particular, the model struggles to handle many of the rare
words present in dev-other. Also TTS approach is still
away from the human speech.

F.2. Segmentation

With this method, we first force-align the transcriptions
of dev-other to the existing audio using a letter-based
stride-two ASG model as outlined in Section C and col-
lecting the beginning timestamp and duration of each word.
Then, to avoid splicing words that are ready closely together,
audio samples are only split when silence of longer than
130 milliseconds is detected (split is done in the middle
of silence segment). Finally, audio chunks are randomly
shuffled and re-assembled into new utterances. Since this
ablation aims to remove LM-friendly context from audio,
we filter the resulting recombined audio samples. In par-
ticular, we filter all utterances that have only one segment,
or have at least one segment with more than 6 words in it.
After filtering, 1969 out of 2864 samples in dev-other
remain. The distribution of the number of words in each of
the resulting segments is shown in Figure 4.
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Figure 4. Distribution of all n-grams in the obtained segments
of filtered dev-other (1969 samples with 16,362 segments in
total).

Unlike the TTS method described above, the segmentation

method reuses audio as much as possible from dev-other.
That said, neither the force alignment nor the segmentation
techniques handle all the word boundaries. As such, there
may be incomplete words in the resulting audio and LM-
friendly context.

F.3. Recording

The paper’s authors recorded 184 randomly selected sen-
tences from dev-other as well as a single set of shuffled
utterances. The unshuffled recorded audio has the lowest
WER among all the three methods. We plan to complete a
collection of unshuffled and shuffled audio for dev-other
in future work.

F.4. Perplexity

As shown in Table 9, there are large gaps between the per-
plexity of transcriptions in the original and shuffled sets
across all settings. Our shuffling strategy thus removes im-
portant word context and breaks the alignment of the audio
words distribution with the LM. The WER gap between
the two sets is thus a proxy for the amount of language
modeling an acoustic model may implicitly perform.

Table 9. Performance of word-level 4-gram and Transformer LMs
from Table 1 on original and shuffled audio transcriptions gener-
ated from LIBRISPEECH dev-other.

SETTING SHUFFLED 4-GRAM LM TRANSF. LM

TTS NO 147 50
TTS YES 749 ± 2 389 ± 2
SEGMENT. NO 167 56
SEGMENT. YES 827 ± 5 743 ± 9
RECORDING NO 162 49
RECORDING YES 3807 2995


